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EDITOR’S PREFACE TO LEE J. CRONBACH’S

“MY CURRENT THOUGHTS ON COEFFICIENT ALPHA AND SUCCESSOR
PROCEDURES”

Lee J. Cronbach
1916 – 2001

“My Current Thoughts on Coefficient Alpha and Successor Procedures” grew out
of a meeting Lee Cronbach and I had at the Center for Advanced Study in the
Behavioral Sciences in June 2001. After their lunch, Nate Gage had dropped Lee off at
the Center (where I was spending a Sabbatical year) so we could catch up on recent
events.

Lee looked exhausted, listless, and despondent. I knew he was battling a disease
that severely limited his eyesight, but I didn’t expect to see this. Perhaps his eyesight
was taking a greater toll than I had imagined.

I also knew that he had just completed a major project that his close friend and
colleague, Richard E. Snow, had begun and couldn’t complete because of his untimely
death in December 1997. As dean of the Stanford University School of Education, I had
encouraged Lee to take on the project and provided research assistant support in the
person of Min Li, now an assistant professor at the University of Washington. For a
good 3 years, Lee had led a team of scholars—Lyn Corno, Haggai Kupermintz, David F.
Lohman, Ellen B. Mandinach, Ann W. Porteus, Joan E. Talbert, all of The Stanford
Aptitude Seminar—in completing, Remaking the Concept of Aptitude: Extending the Legacy
of R.E. Snow. Perhaps Lee simply reflected the letdown that often comes upon
completing a major project.

Finally, I knew that to honor his commitment to Dick Snow, Lee had put a very
important project on the back burner. He was quite aware at the time he took on the
Snow project that the 50th anniversary of his “alpha paper” was fast approaching. Before
Dick’s death he had planned on writing a major technical paper for Psychometrika on his
current views at this golden anniversary. The Snow project had intervened and it
looked as if this alpha paper wasn’t going to get done.



 

 

In the end, all three events probably contributed to his demeanor at our meeting at 
the Center in June 2001. It would be two months later that I would learn the major 
reason for his appearance: Lee had decided in February of that year not to take 
medication to retard his congestive heart failure; he died on October 3rd, 2001. 

Fortunately, being in my usual state of ignorance in June and knowing how 
excited Lee could get at the thought of a new project, I didn’t hesitate to give unsolicited 
advice based on my then current “diagnosis.” I asked Lee to reconsider doing a paper to 
celebrate the 50th anniversary of coefficient alpha. I tried to persuade him that the world 
didn’t need another esoteric technical paper when what was important were his non-
technical ideas about alpha now. I went on to say, in response to his demure due to poor 
eyesight, that he could dictate his thoughts and we could have them transcribed. 

I believe the idea of a new project lifted his spirits. As I drove him home, he 
allowed as how he’d give the new project some thought but that I shouldn’t be too 
optimistic. A day or two later, he called. He was excited, spirits lifted: he’d do the 
project . . . if I would agree to help edit the manuscript. We had a deal and the result is 
before your eyes in the article that follows this preface, “My Current Thoughts on 
Coefficient Alpha on Alpha Successor Procedures.”   

Just before he died, we were together in his apartment. Lee, lying in his bed, 
looked at me, smiled that Cronbach smile, and said something like, “Turn about is fair 
play.” He was referring to my encouraging him to take up the book for Dick Snow. 
Now it was my turn to put together his monograph. He smiled again and said, “I thank 
you and my ghost thanks you.” He died eight hours later. 

What we have in “My Current Thoughts” is vintage Cronbach. I followed his 
admonition not to edit the paper heavily but to make sure the ideas flowed and 
especially that there were no technical gaffes. He was right once again about editing. 
When I read the paper now, I hear Lee speaking and I can see him speaking to me. In 
the end, his dictating not only preserved his “current” ideas about alpha 50 years after 
its publication, it also preserved the way he reasoned and talked about his ideas. I hope 
you enjoy reading the piece as much as I have enjoyed editing it. 

 

Richard J. Shavelson 
Stanford University 

January 9, 2004 
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MY CURRENT THOUGHTS ON COEFFICIENT ALPHA AND SUCCESSOR
PROCEDURES

Lee J. Cronbach
Stanford University

Editorial Assistance by
Richard J. Shavelson
Stanford University

Author Note:

The project could not have been started without the assistance of Martin Romeo
Shim, who helped me not only with a reexamination of the 1951 paper but with
various library activities needed to support some of the statements in these notes.
My debt is even greater to Shavelson for his willingness to check my notes for
misstatements and outright errors of thinking, but it was understood that he was
not to do a major editing. He supported my activity, both psychologically and
concretely, and I thank him.

Editor’s (Richard Shavelson’s) Note:

The work reported herein was supported in part by the National Center on
Evaluation, Standards, and Student Testing (CRESST) under the Educational
Research and Development Center Program, PR/Award Number R305B60002, as
administered by the Office of Educational Research and Improvement, U.S.
Department of Education. The findings and opinions expressed in this report do
not reflect the positions or policies of, the Office of Educational Research and
Improvement, the U.S. Department of Education. I am indebted to my colleague,
Ed Haertel, for helping to check for accuracy. Nevertheless, I alone am responsible
for errors of commission and omission.
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Where the accuracy of a measurement is important, whether for scientific or
practical purposes, the investigator should evaluate how much random error affects the
measurement. New research may not be necessary when a procedure has been studied
enough to establish how much error it involves. But, with new measures, or measures
being transferred to unusual conditions, a fresh study is in order. Sciences other than
psychology have typically summarized such research by describing a margin of error; a
measure will be reported followed by a “plus or minus sign” and a numeral that is
almost always the standard error of measurement (which will be explained later).

The alpha formula is one of several analyses that may be used to gauge the
reliability (i.e., accuracy) of psychological and educational measurements. This formula
was designed to be applied to a two way table of data where rows represent persons (p)
and columns represent scores assigned to the person under two or more conditions (i).
"Condition" is a general term often used where each column represents the score on a
single item within a test. But it may also be used, for example, for different scorers
when more than one person judges each paper and any scorer treats all persons in the
sample. Because the analysis examines the consistency of scores from one condition to
another, procedures like alpha are known as “internal consistency” analyses.

Origin and Purpose of These Notes

My 1951 Article and Its Reception
I published in 1951 an article entitled, "Coefficient Alpha and the Internal Structure

of Tests." The article was a great success. It was cited frequently [Ed.: no less than 5590
times]. Even in recent years, there have been approximately 325 social science citations
per year.1

The numerous citations to my paper by no means indicate that the person who
cited it had read it, and does not even demonstrate that he had looked at it. I envision
the typical activity leading to the typical citation as beginning with a student laying out
his research plans for a professor or submitting a draft report and it would be the
professor’s routine practice to say, wherever a measuring instrument was used, that the
student ought to check the reliability of the instrument. To the question, “How do I do
that?” the professor would suggest using the alpha formula because the computations
are well within the reach of almost all students undertaking research, and because the
calculation can be performed on data the student will routinely collect. The professor
might write out the formula or simply say "you can look it up". The student would find
the formula in many textbooks and the textbook would be likely to give the 1951 article
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as reference, so the student would copy that reference and add one to the citation count.
There would be no point for him to try to read the 1951 article, which was directed to a
specialist audience. And the professor who recommended the formula may have been
born well after 1951 and not only be unacquainted with the paper but uninterested in
the debates about 1951 conceptions that had been given much space in my paper. (The
citations are not all from non-readers; throughout the years there has been a trickle of
papers discussing alpha from a theoretical point of view and sometimes suggesting
interpretations substantially different from mine. These papers did little to influence my
thinking.)

Other signs of success: There were very few later articles by others criticizing parts
of my argument. The proposals or hypotheses of others that I had criticized in my
article generally dropped out of the professional literature.

A 50th Anniversary

In 1997, noting that the 50th anniversary of the publication was fast approaching, I
began to plan what has now become these notes. If it had developed into a publishable
article, the article would clearly have been self-congratulatory. But I intended to devote
most of the space to pointing out the ways my own views had evolved; I doubt whether
coefficient alpha is the best way of judging the reliability of the instrument to which it is
applied.

My plan was derailed when various loyalties impelled me to become the head of
the team of qualified and mostly quite experienced investigators who agreed on the
desirability of producing a volume (Cronbach, 2002) to recognize the work of R. E.
Snow, who had died at the end of 1997.

When the team manuscript had been sent off for publication as a book, I might
have returned to alpha. Almost immediately, however, I was struck by a health
problem, which removed most of my strength, and a year later, when I was just
beginning to get back to normal strength, an unrelated physical disorder removed
virtually all my near vision. I could no longer read professional writings, and would
have been foolish to try to write an article of publishable quality. In 2001, however, Rich
Shavelson urged me to try to put the thoughts that might have gone into the
undeveloped article on alpha into a dictated memorandum, and this set of notes is the
result. Obviously, it is not the scholarly review of uses that have been made of alpha
and of discussions in the literature about its interpretation that I intended. It may
nonetheless pull together some ideas that have been lost from view. I have tried to
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present my thoughts here in a non-technical manner, with a bare minimum of algebraic
statements, and hope that the material will be useful to the kind of student who in the
past has been using the alpha formula and citing my 1951 article.

My Subsequent Thinking

Only one event in the early 1950's influenced my thinking: Frederick Lord's (1955)
article in which he introduced the concept of "randomly parallel" tests. The use I made
of the concept is already hinted at in the preceding section.

A team started working with me on the reliability problem in the latter half of the
decade, and we developed an analysis of the data far more complex than the two-way
table from which alpha is formed. The summary of that thinking was published in 1963,
2 but is beyond the scope of these notes. The lasting influence on me was the
appreciation we developed for the approach to reliability through variance
components, which I shall discuss later.

From 1970 to 1995, I had much exposure to the increasingly prominent state-wide
assessments and innovative instruments using samples of student performance. This
led me to what is surely the main message to be developed here. Coefficients are a crude
device that does not bring to the surface many subtleties implied by variance components. In
particular, the interpretations being made in current assessments are best evaluated through use
of a standard error of measurement, as I discuss later.

Conceptions of Reliability

The Correlational Stream

Emphasis on individual differences. Much early psychological research,
particularly in England, was strongly influenced by the ideas on inheritance suggested
by Darwin’s theory of Natural Selection. The research of psychologists focused on
measures of differences between persons. Educational measurement was inspired by
the early studies in this vein and it, too, has given priority to the study of individual
differences—that is, this research has focused on person differences.

When differences were being measured, the accuracy of measurement was usually
examined. The report has almost always been in the form of a “reliability coefficient.”
The coefficient is a kind of correlation with a possible range from 0 to 1.00. Coefficient
alpha was such a reliability coefficient.

Reliability seen as consistency among measurements. Just what is to be meant
by reliability was a perennial source of dispute. Everyone knew that the concern was



5

with consistency from one measurement to another, and the conception favored by
some authors saw reliability as the correlation of an instrument with itself. That is, if,
hypothetically, we could apply the instrument twice and on the second occasion have
the person unchanged and without memory of his first experience, then the consistency
of the two identical measurements would indicate the uncertainty due to measurement
error, for example, a different guess on the second presentation of a hard item. There
were definitions that referred not to the self-correlation but to the correlation of parallel
tests, and parallel could be defined in many ways (a topic to which I shall return).
Whatever the derivation, any calculation that did not directly fit the definition was
considered no better than an approximation. As no formal definition of reliability had
considered the internal consistency of an instrument as equivalent to reliability, all
internal consistency formulas were suspect. I did not fully resolve this problem; I shall
later speak of developments after 1951 that give a constructive answer. I did in 1951
reject the idealistic concept of a self-correlation, which at best is unobservable; parallel
measurements were seen as an approximation.

The split-half technique. Charles Spearman, just after the start of the 20th century,
realized that psychologists needed to evaluate the accuracy of any measuring
instrument they used. Accuracy would be naively translated as the agreement among
successive measures of the same thing by the same technique. But repeated
measurement is suspect because subjects learn on the first trial of an instrument and, in
an ability test, are likely to earn better scores on later trials.

Spearman, for purposes of his own research, invented the “split-half” procedure,3

in which two scores are obtained from a single testing, by scoring separately the odd-
numbered items and the even-numbered items. This is the first of the “internal
consistency” procedures, of which coefficient alpha is a modern exemplar. Thus, with a
40-item test, Spearman would obtain total scores for two 20-item half tests, and correlate
the two columns of scores. He then proposed a formula for estimating the correlation
expected from two 40-item tests.

In the test theory that was developed to provide a mathematical basis for formulas
like Spearman's, the concept of true score was central. Roughly speaking, the person's
true score is the average score he would obtain on a great number of independent
applications of the measuring instrument.

The problem of multiple splits. Over the years, many investigators proposed
alternative calculation routines, but these either gave Spearman's result or a second
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result that differed little from that of Spearman; we need not pursue the reason for this
discrepancy.

In the 1930s investigators became increasingly uncomfortable with the fact that
comparing the total score from items 1, 3, 5, and so on with the total on items 2, 4, 6, and
so on gave one coefficient; but that contrasting the sum of scores on items 1, 4, 5, 8, 9,
and so on with the total on 2, 3, 6, 7, 10 and so on would give a different numerical
result. Indeed, there were a vast number of such possible splits of a test, and therefore
any split-half coefficient was to some degree incorrect.

In the period from the 1930s to the late 1940s, quite a number of technical
specialists had capitalized on new statistical theory being developed in England by R.
A. Fisher and others, and these authors generally presented a formula whose results
were the same as those from the alpha formula. Independent of these advances, which
were almost completely unnoticed by persons using measurement in the United States,
Kuder and Richardson developed a set of internal consistency formulas which
attempted to cut through the confusion caused by the multiplicity of possible splits.
They included what became known as “K-R Formula 20” which was mathematically a
special case of alpha that applied only to items scored one and zero. Their formula was
widely used, but there were many articles questioning its assumptions.

Evaluation of the 1951 article. My article was designed for the most technical of
publications on psychological and educational measurement, Psychometrika. I wrote a
somewhat encyclopedic paper in which I not only presented the material summarized
above, but reacted to a number of publications by others that had suggested alternative
formulas based on a logic other than that of alpha, or commenting on the nature of
internal consistency. This practice of loading a paper with a large number of thoughts
related to a central topic was normal practice, and preferable to writing half a dozen
articles each on one of the topics included in the alpha paper. In retrospect, it would
have been desirable for me to write a simple paper laying out the formula, the rationale
and limitations of internal consistency methods, and the interpretation of the
coefficients the formula yielded. I was not aware for some time that the 1951 article was
being widely cited as a source, and I had moved on once the paper was published, to
other lines of investigation.

One of the bits of new knowledge I was able to offer in my 1951 article was a proof
that coefficient alpha gave a result identical with the average coefficient that would be
obtained if every possible split of a test were made and a coefficient calculated for every
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split. Moreover, my formula was identical to K-R 20 when it was applied to items
scored one and zero. This, then, made alpha seem preeminent among internal
consistency techniques.

I also wrote an alpha formula that may or may not have appeared in some writing
by a previous author, but it was not well-known. I proposed to calculate alpha as:









−








−

∑ 2

2

1
1 t

i

s

s

k

k . Here k stands for the number of conditions contributing to a total score,

and s is the standard deviation, which students have learned to calculate and interpret
early in the most elementary statistics course. There is an si for every column of a p i×

layout (Table 1a), and an st  for the column of total scores (usually test scores). The
formula was something that students having an absolute minimum of technical
knowledge could make use of.

Table 1a
Person × Item Score (Xpi) Sample Matrix *

Item

Person 1 2 … i … k
Sum or
Total

1 X11 X12 … X1I … X1k X1.

2 X21 X22 … X2I … X2k X2.

… … … … … … … …
p Xp1 Xp2 … Xpi … Xpk Xp.

… … … … … … … …
n Xn1 Xn2 … XnI … Xnk Xn.

* Added by the Editor

Not only had equivalent formulas been presented numerous times in the
psychological literature, as I documented carefully in the 1951 paper, but the
fundamental idea goes far back. Alpha is a special application of what is called “the
intra-class correlation,” 4 which originated in research on marine populations where
statistics were being used to make inferences about the laws of heredity. R. A. Fisher
did a great deal to explicate the intra-class correlation and moved forward into what
became known as the analysis of variance. The various investigators who applied
Fisher’s ideas to psychological measurement were all relying on aspects of analysis of
variance, which did not begin to command attention in the United States until about
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1946.5 Even so, to make so much use of an easily calculated translation of a well-
established formula scarcely justifies the fame it has brought me. It is an embarrassment
to me that the formula became conventionally known as “Cronbach’s α.”

The label “alpha,” which I applied, is also an embarrassment. It bespeaks my
conviction that one could set up a variety of calculations that would assess properties of
test scores other than reliability and alpha was only the beginning. For example, I
though one could examine the consistency among rows of the matrix mentioned above
(Table 1a) to look at the similarity of people in the domain of the instrument. This idea
produced a number of provocative ideas, but the idea of a coefficient analogous to
alpha proved to be unsound (Cronbach & Gleser, 1953).

My article had the virtue of blowing away a great deal of dust that had grown up
out of attempts to think more clearly about K-R 20. So many papers tried to offer sets of
assumptions that would lead to the result that there was a joke that “deriving K-R 20 in
new ways is the second favorite indoor sport of psychometricians.” Those papers
served no function, once the general applicability of alpha was recognized. I
particularly cleared the air by getting rid of the “assumption” that the items of a test
were unidimensional, in the sense that each of them measured the same common type
of individual difference, along with, of course, individual differences with respect to the
specific content of items. This made it reasonable to apply alpha to the typical tests of
mathematical reasoning, for example, where many different mental processes would be
used in various combinations from item to item. There would be groupings in such a set
of items but not enough to warrant formally recognizing the groups in subscores.

Alpha, then, fulfilled a function that psychologists had wanted fulfilled since the
days of Spearman. The 1951 article and its formula thus served as a climax for nearly 50
years of work with these correlational conceptions.

It would be wrong to say that there were no assumptions behind the alpha
formula (e.g., independence 6 ), but the calculation could be made whenever an
investigator had a two-way layout of scores, with persons as rows, and columns for
each successive independent measurement. This meant that the formula could be
applied not only to the consistency among items in a test but also to agreement among
scorers of a performance test and to the stability of performance of scores on multiple
trials of the same procedure, with somewhat more trust than was generally defensible.
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The Variance-components Model

Working as a statistician in an agricultural research project station, R.A. Fisher
designed elaborate experiments to assess the effects on growth and yield of variations
in soil, fertilizer, and the like. He devised the analysis of variance as a way to identify
which conditions obtained superior effects. This analysis gradually filtered into
American experimental psychology where Fisher's "F-test" enters most reports of
conclusions. A few persons in England and Scotland, who were interested in
measurement, did connect Fisher's method with questions about reliability of measures,
but this work had no lasting influence. Around 1945, an alternative to analysis of
variance was introduced, and this did have an influence on psychometrics.

In the middle 1940's, a few mathematical statisticians suggested a major extension
of Fisherian thinking into new territory. Fisher had started with agricultural research
and thought of environmental conditions as discrete choices. A study might deal with
two varieties of oats, or with several kinds of fertilizer, which could not be considered a
random sample from a greater array of varieties. Fisher did consider plots to be
sampled from an array of possible plots. That is, he would combine species A with
fertilizer 1, and measure the results in some number of scattered areas. Similar samples
of plots were used for each of the other combinations of species and fertilizer.

In the post-war literature it was suggested that one or both factors in a two-way
design might be considered random. This opened the way for a method that reached
beyond what Fisher’s interpretation offered. I have already mentioned the sampling of
persons and the sampling of items or tasks, which can be analyzed with the new
“components-of-variance” model, as will be seen.

Burt, working in London and subject to the influence of Fisher, had carried the
variance approach in the direction that became generalizability (G) theory,7 with alpha
as a simplified case (Cronbach, Gleser, Nanda, & Rajaratnam, 1972). His notes for
students in the 1930s were lost during World War II, and his ideas only gradually
became available to Americans in papers where students had applied his methods. In
1951, Burt’s work was unknown to US psychometricians.

Basics of Alpha

We obtain a score Xpi for person p by observing him in condition i. The term,
condition, is highly general, but most often in the Alpha literature it refers either to tests
or to items, and I shall use the symbol ‘i’. The conditions, however, might be a great



10

variety of social circumstances and it would very often be raters of performance or
scorers of responses. If the persons are all observed under the same Condition I, then
the scores can be laid out in a column with persons functioning as rows, and when
scores are obtained for two or more conditions, adding the columns for those conditions
gives the score matrix (Table 1a).8

We usually think of a set of conditions i with every person having a score on the
first condition, on the second condition, and so on, though if there is an omission we
will generally enter a score of 0 or, in the case of the scorer failing to mark the paper, we
will have to treat this as a case of missing data. The alternative, however, is where each
person is observed under a different series of conditions. The obvious example is where
person p is evaluated on some personality trait by acquaintances, and the set of
acquaintances varies from person to person, possibly with no overlap. Then there is no
rational basis for assigning scores on the two persons to the same column. Formally, the
situation where scores are clearly identified with the same condition i is called a crossed
matrix because conditions are crossed with persons. In the second situation, there is a
different set of conditions for each person and therefore we may speak of this as a
nested design because raters are nested within the person. Virtually all the literature
leading down to the Alpha article has assumed a crossed design, though occasional side
remarks will recognize the possibility of nesting. Note that we also have a nested design
when different questions are set for different persons, which can easily happen in an
oral examination, and may happen in connection with a portfolio.

Second, a distinction is to be made between the sample matrix of actual
observations (Table 1a above) and the infinite matrix (Table 1b below) about which one
wishes to draw conclusions. (I use the term “infinite” because the term is likely to be
more familiar to readers than the technical terms preferred in mathematical discourse).
We may speak of the population-universe matrix 9 for a conception where an infinite
number of persons all in some sense of the same type respond to an infinite universe of
conditions, again of the same type. The matrix of actual data could be described as
representing a sample of persons crossed with a sample of conditions, but it will suffice
to speak of the sample matrix. The Alpha literature and most other literature prior to
1951, assumed that both the sample matrix and the population matrix were crossed.
Mathematically, it is easy enough to substitute scores from a nested sample matrix by
simply taking the score listed first for each as belonging in Column 1, but this is not the
appropriate analysis.
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Table 1b
Person × Item Score (Xpi) “Infinite” (“Population-Universe”) Matrix *

Item
Person 1 2 … i … k ∞
1 X11 X12 … X1I … X1k

2 X21 X22 … X2I … X2k

… … … … … … …
p Xp1 Xp2 … Xpi … Xpk

… … … … … … …
n ∞ Xn1 Xn2 … XnI … Xnk

* Added by the Editor

All psychometric theory of reliability pivots on the concept of true score. (In G
Theory, this is renamed “Universe Score,” but we need not consider the reasons here.)
The true score is conceptualized as the average score the person would reach if
measured an indefinitely large number of times, all measurements being independent,
with the same or equivalent procedures (average over k  ∞; see Table 1b). The
difference between the observed score and the person’s true score is the error. It is
uncorrelated from one measurement to another—another statement of the
independence principle. The concept of error is that random errors are unrelated to the
true score, and have a mean of zero over persons, or over repeated measurements

The conception of true score is indefinite until “equivalent” is endowed. This did
not occur until Lord, in 1955, cataloged various degrees in which “parallel” tests might
resemble one another. At one extreme, there could be “parallel” tests, where the content
of item five appeared in a second form of the instrument in other wording as, let us say,
item eleven. That is to say, the specific content of the two tests, as well as the general
dimensions running through many items, were duplicated. At the other extreme were
“random-parallel” tests, where each test was (or could reasonably be regarded as) a
random sample from a specified domain of admissible test items. It was the latter level
of parallelism that seemed best to explain the function of coefficient alpha; it measured
the consistency of one random sample of items with other such samples from the same
domain.

A rather obvious description of the accuracy with which an instrument measures
individual differences in the corresponding true score is the correlation of the observed
score with the true score. Coefficient alpha is essentially equal to the square of that
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correlation. (The word “essentially” is intended to glide past a full consideration of the
fact that each randomly formed instrument will have a somewhat different correlation
with the true score.) Reliability formulas developed with assumptions rather different
from those entering alpha are also to be interpreted as squared correlations of observed
score with the corresponding true score, so alpha is on a scale consistent with tradition.
It might seem logical to use the square root of alpha in reports of reliability findings, but
that has never become the practice.

The observed score is regarded as the sum of the true score and a random error.
That statement, and the independence assumption, which has its counterpart in the
development of other reliability formulas, lead to the simple conclusion that the
variance of observed scores is the sum of the error variance and the true score variance.
It will be recalled that variance is really the square of the standard deviation. Each
individual taking a test has a particular true score which I may label T, and the true
scores have a variance.  The observed score has been broken into fractions, its
presenting error and true score. We may, therefore, interpret alpha as reporting the
percentage of the observed individual differences (as described in their variance) that is
attributable to true variance in the quality measured by this family of randomly-parallel
tests.10

In thinking about reliability, one can distinguish between the coefficient generated
from a single set of n persons and k items, or about the value that would be obtained
using an exceedingly large sample and averaging coefficients over many random
drawings of items. The coefficient calculated from a finite sample is to be considered an
estimate of the population value of the coefficient. Little interest attaches to the
consistency among scores on a limited set of items and a particular group of people.
This is the usual consideration in research where data from the sample are used to infer
relations in the population.

In the history of psychometric theory, there was virtually no attention to this
distinction prior to 1951, save in the writings of British-trained theorists. My 1951 article
made no clear distinction between results for the sample and results for the population.
It was not until Lord’s (1955) explicit formulation of the idea of random parallel tests
that we began to write generally about the sampling, not only of persons, but of items.
This two way sampling had no counterpart in the usual thinking of psychologists. No
change in procedures was required, but writing had to become more careful to
recognize the sample-population distinction.
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The Alpha formula is constructed to apply to data where the total score in a row of
Table 1a will be taken as the person’s observed score. An equivalent form of the
calculation applicable when the average is to be taken as the raw score yields the same
coefficient. The Alpha coefficient also applies to composites of k conditions. When an
investigator wants to know what would happen if there were k’ conditions, the solution
known as the “Spearman-Brown Formula” applies.

My 1951 article embodied the randomly-parallel-test concept of the meaning of
true score and the associated meaning of reliability, but only in indefinite language.
Once Lord’s (1955) statement was available, one could argue that alpha was almost an
unbiased estimate of the desired reliability for this family of instruments. The “almost”
in the preceding sentence refers to a small mathematical detail which causes the alpha
coefficient to run a trifle lower than the desired value.

This detail is of no consequence, and does not support the statement made
frequently in textbooks or in articles that alpha is a “lower value” to the reliability
coefficient. That statement is justified by reasoning that starts with the definition of the
desired coefficient as the expected consistency among measurements that had a higher
degree of parallelism than the “random parallel” concept implied. We might say that
my choice of the true score as the expected value over random parallel tests and the
coefficient as the consistency expected among such tests is an assumption of my
argument.

There is a fundamental assumption behind the use of alpha, an assumption that
has its counterpart in many other methods of estimating reliability. The parts of the test
that identify columns in the score table (Table 1a) must be independent in a particular
sense of the word. The parts are not expected to have zero correlations. But it is
expected that the experience of responding to one part (e.g., one item) will not affect
performance on any subsequent item. The assumption, like all psychometric
assumptions, is unlikely to be strictly true. A person can become confused on an item
that deals with, say, the concept of entropy, and have less confidence when he
encounters a later item again introducing the word entropy. There can be fatigue
effects. And, insofar as performance on any one trial is influenced by a person’s
particular state at the time, the items within that trial are to some degree influenced by
that state.

One can rarely assert, then, that violations of independence are absent, and it is
burdensome if not impossible to assess the degree and effect of non-independence.11
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One therefore turns to a different method or makes a careful judgment as to whether
the violation of the assumption is major or minor in its consequence. If the problem is
minor, one can report the coefficient with a word of caution as to the reasons for
accepting it and warning that the non-independence will operate to increase such
coefficients by at least a small amount. When the problem is major, alpha simply should
not be used. An example is a test given with a time limit so that an appreciable number
of students stop before reaching the last items. Their score on these items not reached is
inevitably zero, which raises the within-trial correlation in a way that is not to be
expected of the correlations across separately timed administrations.

The alpha formula is not strictly appropriate for many tests constructed according
to a plan that allocates some fraction of the items to particular topics or processes. Thus,
in a test of mathematical reasoning, it may be decided to make 20% of the items around
geometric shapes. The several forms of the test that could be constructed by randomly
sampling geometric items will be higher than the correlation among items in general.
The tests are not random parallel.

When the distribution of content is specified formally, it is possible to develop a
formula to fit those specifications but this is difficult, and not appropriate, when the
allocation of items is more impressionistic than strict. In such an instance, one is likely
to fall back on alpha, and to recognize in the discussion that the coefficient
underestimates the expected relationship between observed scores and true scores
formed from tests all of which satisfy the constraint. That is to say, alpha tends to give
too low a coefficient for such tests. An extension of alpha to fit specifically the stratified
parallel test (sometimes called “stratified alpha”; Cronbach, Schonemann, & McKie,
1965) can be based on the “battery reliability” formula that Jackson and Ferguson
published in an obscure monograph.12

Variance Components and Their Interpretation

I no longer regard the alpha formula as the most appropriate way to examine most
data. Over the years, my associates and I developed the complex generalizability (G)
theory (Cronbach, Gleser, Nanda & Rajaratnam, 1972; Cronbach, Nanda & Gleser, 1963;
see also Brennan, 2001; Shavelson & Webb, 1991) which can be simplified to deal
specifically with a simple two way matrix and produce coefficient alpha. From 1955 to
1972, we exploited a major development in mathematical statistics of which
psychologists were unaware in the early 1950s. Subsequently, I had occasion to
participate in the analysis of newer types of assessments, including the use of
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performance samples where the examinee worked on a complex realistic problem for 30
minutes or more, and as few as four such tasks might constitute the test (Cronbach,
Linn, Brennan & Haertel, 1997). The performance was judged by trained scorers, so that
the data generated could be laid out in a two way matrix.13

Here I sketch out the components of variance approach to reliability focusing on
the simplest case where coefficient alpha applies, the person × condition data matrix
(Table 1a). Random sampling of persons and conditions (e.g., items, tasks) is a central
assumption to this approach.

Giving Sampling a Place in Reliability Theory

Measurement specialists have often spoken of a test as a sample of behavior, but
the formal mathematical distinction between sample of persons and populations of
persons, or between a sample of tasks and a population [Editor’s Note: a universe] of
tasks was rarely made in writings on test theory in 1951 and earlier [Editor’s Note: see
discussion of Fisher above]. Nevertheless, the post-war mathematical statistics literature
suggested that one or both factors in a two-way design might be considered random.
This opened the way for a method, the “components of variance” method, that reached
beyond what Fisher’s interpretation offered.14

Random sampling, now, is almost invariably an assumption in the interpretation
of psychological and educational data where conclusions are drawn, but the reference is
to sampling of persons from the population. We are thinking now of a person universe
matrix from which one can sample not only rows (persons) but also columns
(conditions). Thus the Alpha paper flirted with the thought that conditions are
randomly sampled from the universe, but this idea did not become explicit until much
later. Now, it is most helpful to regard the random sampling of persons as a virtually
universal assumption and the random sampling of conditions that provide the data as
an assumption of the Alpha formula when the result is interpreted as applying to a
family of instruments that are no more similar to each other than random samples of
conditions would be. Investigators who want to postulate a higher degree of similarity
among the composites would find Alpha and related calculations underestimating the
accuracy of the instrument.

The [Editor’s Note: random sampling] assumptions just stated are not true in any
strict sense, and a naïve response would be to say that if the assumptions are violated,
the Alpha calculations cannot be used. No statistical work would be possible, however,
without making assumptions and so long as the assumptions are not obviously grossly
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inappropriate to the data, the statistics calculated are used, if only because they can
provide a definite result that replaces a hand-waving interpretation. It is possible at
times to develop a mathematical analysis based upon a more complex set of
assumptions, for example, recognizing that instruments are generally constructed
according to a plan that samples from domains of content rather than being constructed
at random. This is more troublesome in many ways than the analysis based on simple
assumptions, but where feasible it is to be preferred.

Components of Variance

In the random model with persons crossed with conditions, it is necessary to
recognize that the observed score for person p in condition i (Xpi) can be divided into
four components, one each for the (1) grand mean, (2) person (p), condition (i), and
residual consisting of the interaction of person and condition (pi) and random error (e,
actually pi,e):

Xpi = µ + (µp - µ) + (µi - µ) + (Xpi - µp - µI + µ).

The first of these, the grand mean, µ, is constant for all persons. The next term, µp -
µ, is the person’s true score (µp) expressed as a deviation from the grand mean (µ)—the
person effect. The true score, it will be recalled, is the mean that would be expected if
the person were tested by an indefinitely large number of randomly parallel
instruments drawn from the same universe. (In G Theory, it is referred to as the
“Universe score” because it is the person’s average score over the entire universe of
conditions.) The µi term represents the average of the scores on item i in the population
and is expressed as a deviation from µ—the item effect. The fourth term is the residual
consisting of the interaction of person p with item i which, in a p × i matrix, cannot be
disentangled from random error, e. The residual simply recognizes the departure of the
observed score from what would be expected in view of the µi level of the item and the
person’s general performance level, µp. (In most writings, the residual term is divided
into interaction and error, although in practice it cannot be subdivided because with the
usual matrix of scores Xpi from a single test administration, there is no way to take such
subdivision into account).

Except for µ, each of the components that enter into an observed score vary from
one person to another, one item to another, and/or in unpredictable ways. Recognizing
that score components vary, we now come to the critically important equation that
decomposes the observed-score variance into its component parts:
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V(Xpi) = Vp + Vi + VRes. 15

Here V is a symbol form of the population variance. (In the technical literature, the
symbol sigma square s2 is used.) The term on the left refers to the variation in scores in
the extended matrix that includes all persons in the population and all items in the
universe (see Table 1b). It characterizes the extent of variation in performance. The
equation states that this variance can be decomposed into three components, hence the
name “Components of Variance” approach.

The first term on the right is the variance among persons, the true-score variance.
This is systematic, error-free variance among persons, the stuff that is the purpose and
focus of the measurement. This variance component gives rise to consistency of
performance across the universe of conditions. The i component of variance describes
the extent to which conditions (items, tasks) vary. And the residual represents what is
commonly thought of as error of measurement, combining the variability of
performance to be expected when an individual can sometimes exceed his norm by
gaining insight into a question, and sometimes fall short because of confusion, a lapse of
attention, etc.

The last equation is only slightly different from the statement made in connection
with alpha and more traditional coefficients: the observed variance is the sum of true-
score variance and error variance. The novelty lies in the introduction of the µi. In the long
history of psychological measurement that considered only individual differences, the
difference in item means is disregarded, having no effect on individual standings when
everyone responds to the same items.

Spearman started the tradition of ignoring item characteristics because he felt that
the person’s position on the absolute score scale was of no interest. He reasoned that the
person’s score depended on a number of fairly arbitrary conditions such as the size and
duration of a stimulus such as a light bulb, and on the background, as well as on the
physical brightness itself. His main question was whether the persons who were
superior at one kind of discrimination were superior at the next kind, and for this he
was concerned only with ranks. Psychologists shifted attention from ranks to deviation
scores, partly because these are sensitive to the size of differences between individuals
in a way that ranks are not, are easier to handle mathematically, and fit into a normal
distribution. (For a time it was believed that nearly all characteristics are normally
distributed, as a matter of natural law.) When psychologists and educators began to
make standardized tests, some of them tried to use natural units, but this quickly faded
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out because of the sense that the individual’s score depended on the difficulty of the
items chosen for the test. The rankings on arithmetic tests could be considered stable
from one set of items to another, where the score itself was seen as arbitrary.
Consequently, it was the statistics of individual differences observed in tests that
received the greatest emphasis.

Nonetheless, the absolute level of the person’s performance is of significance in
many circumstances. This is especially true in the many educational tests used to certify
that the person has performed adequately. The critical score indicating minimal
adequate performance is established by careful review of the tasks weighed by experts
in the domain of the test. This score is established for the family of tests in general, not
separately for each form in turn. When a candidate takes a form for which µi is
unusually low, the number of examinees passing are reduced for no good reason.
Therefore, persons using tests for absolute decisions must be assured that the choice of
form does not have a large effect on a person’s chances of passing, which means that a
low Vµi is wanted.

The analysis that generates estimates of the three components is simple. One first
performs an analysis of variance, ordinarily using one of the readily available computer
programs designed for that purpose. Instead of calculating F ratios, one converts the
mean squares (MS) for rows, columns, and a residual to components of variance. These
equations apply:

sidualsidual MSV ReRe
ˆ =

psidualii )/nMS(MSV Re
ˆ −=

isidualpp )/nMS(MSV Re
ˆ −=

It is to be understood that these components describe the contributions of the three
sources to variation in scores at the item level. We are looking not at the decomposition
of a particular item, but at a typical result, in a sense averaged over many persons and
items. These estimates are readily converted to estimates that would apply to test
scores, and to averages over specified numbers of persons. The components of variance
are determined with the assumption that the average of scores in the row (Table 1a)
would lead to the composite score. Specifically, if randomly sampled tests of 20 items
are applied, and the average score on the 20 items is reported, then sidualVReˆ  for this
average score is 1/20 of VResidual for a single item score. Results reached with that
understanding are readily converted to the total score scale. If your interpretation is



19

based on the total scores over 20 items, sidualVReˆ  for this total score is 20 times greater
than sidualVReˆ , but I shall stay with averages for observed scores because this keeps
formulas a bit simpler.

Interpreting the Variance Components

The output from the analysis of variance is a set of estimates of characteristics of
the population-universe matrix (Table 1b). The estimates are assumed to apply to any
sample matrix. Obviously they apply to the sample from which they were taken, and
for want of an alternative, the other possible sample matrices are assumed to be similar
statistically.

Variance components are generally interpreted by converting them to estimates of
the corresponding standard deviations. Thus, the square root of the pV̂  is a standard
deviation of the distribution of individuals’ true scores, that is to say, the average score
they would obtain if they could be tested on all conditions in the universe. One might
consider forming a composite instrument by combining many conditions, the usual test
score being a prominent example. If the test score is expressed as a per-condition
average, then the standard deviation just calculated applies to the true score on such
composites. If, however, as is often the case, the total score over conditions is to be used,
then the value of the standard deviation must be multiplied by the number of items to
put it on the scale of the composite.

The usual rule of thumb for interpreting standard deviations is that two-thirds of
the scores of persons will fall within one standard deviation of the mean, and 95% of the
persons will fall within two standard deviations of the mean. The standard deviation of
true scores gives a clearer picture of the spread of the variable being measured than the
standard deviation that is calculated routinely from observed scores, because the effect
of random errors of measurement is to enlarge the range of observed scores. Working
from the pV̂  indicates whether the variable of interest is spread over much of the
possible score scale or is confined to a narrow range.

µp is the row mean in the population-universe matrix (Table 1b), and µi is the
column mean, that is to say, the population mean for all p under condition i. The
variance of column means Vi is therefore the information about the extent to which
condition means differ. A standard deviation may be formed and interpreted just as
before, this time with the understanding that the information refers to the spread of the
items, or more generally spread of the conditions, and not the spread of persons. The
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standard deviation for condition means gives a direct answer to questions such as the
following: Do the items in this ability test present similar difficulty? Do the statements
being endorsed or rejected in a personality inventory have similar popularity? Do some
of the persons scoring this performance exercise tend to give higher scores than others?
It is important to reiterate that we are concerned with characteristics of the population
and universe. We are arriving at a statement about the probable spread in other samples
of conditions that might be drawn from the universe. Where we have a composite of k’
single conditions, the estimated variance for µi must be divided by k’ (i.e., /k'Vî ). The
standard deviation is reduced correspondingly, and if the composite is being scored by
adding the scores on the elements, the estimated value of iV̂  is k’ times as large as that
for single conditions.

A comparatively large value of this standard deviation raises serious questions
about the suitability of an instrument for typical applications. If students are being
judged by whether they can reach a level expressed in terms of score units (e.g., 90% of
simple calculations) then the student who happens to be given one of the easier tests
has a considerable advantage and the test interpreter may get too optimistic an
impression of the student’s ability. Similarly, when one of a group of scorers is
comparatively lenient, the students who are lucky enough to draw that scorer will have
an advantage over students who draw one of the others.

To introduce the residual or the RES, it may help to think of a residual score matrix
which would be formed by adjusting each Xpi by subtracting out µp for person p and µi

for condition i, then adding in the constant (µ) equal to the overall mean of scores in the
population. These are scores showing the inconsistency in the individual’s performance
after you make allowance for his/her level on the variable being measured, and the
typical scores on the conditions in the universe. The residual scores spread around the
value of zero. They represent fluctuations in performance, some of which can be
explained by systematic causes, and some of which are due to non-recurrent variation
such as those due to momentary inattention or confusion. A few of the possible
systematic causes can be listed:

• In an ability test, the student finds certain subtopics especially difficult and
will consistently have a negative residual on such items, for example, the
student taking a math test may be confused about tangents, even when he is
at home with sines and cosines. Deviations can also arise from picking the
high-scoring alternative when choosing between attractive options, and also
from sheer good or bad luck in guessing.
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• In an anxiety inventory, a student who can generally say that he has no
emotional problems in situation after situation may recognize a timidity
about making speeches or otherwise exposing himself to the scrutiny of a
group and thus respond to the related items in a way that deviates from his
typical response.

Additive Combinations of Variance Components

The interpretation of components gives information about the population-universe
matrix, but it is combinations of components that more directly yield answers to the
questions of a prospective user of an instrument, including the following: how much do
the statistics for the instrument change as k’ is increased or decreased? How much
greater precision is achieved by using a crossed rather than a nested design for the
instrument? How much is the score from a sample of conditions expected to differ from
the universe score; how much is the uncertainty about the universe score arising from
such errors of measurement?

Adding two or three variance components in an appropriate way estimates the
expected observed-score variance for measures constructed by sampling conditions.
The word “expected” signifies that we can estimate only for a particular new set of
randomly sampled conditions.

I take up first the estimate for nested conditions where different individuals are
assessed under different sets of conditions (see Table 2). The most common example is
where scores on observations of performance tasks for each individual are assigned by
different scorers selected haphazardly from a pool of qualified scorers. The expected
observed-score variance here is a weighted sum of all three components. Assume that
there are k’ conditions and that the average score over conditions will be used:

/k'VVV spX pi Re
ˆˆˆ +=  where the residual consists of three variance components confounded

with one another e,V,V pii ˆˆˆ . The weight of pV̂  is 1. The other two components (conditions
confounded with the pi interaction and error) are weighted by 1/k’. This allows for the
fact that, as more conditions are combined, random variability of the average decreases.
If future observations will be made by means of a crossed design, everyone being
observed under the same set of conditions, then the expected observed variance is VP

plus VRes/k’. The variation in conditions (i) makes no contribution, because everyone is
exposed to the same conditions and all scores are raised or lowered on easy and
difficult items (respectively) by a constant amount.
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Table 2
Statistics Applying to Two Types of Designs and Two Types of Decisions

Measurement

Design Absolute Differential

Nested: Conditions (i) within Persons (p) - i:p

Universe-score variance

Expected observed-score variance

Error variance

Vp

Vp + (Vi + VRes)/k’

(Vi+VRes)/k’

Vp

Vp + (Vi + VRes)/k’

(Vi+VRes)/k’

Crossed: Conditions (i) crossed with Persons
(p)-p × i

Universe-score variance
Expected observed-score variance
Error variance

Vp

Vp + (Vi + VRes)/k’
(Vi+VRes)/k’

Vp

Vp + (VRes)/k’
(VRes)/k’

Notes: (1) It is assumed that each person responds to a sample of k’ conditions and that
the score for the person is the average of these scores under separate conditions. If the
totals were used instead, the entries in the table would be increased, but the patterning
would remain the same. (2) The standard error of measurement is the square root of the
error variance. (3) The reliability coefficient pertains only to differential measurement
and is obtained by dividing the universe-score [Editor’s Note: true-score] variance by
the expected observed-score variance.

In the crossed p  ×  i design (Table 1a), each person is observed under each
condition. The most common example is where scores are available for each individual
on each item on a test. The expected observed-score variance here (see Table 2) is a
weighted sum of Vp and VRes where VResidual consists of Vpi,e. Again, the weight of Vp is 1.
The residual is weighted by 1/k’. A comparison of the residual terms for the nested and
crossed design shows that in the nested design, the variance due to conditions cannot
be disentangled from the variances due to the person by condition interaction and
random error. With a crossed design, condition variance can be disentangled from
variance due to the person by condition interaction and error. Consequently, the nested-
design residual will be larger than or equal to the crossed-design residual.
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The Standard Error

A much more significant report on the measuring instrument is given by the
residual (error) variance and its square root, the “standard error of measurement.” This
describes the extent to which an individual’s scores are likely to vary from one testing
to another when each measurement uses a different set of conditions. In the nested
design, the error variance equals the expected observed score variance as calculated
above minus Vp. This leaves us with the weighted sum of the i and residual components
of variance, both of which represent sources of error.

The rule of thumb I suggest for interpreting the standard error assumes that errors
of measurement for any person are normally distributed, and the standard error tends
to be the same in all parts of the range. Both of these assumptions can be questioned.
Indeed, when complex analyses are used to estimate a standard error in each part of the
range, it is usual for the standard error to show a trend, higher in some ranges of
universe [Editor’s Note: true] scores than others. Here again, we rely on the rule of
thumb, because it is impractical to interpret the standard error without them.

Observed scores depart in either direction from the person’s universe score. Two-
thirds of the measurements, according to the usual rule of thumb, fall within one
standard error of measurement (S.E.M.) of the universe score, and 95% fall within two
S.E.M. Here we have a direct report on the degree of uncertainty about the person’s true
level of performance. The figure is often surprisingly large, and serves as an important
warning against placing heavy weight on the exact score level reached.

For many purposes, a useful scheme is to report scores as a band rather than a
single number. Thus in a profile of interest scores, one would have an array of bands,
some spanning a low range and some spanning a high range, but usually with a good
many that overlap to a large degree. This discourages emphases on which interest is
strongest and encourages attention to the variety of categories in which the person
expresses interest.

For a design with conditions (e.g., scorers) nested within persons, the residual or
measurement error includes differences in condition means as well as unsystematic
(random) variation (due to the p × i interaction confounded with random error) (see
Table 2). In this case, we speak about what may be called “absolute” measurement
where the level of a person’s score, and not just her standing among peers, is of concern.
Many educational applications of tests require a judgment as to whether the examinee
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has reached a predetermined score level. Examinees are not in competition; all may
meet the standard, or none.

For a design with conditions (e.g., items) crossed with persons, the residual or
measurement error does not include differences in condition means. So the residual is
an index of relative or differential error disentangled from differences in conditions
means. In contrast to absolute measurement, this “differential” measurement is
concerned with the relative standing of persons. In selection, when there are a limited
number of positions to be allotted, the highest scoring individuals are given preference.
Few practical decisions are based directly on such simple rankings, but this is the
formulation that permits statistical analysis. It should be noted also, that where the
correlation between one instrument and another is to be the basis for interpreting data,
the interpretation is differential. It was his interest in correlations that led Spearman
originally to define the reliability coefficient so that it applied to differential
measurement (which ignores the contribution of variation in mi to error). This tradition
dominated the literature on reliability down through the Alpha paper.

Many tests convert the raw score to a different form for use by interpreters. Thus
the raw score on an interest inventory is often expressed as a percentile rank within
some reference distribution. There is no way to apply internal consistency analysis
directly to such converted scores. One can, however, express the bounds on the
probable true score on the raw score scale as has been illustrated. Then each limit can be
rescaled to apply to the new scale. As an illustration, suppose that raw scores 40, 50 and
60 convert to percentile scores 33, 42 and 60, respectively. Then an observed score of 50
converts to a percentile score of 42. If we have established that two-thirds of the raw
scores fall between 43 and 57, these can be converted to the new scale supplying an
asymmetric confidence range running from approximately 37 to 51. Note that the
interval is no longer symmetric around the observed score.

Reliability Coefficients

We come now to reliability coefficients estimated with variance components.
These coefficients describe the accuracy of the instrument on a 0-to-1 scale; the Alpha
coefficient fits this description. The assumptions underlying the formulas for estimating
variance components are quite similar to the assumptions made in connection with
Alpha. We discuss here only the analysis of the crossed design, which matches the basis
for Alpha. The principal change is that because variance components are used to make
inferences to the population-universe matrix (Table 1b) rather than describing the
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sample, the random sampling of persons and of conditions becomes a formal
assumption.

In general, the coefficient would be defined as Vp divided by the expected
observed variance. We have seen above that the expected observed variance takes on
different values, depending on the design used in data collection. Coefficients differ
correspondingly.  The Alpha coefficient applies to a crossed design implying k
conditions. It refers to the accuracy of differential measurement with such data.
Computing components of variance has the advantage that an observed-score variance
is estimated in terms of k’ which may take on any value. Thus direct calculation of the
expected observed variance (with the implied, and important standard error) reaches
the result for which Spearman-Brown Formula has traditionally been utilized.16

As the expected observed variance is larger for a nested design than a crossed
design (see Table 2), the coefficient is smaller than that from the crossed design. This is
important because an instrument developer often sets up the crossed design in checking
the accuracy of the instrument when practical conditions make it likely that the actual
data obtained will have a nested design.

Differential and absolute measurements and reliability. It will be noted that
the alpha coefficient is included as one of the statistics reported with differential
decisions, and not with absolute decisions. A coefficient could be calculated by formal
analogy to the entry in the differential column, but it would be meaningless. A
coefficient is concerned with individual differences, and those are irrelevant to absolute
decisions.

Homogeneity/heterogeneity of samples of conditions. Whereas the topic of
homogeneity was the subject of heated discussion in the late 1940s, it has faded from
prominence. There are, however, investigators who believe that good psychological
measurement will rely on homogeneous instruments, where homogeneity can be
thought of as consistency from one condition to another in the ranking of individuals. A
contrary position emphasizes that one needs to represent all aspects of the variable that
is the focus of measurement, not narrowing it to a single focal topic. An appropriate
statistic for evaluating the homogeneity of conditions is the value of the reliability
coefficient when k’ is set at 1. The value of this coefficient is held down not only by
diversity among conditions, but also by the sheer unreliability of an individual's
performance in responding many times to the same condition. More advanced
techniques such as factor analysis can remove much of the ambiguity.
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Recommendations

General Observations and Recommendations

I am convinced that the standard error of measurement, defined in accordance
with the relevant cell of Table 2, is the most important single piece of information to
report regarding an instrument, and not a coefficient. The standard error, which is a
report on the uncertainty associated with each score, is easily understood not only by
professional test interpreters but also by educators and other persons unschooled in
statistical theory, and also to lay persons to whom scores are reported.

There has been a shift in the character of the way measurement is used. The
change is obvious in much educational assessment, where the purpose is to judge
individuals or student bodies relative to specified performance standards. Rankings are
irrelevant. A similar change is to be seen in screening applicants for employment, where
the employer now bears a burden of proof that the choice of a higher scoring individual
is warranted, a policy that seems to work against minority candidates. In making
comparisons between candidates, the employer wants to know whether a difference in
favor of one of the two would probably be confirmed in another testing. (Questions
about the predicted job performance of the candidates are more significant than
questions about accuracy of measurement, but inaccurate measurement sets a limit on
the accuracy that predictions can obtain.)

The investigator charged with evaluating reliability ought to obtain information on
the most prominent sources of potential error. For instruments that make use of the
judgment of scorers or raters, a simple p × i design is inadequate. The Alpha coefficient,
which relies on that design, is appropriate enough for objectively scored tests where
items can be considered a sample from the domain. But even in the limited situation
contemplated in a p  ×  i design, the application of the alpha formula does not yield
estimates of the three components of variance or the sums listed in Table 2. I cannot
consider here data structures in which conditions are classified in more than one way.

In general, a person responsible for evaluating and reporting the accuracy of a
measurement procedure ought to be aware of the variety of analyses suggested by
Table 2 and include in the report on the instrument information for all the potential
applications of the instrument. Sometimes the investigator will know that the
instrument is to be used in correlational research only, in which case a reliability
coefficient may be the only report needed. But most instruments lend themselves to
more diversified applications. I suggest that the person making judgments about the
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suitability of an instrument or its purposes, or about the trust that can be placed in
observed scores, consider these series of questions: In my use of the instrument, will I
be concerned with the absolute standing of persons, or groups, or the comparative
standing?

The choice of a single statistic to summarize the accuracy of an instrument is not
the best report that can be made. I recommend that the three separate components of
variance be reported. Given this information, the investigator can combine the
components, or not, according to the competence of his likely readership.

Considerations in Conducting a Reliability Study

Aspects of the test plan. The investigator conducting a reliability study should
consider a number of points in taking advantage of the information laid out. I write
here as if the investigator believes that his instrument is likely to be useful in future
studies by him, or by others, and that he is therefore providing guidance for
instrumentation in those studies. Of course the case may be that the investigator is
interested in the current set of data and only that set, and has no intention of making
further use of the instrument. If so, the investigator will run through these
considerations, giving much weight to some and little weight to others in deciding the
adequacy of the scores for the purpose of that one study.

I assume that the investigator is starting with a matrix of scores for persons
crossed with conditions, such as are used with the Alpha formula.

Independence in sampling. The first step is to judge whether assumptions
behind the calculations are seriously violated by the data being used. Violations of the
independence assumption can often be regarded as having little consequence, but some
violations are serious. The most prominent and frequent misuse of the computations
discussed in this paper is to apply them to a test where the examinees are unable to
complete many items on which they have a reasonable probability of earning a non-
zero score. The data may then be used only if it is considered reasonable to truncate the
data set, eliminating persons who have too many items not completed, or omitting
items toward the end of the set from the calculation. This is a makeshift solution, but it
may be necessary.

Heterogeneity of content. Another common difficulty is that conditions fall into
psychologically distinct classes, which calls into question the assumption that
conditions are randomly sampled. There is no reason to worry about scattered diversity
of items, but if, for example, a test in mathematics is planned with some number of
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geometric-reasoning items and a certain number of numeric reasoning items, the
sampling is not random. This type of heterogeneity is not a bar to use of the formulas. It
needs only to be recognized that an analysis that does not differentiate between the two
classes of items will report a larger standard error than a more subtle analysis.

How the measurement will be used. Decide whether future uses of the
instrument are likely to be exclusively for absolute decisions, or for differential
decisions, or may include both uses (not necessarily in the same study). If either type of
decision is unlikely to be made with this instrument in future applications, no further
information need be stated for it. Once this decision is made, I recommend that the
investigator calculate estimates for the components of variance and combine these to fill
in numerical values for the rows of each relevant column of Table 2.

With respect to differential decisions, the standard error from a nested design will
be at least a bit larger than the standard error from a crossed design. This larger error,
plus the appearance of greater fairness, favors use of crossed designs wherever feasible.
However, in large-scale programs such as tests for college admissions, it may seem easy
to provide crossed data, when in fact the data are from a nested design. Examinees
tested on different dates, or perhaps in different locales, will take different forms of the
test, and yet be compared with each other. Where it is practical to obtain crossed data
for a reliability study, the program itself will always have a nested design. Likewise, a
crossed design with a small group of scorers is feasible for the reliability study, but the
crossing is impractical in operational scoring of the instrument.

Number of conditions for the test. Next, specify the standard error considered
acceptable for the purpose of the measurement. Calculate the value of k’ which changes
the previously calculated standard error. The original value assumed the decisions
would be based on responses to k conditions, the new calculation may produce a higher
or lower value of k’. Increasing k’ to the value just calculated may prove too costly, and
a compromise must be made between cost and precision. When a test will be used in a
variety of contexts, different users may specify different standard errors as acceptable.
Anticipating that problem, the original investigator could well set up a table with
several values of the standard error and the corresponding k’ required to achieve each
one. If the instrument is to be used in correlational research only, it may easier to
specify an acceptable reliability coefficient than a standard error. The equations in the
differential column make it simple to convert the acceptable coefficient detailed and
acceptable probable error.
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Main Message of These Notes

The Alpha coefficient was developed out of the history that emphasized a crossed
design used for measuring differences among persons. This is now seen to cover only a
small perspective of the range of measurement uses for which reliability information is
needed. The Alpha coefficient is now seen to fit within a much larger system of
reliability analysis.
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Notes:
1 Editor’s Note: To give some notion of how extraordinary this annual citation
frequency is for a psychometric piece, Noreen Webb and I published Generalizability
Theory: A Primer in 1991. The average number of social science citations over the past 5
years was 11 per year!
2 Editor’s Note: Cronbach, Rajaratnam, & Gleser, G.C. (1963).
3 Editor’s Note: In Coefficient Alpha, Cronbach (1951, p. 300) cites both Spearman (1910)
and Brown (1910) as providing the first definition of a split-half coefficient.
4 Editor’s Note: As applied to reliability, intra-class correlation is a ratio of true-score
(typically person) variance to observed-score variance which is composed of true-score
variance plus error variance.
5 The articles by others working with Fisher’s ideas employed a number of statistical
labels that gave a result identical to my formula but that were unfamiliar to most
persons applying measurements. This explains why so little use was made of these
formulas. Priority in applying the appropriate intra-class correlation to measurements
probably goes to R.W.B. Jackson (Jackson & Ferguson, 1941). So far as I recall no one
had presented the version that I offered in 1951, except for the Kuder-Richardson
report, which did not give a general formula.
6 Violation of independence usually makes the coefficient somewhat too large, as in the
case where the content of each test form is constrained, for example, by the requirement
that ten percent of items in a mathematical reasoning test should be concerned with
geometric reasoning. Then, the items can be described as chosen at random within the
category specified in the [Editor’s Note: test] plan, but this is “stratified random”
sampling rather than random sampling. The alpha formula will underestimate the
reliability of such instruments (Cronbach, Schonemann, & McKie, 1965).
7 Editor’s Note: Cronbach is likely referring to Burt (1936).
8 Realistically, of course, conditions themselves may be classified in two or more ways,
for example, test questions being one basis for classification and scorer being another.
The matrices that result when persons are combined with such complex systems of
conditions are the subject of generalizability theory (Cronbach, Gleser et al. 1972), and
did not enter into the 1951 article.
9 To avoid confusion, my colleagues and I adopted the convention of referring to the
domain of items from which tests were presumably sampled as the “universe” of items,
reserving the term “population” for the persons represented in a study.
10 The statements in the preceding two paragraphs are in no way peculiar to alpha. They
appear in the theory for any other type of reliability coefficient, with the sole
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reservation that some coefficients rest on the assumption that every test in a family has
the same correlation with the corresponding true score.
11 This assumption of independence enters the derivation of any internal-consistency
formula.
12 Editor’s Note: Cronbach is likely referring to Jackson & Ferguson (1941).
13 Most of the analyses involved more complex structures, for instance, a three-way
matrix in which persons, tasks, and scorers were treated as separate bases for sorting
scores.
14 It may be said at the outset that these methods retained Fisher’s calculations but then
went beyond them to an interpretation that would have been meaningless with fixed
factors such as species.
15 Editor’s Note:
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where E is the expectation operator.

16 Editor’s Note: Alpha, expressed in variance-component terms, is: 
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k’ provides the Spearman-Brown adjustment for length of test (or, alternatively, number
of tests).
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