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AN ADAPTATION OF STOCHASTIC CURTAILMENT TO

TRUNCATE WALD'S SPRT IN COMPUTERIZED

ADAPTIVE TESTING 1

Matthew Finkelman

CRESST=Stanford University

Abstract

Computerized adaptive testing (CAT) has been shown to increase eÆciency

in educational measurement. One common application of CAT is to classify

students as either pro�cient or not pro�cient in ability. A truncated form

of Wald's sequential probability ratio test (SPRT), in which examination

is halted after a prespeci�ed number of questions, has been proposed to

provide a diagnosis of pro�ciency. This article studies the further trunca-

tion provided by stochastic curtailment, where an exam is stopped early if

completion of the remaining questions would be unlikely to alter the clas-

si�cation of the examinee. In a simulation study presented, the increased

truncation is shown to o�er substantial improvement in test length with

only a slight decrease in accuracy.

1The author would like to thank David Rogosa, Edward Haertel, David J. Weiss, David

Siegmund, and Wim J. van der Linden for their help and good advice.
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A fundamental part of President George W. Bush's \No Child Left Be-

hind" accountability plan is to determine whether each child has achieved

an acceptable degree of pro�ciency in academic subjects. With the onset of

this plan, classi�cation of students as either \pro�cient" or \not pro�cient"

has an increasingly important role in policy relevance. As the availability of

computers becomes more widespread, computerized adaptive testing (CAT)

may serve as an attractive alternative to paper-and-pencil tests in this con-

text, for CAT o�ers the sizable advantage of shorter exam lengths while

maintaining comparable accuracy.

A major challenge in CAT pro�ciency testing is to strike a balance be-

tween con�dence of a correct decision and economy of the items adminis-

tered. Therefore, the test termination rule constitutes an integral part of

any CAT procedure. The sequential probability ratio test (SPRT) has been

widely studied as one such rule. See Wald (1947) for the sequential analysis

roots of this test; see Eggen (1999), Lin & Spray (2000), and Spray & Reck-

ase (1996) for applications in educational measurement.

Because an upper bound must be placed on the number of items asked in

a CAT testing session, administrators may employ a truncated version of the

SPRT in real-life examinations. A typical method of ensuring a timely end

to the exam is to set an upper limit to the number of questions presented,

after which the test terminates automatically (Spray & Reckase, 1996). In

this article, a more aggressive approach to test termination is discussed.

This method retains the original upper bound, but it inserts an additional

stopping rule, ceasing the test if future questions are unlikely to change the

classi�cation decision. It is adapted from the idea of stochastically curtailed

tests (Lan, Simon, & Halperin, 1982).

The article begins with a description of the use of item response theory in
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educational testing. Then an explanation of the truncated SPRT is followed

by the proposal of a new procedure, which is referred to as the \stochasti-

cally curtailed sequential probability ratio test". Finally, a simulation study

is presented that compares the di�erent methods.

Item Response Theory and Maximum Likelihood Estimation

In item response theory (IRT), the ith student's ability is denoted as a

latent variable �i. Although � is assumed to vary from student to student,

the subscript i is dropped at this point for simplicity. The probability that

a student of ability � gives the right answer to question j is modeled by a

known class of functions. Let

uj =

8<
:

1 if a given student answers question j correctly

0 if the student answers question j incorrectly
(1)

Then under the two-parameter logistic (2-PL) model (Lord, 1980),

pj(�) � p(uj = 1j�) =
1

1 + e�1:7aj(��bj)
: (2)

The 2-PL model will be used in this paper, and it will be assumed that aj

and bj are known exactly for all j. In practice, these parameters can only

be imperfectly estimated; however, a study has suggested that the classi�-

cations made by the SPRT are fairly robust to substitution of estimates in

place of the true parameters aj and bj(Spray & Reckase, 1987).

For the 2-PL model, a suÆcient statistic for estimating � exists and is

given by
Pk

j=1 ajuj, where k refers to the number of items presented to the

examinee (Lord, 1980). The maximum likelihood estimate �̂ of � is then the
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solution to the equation

kX
j=1

ajpj(�) =

kX
j=1

ajuj (3)

(Lord, 1980). Solving this equation may not lead to a �nite estimate of �, for

instance if all questions have been answered correctly (or all incorrectly). If

the maximum likelihood estimate (MLE) is �nite, an asymptotic 100(1��)%

con�dence interval for � is given by

�̂ � z1��=2
1qPk

j=1 I(�̂; uj)
; (4)

where (Lord, 1980)

I(�̂; uj) =
1:72a2j

e1:7aj (�̂�bj)(1 + e�1:7aj (�̂�bj))2
(5)

is the information function of question j evaluated at �̂, and z1��=2 is the

1��=2 quantile of the normal distribution. As will be seen later, the stochas-

tically curtailed SPRT uses one-sided con�dence intervals, which are of the

form

� > �̂ � z1��
1qPk

j=1 I(�̂; uj)
(6)

and

� < �̂ + z1��
1qPk

j=1 I(�̂; uj)
: (7)

The right-hand side of Inequality 6 will be referred to as the endpoint of the
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upper one-sided asymptotic con�dence interval for �, and the right-hand

side of Inequality 7 will be referred to as the endpoint of the lower one-sided

asymptotic con�dence interval for �.

The Sequential Probability Ratio Test and CAT

Following Eggen (1999), the pro�ciency testing scenario begins by set-

ting a cut point �0, which separates the students who are pro�cient (� > �0)

from those who are not (� < �0). The SPRT then assigns an indi�erence

region (�0 � Æ; �0 + Æ), where Æ is typically small. The indi�erence region

may be thought of as the values of ability where it is most diÆcult to de-

termine whether a student is a master or a nonmaster. Its introduction is

necessitated by the fact that the SPRT, as it is used in this setting, requires

two discrete values of � at which to compare the likelihoods.

The hypothesis of inadequate pro�ciency is given by

H0 : � � �0 � Æ = �0 (8)

and the hypothesis of acceptable pro�ciency is given by

H1 : � � �0 + Æ = �00: (9)

The desired Type I and Type II error rates are then set to � and �, respec-

tively, by the administrator of the test.

In order to conduct an examination via CAT, an algorithm for selecting

items must be speci�ed. For the SPRT, Spray and Reckase (1996) cited

work by Spray and Reckase (1994) to suggest maximizing the information

function at the cut point �0. That is, among items that have not yet been

5



administered, the one with the highest value of

I(�0; uj) =
1:72a2j

e1:7aj(�0�bj)(1 + e�1:7aj(�0�bj))2
(10)

is presented next. Note that use of the criterion in Equation 10 results in a

test where all students receive the same questions in the same order.

To make a decision to accept or reject the hypothesis H0, the SPRT

utilizes the likelihood function. Suppose that k items have been presented

to an examinee, who has given a vector of responses Uk = (u1; u2; :::; uk).

The likelihood of � in this case represents the probability that a student of

ability � would give the exact response pattern Uk to the set of k selected

items. The likelihood of � for one response uj is given by

L(�;uj) = pj(�)
uj (1� pj(�))

1�uj : (11)

Again following Eggen (1999), under the assumption of local independence

(conditional independence of responses, given �), the likelihood of the entire

response pattern is equal to

L(�;Uk) =
kY

j=1

L(�;uj): (12)

The log likelihood ratio of the values �00 and �0 is then de�ned as

logLR(Uk) = log
L(�00;Uk)

L(�0;Uk)
=

kX
j=1

log
L(�00;uj)

L(�0;uj)
: (13)

The SPRTmakes the following decisions based on the test statistic logLR(Uk)

(Wald, 1947):
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Stop testing and accept H0 if

logLR(Uk) � logB(�; �); (14)

stop testing and reject H0 if

logLR(Uk) � logA(�; �); (15)

continue testing if

logB(�; �) < logLR(Uk) < logA(�; �); (16)

where A(�; �) and B(�; �) are constants depending on the given error rates

� and �. In the context of computerized adaptive testing, A(�; �) is usually

set to 1��
� and B(�; �) is set to �

1�� . In this article, this will be assumed to

be the case for the SPRT and its extensions. Strictly speaking, these values

of A(�; �) and B(�; �) do not guarantee that both of the desired error rates

will be achieved exactly. However, they do ensure that if �0 and �0 are the

respective true Type I and Type II errors, then

�0 + �0 � �+ � (17)

for the test of hypotheses given in Equations 8 and 9 (Wald, 1947). Inequal-

ity 17 implies that at least one of the desired error inequalities must hold

for this test.

Equations 14 and 15 state that testing ceases if likelihood ratio becomes

smaller than B(�; �) or larger than A(�; �). From a Bayesian viewpoint,

the test has the interpretation of stopping when the posterior probability
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of pro�ciency leaves a region determined by A(�; �), B(�; �), and the prior

probability. Let Pp be the prior probability that a student is pro�cient.

Then the conditions in Equations 14 and 15 are equivalent to the following:

Stop testing and accept H0 if

PpLR(Uk)

PpLR(Uk) + (1� Pp)
�

B(�; �)Pp

B(�; �)Pp + (1 � Pp)
; (18)

Stop testing and reject H0 if

PpLR(Uk)

PpLR(Uk) + (1� Pp)
�

A(�; �)Pp

A(�; �)Pp + (1� Pp)
; (19)

continue testing if

B(�; �)Pp

B(�; �)Pp + (1� Pp)
<

PpLR(Uk)

PpLR(Uk) + (1� Pp)
<

A(�; �)Pp

A(�; �)Pp + (1� Pp)
:

(20)

The left-hand side of Inequalities 18 and 19 represents the posterior proba-

bility of pro�ciency. The test thus accepts H0 if this posterior probability

gets unduly small and rejects H0 if the posterior gets unduly large.

In real-life applications of the SPRT, testing cannot continue inde�nitely

until either Inequality 14 or 15 is enforced. The truncated SPRT provides

a solution to this problem by placing an upper bound N on the number of

questions that can be asked in a given session. If the exam has not ended

after N questions have been asked, the test is halted and a classi�cation is

made on the basis of the test statistic logLR(UN). A common-sense rule is

then to declare the student pro�cient if logLR(UN) > 0 and to declare the

student not pro�cient if logLR(UN) < 0. The truncated SPRT (hereafter

TSPRT) stopping rules can thus be expressed as follows:
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If k < N :

Stop testing and accept H0 if

logLR(Uk) � logB(�; �); (21)

stop testing and reject H0 if

logLR(Uk) � logA(�; �); (22)

continue testing if

logB(�; �) < logLR(Uk) < logA(�; �): (23)

If k = N :

Stop testing.

Accept H0 if

logLR(Uk) < 0; (24)

reject H0 if

logLR(Uk) > 0: (25)

The Stochastically Curtailed Sequential Probability Ratio Test

In this section, a newly proposed procedure is introduced as a more

aggressive alternative to the TSPRT. Its appeal lies in the fact that when
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testing for pro�ciency, the desire to maximize accuracy must be balanced by

the desire to minimize the number of items presented. Many common loss

functions increase with test length and with the respective numbers of mas-

ters and nonmasters who are misclassi�ed (for example, Lewis & Sheehan,

1990). Therefore, if further testing cannot possibly change the classi�cation

decision associated with a provided rule, it is optimal for the exam to cease

immediately. Note that this statement is true regardless of whether the cur-

rent classi�cation is correct or incorrect.

The method of stochastic curtailment (Lan, et. al, 1982) exploits this

fact, but it also extends the observation to the case where a change in de-

cision is possible but unlikely. Stochastic curtailment ceases testing and

rejects H0 if given k observations, the probability under H0 that a decision

D will accept H0, Pk(D = H0jH0), is no more than a prescribed value 1�
.

It stops testing and accepts H0 if this probability underH1, Pk(D = H0jH1),

is at least 
0. For the purposes of this article, 
0 will be taken to be equal

to 
.

In the SPRT setting, it may be computationally intensive to calculate

the probability that H0 will eventually be accepted. Moreover, H0 and H1

are composite hypotheses, so this probability will vary depending on the

value of � within H0 or H1. Although attention could focus on the simple

hypotheses H0 : � = �0 � Æ and H1 : � = �0 + Æ, the current approach is to

plug in an estimate of �, denoted ~�, to estimate the respective probabilities of

classi�cation made by the TSPRT. This variation on stochastic curtailment,

applied to the TSPRT, will be called the \stochastically curtailed sequential

probability ratio test" (hereafter SCSPRT).

To elaborate, suppose the TSPRT is to be used to classify a given stu-

dent, and the maximum number of items presented to the student is set at
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N . If the student has answered k questions (k < N) and a decision has

not yet been reached, the TSPRT only has a maximum of N � k remaining

items at its disposal. If additionally the item-selection criterion is maximum

information at the cut point �0 (Equation 10), then it is known to the ad-

ministrator which items have a chance to be asked in the future. Let the

current classi�cation of the SCSPRT be acceptable pro�ciency if �̂ > �0,

and inadequate pro�ciency if �̂ < �0. Then provided ~� is precise enough to

estimate � accurately, the probability that the TSPRT's �nal classi�cation

will be the same as the current one may also be reasonably estimated. If

this probability is greater than or equal to 
, the SCSPRT halts testing

immediately.

The reader may wonder at this point why the current classi�cation is

based upon �̂ rather than comparing logLR(Uk) to 0. In practice, these

two criteria will give nearly identical results. In this article, use of the �̂

condition was made because �̂ considers a range of values of �, rather than

only evaluating the likelihood function at two values, as does logLR(Uk).

A Mathematical Look at the SCSPRT Algorithm

With the introduction complete, this section gives a mathematical de-

scription of the SCSPRT procedure. As will be seen, the SCSPRT halts

the examination session whenever the TSPRT would do so, but it also stops

testing under several other scenarios. Suppose maximum information at the

cut point (Equation 10) has been chosen as the item selection criterion. Re-

call that Equation 3, which uses the suÆcient statistic
Pk

j=1 ajuj, provides

the solution to the MLE. Therefore, plugging in � = �0 and k = N to the

left-hand side of Equation 3 yields a threshold value for pro�ciency if all N

questions are to be asked. That is, T =
PN

j=1 ajpj(�0) may be viewed as a

cuto� value for a student who answers all N questions. The student may be
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classi�ed as pro�cient if
PN

j=1 ajuj > T , and not pro�cient otherwise.

Let Sk =
Pk

j=1 ajuj denote the suÆcient statistic for � when k ques-

tions have been asked. In order to exceed the threshold T , the student must

achieve the remaining Rk = T �Sk units of the suÆcient statistic. Let ~� be

an estimate of �. Then an estimate of the expected value of SN given the k

responses already observed is

Ê[SN jUk] = Sk +

NX
j=k+1

ajpj(~�) (26)

and an estimate of its standard error is

q
^V ar[SN jUk] =

vuut
NX

j=k+1

a2jpj(
~�)(1� pj(~�)): (27)

In Equation 27 the �rst k questions do not contribute to

q
^V ar[SN jUk] since

this value is conditioned on the k responses that have already been observed,

which are thus made deterministic. The probability that a complete test

of N questions would result in a decision D of inadequate pro�ciency is

estimated by the normal approximation to the distribution of SN jUk. De�ne

the approximation of this probability as

P̂k(D = H0) � �

0
@T � Ê[SN jUk]q

^V ar[SN jUk]

1
A (28)

= �

0
@Rk �

PN
j=k+1 ajpj(

~�)q
^V ar[SN jUk]

1
A : (29)

If the TSPRT results in an acceptance of H0, or if both �̂ < �0 and P̂k(D =

H0) � 
 for a given 
, the SCSPRT accepts H0. If the TSPRT results in a
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rejection of H0, or if both �̂ > �0 and P̂k(D = H0) � 1 � 
, the SCSPRT

rejects H0. Additionally, if T > Sk +
PN

j=k+1 aj , the SCSPRT accepts H0;

if T < Sk, the SCSPRT rejects H0. The latter conditions correspond to the

cases where SN cannot exceed T and where SN must exceed T , respectively.

The estimate P̂k(D = H0) considers only the case where all N questions

are to be asked, ignoring the possibility of an early end to the exam. Addi-

tionally, it uses SN as its criterion rather than logLR(Uk) as used by the

TSPRT. However, these facts should have little consequence for the error

rate of the SCSPRT. The only sample paths neglected by this estimate are

the improbable scenarios where the �nal classi�cation decision made from

logLRk0(U), k < k0 � N , by the TSPRT is di�erent from the decision based

on SN that would be made under completion of the entire N questions.

A critical issue in this procedure is what value to use for ~�, which is

pivotal in the calculation of P̂k(D = H0). A natural choice would be to take

~� = �̂; however, due to sampling variation, this selection may lead to sub-

stantial overestimation or underestimation of the probability that H0 will

be accepted in the future. Since overestimation is a larger concern when

deciding to stop the test in favor of H0, and underestimation is a larger

concern when stopping the test in favor of H1, the following conservative

approach may be taken. Take as ~� the endpoint of an appropriate asymp-

totic one-sided con�dence interval:

~� = �̂ + z1��
1qPk

j=1 I(�̂; uj)
(30)
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when �̂ < �0 and take

~� = �̂ � z1��
1qPk

j=1 I(�̂; uj)
(31)

when �̂ > �0. The value obtained in Equation 30 is the endpoint of the

lower one-sided asymptotic con�dence interval for �. It is therefore a con-

servatively high estimate for � to be used when �̂ < �0, so that acceptance

of H0 is being considered. Conversely, the value obtained in Equation 31

is the endpoint of the upper one-sided asymptotic con�dence interval for �.

It is thus a conservatively low estimate for �, which is appropriate when

�̂ > �0. In the improbable event that �̂ = �0, so that the MLE is equal to

the cut point, it is apparent that the true classi�cation is unsure enough

that testing should probably continue unless k = N . If �̂ = �0, the regular

TSPRT conditions are taken as the stopping rule (Equations 21 through 25).

In this case, the experimenter may be indi�erent between the two possible

classi�cations.

Each of the estimates ~� described above involves the MLE �̂. The pre-

cision of the crucial estimate P̂k(D = H0) thus depends highly on the

precision of �̂. A well-known result is that �̂ is asymptotically normally

distributed with mean � and standard error 1=
qPk

j=1 I(�; uj) (Hambleton,

Swaminathan, & Rogers, 1991). Before the estimate of �̂ has become precise

enough, stopping decisions should not be made on its basis. Therefore, it is

recommended that the stopping rules proposed in this section be imposed

only when a precision condition has been met. Examples of such conditions

would be requiring an estimate of the standard error of �̂ to be less than a

given value SE�, or else requiring the number of questions administered to
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be greater than or equal to a set value k� < N . In this report, the latter

approach is taken; the di�erence between the two criteria may be the subject

of future research.

Use of the normal approximation in Equations 28 and 29 is justi�ed

when many questions remain to be asked. For small values of N � k, an

improvement may result from using the Edgeworth expansion, which in-

cludes additional terms in the approximation. See Barndor�-Nielsen and

Cox (1989) for details. The current article considers only the normal ap-

proximation, but the Edgeworth expansion should be considered for use in

the future.

The SCSPRT stopping rules can thus be summarized as follows:

If k < k�:

Stop testing and accept H0 if

logLR(Uk) � logB(�; �); (32)

stop testing and reject H0 if

logLR(Uk) � logA(�; �); (33)

continue testing if

logB(�; �) < logLR(Uk) < logA(�; �): (34)

If k� � k < N :

Stop testing and accept H0 if

logLR(Uk) � logB(�; �) (35)
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or if

T > Sk +
NX

j=k+1

aj (36)

or if

�̂ < �0 and P̂k(D = H0) � 
; (37)

stop testing and reject H0 if

logLR(Uk) � logA(�; �) (38)

or if

T < Sk (39)

or if

�̂ > �0 and P̂k(D = H0) � 1� 
; (40)

continue testing otherwise.

If k = N :

Stop testing.

Accept H0 if

�̂ < �0; (41)
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reject H0 if

�̂ > �0: (42)

For the case when k = N , the decision is made based on �̂ rather than on

logLR(UN) in order to achieve consistency with the early truncation pro-

cedure of the SCSPRT, which bases decisions on �̂. Use of �̂ here makes

virtually identical decisions with a rule specifying mastery if logLR(UN) >

0. As stated in the section describing the SPRT, the SCSPRT will take

A(�; �) = 1��
� and B(�; �) = �

1�� for the purposes of this article. Note

that since the SCSPRT's stopping rules contain those of the TSPRT, the

TSPRT can never result in a shorter test length than the SCSPRT for any

examinee.

It should be noted that although the previous discussion assumes use of

maximum information at �0 as the item selection criterion, another crite-

rion may be chosen instead. As the SCSPRT is a test termination rule, it

can be used with any item selection technique, including those with content

and/or exposure constraints. However, use of more complicated selection

rules necessitates a new method for calculating P̂k(D = H0), since the algo-

rithm above assumes knowledge of future questions. This poses a diÆcult

challenge if the SCSPRT is to be extended to general selection techniques.

Nevertheless, the e�ort may be fruitful if the SCSPRT is proven successful

in signi�cantly reducing test lengths.

Potential Dominance of the SCSPRT over the TSPRT

As it is an aggressive stopping rule, the SCSPRT will typically have

shorter average test length than the TSPRT, but this will be accompanied

by larger false positive and false negative rates. However, if 
 is set equal
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to 1, then the SCSPRT can only stop earlier than the TSPRT if a deci-

sion based on comparing �̂ to �0 cannot possibly change under hypothetical

completion of the exam. Therefore, insofar as decisions made using �̂ match

decisions made using logLR(Uk), the SCSPRT dominates the TSPRT when


 = 1. Moreover, if a simple modi�cation of the SCSPRT is made, where

logLR(Uk) controls decisions rather than �̂, then exact dominance holds. In

this case, the SCSPRTmust make the same classi�cation as the TSPRT (and

thus must have identical error rates); however, the SCSPRT may record a

shorter test length than the TSPRT, and never a greater length. The process

of shortening another test in this way is referred to simply as \curtailment"

in sequential analysis (for example, Lan, et. al, 1982). The following such

cousin of the SCSPRT dominates the TSPRT and will be referred to as the

\curtailed SPRT" (CSPRT):

If k < N :

Stop testing and accept H0 if

logLR(Uk) � logB(�; �) (43)

or if

logLR(Uk) +

NX
j=k+1

log
pj(�

00)

pj(�0)
< 0; (44)

stop testing and reject H0 if

logLR(Uk) � logA(�; �) (45)
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or if

logLR(Uk) +
NX

j=k+1

log
1� pj(�

00)

1� pj(�0)
> 0; (46)

continue testing otherwise.

If k = N :

Stop testing.

Accept H0 if

logLR(Uk) < 0; (47)

reject H0 if

logLR(Uk) > 0: (48)

Inequality 44 denotes the case where the �nal log likelihood ratio must be

negative, even if all remaining questions are answered correctly; inequality

46 denotes the case where the �nal log likelihood ratio must be positive,

even if all remaining questions are answered incorrectly. From a decision

standpoint, it is obvious that in these cases the test should immediately be

halted with the appropriate classi�cation made. Thus, this slight alteration

of the SCSPRT yields a stopping rule that can never make a di�erent deci-

sion than the TSPRT, but it may result in a shorter test length.

Simulation Method and Results

Because of the similarity between the TSPRT, SCSPRT, and CSPRT,

simulation provided a matched comparison of them. For every simulee, the

TSPRT, the CSPRT, and two versions of the SCSPRT were run simultane-
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ously, using the same response pattern Uk to make a classi�cation. If one

stopping rule ended before the others, the remaining methods were allowed

to ask more questions until they reached their respective stopping points.

Thus, every simulee represented a set of matched observations, and statistics

involving accuracy and test length could be computed for each method.

Both forms of the SCSPRT explained in this article, as well as the

CSPRT, were simulated and compared to the TSPRT. The �rst form used

~� = �̂, and the second used the conservative con�dence interval endpoints

for ~� (Equations 30 and 31). To distinguish the two versions, the former

will hereafter be referred to as SCSPRT1, and the latter as SCSPRT2. Note

that the CSPRT requires no value of ~�.

Mimicking van der Linden (1998), 300 items following the 2-PL model

were created randomly with aj � U [0:5; 1:5] and bj � U [�4; 4] indepen-

dently for all j. Following one version of simulations conducted by Lin &

Spray (2000), Æ was set to .2; the error rates � and � were set to .05; and

the cut score �0 was set to -.325, close to the value of -.32 chosen in the

article being followed. Mimicking Spray & Reckase (1996), the maximum

number of questions allowed, N , was set at 50. Regarding the parameters

used only by the SCSPRT1 and SCSPRT2, the point at which further mea-

sures of truncation could start, k�, was set to 20. 
 was given a value of .95

for SCSPRT1 and SCSPRT2; for the CSPRT, 
 = 1 as it requires. For all

one-sided con�dence intervals, 90% con�dence (� = :1) was used.

In order to obtain a well-rounded test of the methods, multiple values

of � were used, with 2000 replications at each value. A correct classi�cation

decision was de�ned to be \pro�cient" for � > �:325 and \not pro�cient" for

� < �:325. Simulation began by replicating at -.4 (a point near �0 = �:325)

and continued incrementally by .1 in the positive and negative directions
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until the percentage of correct decisions made by both the TSPRT and SC-

SPRT approached 100. This resulted in use of � at all values between -.9

and .2, inclusive, incremented by .1.

Table 1 compares the percentages of correct decisions made in simulation

by the TSPRT, SCSPRT1, SCSPRT2, and CSPRT. The accuracy rate of

the TSPRT was never more than 1.5% greater than the accuracy rate of the

SCSPRT1 at the corresponding � value. 8 of the 12 values had a di�erence

of no more than 1%, and the SCSPRT1 approached perfect classi�cation

about as quickly as the TSPRT. Not surprisingly, the SCSPRT1 was less

accurate than the SCSPRT2, which succeeded in maintaining an accuracy

level close to that of the TSPRT. The accuracy rate of the TSPRT was

never more than 0.5% higher than that of the corresponding accuracy rate

of the SCSPRT2. In fact, at � = �:3 and � = �:2, the SCSPRT2 actually

had a slightly higher accuracy for this data due to the randomness involved

in simulation. Finally, the CSPRT by de�nition gave the exact same error

rates as the TSPRT. Overall, the di�erence in classi�cation accuracy was

relatively small.
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Table 1: Percentages of Correct Decisions Made by the
TSPRT, SCSPRT1, SCSPRT2, and CSPRT

� TSPRT SCSPRT1 SCSPRT2 CSPRT

-.9 99.95 99.90 99.95 99.95
-.8 99.60 99.40 99.60 99.60
-.7 98.85 98.15 98.75 98.85
-.6 95.80 94.75 95.65 95.80
-.5 87.80 86.45 87.30 87.80
-.4 69.20 67.85 68.70 69.20
-.3 55.10 54.45 55.20 55.10
-.2 78.30 78.00 78.35 78.30
-.1 91.35 89.85 91.30 91.35
0 97.45 96.45 97.35 97.45
.1 99.75 99.50 99.65 99.75
.2 99.95 99.95 99.95 99.95

As the new approaches are more aggressive than the TSPRT, they made

gains in test length. Table 2 gives the average test lengths for the TSPRT,

SCSPRT1, SCSPRT2, and CSPRT. The SCSPRT1 recorded average test

lengths at least 10 items shorter than those of the TSPRT for the 3 values

of � closest to the cut (-.4, -.3, and -.2). Moreover, at each of the 3 values

of � where the di�erence in accuracy between the TSPRT and SCSPRT1

was highest (-.5, -.4, and -.1), the SCSPRT1 recorded an average decrease

in test length of at least 7.5 items. Additionally, even at the fringes of the

� values simulated (-.9, -.8, .1, .2), where the SCSPRT1 was found to be at

least 99.4% accurate, reasonably large decrements of test length were found.

For each of these values, average improvement in test length was at least

0.85 items presented.

22



Table 2: Average Test Lengths of the TSPRT,
SCSPRT1, SCSPRT2, and CSPRT
� TSPRT SCSPRT1 SCSPRT2 CSPRT

-.9 13.94 13.05 13.57 13.90
-.8 16.72 14.83 15.91 16.62
-.7 21.57 17.57 19.77 21.22
-.6 26.80 20.40 23.88 26.12
-.5 32.63 23.76 28.52 31.53
-.4 37.50 26.40 32.40 35.99
-.3 38.67 26.88 33.53 37.15
-.2 34.97 24.67 30.33 33.60
-.1 29.61 21.96 26.06 28.60
0 22.07 17.67 20.13 21.67
.1 17.09 14.99 16.10 16.92
.2 13.51 12.66 13.13 13.46

Since using one-sided con�dence intervals for ~� is more conservative than

plugging in ~� = �̂, the SCSPRT2's gains in test length were more modest

than those of the SCSPRT1. However, for each � value between -.5 and

-.1, the SCSPRT2's average test length was at least 3.5 items less than that

of the TSPRT. Additionally, the smallest decrement in average test length

(occurring at � = �:9) was 0.37 for the SCSPRT2, so non-trivial improve-

ment was found relatively far from the cut point. Finally, since the CSPRT

had error rates identical to those of the TSPRT, any improvement in test

length would recommend its use over that of the TSPRT. As it is more

conservative than both the SCSPRT1 and SCSPRT2, the CSPRT was only

slightly shorter than the TSPRT. For every � value simulated, the average

test length of the TSPRT was never more than 2 questions greater than

the corresponding average test length of the CSPRT. Additionally, at the

three � points furthest from the cut (-.9, -.8, and .2), the mean improve-

ment was never more than .1 items. These statistics suggest that use of

the P̂k(D = H0) condition is a major force behind the comparatively large
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improvements in test length that are exhibited by the SCSPRT1 and SC-

SPRT2.

Conclusion

Wald's SPRT and TSPRT have been staples of adaptive pro�ciency test-

ing for many years. The results of this study suggest that the SCSPRT may

be an attractive alternative to the TSPRT when shorter test length is de-

sired. In the simulations conducted in this article, the substantial gains

in test length made by the SCSPRT were accompanied by relatively small

losses in classi�cation accuracy.

The SCSPRT procedure, as described in this article, assumes that the

administrator of the exam knows which questions have a chance to be pre-

sented, and in what order. This is the case when the items are selected

by maximum information at the cut point �0. In order to be applied more

generally, the SCSPRT algorithm must be adjusted for the situation where

the questions presented are random.
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