Evaluation of "Dragoon": A Systems Modeling Intelligent Tutoring Tool

Ayesha Madni, Gregory K.W.K. Chung, Joanne Michiuye, and Eva L. Baker

CRESST Conference 2015

Redondo Beach, August 19, 2015

National Center for Research on Evaluation, Standards, & Student Testing

UCLA | Graduate School of Education & Information Studies | cresst.org

Purpose and Goals

• To evaluate Dragoon-based instruction

To what extent does Dragoon impact learning of domain content and skills in authentic classroom settings?

✓ How do students perceive the features and use of the system?

"Dragoon"

Systems modeling intelligent tutoring tool

✓ Novel technologies necessary to build a comprehensive assessment and instruction system

- Domain customization, automated interactive testing, and feedback
- Helps students learn computer-based systems modeling and dynamics
 - * Model construction, and by interacting with specific systems, concepts, and principles.

"Dragoon" Authoring Mode

nt Times, Image, and Prob	blem Statement	intity	
Problem Title	zebra and lion population growth		
Units:	years 💌	ptionSelect Explanation	
Start Time: End Time:	1900 seconds		
Integration Method:	Eulers Method 🗸 🖓	TypeSelect 🔺 Initial Value	Units No Units 🔺
URL for Image:	http://i00.i.aliimg.cor 😮	putsSelect	
Node to adjust:	Select 🔻	+ - * /	
Direction of adjustment:	Select 🔻		
Assumptions:		sion	Clear
	1		Check Expression
Lessons Learned:	0	ges	Forum
	/		
	Check Problem Done	Node	Done
4			Joint

"Dragoon" Instruction, Assessment, and Feedback Mode

m Births		In Population
2 Description	The number of lions born e	Description The number of lions in the population Explanation
🕜 Туре	Function 🔺 Initial Value	7 Type Accumulator A Initial Value 4 Units No Units A
Inputs	Select 🔻 /	Inputs
Expression L	ion Births =	Expression new Lion Population = current Lion Population + Clear Clear Check Expression
Messages	The value entered for the The value entered for the The correct answer has be	Messages
Delete Node		Delete Node Done

"Dragoon" Instruction, Assessment, and Feedback Mode

The models you made in Levels 1, 2 and 3 predicted that the lion population would increase indefinitely. Clearly, that won't happen because lions will starve to death where there are too many of them for the amount of grassland they occupy. Ecologists use "carrying capacity" to refer to the maximum population that can be supported by a given habitat. The model below assumes that the death probability rises as population increases until the death probability equals the birth probability when the population equals the carrying capacity.

"Dragoon" Instruction, Assessment, and Feedback Mode

ie .	Zebra	Lion	Zebra	Predation	Zebras	Zel Show Zebra Population	To reset sliders, close and reopen window
ars)	Population	Population	Births	Events	Killed	Pr	
950	200	20.0	100	40.0	18.0	500 -1 /	Zebra Birth Probability = 0.5
951	253	15.0	127	38.1	17.1		
952	317	13.7	159	43.3	19.5		Probability of Zebras Killed = 0.45
953	384	14.0	192	54.0	24.3		1
954	447	15.6	223	69.6	31.3		Zebra Carrying Capacity = 700
955	496	18.2	248	90.1	40.5		
956	528	21.8	264	115	51.7		Size of Range = 100
957	541	26.5	271	143	64.4		
958	538	32.4	269	174	78.4		Lion Birth Probability = 0.5
1959	522	39.6	261	206	92.9		
1960	495	48.0	248	238	107		Lines Federa Zahar Killed - 0.242
1961	461	57.5	230	265	119	200	Lions Fed per Zebra Killed = 0.742
962	420	67.5	210	284	128	2000 2100	
963	377	77.2	188	291	131	time (years)	Initial Zebra Population = 200
964	333	85.1	166	283	127		
965	293	89.4	146	261	118	-Your solution	Initial Lion Population = 20
966	260	88.3	130	230	103	Show Lion Population	
967	238	81.6	119	195	87.5		
905	229	/1.1	115	163	/3.5		
909	233	60.3 51.7	11/	140	57.C	- 08	
970	240	01.7	124	120	56.0		
971	207	40.3	148	120	58.4		
972	324	43.7	162	141	63.4		
974	347	45.0	174	157	70.6		
975	364	48.3	182	176	79.1	2 so 1	
976	372	52.6	186	196	88.1		
977	371	57.7	186	214	96.5		
1978	362	63.3	181	229	103	30	
979	346	68.8	173	238	107		
980	327	73.4	163	240	108	20 -	
981	306	76.5	153	234	105	1/ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	
982	287	77.3	143	222	99.7	0. 2000 2100	
983	272	75.6	136	205	92.3	0.1s time (years)	
084	262	71 7	131	199	04.6	0.187	

3 Studies: Overview

Study 1: Physics
Usability Test
AP Physics

3 Studies: Overview

 Purpose: compare Dragoon to baseline instruction over a longer period of instruction

✓ Physiology (Energy Balance, Blood Glucose Homeostasis)

National Center for Research on Evaluation, Standards, & Student Testing

3 Studies: Overview

When zebras and lions live in the same area, their populations are linked by predation. The more animals, the more likely that they will run into each other, with fatal results for the zebras. However, the larger the area the animals range over, the less likely the animals are to run into each other. Let's assume that the number of predation events is the number of zebras times the number of lions, divided by the size of the range. Assuming there are initially 200 zebras and 20 lions, and the range is 100, the number of predation events during the first year is 200°20/100 = 40.

The number of predation events per year affects zebras because there is, let's assume, a 45% chance of a zebra being killed in during a predation event. If there are 40 predation events in the first year, then 18 zebras are killed.

The number of predation events also affects the lions. The more zebra's killed per year, the larger the number of lions that can be fed that year. Modify your model so that the carrying capacity is the number of lions that are fed by each zebra times the number of zebra killed. Assume each zebra feeds 0.8 lions.

s assume that predation does *not* affect the birth probability of (9.5), the birth probability of lions (0.5) and the deaths of

• Study 3

✓ Field Test

✓ *Replicate study 2 within a new domain and new context*

✓ AP Biology: Ecology (population dynamics)

Study 2: Physiology Sample

- 95 total participants (Physiology students)
 - ✓ 45 treatment (Dragoon, 2 classes)
 - ✓ 50 control (2 classes)
- Majority 10th graders (72%)
 - ✓ Most enrolled in geometry math class (60%)
 - Nearly all Dragoon and control students (95%) had never taken a programming class
 - ✓ No experience programming outside of school (97%)

Study 2: Design and Procedure

- Content: physiology and systems modeling
- 5 day implementation window (55 minute class periods)
 - ✓ Pre and posttest on first and last day
 - ✤ Consisted of 5 questions about energy balance and homeostasis
 - Short essays, mathematical derivations, interpretations, and concept mapping
 - ✓ Intervention day 2, 3, 4
 - Dragoon: teacher introduced systems modeling, researcher introduced Dragoon, students collaborated on Dragoon problems
 - Control: teacher introduced systems modeling, students collaborated on equivalent workbook problems

Study 2: Results

• Pretest

✓ Mean score for Dragoon group was 1.69 (SD=1.58) out of a maximum score of 6.

 ✓ Mean score for control students was 1.16 (SD=1.04); reliably lower (p<.01)

Posttest

✓ Mean score for Dragoon students was 4.53 (SD=1.71), out of a maximum score of 10

✓ Mean score for control group was 3.59 (SD=1.52); significantly lower (p=.006)

Study 2: Results Continued

- Pretest scores between the two groups were significantly different
- ANCOVA (pretest score as covariate)
 - ✓ Dragoon group performed reliably better than the Control group (p=.029) with a medium effect size (d=0.47)

Study 3: AP Biology Sample

59 total participants (AP Biology students)
✓ 41 treatment (Dragoon, 2 classes)

✓ 18 control (1 class)

- Majority 10th graders (58%)
 - \checkmark Remainder in 11th (35%) and 12th (7%) grade
 - ✓ Most enrolled in trig/pre-calculus (73%); remainder (27%) in calculus
 - \checkmark Some of the students (34%) had taken programming classes

Study 3: Design and Procedure

- Content: ecology; population growth, predator-prey relationships
- 6 day implementation window (100 minute class period – block schedule)
 - ✓ Pre and posttest on first and last day (40 mins each)
 - Comparable forms covering 5 population dynamics question:
 - Open-ended, graph completion and analysis, graph interpretation, conceptual population growth, concept mapping

Study 3: Design and Procedure Continued

- Intervention day 1, 2, 3
 - Dragoon: researcher introduced systems modeling, researcher introduced Dragoon, students first worked individually, and later collaborated on Dragoon problems in pairs
 - Control: teacher introduced systems modeling, students first worked individually, and later collaborated on workbook problems in pairs

Study 3: Results

- •Average Inter-rater reliability .82 (Cronbach's alpha)
- •Pre-test scores between two groups not statistically different
- •ANCOVA (pre-test score as covariate)
 - ✓ Dragoon group (M=31.00; SD=6.00) performed significantly better than the Control group (M=24.00; SD=6.96)
 - ✓ The difference was reliable(p=.029) with a large effect size (d=1.00)

Additional Findings

- Students enjoyed working collaborative (dyads, groups) more than individually while working with Dragoon.
- Students liked the feedback; would have liked it to be even more explicit.
- Teachers and students agree that tool can be more intuitive.
- Teachers and students agree that they learn from Dragoon.

National Center for Research on Evaluation, Standards, & Student Testing

UCLA | Graduate School of Education & Information Studies

VISIT US ON THE WEB

cresst.org

madni@cse.ucla.edu

Copyright ©2015 The Regents of the University of California