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Abstract

We present a framework for evaluating cognitive claims to the interpretation of
assessment scores and provide evidence of its applicability to science achievement. We
adapted the idea of the “assessment triangle” (Pellegrino, Chudowsky, & Glaser, 2001),
in the form of an assessment square with four tightly linked corners: construct
(definition), assessment (task/response/score analysis), observation (cognitive and
statistical data), and interpretation (link between observation and construct). In an
iterative process of assessment review, the model focuses on four analyses that feed back
on one another: conceptual, logical, cognitive, and statistical and/or qualitative. The
heart of the model is a knowledge framework consisting of declarative (knowing that),
procedural (knowing how), schematic (knowing why), and strategic (knowing when
knowledge applies) knowledge that underlie achievement. Concrete examples of the
model’s application are provided.



Introduction

Spurred by calls for education reform in the wake of international comparisons
of student performance, developments in cognitive science, and augmentation of
international achievement test formats, a myriad of new (and renewed) approaches
to assess students’ learning have emerged over the past 15 years. Some examples of
these new assessments are performance assessments (mini-science-laboratory
investigations); concept maps (a graph with nodes representing concepts, directed
lines representing relations between concepts, and line labels explaining the
relation); and predict-observe-explain demonstrations (e.g., students predict whether
two objects will fall at the same rate, observe a demonstration, and then explain
what happened). In most all cases, the intent of assessing learning is to go beyond
ranking students on their performance to drawing inferences about what they know
and are able to do with that knowledge. That is, assessments of learning are
interpreted as providing information on cognitive activities as well as on
performance.

With the burgeoning variety of learning assessments and the cognitive as well
as performance interpretations placed on information collected with these
assessments, the question arises, “How might we evaluate the quality of information
produced by sometimes quite novel approaches to learning assessment?” That was
the question posed to us by the conference organizers and the topic of this paper. To
address the question, we draw on our work and that of colleagues in the Stanford
Education Assessment Laboratory where we encounter this question over and over
again. We focus on evidence of the validity of proposed interpretations of learning
assessments but also touch on reliability where appropriate.

To be sure, there are other issues that we might have addressed, such as
consequential validity—the impact of an assessment practice on students’ education.
However, these issues would take us beyond the limits of your patience and journal
space. The good news is that what is presented here has years of concrete practice
behind it; the bad news is that what is not presented here may constitute equally
worthwhile alternative approaches, or approaches that address other issues that you
are more interested in than what we have presented here. So, in all fairness, readers
beware!



Conceptual Framework

Like any practical enterprise, in developing and evaluating assessments we
drew on current ideas from theory and practice, specifically cognitive, reliability,
and validity theory to do our work. On occasion, we have been asked to talk or write
about what we were doing, and that gave us pause to step back and try to figure out
what we were doing. This paper is another such opportunity. Fortunately, the work
of Pellegrino, Chudowsky and Glaser (2001) and their National Research Council
committee provided a stepping-stone for us to understand our own work on
evaluating new approaches to learning assessment. Their assessment triangle
identified three key elements underlying any assessment (Figure 1). The first
element is: “a model of cognition and learning in the domain.... [The model explains]
how students represent knowledge and develop competence” (Pellegrino,
Chudowsky, & Glaser, 2001, p. 44, italics in original). The second element,
observation, is “a set of beliefs about the kinds of observations that ... provide evidence
of students’ competencies...” (Pellegrino, Chudowsky, & Glaser, 2001, p. 44, italics
in original). These observations are based on “...tasks or situations that prompt
students to say, do, or create something to demonstrate knowledge and skills”
(Pellegrino, Chudowsky, & Glaser, 2001, p. 47). And the third element is
interpretation, a “... process for making sense of the evidence” (Pellegrino,
Chudowsky, & Glaser, 2001, p. 44). Interpretation involves “... all the methods and
tools used to reason from fallible observations” (Pellegrino, Chudowsky, & Glaser,
2001, p. 48).

Observation Interpretation

Cognition

Figure 1. The assessment triangle (Pellegrino, Chudowsky,
& Glaser, 2001, p. 44)



We (Ayala, Yin, Shavelson, & Vanides, 2002; Ruiz-Primo, Shavelson, Li, &
Schultz, 2001) have taken the liberty of modifying the triangle, changing a label and
expanding it into what we call “the assessment square” (see Figure 2). Although for
simplicity the assessment square looks like a nice neat series of steps, in reality it is
an iterative process in which in early stages of assessment development the corners
of the square loop back to earlier corners.

Warranted
I‘- = == |pnference? = == == =
Conceptual
Analysis
Statistical and/or
Quialitative Analysis
Logical
Analysis
L Cognitive
Analysis
Assessment Observation

Figure 2. The assessment square (Adapted from Ayala, Yin,
Shavelson, & Vanides, 2002, p. 3)

Assessments of learning are intended to measure a construct (a conceptual
model), for example, learning, knowledge, or motivation. The term, construct, in our
assessment square corresponds to cognition in the assessment triangle (see Figure 1).
The construct definition is the heart of the learning assessment.

We prefer the term construct because it does not limit assessment to an
underlying cognitive model. For example, an alternative approach to positing a
cognitive model would be to define a construct (say knowledge) in terms of a subject-
matter domain (e.g., Newtonian mechanics; see Shavelson & Ruiz-Primo, 1999).

A conceptual analysis would expect the working construct definition to
circumscribe the domain of learning that the construct covers and the kinds of
student responses (behavior) that the construct says should be produced by the
construct. For example, if the construct were declarative knowledge (knowing that), a
conceptual analysis would identify a range of tasks in a knowledge domain that
could be presented to students (e.g., present a definition of a term) and the kinds of
responses that would be expected (e.g., recall or recognize the term). The definition



might also rule out other tasks and responses, and it might posit other constructs
that declarative knowledge should and should not be related to. The working
construct definition, then, drives the tasks or situations, response demands, and
scoring system that comprise a learning assessment (Shavelson & Ruiz-Primo, 1999).

Once the initial conceptual analysis has been completed, the remaining corners
of the square involve the assessment, and we search for logical evidence that this
construct will be evoked by the assessment tasks and empirical evidence that the
construct was, indeed, evoked in a student’s behavior. Of course, the logical and
empirical analyses might very well lead to a modification of the construct, based on
what we learned. Hence, we reiterate, this is an iterative, not linear, process.

An assessment is a systematic procedure for eliciting, observing and describing
behavior, often with a numeric scale (cf. Cronbach, 1990). The assessment is a
physical manifestation of the working construct definition. It is one of many possible
manifestations of the construct in the form of a test that could have been produced;
we think of an assessment as a “sample” from a universe of possible assessments
that are consistent with the construct definition (Shavelson, Baxter, & Gao, 1993;
Shavelson & Ruiz-Primo, 1999).

Once an assessment has been developed or selected for use, we analyze,
logically, its tasks and response demands to see whether it falls within the construct
domain, and whether it is likely to elicit the expected behaviors from a student. The
task analysis involves reviewing the task and determining what kinds of thinking
the task might evoke in students. This analysis posits cognitive activities that the
task might evoke by examining the “opportunities and constraints” that the
assessment task provides students to elicit their knowledge and skills (Li, 2001;
Ruiz-Primo, Shavelson, et al., 2001). More specifically, we perform the assessment
task, hypothesize what a competent student needs to know and be able to do to
complete the task, and relate this analysis to the construct underlying the
assessment. In this process, we assume a student who is proficient on the task;
otherwise this logical analysis generates any number of inappropriate task demands
(e.g., guessing, or trial and error; Ayala et al., 2002). The logical analysis links the
assessment back to the construct (Figure 2).

Of course the logical analysis is, of necessity, incomplete. We cannot anticipate
completely what responses the assessment will elicit from students, even competent



students. However, the logical analysis will point out limitations in the assessment,
or the construct definition, that will need to be addressed.

The third corner of the square, observation, involves collecting and summarizing
students’ behavior in response to the assessment task. This empirical analysis
focuses not only on observed and perhaps scored task performance, but also on
cognitive activities elicited by the task. The analysis provides evidence on a
student’s cognitive activities that were evoked by the task as well as the student’s
level of performance. The analysis brings both to bear on the link between the
assessment and the construct definition. We ask, did the assessment evoke the
intended behaviors? Is there a correspondence between the intended behaviors and
the performance scores? Specifically, in the empirical analysis, we examine, as
appropriate: (a) students’ cognitive activities as they carry out the assessment task
using a concurrent “think-aloud” technique, (b) the empirical structure of students’
responses as represented by scores (analyzing covariances), (c) the relationship
between students’ cognitive activities and their performance scores, and (d) the
relationship between assessment scores and scores from other tests based on similar
and different constructs (Ruiz-Primo, Shavelson, et al., 2001).

In our empirical analysis of observations, we compare (a) the observed
structure of students’ assessment scores to the expected structure based on the
construct definition, (b) the observed students’ cognitive activities to the cognitive
activities expected in the construct definition, (c) the relation between cognitive
activities and performance scores to that expected by the construct definition, and
(d) the performance scores to scores on similar and different constructs as expected
from the construct definition.

Finally, we put together evidence from the logical and empirical analyses and
bring it to bear on the validity of the interpretations from an assessment to the
construct it is intended to measure. Simply put we ask, “Are the inferences about the
construct—a student’s learning or domain knowledge—from performance scores
warranted?” During the development of an assessment, we iterate through,
somewhat informally, the assessment square until we have fine-tuned the
assessment. In research and practice where learning is assessed, we formally
evaluate the inferences.

All of this is pretty abstract. To make it practical, we apply the assessment
square to three examples. The first example is the Population 2 science achievement



test from the Third International Mathematics and Science Study (TIMSS). We
defined the construct, achievement, as consisting of four types of
knowledge—declarative, procedural, schematic, and strategic—and examined the
TIMSS test items to see if the test measured achievement as conceived in our
definition (Li, 2001; Li & Shavelson, 2001). The second example is an analysis of tests
that are used to measure the construct, knowledge structure. These tests are concept
maps (Ruiz-Primo & Shavelson, 1996); they are based on “... the notion that concept
relatedness is an essential property of knowledge and the empirical finding that an
important competence in a domain is well-structured knowledge” (p. 101). And the
third example is an analysis of performance assessments—tests that are intended to
measure especially procedural knowledge (knowing how) but also schematic
knowledge (knowing why) and strategic knowledge (knowing when, where, how
knowledge applies).

Achievement Assessment

There is an adage that goes, “intelligence is what intelligence tests measure.”
The same could be said of achievement tests. However, four somewhat diverse lines
of research and practice—brain research (e.g., Bransford, Brown, & Cocking, 1999),
cognitive research (Bransford, et al.), U.S. science standards (Bybee, 1996), and
testing practice (Pellegrino, Chudowsky & Glaser, 2001) have converged and have
been synthesized into a heuristic framework for conceptualizing the construct,
achievement, as declarative, procedural, schematic and strategic knowledge (e.g., Li,
2001; Li & Shavelson, 2001, Li, Shavelson, & White, 2002; Shavelson & Ruiz-Primo,
1999). In what follows, we focus on achievement in the domain of science;
specifically, we focused on the TIMSS Population 2 science achievement test items
(Li; Li & Shavelson).

Construct: Types of Knowledge Defining Science Achievement

We defined science achievement as consisting of four types of knowledge (see
Figure 3). Declarative knowledge is “knowing that”—for example, knowing that force
is a push or pull and light is a form of energy. Declarative knowledge includes
scientific definitions and facts, mostly in the form of terms, statements, descriptions,
or data. For instance, a statement like, “combining two or more materials together
forms a mixture” is the scientific definition of “mixture.” A scientific fact would be,



for example, “the density of water is 1 gram per milliliter at 4 degrees centigrade
and at one atmosphere of pressure.”

Schematic Knowledge

| \ Strategic

Draws upon A/ KnOWIedge

Declarative Procedural
Knowledge Knowledge

Figure 3. Knowledge framework for science achievement

Procedural knowledge is “knowing how.” For example, knowing how to design a
study that manipulates one relevant variable and controls others, or how to measure
the density of an object or how to graph the relation between the angle of an incline
plane and the force needed to move an object up it. Procedural knowledge includes
if-then production rules or a sequence of steps that can be carried out to achieve a
sub-goal leading to task completion.

Schematic knowledge is “knowing why.” For example, knowing why Delaware
has a change of seasons or knowing why we see different phases of the moon. To
know why is to have a scientifically justifiable “model” or “conception” that
explains the physical world. Schematic knowledge includes principles, schemes, and
mental models. Schematic knowledge can be used to interpret problems, to
troubleshoot systems, to explain what happened, and to predict the effect that
changes in some concepts will have on other concepts (De Kleer & Brown, 1983;
Gentner & Stevens, 1983).

And strategic knowledge is “knowing when, where and how” to use certain types
of knowledge in a new situation and knowledge of assembling cognitive operations.
Strategic knowledge includes domain-specific conditional knowledge and strategies
such as planning and problem-solving as well as monitoring progress toward a goal.
People use strategic knowledge to recognize the situations where some procedures
can be carried out, to examine the features of tasks in order to decide what schematic
knowledge can be applied, to set task goals, or to control and monitor cognitive
processing.



This simple framework, linked to science-content domains, can be used to
specify important aspects of an achievement test. It can also be used to guide the
analysis of current tests to figure out what they are measuring. Having defined the
construct, achievement, we turn to logical and empirical analyses of item
characteristics and their link to the construct.

Logical Analysis of TIMSS Items

In order to identify TIMSS test item characteristics and link them to our multi-
knowledge construct of science achievement, we analyzed and coded multiple-
choice, short-answer, and performance-assessment test items logically; we focus
here on the first two item types (cf. Li, 2001; Li & Shavelson, 2001). The logical
analysis assumes, importantly, that a competent student’s performance on an item
involved a transaction between the cognitive, motivational, and emotional
characteristics of the student and the task and response demands of the test item (cf.
Cronbach, 2002; Shavelson, et al., in press). We assume that the student,
encountering the assessment task, creates a mental problem space that she operates
on to complete the task. She brings her aptitudes—cognitive, motivational, and
emotional resources—to bear on task completion. As she proceeds along a solution
path, the task affords new opportunities, and as those new opportunities arise, new
aptitude complexes are evoked. Consequently, our logical analysis examines both
task and cognitive/response demands. Of necessity, the logical analysis must be
incomplete; many solution paths, some quite unpredictable, arise from one student
to another. We restrict the range of cognitive responses by assuming competent
students building on cognitive studies of expertise (e.g., Bransford, Brown &
Cocking, 1999) where experts create problem spaces that represent the underlying
principles embedded in the task and novices attend to surface features in
unanticipated ways.

Following from our construct definition of science achievement, we developed
an analytic coding system to describe the items and to predict how proficient
examinees would interact with the items (e.g., Baxter & Glaser, 1998). The coding
system (see Table 1) was divided into four main categories and arrayed in order of
importance: a) task demands, b) inferred cognitive demands, ¢) item openness (e.g.,
selected vs. constructed response), and d) complexity. For example, a task that asks
students to respond by enumerating procedures and actions taken in an
investigation involves the use of procedural knowledge. In contrast, a task asking



for a definition of a term affords declarative knowledge. An open task format offers
examinees an opportunity to apply schematic or strategic knowledge because the
openness allows or forces them to put together theories/models and generate their
own procedures and/or explanations. Finally, a task with attractive but misleading
distracting cues would be considered more complex than one with few or no
distractors.

Table 1
Logical Analysis: Item Coding System (After Table 5.1 From Li, 2001, p. 69)

* Task Demands: What does the item ask examinees to do?

- Terms, symbols, vocabulary, and definitions
- Statements, descriptions, and facts
- Procedures, steps, and actions
- Algorithms and equations, figures and diagrams, and tables
- Models, relationships, theories, explanations, and principles
* Cognitive Demands: Inferred cognitive processes examinee may bring to task and how they
use knowledge and reasoning to respond to the item.
- Visualization
- Mathematical calculation
- Mechanical operation (e.g., draw diagram, balance chemical equation)
- Perform experiment
- Recall information/fact
- Reason and interpret with models and principles
- Describe and record information and outcomes
- Select and use strategies
- Plan and monitor
- Guess or eliminate wrong options
- Reason with common sense

» Item Openness: Degree of freedom student has in shaping response to item.

- Hands-on vs. paper-and-pencil

- Read options and choose vs. generate responses on own (selected vs. constructed-response
format)

- Require only information found in task vs. steps/information can be learned from the task
- Require one vs. multiple correct solutions/approaches
- Follow instructions or steps
» Complexity: Familiarity, relevance, reading difficulty, common experience of the item
- Textbook-type task vs. ill-structured task (provides or contains new
situation/information)
- Inclusion of irrelevant background information
- Long, reading demanding descriptions and complicated vocabulary
- Answers contradict every experience/belief
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To exemplify the application of the logical analysis, we analyze three items
with the coding scheme. The results of the analysis for the TIMSS Booklet 8 items are
presented in Table 2. TIMSS item P6 draws upon declarative knowledge, asking for
a definition. Specifically, it asks for the digestive substance in the mouth and its
function.

Table 2
Classifications of TIMSS Booklet 8 Items (Li, 2001, p. 75)

Item Classification ®

label Description DE PR SC ST NA
A7 Organ not in abdomen P

A8 Stored energy in two springs P

A9 Fanning a wood fire P

A10 Seeing person in a dark room P
All Overgrazing by livestock P

Al12 Changes in river shape/speed P P

B1 Layers of earth P

B2 Energy released from car engine P P

B3 Greatest density from mass/volume table P

B4 Pulse/breathing rate after exercise P

B5 Elevation diagram of wind/temperature P

B6 Color reflecting most light P
P1 Distance versus time graph P

P2 Flashlight shining on wall P

P3 Life on planet Athena P

P4 Animal hibernation P

P5 Heating water with balloon P

P6 Digestive substance in the mouth P

P7 Replication of measurement P

Q11 Daylight and darkness P

Q12 Jim and Sandy’s flashlights P
Q13 Lid on jar P P

Q14 Heated iron and sulfur P

Q15  Chemical change P

Q16 Light from star P
Q17  Advantage of two eyes P

Q18 Melting ice cubes P P

R1 Light striking mirror P

R2 Why does shirt look blue? P

R3 New species in area P

R4 Ozone layer P

R5 CO2 fire extinguisher P

°DE = declarative knowledge, PR = procedural knowledge, SC = schematic knowledge, and ST
= strategic knowledge. NA indicates the items could not be classified into any certain
knowledge-type(s) because the items were too general or too ambiguous. These abbreviations
are used hereafter.
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What Digestive Substance Is Found in the Mouth?
What Does It Do?

Two of the three item characteristics lead us to conclude that it taps declarative
knowledge rather than schematic or procedural knowledge. First, the response is
expected to be in the form of terms, vocabulary (e.g., saliva), and factual statements.
The item asked a very specific content question (i.e., a specific fact), leaving little
room for students to provide relations between concepts or to apply
principles/models. Second, the cognition involved is likely to be recall. Note that the
item is not only similar to school-type problems but similar to the way texts are
written and students are taught. It makes sense that when students answer the
guestion they may recall exactly what they had been taught. Of course, some
students might learn this information from everyday experience instead of formal
schooling. Note that the cognitive state in which the knowledge was learned barely
differs from the cognitive state in which it is used in the testing situation. Moving
from the former to the latter state involves little transformation or re-construction of
knowledge. That is, the answer to Item P6 is stored in a student’s memory.

The cognitive process involved in answering the item is to directly retrieve
information or do a minimum of scientific reasoning to organize the relevant
information. However, the item openness and complexity have little relevance to
our classifying the item as tapping the declarative knowledge. For instance, the
response format (i.e., free response) is slightly more cognitively demanding than
multiple choice. Instead of only recognizing correct answers from options given,
students were invited to recall and organize their responses. Such a characteristic
made the item slightly challenging to students but did not fundamentally change the
type of knowledge students might use. Therefore weighing the four item
characteristics, we classify Item P6 as a declarative-knowledge item.

Very different from Item P6, our logical analysis showed that Item Q11 tested
students’ schematic knowledge. This multiple-choice item asked students to
recognize the explanation for why we have daylight and darkness on Earth (see
Figure 4).

12



Q11. Which statement explains why daylight and
darkness occur on Earth?

The Earth rotates on its axis.

The Sun rotates on its axis.

The Earth’s axis is tilted.

The Earth revolves around the Sun.

gowmy

Figure 4. TIMSS Item Q11 — Example of a schematic-knowledge item

Three of the four item characteristics support the conclusion that the item
affords the use of schematic knowledge. First, the item is intended to assess 14 year
olds’ knowledge about the cause of daylight and darkness because it invites
students to select conceptual explanations by using the phrase “explain why” in the
stem. The knowledge that students use to solve this item can be models or theories.
Some students might use visualization or diagrams to represent and infer the
process and consequence of the movement. Second, the dominant cognitive process
is reasoning with theories, perhaps with the aid of visual representations and/or
mentally spatial manipulation of objects. It is very likely that students have to figure
out the correct answer from four explanative models by reasoning the key issues
about the Earth and Sun’s movement (e.g., rotating on axis and revolving). Third,
the item is not restricted in terms of openness. That is, the item does not force
students to read options first in order to solve the task. The necessary information
for students to start and generate their own answers is provided in the descriptions
in the stem. Therefore, it leaves room for students’ thinking process. Of course, some
students might read the options before reasoning. However, one critical element of
task completion is to bring additional underlying principles and knowledge related
to the Earth and Sun’s movement instead of merely reading the options. For
example, while reading the options, students might also think about and figure out
that sentence C partially explains the season and sentence D partially explains the
year. Finally, the item does not involve heavy reading or irrelevant information. This
low complexity strengthens the posited link to schematic knowledge by reducing
construct irrelevant variance.

Of course, if a student has encountered this question in class or at home
repeatedly, she very well might recall the answer from memory. In that case, we
would consider the item to tap declarative knowledge. The answer is recalled as a
factual statement or model template. Until we examine students’ cognitive activities

13



while answering the question, the item-characteristic analysis is incomplete, of
necessity.

For our last example, P1 was coded as a candidate item to tap procedural
knowledge (Figure 5). It provides students with a graph showing an ant’s moving
speed within 20 seconds and asks the distance that the ant will travel at 30 seconds.

The graph below shows the progress made by an ant moving along a straight line.

3
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If the ant keeps moving at the same speed, how far will
it have traveled at the end of 30 seconds?

A 5cm
B 6cm
C 20cm
D 30cm

Figure 5. TIMSS Item P1 — Example of a procedural-knowledge item.

Two of the four characteristics tend to engage examinees using procedural
knowledge. First of all, the item requires students to interpret the diagram to find
the distance and/or to apply an algorithm to calculate the speed. Either piece of
knowledge falls into the category of procedural knowledge | defined. Second, the
cognitive process students probably engage in is either applying an algorithm for
speed by dividing distance with time or by extending the line in the graph to 30
seconds and simply reading the distance on the vertical axis. However, the item’s
lack of openness to some extent limits examinees applying procedural knowledge.

14



Although the multiple-choice format may allow students to generate their own
responses before reading the options, very likely students can arrive at the right
answer by working backwards from the options. Finally, the complexity codes were
not informative for modifying the link since they were not at the extremes of the
continuum.

Of course, questions about the consistency (reliability, agreement) arise when
coding assessment tasks. Would a second coder see the item the same way as the
first? In our studies, we have two coders code all items. In the TIMSS analysis, we
found inter-coder agreement to be, on average, 80 percent (Li, 2001). Where
disagreements arise, coders (and a third person if needed) reach consensus on the
codes for the contested items.

Empirical Analyses of TIMSS Items

The logical analysis requires the analyst to “psychologize” about the nature of
the problem space that a student constructs when confronted with an assessment
task. That “psychologizing” can never be complete. What students actually think is
always surprising. For this reason, the analysis of an assessment task is incomplete
without empirical studies. Here we describe two types of empirical studies, one
focused on the cognitive activities evoked by assessment tasks and the other on the
covariance structure of the tasks/items on an assessment.

Cognitive Analysis. The most important of the empirical studies for both
assessment development and validation is an analysis of the cognitive activities that
a task evokes. Do these cognitive activities comport with the expectations of the
construct definition?

Several methods can be used to examine cognitive processes evoked by
assessment tasks. Perhaps the method with the strongest theoretical and empirical
justification is the “think-aloud” method (Ericsson & Simon, 1993). Individual
students are asked to think (verbalize) aloud as they carry out a task, revealing
cognitive activities in working memory. Their verbalizations are recorded and a
transcript produced. Analysis of a think-aloud?! protocol provides evidence bearing
on a student’s thinking processes (Ericsson & Simon; for education research

1 The terms, think aloud and technique were first introduced by Ericsson and Simon (1993).
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applications, see Ayala, Yin, Shavelson & Vanides, 2002; Baxter & Glaser, 1998;
Hamilton, Nussbaum, & Snow, 1997; Ruiz-Primo, Shavelson, et al., 2001).2

Li (2001) examined the cognitive activities evoked by TIMSS items using the
think-aloud method (see Figure 6). She compared think-aloud protocols from
“competent” graduate students drawn from either physics or biochemistry across
the items categorized as tapping different types of knowledge. Would the distinction
among TIMSS items as to the knowledge types they tapped be reflected in
examinees’ cognitive activities? She augmented the think-aloud protocols with
retrospective interviews and notes she took while observing participants’

performance.
—)Session 1 Session 2-Session 4 Session 5
Introduction of the Solving a group |Interview Solving the two |Interview about
study, thinking of multiple- about performance solving the PA
aloud the exercise choice and free- |solving the assessment tasks [tasks and
problems response items  |items with thinking- overall
with thinking- aloud & reflections
aloud & observations
observations
5-10 10-15 2-5 15-30 5-10

Figure 6. The sequence of events in the protocol study (after Li, 2001, Figure 7.3, p. 123)

Participants’ think-aloud protocols were analyzed by looking for indicators of
participants applying different types of knowledge, which could be related with
some certainty to the possible characteristics—affordances and constraints—of the
test items. The analysis took the following steps:

» Segment participants’ verbalizations into response entries, each of which
contained their responses to only one item or task no matter how many
statements or types of knowledge it consisted of. Response entries were
considered as the unit-of-analysis. Within each entry, the protocol was
separated by linguistic pauses at the end of phrases and sentences,
reflecting the natural pauses that the participants took.

» Code participants’ response entries with a coding scheme that captured
evidence of the their use of the four types of knowledge. Each

2 Noticeably missing from these methods are interviews about thinking processes and focus groups.
These techniques are helpful in analyzing possible cognitive demands. Nevertheless, they are likely
to elicit respondents’ theories about their cognitive activities and the activities themselves.
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knowledge-type category in the scheme has subcategories, for example,
strategic knowledge included four subcategories: framing a problem,
planning, monitoring, and testwiseness (see Table 3). The knowledge-
category codes were designed to capture what types of knowledge the
participants applied instead of the levels of understanding. Those
phrases, not relevant to task completion or directly indicating content
understanding, such as “all right,” or “I am reading the item A1, were

excluded from the analysis.

Table 3

Sub-Category Codes for Strategic Knowledge (from Li, 2001, Table 7.4, p. 127)

Subtype Description Examples

Framing a Statement or questions It says “digestive,” so digestive means it does

problem recognizing/labeling something changing the food, but | don’t know
the features of tasks, what the chemistry is.

procedures, and Okay, so three and four are theoretical questions,

p;ct)Jeckts or making sense  \which | will get to after the experimental one.

ortasks I think [it is] a poorly worded question.

Planning Statements or questions  All right, | will make a chart, | know the fastest
about what will or way to do it is to make a chart, and | usually do so
should happen next and figure it out.

(steps or actions) | read all the questions because there may be a
better way to do the experiment. Either | can do
all of them together one time or maybe it’s not the
best way to do the first one first.

Statements or questions  So let’s try B and C. And | expect that this one’s

related a plan to a not going to be very bright at all.

condition or specifies Now, just for the sake of completeness, although

the basis for choosing I’m pretty much convinced by now, I’ll check D

between alternative and B about the same as A and B.

plans (hypothesizing or

conjecturing)

Monitoring  Statement or questions  So, | try to remember the differences between all
noticing/ these words.
regulating/checking Something | learned a long time ago. Also from
the progress or lack of experience,
progress (an ongoing
task)

Statement or questions But it’s one of many cases where one can guess

concerning the what the test writer had in mind.

conclusions atthe end  pjd not feel compelled to check all other

of the task (a completed  combinations because | know enough about how

or aborted task) batteries work to know that I'm reasonably sure
that the result | saw could only be explained by A
and D being good and B and C being worn out.

Test Statement or questions  So it seems like a reasonable guess.

wiseness as an educated

guessing, completely
guessing, or
eliminating options
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Table 4 contains an example of the schematic knowledge category sub-category
coding. Notice that the participant used two models to work problem P2. One model
explained the relation between amount of light, distance, and size of circles on the
wall, whereas another one explained that light could heat the air and could be
absorbed by the air.

Table 4
Coding of a Participant’s Think Aloud (From Li, 2001, Table 7.4, p. 128)

Item Description  Code Category Protocol Response Entry
FR P2: 3-1 Schematic  Okay, so the flashlight close to the wall
“Flashlight close theoretical makes a small circle of light because the cone
to a wall produces model of the light coming off of the light bulb
a small circle of doesn’t have time to expand. And so there’s
light compared to a constant amount of light coming out of the
the circle it makes flashlight and as it expands out at a constant
when the angle of light, the flashlight is, the wall is
flashlight is far close here then you’re going to get a circle of
from the wall. light the size and if the wall is farther away
Does more light you’re going to get a bigger circle of light,
reach the wall but it’s the same amount of light.
when the And, in fact, less light reaches the wall when
flashlight is the flashlight is farther away because it’s
further away?” scattered by the light absorbed by the air and

is heating things up. And so, no, not, well it
doesn’t reach it.

 Examine the consistency of coding. Would two independent coders
using the rules provided, agree on their classification of a segmented
protocol? After training and calibrating on pilot data, the final
agreement between two coders was 85%.

» Bring coded protocols data to bear on how participants employed
different types of knowledge to represent and solve problems. The
frequency with which different types of knowledge that participants
used were aggregated for each TIMSS item to examine whether the
predicted knowledge-type was used more frequently that those not
predicted.

Assuming that different types of test items provided different affordances and
constraints on participants’ task completion, the cognitive activities participants
displayed across the items should also vary. Based on the knowledge-type construct
of science achievement, participants’ use of knowledge inferred from the protocols
(cognitive analysis) and the knowledge-types demanded by test items (logical

analysis) should be congruent. Table 5 presents the occurrences of knowledge that
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the participants utilized to solve the test items organized by two
dimensions—knowledge-types inferred from protocols and knowledge-types into
which the test items were pre-classified. For example, nine declarative-knowledge
items were administered to the participants, and 54 responses (96 = 54) were
collected and analyzed. Among these 54 responses, participants used declarative
knowledge in 48 entries, employed schematic knowledge in 10 entries, and applied
strategic knowledge in one entry. Since 54 does not equal the total of 48, 10, and 1,
the numbers imply that at least in some protocol entries, the participant applied
more than one type of knowledge. A quick look at Table 5 reveals that of the 85% of
the test items,3 participants’ use of knowledge was consistent with the item-
knowledge links predicted from the logical analysis, and expectation from the
construct definition.

Table 5
Number of Entries Coded by Knowledge-Type (From Li, 2001, Table 7.6, p. 130)

Preclassified knowledge type

Type of knowledge

used Declarative Procedural Schematic Strategic
(n=9) (n=10) (n=9) (n=2)
Declarative 48 8 11 0
Procedural 0 54 7 9
Schematic 9 16 41 0
Strategic 2 12 2 10

Covariance analysis. With the consistency between the logical and cognitive
analyses, we selected TIMSS items as representing three knowledge types:
declarative, procedural, and schematic as no TIMSS item was built to measure
strategic knowledge directly. The goal was now to see if the logical and cognitive
links of items to knowledge types could be found in the covariances among item
scores. The structure of the item covariances was examined with confirmatory factor
analysis (see Figure 7). The model fit was extremely good (for details, see Li &
Shavelson, 2001).

3 The proportion was calculated using the number of response entries, for example, 54 for the
declarative-knowledge items to show whether and to what extent a pre-classified type of knowledge
occurred when experts responded to the items.
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Figure 7. confirmatory factor analysis of TIMSS Booklet 8 science achievement items (from Li &
Shavelson, 2001, Figure 4, p. 22).

Three main findings are apparent. First, the factor analysis predictions from the
logical and cognitive analyses were confirmed. Thirteen items were pre-classified as
declarative-knowledge, 11 as schematic-knowledge, and 4 as procedural-knowledge.
The results supported our predictions with the declarative and procedural
knowledge. However, only 8 of the 11 pre-classified items showed their primary
loadings on the schematic-knowledge factor, leaving 2 items to the declarative-
knowledge and 1 item to the procedural-knowledge factor. Most item regressions
were significant and generally high, which is also true for at least one loading with
those double-relation items. The fit and the regression estimates supported the
construct definition and the TIMSS test with items selected for consistency in our
logical and cognitive analyses.
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The declarative knowledge factor included fifteen items, regardless of their
content or format. Those items required students to deal with scientific vocabulary,
provide definitions, or recall facts or information. Students could obtain the
knowledge either from formal schooling or everyday experience. Eight items were
heavily regressed on the schematic knowledge factor. Those items required students to
apply scientific rules, theories, or principles in a context of providing explanations or
predictions. Finally, five items showed primary regressions on the factor, labeled
procedural knowledge. Those items involved use of scientific actions, algorithms, steps,
and procedures needed to solve problems. Note that the loadings of procedural-
knowledge items were relatively lower compared to those of the declarative-
knowledge or schematic-knowledge items. The reasons, we would hypothesize, are:
a) number of items—only a few items included in this study were designed to tap
procedural knowledge, and b) quality of items—multiple-choice items may not be
the best method to adequately tap procedural knowledge (Baxter & Shavelson,
1994).

Second, the relation between each pair of the three latent knowledge factors
was strong, about .80 on average. Further, the relation between procedural and
schematic knowledge was slightly weaker than the procedural-declarative and
schematic-declarative ones. Our explanation is that those procedural knowledge
items in multiple-choice format mainly asked for routine procedures without
requiring examinees to use principles or theories. However, further analyses are
necessary to support this interpretation.

Third, the pattern of double loadings and the correlations between error
variances were partly consistent with what we expected. Most of the built relations
were in the right direction (i.e., positive loadings) and were statistically significant.
Adding an extra relation may weaken a relation. The four negative loadings can be
considered evidence to suggest that the items tended more likely to tap one
knowledge type than another type. For example, item P3’s double loading
confirmed our exploratory analysis that it taps primarily declarative-knowledge,
whereas Item Q15 taps schematic knowledge.

We also compared the triplet knowledge model with different models. We
tested alternative models based on different theoretical claims, such as one factor as
general science achievement, two factors as test format (i.e., multiple-choice and
free-response), and four factors as different domains (i.e., life science, earth science,
chemistry, and physics). The three-factor model better reflected the underlying
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pattern among item scores than a total-score (general science achievement), science-
sub-domain or item-format model. The three-factor model corresponding to
knowledge types provided the best fit to the item scores, consistent with our
definition of the science achievement construct.

3.3 Summation

The evidence from logical, cognitive, and covariance analyses converges to
support the interpretation of the TIMSS science achievement items as measuring
three underlying types of knowledge consistent with our construct definition. Any
one analysis would increase confidence in the interpretation link in the assessment
square model. However, the convergence of different methods substantially
increases the justifiability of the link from construct definition to assessment to
observation to inference back to the construct.

We now turn to another example, stepping through the assessment square, but
this time focusing on new pieces of analysis while only briefly mentioning methods
already described in the TIMSS analysis. Our intent is to provide a vision of the
various types of analyses that can be brought to bear on the quality of new learning
assessments.

Concept Map Assessment

Concept maps are labeled directed graphs (e.g., Figure 8) that are interpreted as
measuring declarative-knowledge structure (Ruiz-Primo & Shavelson, 1996).
Concept maps come in many different varieties, yet they all claim to measure
knowledge structure (Ruiz-Primo & Shavelson). We have tested such claims in a
number of studies (e.g., Ruiz-Primo, Schultz, Li, & Shavelson, 2001; Vanides, Yin,
Ayala & Shavelson, 2002), most notably for our purpose here, a study examining the
“cognitive validity” of concept-map-score interpretations (Ruiz-Primo, Shavelson, et
al., 2001). In the study, we compared knowledge-structure interpretations of high-
school chemistry students’ scores on two types of concept maps, a “construct-a-
map” and two versions of a “fill-in” map. From a theoretical perspective (see below)
we expected the construct-a-map to provide a more accurate representation of
knowledge structure than the fill-in maps. But the fill-in maps are preferred on
practical grounds; they are easily, quickly, and inexpensively scored.
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We (Ruiz-Primo, Shavelson, et al., 2001) set forth a framework for examining
the “cognitive validity” of the alternative mapping techniques (see Figure 9), that is,
to examine the validity of interpretations of the map scores as tapping the construct,
structural knowledge. We sought to bring empirical evidence to bear on the: a)
cognitive activities evoked by each assessment, b) relationship between the cognitive
activities and performance scores, ¢) impact of variation in assessment task on
cognitive activities, and d) correlations between assessment measuring similar and
different constructs. As we have dealt extensively with construct definition, logical
analysis, and think-aloud for addressing much of the assessment square already, we
touch on these methods briefly and focus on novel applications as suggested in
Figure 9.
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Figure 9. An Approach to Empirically Evaluating Cognitive Interpretations of Concept Maps
(adapted from Ruiz-Primo, Shavelson, et al., 2001, Figure 2, p. 103)

Construct Definition: Knowledge Structure

The theory guiding concept mapping posits a long-term memory organized as
an associative network. We call the construct to be measured “connected
knowledge” or “knowledge structure.” Concept maps follow from this model of
memory and provide one possible approach for tapping into structural aspects of
this network. By having “mappers” connect key concepts (terms) with labeled lines
that explain the relation between concept pairs, they purport to tap connected
knowledge.

Logical Analysis

Here we examine, logically, the credibility of the link between two concept-
mapping techniques and the interpretative claim that each measures knowledge
structure. We do so by examining their task and response demands. Our analysis
posits the nature of the cognitive activities that the maps will evoke by examining
their affordances and constraints.

One such important affordance or constraint, especially for this comparison, is
the degree of mapping-task directedness inherent in the techniques (Ruiz-Primo &
Shavelson, 1996). At one end of the directedness continuum, the assessor provides
the concepts terms, linking lines, linking explanations and structure on a highly
directed map (“process constrained”; Baxter & Glaser, 1998). At the other end of the
continuum, students choose the concepts in a domain, create their own linking lines,
linking explanations, and determine structural relations among concepts (“process
open”; Baxter & Glaser, 1998). From this logical analysis of the concept-mapping
tasks presented by the construct-a-map and fill-in-a-map techniques, we concluded
the former is considerably more “process open” than the latter. Moreover, the
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construct-a-map seems to fit our definition of the nature of knowledge structure
more closely than the fill-in map.

This logical analysis conjectured, but did not necessarily delimit, the cognitive
activities that a student might employ in response to one or the other mapping
technique (systematic search, trial-and-error). To see if the conjecture was justifiable,
we needed to collect data on the cognitive activities evoked by the two mapping
techniques and students’ observed performance.

Empirical Studies

To address the validity of the knowledge-structure interpretation of the two
mapping techniques in the domain, atoms and molecules (see Figure 8), Ruiz-Primo,
Schultz, et al. (2001) followed the model shown in Figure 9. They collected data from
152 high-school chemistry students in the performance portion of the research and
talk-aloud data from two experts (chemistry teachers) and six novices (three high-
and three low-performing students). The expert-novice design for talk alouds was
used because research on expertise had consistently demonstrated that experts’
knowledge is far more highly structured than novices’. “We reasoned ... that
competent examinees ... would a) provide coherent, content-based explanations
rather than descriptions of superficial features or single statements of fact; b)
generate a plan for solution; ¢) implement solution strategies that reflect relevant
goals and subgoals; and d) monitor their actions and flexibly adjust their approach”
(Ruiz-Primo, Schultz, et al., p. 104). Moreover, consistent with cognitive activity
differences, experts would be expected to score higher on their concept maps than
novices, and they would systematically vary by mapping technique with greater
differences between experts and novices observed on the less-directed construct-a-
map.

Cognitive Analysis. Ruiz-Primo, Schultz, et al. (2001) used talk alouds to
capture experts’ and novices’ cognitive activities while concept mapping with the
different techniques. They used the same concurrent talk aloud technique that Li did
with two important differences. First, they distinguished between micro- and
macrolevels of the protocol analysis. At the microlevel, they coded explanations (e.g.,
“N,O, is a molecular compound because they are both nonmetals”; Ruiz-Primo et
al., 2001, p. 115), monitoring (“I can’t remember exactly what this is”; p. 115),
conceptual errors reflecting misconceptions (“molecules are atoms’), and inapplicable
events (e.g., reading instructions). At the macrolevel, they coded planning
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(verbalizations at the start of each protocol; e.g., “I will read the concepts and select
the most important concept to put ... in the center”; Ruiz-Primo, Schultz, et al., p.
116) and strategy (from entire protocol) for working through the mapping exercise.
Second, their unit of analysis differed somewhat from Li’s (2001). Like Li, at the
macrolevel, they used the entire verbal protocol evoked by a particular mapping
technique. However, for their microlevel analysis, they segmented verbal protocols
into fine-grained response entries (as small as phrases) for their microlevel analysis.

On average, inter-coder reliability for the microlevel analysis was high across
the different mapping techniques (i.e., construct-a-map, fill-in-the-nodes, and fill-in-
the-lines). Both percent agreement and agreement adjusted for chance agreement
(kappa) were reported at the macrolevel with a range of 86% to 100% agreement and
71% to 100% adjusted.

Microlevel results. If the different mapping techniques imposed different
affordances and constraints in tapping knowledge structure, these differences
should appear in the think-aloud data (points 1 and 3 in Figure 9). Ruiz-Primo,
Schultz, et al.’s (2001) predictions about differences from prior research and the
logical analysis were supported by the data with one exception, monitoring (see
Table 6). The construct-a-map technique led to a greater percent of explanations and
revealed a greater percentage of conceptual errors than did the two fill-in maps.
With respect to conceptual errors, “we interpreted this ... as indicating that the low-
directed technique provided sufficient response latitude to allow respondents to
more accurately show their conceptual understanding” (Ruiz-Primo, Schultz, et al.,
p. 122). Contrary to expectation, the fill-in technique led to much greater monitoring
than did the construct-a-map technique. “A possible explanation ... is that because
respondents made more decisions on their own in the construct-a-map technique,
those decisions might be considered as final answers.... In the fill-in-the-map
techniques, students were more aware of the accuracy of their responses ... leading
them to monitor themselves more frequently” (Ruiz-Primo, Schultz, et al., p. 120).
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Table 6
Comparison of microlevel cognitive activities (percents) across mapping techniques
(After Ruiz-Primo, Schultz, et al., Table 6, 2001, p. 120)

Conceptual No-Code
Mapping Technique n  Explanation Monitoring Errors Applicable
Construct-a-map 8 39.08 28.22 9.78 2291
Fill-in-the-nodes 8 4.64 40.93 0.16 54.27
Fill-in-the-lines 8 2.84 35.22 0.14 61.80

Macrolevel results. We focus here on strategies because Ruiz-Primo,
Shavelson, et al. (2001) presented not frequencies but a flow diagram to reflect a
sequence in the talk-aloud protocol. We suspect this representation might prove
useful to others analyzing talk-aloud protocols. Their intent was to capture how a
student started the concept-mapping task, continued or advanced in the task,
monitored her performance, and completed the task. In Figure 10, strategies are
numbered by sequence and by descriptive code. For example, the high-proficiency
student began with the most general concept (1.1), proceeded by selecting another
concept to relate to it (2.1), and monitored performance by reading the complete
proposition (node-link-node, 3.1), and so on. When a single strategy was used
repeatedly to advance the task, a looping arrow was used. Teachers and high-
proficient students used efficient, intentional strategies such as that described in the
figure. Low-proficient students used primarily trial and error.

Statistical analyses. The question arises as to whether there is a link between
cognitive activities and performance on the concept map (see Figure 9, point 2).
Ruiz-Primo, Shavelson et al. (2001) found the same pattern at the microlevel with the
teachers and students as reported for all 152 participants (Ruiz-Primo, Schultz, et al.)
but the pattern (more explanations, less monitoring) was more accentuated for
teachers’ and high-ability students than for low-ability students. Ruiz-Primo,
Shavelson, et al., concluded that the “construct-a-map technique better tapped into
differences in respondent’s cognitive activities according to their level of
competence” (p. 124). At the macrolevel, planning and strategies (in graphical
representations of participants’ sequence of actions) were more related to
performance level than to mapping technique.
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Figure 10. Sequence of cognitive strategies employed by high- and low-proficient students carrying

out the construct-a-MAP TASK.

Another way to look at the link between cognitive activities and performance is
to correlate cognitive activity percentages with concept-map performance scores.
The main drawback to doing this kind of analysis is that, typically, talk-alouds are
done with small samples. With this caveat, Ruiz-Primo, Shavelson, et al. (2001)
found percent of explanations to be positively correlated with concept-map scores
for the construct-a-map technique (.33) but much less so for the nodes (.12) and lines
(.01) techniques. In contrast, the correlation between monitoring and performance
was negative with the lines technique correlating at the greatest magnitude (-.83)
followed by nodes (-.31) and construct-a-map (-.29). A -.27 correlation was found
between conceptual errors and scores on the construct-a-map; similar correlations
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could not be calculated for the nodes and lines fill-in maps because so few errors
cropped up in the talk-aloud protocols.

Finally, scores on the two types of mapping techniques were compared (point
4, Figure 9) using as criteria the characteristics of strictly parallel tests (equal means,
variances and covariances). The techniques differed on all three criteria based on
data from the original study (N = 152) and from the talk-aloud study (N = 8). Most
notably, participants’ mean score with the fill-in technique was near maximum
possible score (10.67/12 = .89); in contrast, the construct-a-map score was
considerably lower (.63 of maximum).

Summation

Evidence from the logical, cognitive, and statistical analyses converged and
supported knowledge-structure interpretation of construct-a-map scores; not so the
fill-in scores by comparison. Moreover, the cognitive validity framework in Figure 9
proved particularly helpful in making clear the link from observation to inference
back to the construct of interest: knowledge structure.

Concluding Comments

In this paper we described a framework for evaluating new learning
assessments that evolved out of our research on alternative types of science
assessments. That framework, the assessment square (see Figure 2), linked together
the: (a) construct to be measured (e.g., knowledge structure), (b) the assessment used
to measure it (task, response format, scoring system), (c) the observed behavior
(qualitative and quantitative means for collecting and summarizing responses); and
(d) the interpretations made of the observations (i.e., the justifiability of the inferences
drawn from the observed behavior to the construct).

Embedded in the assessment square are a set of analyses, including a conceptual
analysis of the construct to be measured, a logical analysis of the assessment
instrument, a cognitive analysis of the thinking evoked by the assessment, and
quantitative and qualitative analyses of the observations that provide justification for
the proposed interpretation of the assessment.

We hope that the framework and proposed analyses prove as useful to others
as they have to us in analyzing the quality of new learning assessments.
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