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INTRODUCTION

The concept of a change score has considerable intuitive appeal.
A person subtracts last week's weight from today's weight and talks of
having gained or lost five pounds. Yet, change scores have more than
their share of conceptual problems. Weights are comparable -- a two-
hundred-pounder outweighs a one-hundred-pounder regardless of his other
traits; but changes are not necessarily comparable -- a loss of twenty-
five pounds may be a godsend for one individual but a disaster for
another. Even in cases where changes in one direction are preferred,
certain comparisons of changes appear inappropriate. For example, an
instructor may grade physical education students on their improvement
in running the mile. All of the students running an eight-minute mile
at the beginning of the course may cut more than a minute out of their
times:; none of the four-minute milers are likely to improve by more
than a few seconds. Clearly, the eight-minute milers "improved" their
time by more seconds than did the four-minute milers. Yet no instructor
would give A's to the slowest runners and F's to the fastest, regardless
of his commitment to the concept of grading on improvement. Somehow,
these "improvements'' are not comparable for the purposes of evaluation,
This inability to compare changes directly at different points of the

scale, even with ratio scales, is the fundamental problem of the

measurement of change.
The comparability problem is related to the fact that change scores
are generally correlated with initial status. When change and initial

status are negatively correlated, low-scores have an advantage in the
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sense they are likely to gain more. Similarly, in rarer instances

when change and initial status are positively correlated, the initially
high-scoring individuals have the advantage. The comparability problem
can be alleviated by using either change quotients or residual change
scores, both of which are independent of initial status. Change quotients
and residuals are perfectly correlated with each other under certain cir-
cumstances. Residuals are to be preferred when the data meet certain
assumptions which will be outlined in an ensuing section.

Methods for estimating the true change and true-score residual when
the data are unreliable will be presented and the residual procedure will
be extended to the comparison of groups, such as school systems. The
reliability of change scores and residuals are discussed and procedures
are suggested for constructing confidence intervals for residuals.

Change scores have also been used in statistical analyses of the
determinants of change. A brief review of this use of change scores is
provided which suggests that change scores are unnecessary and often even
inappropriate for statistical studies. Alternative statistical procedures
are suggested.

The Notational System

In general, capital letters refer to true scores or errorless
scores, and small letters refer to the corresponding fallible scores.
All scores are expressed in terms of deviation scores, i.e., their
grand mean has been subtracted from them. This simplifies the
computation because the mean of all deviation scores is zero. It does
not affect the generality of any formula or proof since deviation

scores can be converted back to the original scores whenever necessary.



X and x represent initial status,
Y and y represent final status, and

W and w represent a variable other than X or Y.

2 . .
SX represent the variance of X; si represents the variance of x,

RXY represents the correlation between X and Y; rxy between x and y.

Since the covariance of two true sCoTres equals the expectation of
the covariance between their corresponding fallible scores, both
covariances will be represented by a capital C, such as ny.

Regression weights will be represented by A and B for true scores
and a and b for fallible scores. Subscripts will be used unless the
context indicates which regression weight 1is desired. BYX.W is the
weight given X when both X and W are used to predict Y.

Other symbols will be defined as they appear.

THE RELATIONSHIP BETWEEN CHANGE AND OTHER VARIABLES

An early and continuous interest in psychology has been the rela-
tionship between change and other variables -- how can change be
predicted 7 Thorndike (1924) cites six early studies on the relation
of initial ability to gain. Other researchers like Woodrow (1946)
correlated the "ability to learn' with other variables such as intel-
ligence test scores. An examination of the weaknesses of the common
statistical approaches suggest that change scores are unnecessary and
often even inappropriate for statistical studies. Alternative statis-
tical procedures are suggested. .

The Correlation Between Change and Initial Status

Most correlations are reduced but not biased by errors in the data.

A positive or negative correlation retains its sign but is smaller in
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absolute value. Thorndike {1924) demonstrated that the correla-

tion between change and initial status is biased in a negative direc-
tion by errors in the pretest because the pretest error is also present
in the change score but with the opposite sign.

X

X +e
X

g=y -x=06+ ey - e
where G =Y - X and g = y - x. Consequently, the covariance of the raw
gain and raw initial status is not equal to the covariance of the

corresponding true scores, as is generally the case:

Clg,x) C(G + ey - e X + ex)

[t}

2
c(G, X) - Se
X

Thomson (1924, 1925) and Zieve (1940) suggested analytic procedures
which, in effect, added se2 back to the raw score covariance before
computing the correlation ioefficient (Bereiter 1963, pp. 6-7).
Thorndike (1966) used parallel pretests to eliminate this bias.
One pretest was used to compute the gain and the other was correlated
with the gain. The average initial-gain correlation increased from
-.20 to +.10. This concern with the initial-gain correlation appears
to be a pseudo-problem, even for true scores. As Thorndike points out,
correlation is positive only when the post-test variance is sufficently

larger than the pre-test variance.

C(X,6) > 0 if and only if C(X, Y-X) > 0

2
CXY SX >0
RXY SY Sx > 0
S
RXY > §§v
Y

Hence, the initial-gain correlation does not appear to add anything to

our knowledge. In fact, if Thorndike's analysis is extended further,



the initial-gain correlation issued can be parsimoniously subsumed
under the heading "Predicting Y from X." If BYX {or RXY EX) is greater
than one, equal to one, or less than one, the initial gainxcorrelation
will be correspondingly positive, zero, or negative (Garside, 1956).
Thorndike used mental age scores instead of 1.Q.'s in his study.
He points out that if he had used I.Q. scores with a standard variance at
each age, the correlation between I1.Q. at age 8 and the gain in [.Q.
between age 9 and age 12 could be positive only if the age-8 test
correlated more highly with the age-12 test than with the age-9 test--
"a fairly improbable and unnatural event” (p. 126). He might have
added that the correlation between I.Q. at age 8 and the I.0Q. gain
from age 8 to age 12 could not possibly be positive as long as the
age-8 and the age-12 variances were equal since BYX cannot exceed one
unless SY is larger than SX'
The difference between a positive and a negative initial-gain
correlation seems more interesting than the difference between a BYX
of 1.05 and a BYX of .95: yet both the initial-gain correlation and
BYX are determined by the same data, SY’ SX’ and RXY‘ The distinction
between a positive and a negative initial-gain correlation appears to

be artificial and misleading.

Change and Other Variables

Early studies correlated raw change with other variables and
generally obtained near zero results (Woodrow, 1964}, Lord (1963, p.
35) showed that such correlations may be quite nisleading. If RGW
equals zero, then RGW.X will usually be positive. In other words, for

every subgroup with the same initial status, W will be correlated

positively with change. The question is whether the RGW for the total
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group or the RGW for each subgroup with the same initial status is more
meaningful. Lord concludes, "In general, the more extraneous variables
one can hold constant in a scientific study, the clearer the picture.
For this reason, it is not the total group correlation RGW but rather
the partial correlation RGW.X(= RYW.X) that is usually of greater
interestr, (1963, p. 35). In other words, initial status is held
mathematically constant so that the correlation between initial status
and change does not influence our estimate of the relationship between
change and a third variable, W.

When X is held constant, G is entirely dependent on the value of Y.
Hence, RGW.X is mathematically equivalent to RYW.X’ but the interpreta-
tion of the two is slightly different. RGW.X is the correlation between
change and W with X held constant while RYW.X is the correlation between
Y and W with X held constant. The latter expression requires neither
the computation nor even the concept of change scores. Similarly, Werts
and Linn (1970, pp. 18-19) show that BGW.X equals BYW.X' Just as the
relationship between change and initial status can be more simply expressed
in terms of BYX’ so the relationship between change and another variable W
can be more simply expressed in terms of BYW.X or the equivalent partial
correlation, RYW.X' There is no need to compute change scores for correla-
tional analysis.

Correcting Partial Correlation and Multiple Regression Coefficients for
Unreliability

Unreliability in the data can reverse the sign of a partial correlation
or multiple regression coefficient as well as affecting its sign. Consequent-
ly, zero-order correlations should be corrected for attenuation before enter-

ing them in partial correlation or multiple Tegression formulas.



Basefree Measures of Change

Thorndike, Bregman, Triton, and Woodyard (1928) used a crude kind

of partial correlation in their studies of Adult Learning, but logic

behind the use of partials to study change was not clearly stated until
DuBois (1957), Manning and DuBois (1958, 1962) and Lord (1958, 1963).
Technically, Manning and DuBois used a kind of part correlation. They
partialed initial status out of final status and then correlated the
residuals with other residuals and variables. Their study (1962) showed
that residual gains in learning studies were (a) more highly correlated
with predictors such as aptitude tests than were raw gains, (b) more
highly intercorrelated, and (c) could be accounted for by a single factor,
which may be a general factor of psychomotor learning. In contrast, Wood-
row (1946) had concluded from a review of studies using raw gains that
intelligence was not related to the ability to learn and that there was
no evidence for a general factor for learning ability. The difference
between these sets of studies is that Manning and DuBois controlled for
initial status through the use of part correlations. They concluded
that, (a) "The correlations of residual gain are more consistent and more
in line with what might be logically expected than are the correlations
of crude gains...", (b) "Residual measures of learning seem to have more
in common than do measures of crude gain in the same functions...', and
(c) "The frequently low correlation between change in learned proficiency
and aptitude measures should be re-interpreted in light of logical and
empirical inadequacies of the crude difference criterion of change
(1962, pp. 318-19).

Manning and DuBois' residual approach does not take errors of
measurement into consideration. Consequently, when x, vy, and w are

unreliable, the residual approach gives us rw(y.x) when RW(Y.X) is
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required. These coefficients, however, may even have opposite signs.
Tucker, Damarin, and Messick (1966) attempt to correct this problem
through the use of their 'base-free measure of change'. They partial

true X rather than raw x out of y and correlate this "adjusted" resi-

dual with other variables. This procedure produces a part correlation
which, at least, will always have the same sign as the corresponding true
score part correlation but, nevertheless, would be a systematically biased
estimate of RW(Y.X)' For example, assume that Y and W are measured with

perfect reliability but x is not. The estimate of RW(Y X) would be:

R = Tyw = Twxt x/rxx
wey.x) T =2 b4
v 1 +7 2/r
xy’ T xx

The correlation between the base-free measures of change and W would be:

T(W,y-ByyX) = Twy ~ rwxryx/rxx

4

2 _ 2r 2/r
X Xy’ XX

1 + rxifrx
which has the. same sign as RW(Y.W) but a slightly different denominator.
The point is not that the Tucker, et. al., approach is wrong; the above
correlation could be adjusted to estimate RW(Y.X) or any other true
score part or partial correlation that was required. However, it is

far simpler mathematically to correct the appropriate partial corre-
lation or multiple regression coefficient for attenuation without com-
puting or conceptualizing in terms of change scores, residuals, or base-

free measures of change.
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CHANGE SCORES FOR COMPARING INDIVIDUALS

The introduction suggested that correlation between change and
initial status made it inappropriate to use change score to evaluate
individuals with different initial scores. An analogous problem
occurred in the development of intelligence test scores. The first
intelligence tests were scored in terms of "mental ages'. A higher
Mental Age (M.A.) meant the ability to answer more items correctly,
but Mental Ages were not comparable in other ways for children with
different chronological ages. For example, a Mental Age of seven 1is
above average for a five-year-old, but below average for a nine-year-
old. To make comparisons between children of various ages more mean-
ingful, an Intelligence Quotient or I.Q. was defined as one hundred
times the ratio of mental Age to Chronological Age (C.A.).

MLA.

InQ- = 100 E:—._AF.—

This “ratio" I.Q. was still not completely comparable since it did not
have the same standard deviation for all chronological ages. Hence,
an I.Q. of 120 might mean the 95th percentile at one age and the 90th
percentile at another age. More recent Intelligence Tests have used
derivation I.Q.'s which have the same standard deviation for all ages
(Mehrens & Lehman, 1969, p. 78).

It is important to consider very carefully what a deviation I.Q.
score means and what it does not mean. Suppose that the deviation
1.Q.'s have a standard deviation of 16 for all age groups. Then an
I.Q. of 116 means that the person scored at the 84th percentile of the
norm group for his age. If John has an I.Q. of 116 and Bill has an
I.Q. of 84, John is above average for his age group and Bill is below

average for his age group. However, one does not know whether John
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or Bill had a higher raw score unless he knows their chronological
ages as well as their I.Q.'s. The 1.Q.'s are simply a comparison of

individuals while mathematically holding their age constant. Their

ages are not "empirically" held constant because John's vocabulary at
the age of five is not compared with Bill's vocabulary at the same age.

Similarly, Change Quotients (C.Q.) could be computed by holding
initial status constant rather than age. Take, for example, the
Physical Education instructor discussed in the introduction. He could
grade his students on their improvement in running the mile by sepa-
rating the students into groups according to their initial time and
assigning C.Q.'s on the basis of the student's position within his
own group. Runners who finished at 84th precentile of their group
would be assigned at C.Q. of 116.

In this approach, the runner's C.Q. is derived by comparing him
to other runners with the same initial time. Unless this group is
very large, sampling error may seriously affect his C.Q. The samp-
ling error becomes progressively more serious as the size of the
comparison group decreases. Some grouping is possible, e.g., 8 minutes
+ 15 seconds, but any attempt to group individuals with very different
initial scores may defeat the purpose of computing change quotients.
An approach is required which would decrease the sampling error by
permitting the use of all of the data in assigning a C.Q. to a given
individual. 1If the data meet the bivariate normal assumptions, then
the Manning and DuBois' residuals {1962) provide such an approach by
simply partialing initial status, X, out of final status, Y, and using

the residual, Q.
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Q=Y - Byt
If X and Y have a bivariate normal distribution, the Q's will be a
normally distributed random variable with a zero mean and a constant
variance at all levels of X, and will be independent of X.

Pretest and posttest times for running the mile will not meet
the normal bivariate assumptions because the variance of Y {or Q) is
not likely to be equal at all the levels of X. An appropriate non-
linear transformation of the data is required. Fortunately, running
speed is one such transformation (e.g., if John runs the mile in 6
minutes, his average speed is 10 miles per hour). Pretest and post-
test speeds can plausibly be assumed to approximate a bivariate normal
distribution. Consequently, speed will be used rather than time for
computing the residuals.

Assume that there is an infinite population of individuals, and
that their initial status, X, and their final status, Y, have a perfect
bivariate normal distribution. Tt is easy to show that Change Quo-
tients and residuals computed for this population would be perfectly
correlated,

The Change Quotient for persons with an initial status Xk would

equal

cq. = i~ Yk 16 + 100
1 L ————

T
where Yi equals an individual's final status, ?k equals the average

final status of all persons starting with Xk, and T equals the stan-
dard deviation for Y given X, which is constant for all levels of X.
The residual, Qi’ would be equal

~

Q =Yy - Byx¥ o Yy - Y

where Y equals BYXXk’ the predicted Y for all individuals with initial

X, .
status X,
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But for an infinite population with a perfect bivariate normal

distribution, Y, equals ?ﬁ. Hence,

Q =Yy - Yy

and residuals and Change Quotients are perfectly carrelated.

The Relative Efficiency of Change Quotients and Residuals

To compare the relative efficiency of Change Quotients and
residuals, consider a sample of 100 persons from the infinite popula-
tion described above. The Change Quotients and residuals are not
necessarily perfectly correlated nor are they necessarily equal to
Change Quotients and residuals computed on the basis of the entire
povulation.

To simplify the analysis, a simple linear transformation of the
Change Quotients will be used:

CQ=Y.1~Yk
Now the Change Quotients and residuals computed on the basis of the
entire population are identical, and can jointly be designated as
CQ/Q(pop)i, which represents the value of CQ/Qi derived from the
infinite population. It is not a population value since it represents
only individual i.

A kind of standard error of measurement can be derived for either
the sample-derived Change Quotients or the sample-derived residuals
which will represent the extent to which sample-derived values differ
from the population-derived CQ/Q(pop). The sample-derived residuals
have a smaller standard error of measurement than do the sample-

derived Change Quotients. The error of measurement for the Change
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Quotients equals:

Error (CQ)

cQ; - CO/Q(pop);

1}

- Y 1o Y.
Yi Yk(sample, Yi + Yk(pop)

Yk(pop) - Yk(sample)
Hence, the standard error of the Change Quotients equals the standard
error of ?k, or
S.E.(CQ) = S.E.(Y,) = T/ !
k ny
where T equals the standard deviation of Y given X and n, equals the
number of persons in the sample with the same initial Xk.
Similarly, the standard error of the residual equals the stan-

dard error of Y, or, from Draper and Smith (1966, p. 22),

=21k
1, £%§;;%2 N = total sample size

Since a finite sample of one is being “ised rather than an

S.E.(Y,) = T

infinite population, some grouping will be necessary to compute the
Ehange Quotients. Assume interval size of one-half of a standard
deviation, the comparison group centered around the mean of x (Zx = 0)
would then be expected to contain approximately twenty persons, and
the comparison group centered around an x value of 2 standard devia-
tions away from the mean (Zx = +2) would be expected to contain
approximately three persons. With this grouping and a sample size

of one hundred, the standard error of the residuals would be less

than one-half the standard error of the Change Quotients.  For
example, when Zxk = 0, the standard errors are .10T and .22T for the
residuals and Change Quotients, where T, once again, is the standard
deviation of Y given X. For ZXk = +2, the corresponding values are
22T and .58T. Since the grouping procedure outlined above introduces

a small bias in the estimate of Change Quotients, the standard
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error for CQ's is actually a slight underestimate. Any attempt to

increase the size of grouping interval would increase this bias.

The Reliability of the Residual when X and Y are Perfectly Reliable

The last section demonstrated that the residual was a more pre-
cise version of the Change Quotient when X and Y had a bivariate nor-
mal distribution. However, because of sampling errors, the sample-
derived residual did not exactly equal the population-derived value

even when X and Y contain no measurement €rrors. The difference be-

tween the population-derived value, Qp, and the sample-derived value,
QS, is illustrated below. In this example, Xu and Yu represent the
original uncorrected scores rather than deviation scores.
% O -
Qs u

Qp - Q Y, - P) - (BX, - Bpi"p) + X, (B - ,BP)

) - Bp X, - Xp)

L}
Fann)
=
1
<
A
J
oo
L]
)
1
>
A

i}
~

where Bp = B,, for the population and B, = for the sample. The

YX BYX

first two terms represent constants for a given sample, and conse-
quently would affect all the sample residuals in the same way without
altering their order. The third term, however, is a variable which
would affect the order of the sample residuals. In short, John's
residual might be larger than Mike's when the sample BYX is used but
smaller than Mike's when the more accurate population B, is used.
Presumably, the researcher would be more interested in the population-
derived order. Hence, there is a limited sense in which residuals

based on true scores, X and Y, are less than perfectly reliable.
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To derive an appropriate reliability coefficient, assume that
two finite samples of size N are drawn from an infinite population with
a bivariate normal distribution for X and Y. The sample estimates of
Bp, B1 and B2, are then used to compute two sets of residuals, Q,

and Q2, for the entire population. R, is derived as follows:

QQ
E(RQQ) = E(QlQZ) where
2 2 35
EpeEQ)]
2 2.2 &2 2
E(QQp) = Sy + SyB, - 2CxyBp = Sy (1 - Ryy)
2 2. o2 2 2 2
EQ)) = E(Q)) =5y + Sy B + EGepl] - 20448,
and where e = Bi - Bp and is normally distributed about a mean of zero
with a variance of E(eé):
2 2
2, _ SS (1 - R,OD)
Bl =X __X¢ (Draper and Smith, 1966, p. 18-19)
NS
X
2, _ o2 2, .12 . _ 52
E(Ql) = SY (1 - RXY) +.§ SY (1 RXY)
Hence: R -
' QQ N+l

Since RQQ equals .91 for a sample of only ten, this source of
unreliability can be generally ignored with any reasonably sized
sample. An exception to this general rule is the case of subjects at
the extremes of the X distribution. RQQ is the average reliability of
the residuals, and residuals with extreme X's are less reliable than
residuals for less extreme X's. For example, if B = 1.5 is used
rather than the correct B = 1 in the formula Q = Y ~ BX, a residual

with X = i£ would not be affected while a residual with an X, four

units away from fﬁ would contain an error of two units.



The Relationship of Residuals to "Real!' Change

If a person gains or loses five pounds, "This is a definite fact,
and not a result of an improper definition of growth" (Lord, 1963,
p. 23). Similarly, Cronback and Furby comment, "One cannot argue that
the residualized score is a 'corrected' measure of gain since in the
most studies the portion discarded includes some genuine and important
change in the person. The residualized score.is primarily a way of
singling out individuals who changed more (or less) than expected'.

(1970, p. 74)

Using Multiple Pretest to Compute Residuals

Intelligence quotients compare mental ages while mathematically
holding chronological age constant. Similarly, Change Quotients or
residﬁals can be used to compare individuals on one variable while
holding another variable constant. For example, the final examination
for beginning Russian might produce only chance differences among most
of the students on the first day of class. Although the students may
begin with an equal (zero) knowledge of Russian, they do not have
equal language ability. Consequenfly, a language aptitude test would
seem to be a more accurate measure of a student's initial status.

Change Quotients or residuals can also be used to hold more than
one variable constant. Psychologists, for example, often have test

norms broken down according to sex, age, and socio-economic status.
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Such a breakdown holds each of these variables constant while efalu-
ating an individual's test score.1 If Y and the X variables meet the
assumptions of a multivariate normal distribution, the appropriate
residual is the difference between Y and the predicted §, where ; is

the multiple regression estimate of Y based on the X variables.

Y

B1X1 + B2X2 * B3X3

Q=Y -Y=Y-BX -BX, - BX,

Readers should consult a standard textbook on multiple regression
analysis for the handling of dummy variables such as sex and other
variables which do not meet the multivariate normal assumptions.

Any variable which is correlated with the posttest or criterion
Y will be reflected in that criterion unless it is held constant
(partialed out). Which variables should be held constant depends on
purposes for collecting the data. A physical education teacher might

want to hold age ‘or weight constant while evaluating a pupil's per-

formance--a coach selecting a track team would not.

ESTIMATING RESIDUALS AND CHANGE SCORES

FOR FALLIELE DATA

Estimating True Change

In many cases, it would be desirable to have the true gain,

1Here it is assumed that the test score has the same interpretation
regardless of other variables. On a vocabulary test, for example,
high scores are preferred, regardless of the person's age, sex, or
socio-economic status. At the far end of the continuum are those
tests where the interpretation is completely dependent on the person’'s
status on another variable (e.g., a masculinity-femininity scale).
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G =Y - X, rather than fallible values, X, y, and g = y - X.

The raw gain, g = y - X, can be used to estimate the . true gain,

G =Y - X, but the reliability of the raw gain is notoriously low.

Lord (1956, 1958, 1963) and McNemar (1958) suggested using the multiple

regression analysis to estimate the true gain. In short, they used

. - x . .
the estimator G be.y + bGy.XyJ to estimate true gain where
b(;x.y =T " Ty Txy g
1 - r_2 5
Xy X
bey.x = Tye " Txa Txy 6
l-r 2 5
Xy X

The Lord-McNemar approach can be expressed in more general terms.
To estimate the true gain, G = Y - X, with some estimator, é = ky + 1x,
where k and 1 are weights or constants, t is defined as the error of
estimate, i.e., difference between the true value, G, and our estimate,

G:

Calculus is used to find the weights k and 1 which will minimize the
variance of these errors of estimates.
Vvet?-1(6-62%=316-ky- 102

To minimize V, the partial derivatives of V with respect to k and 1

are set equal to zero and solved for k and 1.

3V = -2I(G - ky - 1x}y =0
ok
Vo= -25(6 - ky - 1x)x = O
31

Lord and McNemar gave computational formulas for k and 1.
The correlation between the estimator, G, and the true gain will

be as least as high as the correlation between the raw gain, g = y - X,
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and the true gain, and will usually be higher. This correlation is
simply the multiple correlation of G given x and y and can be found
using the normal formulas. The estimate, G, is the least squares
estimate of the true gain. It is an unbiased estimate if X, Y, x, and

y have a multivariate normal distribution.

Estimating the True Residual

Y - BYXX’ can be esti-

Similarly, the true score residual, Q

mated using the fallible values, the x and y:

Q= ky + 1x

vert?-znQ- %=1 ky - 107

3V = -22(Q - ky - 1X)y = O

2l

3V = -2Z(Q - ky - 1x)x = 0

al

The partial derivatives are set equal to zero and solved for k and 1;

2

k = Txxlyy ~ Txy

2
rxx(l - rxy)

1

kb

¥X
The least-squares estimator of Q = Y - BYXX is k (v - byxx), or k
times the raw score residual, q = y - byxx. This agrees with the
formula presented by Cronbach and Furby {1970, Errata). (Recall that
byx does not equal BYX unless r. = 1.)

XX

Similarly, for the multiple-X case, the least squares estimator of

Q=Y - fof - ngg is k{y - bfxf - ngg) or k times the raw residual,
qQ=y - bfxf - ngg’ where k equals:
(r. r..r -1 T 2 T,..T 2 _ r T 2 4 2r . r r.) (1 -1 2)
yy ffgg “yy fg _ff yg gg yf yf yg fg fg
(1 -r Z_ T 2 T 2 +2r v r.) (r..r - T 2)
fg ye vt yfye fg ff gg fg
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Note that the k for both the single-X and multiple-X cases will equal
one when x and y are perfectly reliable. This is to be expected since
the estimated residual is exactly equal to the true residual whenever
the data are error free.

The general rule is that the least-squares estimator of the true
residual is more k times the raw residual. As will be shown later,
k equals rqé, the square of the correlation between true residual and
the raw residual. The k can generally be ignored since it does not

affect the order of the residuals.

Using the Additional Variables to Estimate the True Gain and the

True Residual.

Cronback and Furby (1970) extended the Lord-McNemar approach by
using additional variables, w and z, to make a more precise estimate
of the true gain, G:2

6 = ky + 1lx + mw + nz
where W represents one or more Supplementary measures of the indivi-
dual's initial status and z represents one or more supplementary meas-
ures of the individual's final status. Again, the variance of errors.

of estimate is minimized.

Vo= th = ¢(G - 6)2 = %G - ky - 1x - mw - nz)2

by setting the partial derivatives of k, 1, m, and n, equal to zero

2Cronbach and Furby also distinguished between linked and unlinked
errors, following a distinction made by Stanley (1967). Linked
measurement errors may occur when the x and y observations are ob-
tained at the same time or by the same observer. Here the Classical
Test theory assumption of independent errors of measurement will be
followed since the x and y observations for change scores will
normally be collected at different times.
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and solving for k, 1, m, and n. This estimate of true gain will be
designated as a/wxyz. Similarly, true X and true Y could be estimated
using i/wxyz and §/wxyz. Cronbach and Furby showed that

a/wxyz = G/wxyz - §/wxyz
Later they estimated true residuals by inconsistently alternating

between a straightforward least-squares estimator of true residual,

and an estimate based on Y/wxyz and X/wxyz which they may believe is
equivalent to the least-squares estimate. For example, they estimated
Q=Y - BYx = Y.X using the conventional multiple regression equation

(1970, formula #24)
VAN
Y.X = blx + b2y + bSW + b4z
where bl’ b2, b3, and b4 eﬁual the appropriate regression weights and

Y.X equals Y with X partialed out. Then they estimated Q = Y - BX -

BW = Y.XW using Y.XW (1970, Errata), which is a strange combination of

estimated true scores:

AN ~ S~ AN

Y.XW = Y/wxyz - Y/XW

AN ~

where Y/XW is the least squares estimate of Y based on X/wxyz and

W/wxyz.

While Y/wxyz - X/wxyz is equivalent to G/wxyz, Y.XW is not equiv-
N\
alent to the appropriate Y.XW/wxyz estimated by the following regres-
sion equation:
Y.XW = blx + b2y + bSW + b4z
L b3, and b4 are the appropriate regression weights. That

Y.XW does not necessarily equal Y.XW can be shown by a simple example.

where bl’ b

Assume that r_ =1, r =0, r. =1 =0, and v
b4 Xy Xy wy zy

any values other than zero. Y.XW would equal y, while Y.XW would

s T__, and r are
ZzX ZW

A AN

equal y minus some function of x, w, and z.
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Bias and The Least Squares Estimate

Least squares estimators of the true gain and true residual are
unbiased if Classical Test Theory and multivariate normal assumptions
hold (Mood & Graybill, 1963, p. 329). For example, given x and vy,
the expectation of k times the raw residual, kq = k(y - byxx)’
equals the true residual, Q = Y - BX, if the assumptions hold.

Elk(y - byxx)/xx] =Y - B ,X

E(kq/xy) = Q
Curiously enough, the true residual Y - BYXX is not the least squares
estimate of y - byxx, but is the least squares estimate of q. =
y - B, X, the corrected residual or "base-free measure of change'.

Yx*?
E(Y - B,y X/XY) = y - ByX

YX
This may have led to Traub's (1967, 1968) and Glass's (1968) disagree-
ment over the relative merits of the raw residual, q = y - byxx.
Glass apparently accepts Traub's statement that the raw residual is
not an unbiased estimator of the tivie residual: '"Depending on
whether scores on the pre-measure sre above or below the mean and on
whether the regression coefficient is positive or negative, [qJ, on
the average, will systematically over- or under-estimate [.QJ. Be-
cause of this bias, the error of measurement in [ ¢, that is the quan-
tity [q - @7, is not independent of LQJd". (1967, p. 255). Actually,
both g-Q and qc—Q are independent of Q, and the over-estimate/under-
estimate problem is less serious than it appears. The raw x is,
on the average, a systematic over-estimate or under-estimate of X

depending on whether x is above or below the mean. Consequently, x is

used when only the order of X is of interest, and T X is used when an
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unbiased estimate of the magnitude of X is required. Similarly,

the raw residual, y - byxx, should be used to estimate the order of
the true residuals, and k times the raw residual should be used when
it is necessary to estimate the magnitude of the true residual.

RESIDUAL CHANGE SCORES
FOR COMPARING GROUPS

Residuals are also appropriate for comparing changes in groups of
individuals. Dyer, Linn, and Patton (1967, 1969) have used residuals,
which they call discrepancy measures, to evaluate the effectiveness of
school systems. They deplore the common tendency Mo compare the
average achievement test score of students in a given system with some
sort of national average or norm and to assume that the discrepancy
between the two averages constitutes a measure of the educational ef-

fectiveness of the system”. (1969, p. 591)

For example, if the students from System A tend to score
lower on reading tests than the students from System B,

it is often assumed that the teaching of reading in System
A is less effective than the teaching of reading in System
B. Or if the incidence of juvenile delinquency in System

X is greater than the incidence of juvenile delinquency in
System Y, it is assumed that System Y is doing a hetter

job character training and inculcating the attitudes of

good citizenship than is System X. Such assumptions can

be wholly unreasonable. Looking solely at what pupils are
like as they emerge from any phase of an educational

system tells nothing whatever about how the system is
functioning. One has to know in addition what relationships
may exist between the characteristics of youngsters as they
come out of any phase of the system and the characteristics
with which they entered that phase of the system, (1967, p. 8)

The 1969 study used grade-equivalent scale scores from the Towa

Tests of Basic Skills. Sixty-four school systems were compared,
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including the 9,972 students for whom there was complete data for both
testings, one in the fifth grade and the other in the eighth grade.
Dyer EE_El_called their procedure 'a matched-longitudinal sample',
‘matched because the same pupils were included in the school means for
both the pretests (or inputs) and the posttests (or outputs), and

longitudinal because the pretests and posttests were three years apart.

Two methods of computing the residuals were compared. The first
method computed residuals for the individual pupils and then averaged
these residuals over a school system to get the school system residual.
The individual procedure shall be designated as Method-I. The second
procedure averaged the pretests and posttests for each school system
and used these means to compute residuals for the school system. The

‘school-system mean procedure shall be designated as Method—M.3

The outputs were limited to five major subtests and a composite
score, all taken in the eighth grade. The inputs at the fifth grade
included the major and minor subtests and the composite, 15 input
measures in all. The Method-I and Method-M analyses were performed
separately for each of the six output measures.

A stepwise multiple regression procedure was used for these

analyses. The input measure (i.e., fifth-grade test score)

that had the highest correlation with the output measure was
selected first. Given the first input measure, the input

——.—.-....___..__-.._.__..__._-._________._________..._.,__.____.-_._..______... __________

3The study also compared two other methods for computing residuals.
Since these residuals were largely uncorrelated with the Method-I
and Method-M residuals, they are of less theoretical importance
and will not be discussed here.
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measure that added the most to the multiple correlation was next

selected for inclusion in the regression equation. This process

was repeated by adding input measures to the regression equation
one at a time until the squared multiple correlation increased
by less than .0l1. The deviations of the school system means
from the appropriate regression surface were then computed for

each method. (1969, p. 595)

The Dyer et al data suggested that Method-I is preferable to
Method-M. The mean correlation between the major subtests at the fifth
grade and the same subtest three years later is slightly higher for
individual scores than for school system means (81.2 vs. 79.5). Fur-
thermore, Method-I produces a slightly higher mean multiple-correlation
(.832 vs. .825). However, the Method-I and Method-M figures are not
entirely comparable since the Method-I figures refer to correlations
between individual scores and the Method-M fipures to correlations
between means.

Re-analysis4 of the data showed that when both multiple-correla-
tions referred to mean outputs,5 the Method-M multiple-correlations
were superior in every .case, although the differences were small (mean
multiple-correlation for Method-I was .803, for Method-M, .825).

More importantly, Dyer et al estimated reliability of the

residuals produced by both methods and found that the school system

residuals "were somewhat more stable" (p. 604} when Method-I was used.

41 am indebted to Dr. Robert L. Linn for graciocusly permitting the
re-analysis of the Dyer, Linn, and Patton data for this study.

5The correlation between predicted school system mean output and
actual mean output. Method-I should be judged on the precision
with which it predicts mean outputs, since school systems, rather
than individuals, are the unit of interest.
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(This is as close as Dyer et al come to stating a preference for
either method). To get these reliability estimates,

The matched-longitudinal sample of students within each
school system was divided into two random subsamples of equal
size and Methods I and II were repeated with each subsample.
Deviation scores for each school system measure were then com-
puted for each subsample in the same manner as described above
for the total sample. The deviations for the first subsample
were correlated with the deviations for the second subsample.

(p. 595)

The analyses were performed separately for each of the six outputs.
The median r was .78 for Method-I and .72 for Method-M.

Despite the data presented by Dyer et al., Method-M is preferable
when computing residuals for groups. While the Method-I residuals may
be more reliable, they are also biased since they are correlated with
both the inputs and the predicted outputs. They should be uncorrelated
with both. In fact, the Method-I residuals are more reliable because
they are systematically biased. This conclusion can be demonstrated
both mathematically and empirically.

First, examine a regression equation, standard in every way

except that school system means are predicted instead of individual

sCOores.

Q=Y - BX -BX, - BX

Here Q is the system mean residual, and Bl’ By s and B3 are the weights
which minimize the variance of Q. Method-I first estimates the

individual residuals (here designated P to distinguish their mean P

from Q).
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Y = A1X1+A2X2+A3X3+P

P=Y - AIXI-AZXZ—ASXS

where Al’ A2, and A3 regressions weights with the school-system means.6
1

P=-1P
n

=

T (y - A1x1'A2X2‘A3X3)
=Y - A X AKX AX,

Hence, both methods use the same data (the school system means), but

with potentially different sets of beta weights. The A regression

weights are the least-squares solution for the individual scores, but

not for the system means. Consequently, the P residuals will have a

larger variance than the Q r. siduals and 2 smaller multiple-correlation.
Furthermore, the A regression weights insure that the individual

residuals are uncorrelated with the individual inputs and individual

‘ predicted outputs. The B weights, on the other hand, insure that the

school system residuals are uncorrelated with either the mean inputs

or the predicted mean output. If the A weights and B weights are not

identical, the Method-I system residuals (P) will be correlated with

both the mean.inpﬁts and predicted mean outputs.

Re-analysis of the Dyer et al data showed that Method-I residuals

had a substantial correlation with their predicted outputs (the mean

"Almost equivalent" is more precise. The grand mean of the individual
data will not necessarily equal the grand mean of the school-system
means and hence the P residuals will not necessarily have a mean of
ZerTo.



~78-
absolute value of the correlations was .147), while the Method-M
residuals were essentially uncorrelated with their predicted outputs
{the highest r was .0003).

The mean of correlations between each of the Method-1 and Method-.
M residuals and all fifteen of the potential inputs was computed.
Again, there was no overlap between the two distributions. The lowest
mean correlation for Method-I was .065, the highest for Method-M was
,040. The corresponding overall mean for Method-I and Method-M were
.130 and .025. The absolute value of the correlations were used. to
compute these means in order to determine average size of the correla-

tions. The direction of the bias was not considered.

Conclusion

The School System residuals based on the individual-data regres-
sion weights (Method-I) were biased because of their correlations
with the predicted output and the various inputs and potential inputs.
These correlations may seem small from a predictive perspective, but
they represent a substantial bias. When residuals were computed for
groups, the group should be the unit of analysis for all of the

regression equations.

THE RELIABILITY OF CHANGE SCORES AND RESIDUALS

In Classical Test Theory, the following three definitions of reli-
ability are equivalent: (1) parallel-forms reliability, the correlation

between parallel tests, rxx(p.f.), (2) proportional reliability, the propor-
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tion of true variance in the observed variance, Ty (pro), and (3)
the square of the index of reliability, the correlation hetween the
true score and the raw score, T oy (index). Although these definitions
are equivalent for single raw scores when the Classical assumptions
hold, they are conceptually different and can differ in many circum-
stances. Zimmerman and Williams (1965a, 1965b, and 1966), for example,
demonstrated that proportional and parallel-forms reliability are not
equal when the true score and error score are correlated, a realistic
assumption for multiple-choice tests. In fact, under such c¢ircumstances,
paralliel forms reliability can be positive even though the error variance
and observed variance are equal (1966).

Proportional reliability is defined here as the porportion of

. . . 7 . R
true variance in the observed variance. Hence, if X = w + y is used

to estimate X, the proportional reliability of this estimate is:

2 2
r‘y s+ Tow Su + 2Cw
rss (pro) = IDDAED 4 Y
XX 2 2
S + S + 2C
Yy X wy

This definition of proportional reliability is equivalent to the
parallel-forms definition of reliability when the Classical Test Theory
assumptions hold.

This paper often uses estimates for true scores, such as estimates
for the true gain and true residual. Parallel-forms reliability and
index reliability are not necessarily equal for such estimates. TFor

example, assume that true X is estimated using true Y and true W.

7This definition is comparable to Guilford's definition of reliability
as ''the proportion of true variance in obtained test scores' (1954,

p. 350}, incorrectly stated by Traub (1967) as ''the ratio of true

score variance to observed score variance'. The ambiguity of the
"ratio'" definition led to Traub's (1967, 1968) and Glass's disagreement
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Parallel-forms reliability would equal one for this estimate while
index reliability would equal the squared multiple correlation. Index
reliability cannot exceed parallel-forms reliability.

The general rule is that parallel-forms reliability and index
reliability are equal only if the components of the raw score or
estimate have the same relative weights as the corresponding true

score components.

If: Z = AIX1 + A2X2 + ..+ ijj + L., + Aan
and
3 = a,%4 *aX, oo, * ajxj + .. tax =2

where the subscripts refer to different variables and all the x

variables follow the Classical Test Theory assumptions regarding

errors. 9 2
Yr..a.s, + Zr.ka. 2y Sy Sy where j # k
Then: r_ (p.f.) = 1JJ JXJ 2
zz I a252 + Yr..a. a, S§. S
373 ik%i "k i Tk
(Similar to Guilford, 1954, p. 393)
and
T = Zr..a. A.s% + 2r.,a.A 5.5
zZ i3 77 k73 k"i7k ;
22 /2 2 2 1/2
Ir. . ATs .+ Ir.. A A s.s Tas +Lr..a.a 5.8
(JJJJ JkaJk) (JJ kaJk)

. - . 2
Therefore: L {(p.f.) = L (index) or T,z

if and only if: aj = cAj for all j, where ¢ is an arbitrary constant.

ss to which true score should be used in reliability estimates
for residuals.
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Reliability of Change Scores and Other Composite Scores

The reliability of a change score y = z - X, then s, =8 and

¥
. .8
r =1 1is:
xx Yy r ’
- _ XX - Xy (Lord, 1963, p. 32)
gg 1 - rxy
This formula highlights the effect of rxy on rgg' An increase in a

positive rxy will lower the reliability of the change score, because
x and y will have more of their true variance in common and the
difference between y and x will be primarily error. Note that r

gg
cannot exceed r _ unless r__ is negative. Were r__ mnegative, the
XX xy Xy

use of change scores would be highly questionable, to say the least.

The more general formula for the reliability of change scores is:
2 2
r o= Tyy®y T Tx®x T 2ny (Lord, 1963, p. 32)
I
s- + s - 2C
y X Xy

This formula is expressed in terms of the proportion of true variance

to total variance. Reliability can also be expressed in terms of the

proportion of error variance.

2 2
s + 5
=1~ "e e
gg Y X
2
s
g
2 2 2 2 2 2
where S, = (1 - ryy )] Sy’ sex = {1- Tox 3 S and sg = Z{y-x) “/n

This formula can be generalized to give the parallel-forms/ proportional
reliability of any composite score where there is independent informa-

tion on the reliability of the various components.

Za252
Lo (p.f./pro) =1 - e

gReliability coefficients are equal for all three definitions unless
otherwise noted, e.g., Tox (p.£.).
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where z = Za.x. and 52 = (1~r..)52
J ] ej 1] xj

- Index Reliability of Estimated True Scores

Index reliability has been defined earlier as the square of
the correlation between the true score and the raw score or estimate.
For estimated true scores, index reliability equals the squared multiple
correlation.

When k times the raw residual is used to estimate the true

residual,

where Q =Y - Y, g =y -y, and k is the value which minimizes the
variance, E{Q-kq)z, k equals the squared multiple correlation. In
other words, the square root of k is equal to the correlation between

q and its true residual Q:

s
vk=r ork=r%=r index
qQ qC aq ( )
k also equals the ratio of the variance of 0 to the variance of q:

2
k=g
52
q

The regression of Q on q can be represented as B This beta weight

Qq’

also equals k.

Hence k or rqq (index} performs much the same function for resid-
uals that Tox provides for single raw scores. Multiplying the raw
residuals by k (or qu) reduces their variance to the point that mini-

~

mizes the variance of the errors of estimates {(Q - Q). Just as rxxx
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is the least squares estimate of X, kq is the least squares estimate
of Q.
For the specific case of q = y - byxx’ the index and parallel-

forms reliability coefficients are:

2 2
Toa (index) = ‘yy ~ rxy/rxx = Txxlyy ~ Txy
1 - 2 T (1 -r 2)
Xy XX Xy
T +r 2/r - 2r 2
Taq (p.f./pro) = vy Xy" XX Xy
1 -1 g
Xy

Which Reliability?

Parallel-forms reliability for residuals and other estimates are
equivalent to proportional reliability and is the best estimate of the
test-retest reliability of these estimates (assuming that the same
weights are used for both samples). It is greater than or equal to
index reliability which estimates the precision of the estimates (i.e.,
the extent to which they correlate with the true score). Consequently,
parallel-forms reliability of estimates is generally an over-estimate

of their precision. Both reliabilities should be reported.

The Reliability of the Difference Between Residuals

To compare residuals, either across individuals on the same
variable or across variables for the same individual, one must con-
struct confidence intervals based on the reliability of these resid-

uals. Otherwise, decisions may be based on chance differences. For
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example, the 95% confidence interval for a given residual, q, is:

C.I.= o+ 1.9 s, (1-7x y /2

q9
and for the difference between the residuals for two different indi-

viduals on the same variable is

- - _ 1/2
C.T. = (qi qj) + 1,96 sCl (2 quq)

To compare residuals for the same individual across variables is
more complicated. First, the residuals must be standardized to the
same variance; they already have the same mean, zero. The reliability
of the difference between these standardized residuals equals the re-
liability of any difference or change score when the two variances

are equal:
T + T - 2r
rT.,, = 11 22 12 (Guilford, 1954, p. 394)

dd
2(1 - r12)

where T and T,, are the reliabilities of the residuals and T, is
their intercorrelation. The 95% confidence interval for the intra-
individual difference between two residuals is:

C.I. = (- ap) + 1.96 s (1 - rdd)l/z.
The index reliability of the residuals should be used to compute these
confidence intervals since confidence intervals are concerned with the
value of the true scores. Parallel-forms or proportional reliability

may be used when no estimate of index reliability is available.

Illustration Using the Dyer, Linn, and Patton Data

An earlier section of this paper discussed how Dyer, Linn, and
Patton (1969) computed residuals separately for both halves of their

school-system sample to obtain an estimate of the reliability of the
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Method-I and Method-M residuals. This split-half correlation must
be stepped up using the Spearman-Brown formula (Gulliksen), 1950, p. 63)
to estimate the parallel-forms reliability of residuals based on the
total samples. Table 1 in the appendix presents these stepped-up
coefficients for the Method-M residuals. The parallel-form reliabil-
ities are fairly high, ranging from .77 to .91 with a mean of .835,
These estimates represent only very rough approximations since the
school-system samples used to compute these residuals ranged from
10 to 1084 pupils. However, these parallel-form reliability estimates
can be used to illustrate some of the problems of comparing residuals
across variables.®

Table 1 also presents the intercorrelation between the Method-M
residuals. These are also'fairly high in many cases, suggesting that
intra-school-system comparisons across some variables may be entirely
unwarranted. Table 2 presents the reliability estimates for intra-
school-system comparisons, based on the data in Table 1. These esti-
mates vary from zero to .73, making any kind of generalization impos-
sible. Obviously some comparisons, such as Language vs., Arithmetic,
are reasonably reliable, while others are guite unreliable. This
disparity illustrates the need for treating each research setting as
a special case and computing the reliability of such differences
before deciding whether to make intra-individual (or intra-school-

system) comparisons of residuals.

8No estimate of index reliability is available. Of course, an index
reliability estimate will also be only a rough approximation because
of the range in the sample sizes used to compute the residuals.
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Finally, Table 3 presents the intercorrelations between the pre-
dicted outputs for Method-M.g' These correlations are quite high,
ranging from .84 to .97, with a mean of .91. Corrected for attenua-
tion, these coefficients would be very close to one. These data
suggest that the predicted outputs are essentially linear transforma-

tions of each other.

RECOMMENDATIONS AND CONCLUSIONS

Residuals can be used to compare the performance of individuals or
groups while holding the initial status variable(s) mathematically
constant if the data meets the assumptions of a multivariate normal
distribution. If the data contain errors, the raw-score residual can
e used to estimate the true-score residual. It is not necessary to
multiply the raw-score residuals by k, the square of the correlaticn
between the raw-score residual and the true-score residual, unless the
researcher is interested in estimating the magnitude as well as the
order of the true-score residuals.

Group means should be used to compute residuals for comparing
groups. It is preferable that all groups have the same sample size;
otherwise the residuals may vary greatly in their reliability and
variance.

The parallel-forms reliability of raw-score residuals and other

estimated true scores 1s not necessarily equal to the index reliability,

Dr. Clarence H. Bradford suggested this analysis.
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the square of its correlation with the true score it estimates. For
proper interpretation, both reliabilities should be reported. In order
to avoid decisions based on chance differences, confidence intervals
should be constructed for comparing raw-score residuals.

For statistical analyses of the determinants of change, partial
correlations or multiple regression analysis should be used with final
status as the criterion and initial status as one of the covariates.
Multiple regression analysis is preferable because of its greater
flexibility. Change scores, residuals, or base-free measures of change
should not be used in statistical analyses; they will either give the
same results as the above approach or results which are more difficult
to interpret.

Errors in the predictor or initial status variables can change
even the sign of partial correlation or multiple regression coefficients.
If these coefficients are to be interpreted, they should be corrected
for attenuation, either by correcting the individual correlations
before entering them into the analysis, or by employing short-cut

computational formulas. If the only interest is predicting the

criterion, multiple regression coefficients should not be ;orrected
for attenuation; the corrected equation would have a lower multiple
correlation (i.e.,, be a poor predictor). (Johnston, 1963, pp. 162-164),
It is strongly recommended that test-retest estimates of reliabil-
ity be used to correct coefficients for attenuation. Since the initiatl
and final status measures will normally be collected at different times,
an estimate of short term stability of these measures is More appropriate
than an estimate of their internal consistency. All reliability

coefficients should be derived from the population under study.
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TABLE 1

THE PARALLEL-FORMS RELIABILITIES AND THE INTER-

CORRELATIONS OF METHOD-M RESIDUALS

v R L W A C
Vocabulary (V) (.77) .73 .53 .53 .44 .71
Reading (R) (.80) .64 .79 .64 .87
Language (L) {.86) .58 40 72
Work Study Skills (W) (.91) .71 .89
Arithmetic (A) (.80) .77

Composite (C) : (.87
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TABLE 2

THE PARALLEL-FORMS RELIABILITY OF THE INTRA-

SCHOOL-SYSTEM DIFFERENCE BETWEEN RESIDUALS

R L W A c
Vocabulary (V) .20 .61 .66 62 .38
Reading (R) .53 .32 .44 | 0*
Language . (L) .73 ;72 .52
wWork Study Skills (W) .50 0*
Arithmetic (A) .28

Composite (C)

#*Because of sampling fluctuations, the obtained estimate was negative,
a zero has been substituted since common practice permits only zero OT
positive reliahilities.
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TABLE 3

THE INTER-CORRELATIONS OF THE

METHOD-M PREDICTED QUTPUTS

R L W
Vocabulary (V) .97 .86 .91
Reading (R) .88 .96
Language (L) .90

Work Study Skills (W)

Arithmetic (A)

Composite (C)

.86

.88

.84

.92

.94

.96

.91

.97

.96



17.

TO DEVELOP STUDENT ABILITY TO THINK IN A SCIENTIFIC MANNER

a. Given a simple biological research report, the student will be able to identify
the major steps followed by the researcher.

b. Given a piece of research evidence, the student will be able to explain whether
the evidence is based on inductive or deductive reasoning.

University Requirements

TO IMPROVE STUDENT UNDERSTANDING OF THE FUNCTION OF BLOOD IN ORGANISMS
a. Given an example of a substance found in the blood, the student will be able

to describe its function in the body.
b. The student will be able to explain the differences between red and white
corpuscles by comparing each in shape, number, size, and function.

Local Medical Association

TO IMPROVE STUDENT UNDERSTANDING OF NERVOUS COORDINATION IN THE HUMAN BODY

a. The student will be able to describe how the eye adapts for close and distant
vision.

b. The student will be able to compare the functions of the central nervous
system with those of.the antonomous system.

University Requirements
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10.

18.

TO IMPROVE STUDENT KNOWLEDGE OF THE BIOLOGY OF THE HUMAN PATTERN

d.

b.

The student will be able to describe three physical characteristics that set
man apart from the other primates.

Give an example of an anthropological find, e.g., Peking, Man, the student will
be able to describe its important characteristics.

Students

TO IMPROVE STUDENT UNDERSTANDING OF HEREDITY AND GENETICS

d.

b.

The student will demonstrate his knowledge of phenotype and genotype by
describing the differences between identical and fraternal twins.

The student will be able to make a genetic diagram to illustrate the genotype
resulting from the marriage of a man and woman who are both heterozygous for
brown eye color and be able to describe each phenotype.

The student will be able to replicate Mendel's experiment in genetics.

The student will demonstrate his knowledge of the effects of genes by giving
an example of a simple cross in garden peas that illustrates dominance.

The student will show his knowledge of spermatogenesis by describing what
change occurs in the spermatid to become a sperm cell.

University Requirements National Association of Science Teachers

TO IMPROVE STUDENT PROFICIENCY IN VARIOUS LABORATORY TECHNIQUES AND IN THE USE
OF LABORATORY EQUIPMENT

d.

b.

The student will be able to use both compound and electron microscopes and
explain the differences in how they magnify objects.

The student will be able to prepare specimens on a slide for viewing under
the microscope.

School Science Teachers
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19.

TO IMPROVE EACH STUDENT'S PERSONAL HEALTH CARE AND HYGIENE

a. The student will be able to list the characteristics of good health.

b. The student will be able to explain the relationship between a specific
disease and its cause.

c¢. The student will demonstrate knowledge of viruses by listing five important
diseases they cause.

d. The student will show understanding of types of diseases by listing the
differences between organic and communicable diseases.

Parents

TO IMPROVE STUDENT UNDERSTANDING OF THE HISTORICAL DEVELOPMENT OF THE BIOLOGICAL
SCIENCES
a. The student will be able to identify important biological discoveries and
the name of the person responsible for these discoveries.
b. The student will be able to explain the major developments of this century in
biology.

School Biology Teachers Parents

TO IMPROVE STUDENT UNDERSTANDING OF SCIENTIFIC METHODS OF CLASSIFICATION

a. The student will be able to describe the components in classification
systems for both plants and animals.

b. Given a drawing of an organism representative of a certain phylum, the student
will be able to identify the phylum to which it belongs and state the charac-
teristics of the organism that are typical of the phylum.

c. Given organisms in different phyla with similar structures and processes, the
student will be able to compare the structures of processes of each to show
how unity of pattern and diversity of type are exhibited.

University Requirements National Association of Science Teachers
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12.

20.

TO IMPROVE STUDENT ATTITUDE TOWARD AND INTEREST IN BICLOGY

a.

b.

At the end of the biology course, students will demonstrate their interest in
the subject by voluntary participation in non-required biology projects.

By the end of the biology course, there will be a decrease in the number of
students who have to be sent from the biology class to the principal for
disciplining.

National Association of Science Teachers

TO IMPROVE STUDENT UNDERSTANDING OF THE CHEMICAL BASIS OF LIFE

a.
b.

Cc.

The student will be able to list and describe the five basic elements
canposing the human body.

The student will be able to conduct a simple diffusion experiment to
illustrate the kinetic theory of matter.

The student will be able to conduct simple experiments to demonstrate how
osmotic¢ pressure works in the membrane.

The student will be able to list the differences between chemical and
physical changes in organisms and give examples of each.

State Biology Curriculum Specifications

T0 IMPROVE STUDENT UNDERSTANDING OF INVERTEBRATE LIFE FORMS

a.
b.

cC.

The student will be able to compare the four main classes of protozoans
according to their method of locomotion.

Given the order of an insect, the student will be able to describe its
metamorphosis, and give an example of an insect in that order.

Upon being presented with a class in the coelenterata, the student will be
able to describe its characteristics and give examples within the class.

School Science Teachers
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21.

TO IMPROVE STUDENT UNDERSTANDING OF MAN'S RELATTONSHIP TO ANIMAI, AND PLANT
ORGANISMS IN HIS ENVIRONMENT

a.
b.
c.

d.

The student will be able to identify the plants and animals in his envirommers.
The student will be able to discuss some causes of envirommental pollution.
The student will be able to list some consequences of envirommental pollution,
for man, plants, and animals.

The student will be able to explain what he can do personally to help solve
that problem.

The student will be able to explain the influence of local plants in the
development of his community.

Local Mass Media

TO IMPROVE STUDENT UNDERSTANDING OF THE GROWTH OF PILANTS

a.

b.
c.

@

The student will be able to 1list and describe the differences between self-
pollination and cross-pollination.

The student will be able to describe the function of transpiration in a leaf.
The student will be able to explain root pressure, capillarity, evaporation,
pull, and cohesion and how they cause soil water to rise in trees.

The student will be able to explain in his own words the phenomenon of osmosis.
Given a drawing of a flower, the student will be able to label its different
parts,

School Biology Teachers Parents

TO DEVELOP STUDENT ABILITY TO DELIVER FIRST AID

a.
b.

C.
d.

The student will be able to perform the necessary steps to stop bleeding.

The student will demonstrate his ability to perform mouth-to-mouth artificial
respiration.

The student will be able to improvise and apply a splint to a fracture.

The student will be able to care for a seriously burned patient until a doctor
arrives.

Physical Bducation Teachers Community Leaders
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22,

TO IMPROVE STUDENT UNDERSTANDING OF THE RELATIONSHIP BETWEEN THE ORGANS OF THE
BODY

a. The student will be able to describe the relationship between the lungs,
kidney, and the skin.

b. The student will be able to identify and describe the functions of a mephron.

National Association of Science Teachers

TO IMPROVE STUDENT UNDERSTANDING OF THE ROLE AND IMPORTANCE OF FOOD AND NUTRITION

a. Given an example from the six groups of nutrients, the student will be able to
explain its role in humz: nutrition.

b. The student will be able to list the functions of calcium and phosphorous in
the body.

c. The student will be able to describe how sodium and potassium regulate water
in cells.

Parents Home Economics Teachers

TO IMPROVE STUDENT KNOWLEDGE OF HUMAN BEHAVIOR

a, The student will be able to make a replication of Pavlov's experiment to
produce conditioned behavior.

b. The student will be able to list the differences between human and animal
behavior.

c. The student will be able to list some differences between neurotic and
psychotic behavior.



7. TO IMPROVE STUDENT UNDERSTANDING OF THE FUNCTIONS OF THE BONES AND MUSCLES IN
THE BODY
a. Given the name of a type of muscle, the study will be able to describe its
appearance and its type of control, and point it out on his own body.

b. The student will be able to explain the relationship between bone marrow and
blood.

National Association of Science Teachers

15. TO IMPROVE STUDENT UNDERSTANDING OF ENERGY RELATIONS IN LIVING ORGANISMS
a. The student will be able to describe the processess of photosynthesis and
respiration and list their differences.
b.  The student will be able to list various forms of energy and be able to give
examples of conversion of energy from one form to another.
c. The student will be able to demonstrate, using chemical equations, that
photosynthesis and respiration are the opposite of each other.

University Requirements Students

23. TO IMPROVE STUDENT KNOWLEDGE OF VERTEBRATE LIFE FORMS
a. The student will be able to dissect a frog and identify its two main
digestive glands and the four main parts of its circulatory system,

b. The student will be able to describe the different periods of gestation for
various animals.

State Biology Curriculum Specifications



8. TO IMPROVE STUDENT KNOWLEDGE OF THE PROCESS OF DIGESTION
a. Given an example of an enzyme, the student will be able to list its source,
the food it acts upon, and its product.
b. The student will be able to identify and describe two functions of the liver.

Home Economics Teachers Parents

16. TO IMPROVE STUDENT UNDERSTANDING OF CHEMICAL COORDINATION IN THE HUMAN BODY
a. The student will list the effects of the pituitary gland and give examples of
how it controls the other glands.
b. The student will be able to list three effects of androgens upon maturing
bodies.

University Requirements

24. TO IMPROVE STUDENT UNDERSTANDING OF THE PHYSICAL BASIS OF LIFE

a. The student will be able to identify and describe the three major parts of a
cell.
The student will be able to describe the five phases of cell division.
The student will be able to describe the function of tissues and organs.
The student will be able to describe the processes of deterioration in an
unhealthy organism.

a0 o

State Biology Curriculum Specifications



