Limited-Information Testing for Structural Models with Categorical Data

Scott Monroe and Li Cai

IMPS, 2013

- 1. A Motivating Example
- 2. Goodness-of-Fit Testing
- 3. Simulation Study
- 4. Empirical Application
- 5. Conclusion

Example PISA (2003) Items Measuring Self-Related Cognition in Mathematics

- How much do you disagree or agree with the following statements?
 - I learn mathematics quickly.
 - I get very nervous doing mathematics problems.
- How confident do you feel about having to do the following calculations?
 - Using a <train timetable>, how long it would take to get from Zedville to Zedtown?

A Proposed Ordinal Structural Model

Latent Mediation Model for PISA Questionnaire Data

- PSC: Positive self-concept as a mathematics student
- ANX: Mathematics anxiety
- TASK: Task-specific confidence

This research considers the *multistage* estimator, which estimates:

- 1. thresholds by ML
- 2. polychoric correlations by ML
 - stages 1 and 2 yield a sample polychoric correlation matrix
- 3. structural parameters by some form of least squares

First type: statistic based on minimized fit-function value

- Let *F* be the minimum fit function value from estimation
- Then, T = (N 1)F is used to construct a test statistic
- Typically, *T* is adjusted to approximate a chi-square variate using moment-matching (e.g., Satorra and Bentler, 1994)
 - define *T_U* and *T_D* as mean- and variance-adjusted stats based on ULS and DWLS, respectively

Second type:

statistic based on contingency table residuals (Maydeu-Olivares, 2001)

- theoretical appeal of accounting for all levels of uncertainty
- Maydeu-Olivares (2001) derived 3 test statistics:
 - 1. distributional
 - 2. structural
 - 3. overall
- like T_U and T_D , all 3 statistics formed by matching moments

Maydeu-Olivares and Joe (2005, 2006) proposed M₂

- quadratic form based on first- and second-order marginal residuals
- limited-information statistic
- *M*^{*}₂, a version of *M*₂ for polytomous responses (Joe and Maydeu-Olivares, 2010, Cai and Hansen, 2012)
- chi-square distributed

 M_2 has been successfully applied to many IRT models, estimated by ML.

But, M_2 is not limited to IRT or ML (Maydeu-Olivares and Joe, 2006).

The current research uses M_2 and M_2^* as an overall test for ordinal structural models, estimated by the multistage estimator.

• Purpose:

- 1. show M_2 is chi-squared
- 2. compare M_2 to T_U and T_D in terms of calibration and power

• Conditions:

- 500 replications attempted
- model identical to PISA example (latent mediation)
- N = 100, 200, 500, 1000
- K = 2 or 4 categories per item
- model misspecification via Tucker, Koopman, and Linn (TKL, 1969)

QQ Plot for N=1000, K=4, Null Condition

QQ Plot for N=200, K=4, Null Condition

QQ Plot for N=100, K=4, Null Condition

QQ Plot for N=1000, K=2, Null Condition

QQ Plot for N=200, K=2, Null Condition

QQ Plot for N=100, K=2, Null Condition

Power of Test Statistics at $\alpha = .05$

Power of Test Statistics at $\alpha = .05$

For TKL10, the population RMSEA is .033

Mean (SD) M₂-based RMSEA for TKL10

	Sample Size						
Κ	100	200	500	1000			
2	.017 (.023)	.016 (.018)	.011 (.011)	.011 (.008)			
4	.027 (.028)	.022 (.022)	.022 (.014)	.025 (.010)			

For TKL30, the population RMSEA is .070

Mean (SD) M₂-based RMSEA for TKL30

	Sample Size						
Κ	100	200	500	1000			
2	.021 (.023)	.023 (.017)	.026 (.011)	.027 (.006)			
4	.045 (.032)	.046 (.023)	.050 (.011)	.051 (.008)			

Results for PISA data example (US sample, N = 5,086)

Stat	Value	df	р	TLI	RMSEA	90% CI
T_U	330.16	30**	< .001	0.995	0.044	(0.040, 0.048)
T_D	571.50	33**	< .001	0.995	0.057	(0.053, 0.061)
<i>M</i> ₂	108.62	27	< .001	0.997	0.024	(0.020, 0.029)

note: ** indicates an approximation to df

 M_2 can be applied to structural equation models when the data are categorical.

Advantages of M₂:

- better calibration than $T_U \& T_D$, particularly with small samples
- more powerful

Disadvantages of M₂:

- computationally demanding
- not as versatile as traditional stats

Questions:

- how do M₂-based fit indices perform?
- does M₂ have power against distributional misspecifications?

Cai, L., & Hansen, M. (2012). Limited-information goodness-of-fit testing of hierarchical item factor models. *British Journal of Mathematical and Statistical Psychology*, *66*(2), 245-276.
Maydeu-Olivares, A. (2006). Limited information estimation and testing of discretized multivariate normal structural models. *Psychometrika*, *71*(1), 57-77.

Maydeu-Olivares, A., & Joe, H. (2006). Limited information goodness-of-fit testing in multidimensional contingency tables. *Psychometrika*, 71, 713–732.

Satorra, A., & Bentler, P. (1994). Corrections to test statistics and standard errors in covariance structure analysis. In A. von Eye & C. C. Clogg (Eds.), *Latent variables analysis: Applications to developmental research* (p. 399-419). Newbury Park, CA: Sage Publishing. This research is supported by grants from the Institute of Education Sciences (R305B080016 and R305D100039) and the National Institute on Drug Abuse (R01DA026943 and R01DA030466).

UCLA