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MODELING HETEROGENEITY IN RELATIONSHIPS BETWEEN INITIAL 

STATUS AND RATES OF CHANGE: LATENT VARIABLE REGRESSION IN A 

THREE-LEVEL HIERARCHICAL MODEL  

Kilchan Choi and Michael Seltzer 

CRESST/ University of California, Los Angeles 

Abstract 

In studies of change in education and numerous other fields, interest often centers on 
how differences in the status of individuals at the start of a time period of substantive 
interest relate to differences in subsequent change. In this report we present a fully 
Bayesian approach to estimating three-level hierarchical models in which latent variable 
regression coefficients capturing the relationship between initial status and rates of 
change within each of J schools (Bwj, j = 1, …, J) are treated as varying across schools.   
Through analyses of data from the Longitudinal Study of American Youth, we show how 
modeling differences in Bwj as a function of school characteristics can broaden the kinds 
of questions we can address in school effects research.  We illustrate the possibility of 
conducting sensitivity analyses employing t distributional assumptions at each level of 
such models (termed LVR-HM3s) and present results from a simulation study that 
focuses on the coverage properties of marginal posterior intervals for fixed effects in 
LVR-HM3s.  We outline extensions of LVR-HM3s to settings in which growth is 
nonlinear, and discuss the use of LVR-HM3s in other types of research including multi-
site evaluation studies in which time-series data are collected during a pre-intervention 
period, and cross-sectional studies in which within-cluster latent variable regression 
slopes are treated as varying across clusters.  

 Key questions in studies of change often center on how differences in the status 
of individuals at the start of a time period of substantive interest relate to differences 
in subsequent change.  Examples can found in an array of fields and in studies of 
various types (e.g., large-scale panel studies; longitudinal studies of interventions).  
For example, in the area of public health, Svardsudd and Blomqvist (1978) focused 
on the question of whether men with higher levels of blood pressure at age 50 tend 
to experience more rapid increases in blood pressure in subsequent years (see also 
Blomqvist, 1977, and Wu, Ware, & Feinlab, 1980).  In gerontology, researchers have 
studied whether levels of cognitive functioning at certain points in adulthood are 
related to subsequent changes in cognitive functioning over time (see, e.g., Adler, 
Adam, & Arenberg, 1990).  In education, there has been a long-standing interest in 
questions concerning the extent to which growth in particular skills or content areas 
is related to differences in status at the start of a series of grades of interest (see, e.g., 
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Bloom, 1964; Werts & Hilton, 1977).  Furthermore, in longitudinal studies of 
interventions, investigators have been interested in baseline × treatment interactions, 
that is, whether expected differences in rates of change between individuals in 
treatment and control conditions depend crucially on initial status (see, e.g., Khoo, 
2001, Muthén & Curran, 1997).   

 To overcome attenuation problems that can arise, for example, in a regression 

of ordinary least squares (OLS) estimates of growth rate parameters ( π
∧

1i) on OLS 

estimates of initial status parameters ( π
∧

0i) for a sample of individuals (i =1, . . . , N), 
Blomqvist (1977) focused attention on the latent variable regression (LVR) of π1i on 
π0i . In particular, he derived the maximum likelihood (ML) estimate of the latent 
variable regression coefficient (b) relating differences in π0i to π1i.  In the 
computational formulae that Blomqvist presented, the ML estimate of b is obtained 

through an adjustment of the coefficient resulting from a regression of π
∧

1i on π
∧

0i .   

 Specifying relationships among latent variables is a hallmark of the Structural 
Equation Modeling (SEM) framework.  Thus, employing initial status parameters as 
predictors of rates of change and obtaining ML estimates of LVR coefficients can be 
accomplished readily in numerous implementations of the SEM framework, for 
example, Mplus (Muthén & Muthén, 2002), EQS (Bentler, 2002), LISREL (Joreskog & 
Sorbom, 2000). and AMOS (Arbuckle & Wothke, 1999).   

 In an important extension of the hierarchical modeling framework, 
Raudenbush and Sampson (1999) presented an ML-based strategy for incorporating 
latent variable regressions into hierarchical models (HMs), which has been 
implemented in the HLM 5 software program (Raudenbush, Bryk, Cheong, & 
Congon, 2000).  Raudenbush and Bryk (2002) presented several examples of this 
approach, including an analysis comparing growth in math achievement for girls 
and boys during high school controlling for differences in status in eighth grade.   

 Seltzer, Choi, and Thum (2003) employed a fully Bayesian approach to 
estimating two-level HMs involving latent variable regressions (e.g., settings in 
which time-series observations are nested within students) and discussed various 
advantages of such an approach (e.g., the ability to employ t distributional 
assumptions).  In this report, we wish to explore valuable extensions of this 
approach to three-level settings (e.g., settings in which time-series observations are 
nested within students, who in turn are nested within a sample of J schools).  In 
particular, we focus on three-level HMs in which latent variable regression 
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coefficients capturing the relationship between initial status and rates of change 
within each of J schools (Bwj, j = 1, . . . , J) are treated as varying across schools. We 
illustrate how models of this kind (which we term LVR-HM3) can help broaden the 
kinds of questions we are able to address in school effects research, and we discuss 
various possibilities that arise in applications of such models in other research 
settings. 

 Specifically, in the case of school effects research based on analyses of 
longitudinal data from such studies as NELS, interest typically centers on 
differences among schools in their mean rates of change, and investigating how 
differences in various school policies and practices relate to differences in school 
mean rates of change.  An advantage of the models we propose is that the 
magnitude of LVR initial status/rate of change slopes (Bwj) provides information 
regarding the distribution of growth in achievement within schools.  In some 
schools, those students with relatively high initial status may progress extremely 
rapidly, whereas those with lower initial achievement levels may display markedly 
slower progress rates.  In such cases, initial differences in achievement become 
magnified over time.  In other schools, however, initial status may be weakly related 
to subsequent rates.  

 Thus, formally investigating differences among schools in the magnitude and 
direction of LVR initial status/rate of change slopes, as well as differences in school 
mean rates of change, enables us to address questions of the following kind: How do 
differences in various school policies, practices, and intake characteristics relate to 
differences between schools in their mean rates of change and in the magnitude of 
their initial status/rate of change slopes?  Are there particular school factors that are 
associated with both high mean rates of progress and more equitable distributions of 
growth in achievement (i.e., schools in which initial status is relatively weakly 
related to subsequent progress).   

 Such an approach can also help broaden the kinds of questions that we are able 
to address in multi-site studies of interventions.  Consider, for example, a study in 
which an innovative remedial reading program has been implemented in one set of 
schools, and a more standard form of remedial instruction has been implemented in 
another set.  In certain sites, those children with very low initial reading skills may 
continue to do poorly, while those with less serious problems tend to make 
substantial progress.  In other sites, those students with very low initial reading 
skills might exhibit rapid rates of progress, while rates of progress may be less rapid 
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for those with less serious problems at the outset. Thus it would be valuable in such 
settings to conduct post hoc analyses in which differences in Bwj , as well as site 
mean rates of change, are modeled as a function of the type of program a school was 
assigned to, differences in implementation across schools, and the like.  Extensions 
to settings in which time-series observations are collected during a pre-intervention 
phase are discussed below.  

 The LVR-HM3 framework that we present also has important applications in 
the case of cross-sectional studies.  Consider, for example, a sample that consists of 
students (i = 1, . . . , nj) nested within different schools (j = 1, . . . , J).  Suppose that 
similar to the kinds of analyses of the High School and Beyond data presented in 
Raudenbush and Bryk (2002), we wish to model student achievement in 12th grade 
as a function of student SES.  Note importantly that if standard errors of 
measurement for these variables are available, we can pose a three-level model that 
contains a measurement model at level 1 in which the observed achievement and 
SES values for each student (i.e., Yij, Xij) are modeled as a function of their 
corresponding true scores (i.e., θach(ij), θses(ij)).  In a within-school (level-2) model, we can 
then model θach(ij) as a function of θses(ij).  The LVR coefficients capturing the 
relationship between SES and achievement within the J schools (Bwj, j = 1, …, J) can 
then be modeled, along with school mean achievement parameters (β0j), as a 
function of key school-level characteristics in a between-school (level-3) model. 

 While LVR-HM3s are extremely complex from an estimation standpoint, we 
show that simulating the marginal posterior distributions of the parameters in such 
models via the Gibbs sampler is highly feasible.  This report consists of the following 
sections.  We first outline a fairly simple two-level HM involving a regression of rate 
of change on initial status (LVR-HM2) and then extend this model to a basic LVR-
HM3 setting.  After discussing the strengths and limitations of various approaches 
to estimating latent variable regressions in analyses of longitudinal data (e.g., Chou, 
Bentler, & Pentz, 2000; Muthén & Curran, 1997; Raudenbush & Sampson, 1999), we 
present the logic of a fully Bayesian approach based on the use of the Gibbs sampler.  
(See, e.g., Carlin & Louis, 1996; Gelfand, Hills, Racine-Poon, & Smith, 1990; Gelman, 
Carlin, Stern, & Rubin, 1995; Gilks, Richardson, & Spiegelhalter, 1996; and Seltzer, 
Wong, & Bryk, 1996 for discussions and illustrations of the use of the Gibbs sampler 
in fitting HMs.)  Through analyses of the data from a subsample of the Longitudinal 
Study of American Youth (LSAY; Miller, Kimmel, Hoffer, & Nelson, 1999), we then 
illustrate the use of LVR-HM3 models in school effects research.  Next, we conduct a 
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sensitivity analysis employing t distributional assumptions at each level of our final 
model. This has the effect of downweighting possible outliers at each level (i.e., 
outlying time-series observations, students and schools). We then focus on factors 
that improve mixing of the Gibbs sampler in LVR-HM3 settings, and present results 
from a simulation study that focuses on the coverage properties of marginal 
posterior intervals, and the degree of bias of marginal posterior means, for fixed 
effects in the LVR-HM3.  In the final section, we discuss other applications of the 
LVR-HM3 and extensions of these models to settings in which growth is 
curvilinear. 

Latent Variable Regression in a Hierarchical Modeling Framework 

Latent Variable Regression in a Two-Level Hierarchical Model (LVR-HM2) 

 For heuristic purposes, we first specify a simple two-level HM for longitudinal 
analysis in which rate of change is regressed on initial status (LVR-HM2).  In the 
following within-person (level-1) model, we model the time series of outcome values 
for each of N individuals (i = 1, …,  N) as a simple linear function of time: 

Yti = π0i   +  π1i ati  + εti εti ~ N (0, σ2), (1) 

where Yti is the outcome score for individual i at measurement occasion t (t = 1, … , 
Ti), and ati represents, for example, an individual’s age or grade at measurement 
occasion t.  In the case of an intervention study, ati might represent the amount of 
time that has elapsed since the start of treatment.  π1i represents the growth rate for 
individual i, and π0i is the status for individual i when ati  = 0.  If we want π0i  to 
represent status at the start of a span of time of substantive interest (i.e., initial 
status), which is what we desire here, then ati  must be coded in such a way that ati  = 
0 corresponds to the start of the time period.  The εti are residuals assumed normally 
distributed with mean 0 and variance σ2.    

 We now pose the following between-person (level-2) model:  

π0i   = β00   + r0i r0i ~ N (0, τ00) (2a) 

π1i   = β10   + r1i r1i ~ N (0, τ11),    Cov (r0i , r1i ) = τ01 = τ10 (2b) 

where β00 and β11 are, respectively, the population means for initial status and 
growth rates, and r0i and r1i are random effects assumed multivariate normally 
distributed with mean 0 and variance-covariance matrix  
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The variance terms τ00 and τ11 capture the extent to which individuals vary in their 
initial status and rates of change, and τ01 represents the covariance between initial 
status and growth rates. 

 We now model π1i as a function of π0i as follows: 

π0i   = β00   + r0i            r0i ~ N (0, τ00) (3a) 

π1i   = β10   + b(π0i   - β00)   + r1i     r1i ~ N (0, τ11)     Cov(r0i , r1i ) = 0. (3b) 

Thus b is a latent variable regression coefficient capturing the amount of change that 
we expect in π1i  when π0i increases one unit (see, for example, Muthén & Curran, 
1997;  Raudenbush & Bryk, 2002;  Seltzer et al., 2003).  As in the previous model, τ00 

represents the extent to which individuals vary in their initial status.  τ11, however, 
now represents the amount of variance in growth rates that remains after taking into 
account differences in initial status.  Since we are conditioning on initial status in 
Equation 3b, we assume that Cov(r0i , r1i ) = 0.   

 Note finally that in Equation 3b we have centered π0i around the population 
mean for initial status (β00) (see also Blomqvist, 1977).  There are two reasons for 
doing so.  First, this gives β10 a useful interpretation; that is, β10 now represents the 
expected rate for an individual whose initial status is equal to β00.  And secondly, as 
will be discussed in a later section, centerings of this kind can greatly reduce the 
degree of autocorrelations among sampled values generated by the Gibbs sampler in 
applications involving latent variable regressions.  

Latent Variable Regression in a Three-Level Hierarchical Model (LVR-HM3) 

 We now extend the above two-level model and specify a simple LVR-HM3 in 
the context of a longitudinal school effects study.  For heuristic purposes, we do not 
include any observed student- or school-level predictors in the model at this 
juncture.  At level 1 (see Equation 4 below), the outcome value for student i, in 
school j (j = 1,…, J), at time t (Ytij), is modeled as a function of time (atij).  In a level-2 
(within-school/between-student) model, the rate of change for student i in school j 
(π1ij) is modeled as a function of initial status (π0ij).   
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Ytij = π0ij   +  π1ij atij  + εtij εtij ~ N (0, σ2) (4) 

π0ij  =  β00j  +  r0ij r0ij ~ N (0, τπ0j) (5a) 

π1ij  = β10j  + Bwj (π0ij - β00j) + r1ij   r1ij ~ N (0, τπ1j). (5b) 

 A key parameter in this model is Bwj, which is a latent variable regression 
coefficient capturing the relationship between initial status and rates of change in 
school j.  We refer to these coefficients as within-school initial status/rate of change 
slopes (Seltzer et al., 2003).  By virtue of centering π0ij around the mean initial status 
value for school j (i.e., β00j), β10j represents the mean rate of change for school j.  
Further, the level-2 random effects for the students in school j (i.e., r0ij, and r0ij) are 
assumed independently and normally distributed with mean 0 and variances τπ0j 
and τπ1j, respectively.  Note importantly that we allow the variances of r0ij, and r0ij to 
differ across schools.   

 School mean initial status (β00j), school mean rate of change (β10j), and the 
within-school initial status/rate of change slope for school j (Bwj) are treated as 
outcomes in a level-3 (between-school) model.  To convey some of the possibilities of 
our modeling approach, we can pose a level-3 model in which school mean rate of 
change (β10j ) and within-school initial status/rate of change slopes (Bwj) are modeled 
as a function of school mean initial status (β00j ): 

β00j  = γ000  +  u00j u00j ~ N (0, τβ00) (6a) 

β10j  =  γ100  + Bb (β00j  - γ000)  +  u10j u10j ~ N (0, τβ10) (6b) 

Bwj  = Bw_0  + Bw_1 (β00j  - γ000)  +  uBwj uBwj ~ N (0, τBw) (6c) 

Cov (u00j, u10j ) = 0, Cov (u00j, uBwj ) = 0, Cov (u10j, uBwj ) = τβ10,Bw 

In Equation 6a, γ000 represents the grand mean for initial status.  In Equation 6b, a 
latent variable regression coefficient, Bb, captures the relationship between school 
mean initial status and school mean rates of change.  In contrast to the Bwj 
parameters we term this a between-school initial status/rate of change slope.  By 
centering school mean initial status around the grand mean for initial status (γ000), γ100 

represents the expected rate of change when school mean initial status (β00j) is equal 
to γ000.  In Equation 6c, Bw_1 is a latent variable regression coefficient relating 
differences in school mean initial status to differences in within-school initial 
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status/rate of change slopes, and Bw_0 is the expected within-school initial 
status/rate of change slope when school mean initial status is equal to γ000.     

 The random effects in the above model (i.e., u00j , u10j , uBwj) are assumed 
multivariate normally distributed with mean 0 and variance-covariance matrix  

β00

β10 β10,Bw

Bw,β10 Bw

τ 0 0
0 τ τ
0 τ τ

 
 =  
 
 

uT    (6d) 

The variance term τβ00 captures the extent to which schools vary in their school mean 
initial status, and τβ10 and τBw are, respectively, residual variances for school mean 
rates of change and within-school initial status/rate of change slopes after taking 
into account school mean initial status.  With respect to the off-diagonal elements of 
Tu, we assume that Cov (u00j, u10j) = 0 and Cov (u00j, uBwj) = 0, since β00j  is employed as a 
predictor in Equations 6b and c.  τβ10,Bw captures the covariance between u10j and uBwj.  
Note that for later use we define the submatrix:  

β10 β10,Bw

Bw,β10 Bw

τ τ
τ τ
 

=  
 

2, 3T     .    (6e) 

As will be seen, observed predictors can easily be incorporated into the above LVR-
HM3.  In particular, β10j  and Bwj  can be modeled as a function of school-level 
characteristics of interest.   

Review of Various Extensions of Hierarchical Modeling and Structural Equation 

Modeling for Analyzing Multilevel Longitudinal Data 

 Recently, several pioneering researchers have developed strategies for 
incorporating latent variable regressions in hierarchical modeling settings (Chou et 
al., 2000; Muthén, 1997; Raudenbush & Sampson, 1999).  First, Raudenbush and 
Sampson’s approach (1999), which has been implemented in the latest release of the 
HLM software program (version 5; Raudenbush et al., 2000), can be applied in a 
variety of LVR-HM2 settings.  In this strategy, the regression coefficients for latent 
predictors are estimated by a two-stage procedure.  Consider, for example, the HM 
depicted in Equations 1, 3a and 3b.  We first fit a more standard model that does not 
contain latent variable regressions, which in this case would be the HM specified in 
Equations 1, 2a and 2b.  The resulting ML estimate of the level-2 variance-covariance 

matrix in Equation 2 would then be used to estimate b in Equation 3b, that is, 
∧
b  = 
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τ
∧

01 / τ
∧

00.  A two-step procedure would also be employed in more complex LVR-
HM2 settings.  Raudenbush and Bryk (2002) presented an example in which they 
wish to estimate an expected difference in rates of change in mathematics 
achievement between high school girls and boys, controlling for differences in status 
in Grade 8 mathematics achievement.  Thus the estimand of primary interest would 
be the coefficient for gender in the following level-2 model:  π1i = β10 + β11 GENDERi  
+ b π0i +  r1i.  Implementing the Raudenbush and Sampson (1999) approach would 
first entail fitting a standard growth model in which initial status and rates of 
change are modeled as a function of gender, thus yielding estimates of the difference 
in initial status between girls and boys, the unadjusted gender difference in rates of 
change, and a level-2 variance-covariance matrix conditional on gender.  These 
quantities provide the basis of estimating the LVR coefficient for π0i and an adjusted 
difference in growth rates (i.e., the direct effect of gender on growth rates) (see 
Raudenbush & Bryk, 2002, chapter 11).   

 In terms of three-level models, one could, for example, use HLM 5 to fit a three-
level model in which school mean growth rates are modeled as a function of school 
mean initial status.  Similar to the procedure for fitting a LVR-HM2 described above, 
this would first entail fitting a standard three-level model that did not contain latent 
variable regressions, and then using the ML estimates of the covariance between 
school mean growth rates and initial status, and the variance in school mean initial 
status to obtain an estimate of the desired LVR coefficient.   

 It is not possible, however, to use Raudenbush and Sampson’s (1999) two-step 
approach in fitting LVR-HM3 models in which student growth rates are modeled as 
a function of initial status in a level-2 (within-school) model, and within-school 
initial status/rate of change slopes are treated as varying across schools.  One 
possibility, however, would entail using HLM 5 to fit, for example, an LVR-HM2, 
such as the one specified in Equations 1, 3a and 3b, to the data for each of J schools 
in a sample.  Using the resulting ML estimates of b and their standard errors, we 
could then employ a meta-analytic modeling framework, thus enabling us to obtain 
estimates of the variance in within-school initial status/rate of change slopes across 
schools and model differences in such slopes as a function of school-level predictors.  
Note, however, that when the number of individuals per cluster is small (i.e., in 
situations where large sample properties of ML estimators likely do not apply), the 
resulting ML estimates of b and their standard errors may be problematic.  
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 A second approach can be found in Muthén’s work on multilevel SEM (Muthén, 
1994; see also Hox, 1993; Hox & Maas, 2000; Muthén, 1997; Muthén & Satorra, 1995).  
Essentially, this approach summarizes unbalanced nested data structures by means 
of within- and between-group variance-covariance matrices (see Muthén, 1994).  
Based on these matrices, the structural relations among within- and between-group 
variables can be estimated simultaneously using a multiple-group modeling 
technique.     

 In three-level hierarchical modeling settings where the numbers of level-2 and 
level-3 units are fairly large, the current implementation of the multilevel SEM 
approach allows us to estimate a pooled within-school initial status/rate of change 
coefficient and a between-school  initial status/rate of change coefficient.  However, 
as in the case of Raudenbush and Sampson’s (1999) approach, because a separate 
within-school variance-covariance matrix for each school is not estimated, we cannot 
treat latent variable regression coefficients as varying across schools. 

 Finally, Chou et al. (2000) presented a two-stage approach to multilevel SEM.  
Their approach is somewhat analogous to Burstein’s (1980) “slopes-as-outcomes” 
framework for analyzing multilevel data.  The first step of their approach entails 
fitting a very general mean and/or covariance structure model to the data for each 
cluster (e.g., school).  Parameter estimates for each cluster are then treated as 
outcomes in a between-school regression model.  In the case of the LVR-HM3 posed 
in Equations 4, 5 and 6, the first step would entail fitting the LVR-HM2 specified in 
Equations 1, 3a and 3b to the data for each school.  In the second step, estimates of b 
for the set of J schools would be regressed on estimates of school mean initial status; 
similarly, estimates of school mean growth rates would be regressed on estimates of 
school mean initial status as well.  Note that the second step is carried out via OLS.  
In contrast to employing a random effects meta-analytic model at this step, such an 
approach would not, for example, provide us with an estimate of the variance in 
initial status/rate of change slopes (τBw), nor would those clusters with more precise 
estimates of such slopes receive more weight in the analysis.  Note also that in 
applications in which cluster sizes (nj) are small, regressing estimates of b, or school 

mean rates, on estimates of school mean initial status (β
∧

00j) could result in attenuated 

estimates of the slopes relating school mean initial status to these outcomes. 
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The Logic of the Fully Bayesian Approach in Estimating LVR-HMs 

 We now discuss the logic of the fully Bayesian approach in LVR-HM settings 
and the use of the Gibbs sampler in implementing such an approach.  In doing so, 
we first focus on the LVR-HM2 specified in Equations 1, 3a, and 3b.  The fully 
Bayesian approach entails calculating the marginal posterior distributions of 
parameters of interest (e.g., b) from the joint posterior distribution of all unknowns 
in the model.  The joint posterior distribution is proportional to the product of the 
likelihood for the observed data and the prior specification for all unknowns.  The 
level-1 model depicted in Equation 1 provides the basis of the likelihood for the 
observed data, Equation 3a provides the prior specification for the π0i , and Equation 
3b provides the prior specification for the π1i .  To complete the prior specification we 
must also place priors on the variance components and fixed effects.  We assume 
that these parameters are independent a priori, which is a commonly employed 
assumption in applications of HMs, and for each of these parameters, we assume 
that all possible values are equally probable a priori and hence proportional to a 
constant (e.g., p(τ11) ∝ 1, (0 < τ11 < ∞)).  Such non-informative uniform priors are 
common in the literature (see, e.g., Browne & Draper, 2000; Gelman et al., 1995; 
Rubin, 1981; Seltzer, Novak, Choi, & Lim, 2002). Alternative prior specifications are 
discussed below.  Thus 

p(β00 , β10 , b, τ00 , τ11 , σ
2 , π0 , π1 , | Y)  ∝  

∏
=

N

i 1
∏
=

Ti

t 1

(1/σ2) exp [ - (1 / 2σ2)  ( Yti – [ π0i  + π1i ati ] )
2 ]  

×  ∏
=

N

i 1

(1 / τ00 )
1/ 2 exp [ - (1 / 2τ00)(π0i  - β00 )

2 ]  

×  ∏
=

N

i 1

(1 / τ11 )
1/ 2 exp [ - (1 / 2τ11)(π1i  - [ β10  +  b(π0i  - β00)] )

2 ] (7) 

where π0 = ( π0(1) , π0(2) , . . . , π0(N) )′, and  π1 = ( π1(1) , π1(2) , . . . , π1(N) )′.  Suppose, for example, 
that interest centers on drawing inferences concerning b.  Integrating over all other 
unknowns in the joint posterior yields the marginal posterior of b.  The difficulty is 
that the required integrations for obtaining marginal posteriors of unknowns in all 
but the simplest of HMs are intractable.  The virtue of the Gibbs sampler is that it 
provides an alternative means of obtaining marginal posterior distributions of 
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parameters of interest in complex modeling settings.  The Gibbs sampler, upon 
convergence, essentially yields draws from the joint posterior of all unknowns in a 
model.  From these sampled values, as will be seen below, we are able to simulate 
the marginal posterior of any parameter of interest (see, e.g., Gelfand et al., 1990; 
Morris, 1987). 

 To implement the Gibbs sampler, we subdivide the unknowns in the joint 
posterior into a number of subsets, such that it is easy to sample from the 
conditional posterior of each subset given the data and the current values (i.e., the 
most recently sampled values) for the other subsets of unknowns. 

 To illustrate, we now consider the form of the full conditional posterior 
distribution of the fixed effects in the level-2 equation in which rates of change are 
modeled as a function of initial status (i.e., βR = (β10 , b)′).  Given the data (Y) and all 
other unknowns, the parts of the joint posterior corresponding to the likelihood for 
the data and to the prior for the π0i reduce to constants.  Thus 

p( βR | Y, π1, π0, β00, τ11, τ00, σ
2 ) ∝ 

∏
=

N

i 1

(1 / τ11 )
1/ 2 exp [ - (1 / 2τ11)(π1i  - [ β10  + b(π0i  - β00)] )

2 ] . (8) 

Note that given π1 , π0 and τ11, we are essentially in a linear modeling setting in which 
we are modeling a set of outcomes (i.e., the π1i) as a function of a predictor variable 
deviated around its mean (i.e., π0i - β00), and where the residual variance (i.e., τ11) is 
known.  Based on standard Bayesian results for linear models (see, e.g., Box & Tiao, 
1973, chapter 2): 

βR | Y, π1, π0, β00, τ11, τ00, σ
2     ~    MVN2  (β

∧

R, τ11(X′X)-1) (9) 

where 

β
∧

R = (X′X)-1 X′π1 ,  (10) 

and 

0(1) 00  

0(2) 00

0(N) 00

1 (π - β )
1 (π - β )

 = 

1 (π - β )

 
 
 
 ⋅ ⋅
 
⋅ ⋅ 
 
 

X . 
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 For this particular application, we would sample sequentially from a series of 
six full conditional posteriors: (βR | .); (π1 | .); (π0 | .); (β00 | .);(τ00 | .); and (τ11 | .), 
where the notation “| .”  indicates that we are given the data and all other 
unknowns in the joint posterior (see, for example, Gilks et al., 1996).  Each of these 
conditional posteriors has a known distributional form (e.g., normal, inverse 
gamma) and can be sampled from readily. 

 In implementing the Gibbs sampler, we proceed sequentially through the steps 
of the algorithm, sampling once from each conditional posterior given the data and 
the current values of the other unknowns in the joint posterior.  Thus, for example, 
after completing the kth iteration or cycle of the algorithm, we would sample from the 
conditional posterior for βR (see Equation 9) with π1 = π1

(k), π0 = π0
(k), β00 = β00

(k), τ11= τ11
(k), 

τ00= τ00
(k) and σ2 = σ2 (k), thus yielding βR

(k+1) .   Upon convergence (k = C), the values 
generated for the parameters in the model in M subsequent iterations (i.e., (βR

(k), π1
(k), 

π0
(k), β00

(k), τ11
(k), τ00

(k), σ2 (k)), (k =  C +1, . . . , C + M)) would constitute M draws from the 
joint posterior.  Thus, with M set to a large value, the empirical distribution of the M 
values generated for any parameter of interest in the model (e.g., b (b(k), k = C + 1, . . . , 
C + M) would provide us with an accurate approximation of the marginal posterior 
distribution of that parameter (e.g., p(b|Y)). 

 In LVR-HM3 modeling settings, we can readily use the Gibbs sampler to obtain 
the marginal posterior distribution of any unknown of interest (e.g., Bw_1 in 
Equation 6c).  For example, a key step in implementing the Gibbs sampler in the case 
of the LVR-HM3 specified above would entail sampling from the full conditional 
posterior distribution of the fixed effects in the level-3 equations in which school 
mean rates of change (β10j) and within-school initial status/rate of change slopes 
(Bwj) are modeled as a function of school mean initial status (β00j): p(θ | .), where θ = 
(γ10   Bb   Bw_0   Bw_1)′.  In this step, we are given β10j and Bwj, that is, the outcomes 
in the second and third equations at level 3 (β(2,3) j  = (β10j  Bwj)′ ( j = 1, … , J)).  
Furthermore, we are given the centered predictor values (i.e., (β00j - γ000)), and we are 
given the variance-covariance matrix connected with the second and third equations 
in the level-3 model, that is, T2,3 in Equation 6e.  Thus, we are in a linear modeling 
setting where for each of J schools we have a set of outcomes (β(2,3) j) assumed 
bivariate normally distributed with conditional mean Wj θ and known variance-
covariance T2,3, where 
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00  000
   

00  000

1 (β - γ ) 0 0
= .

0 0 1 (β - γ )
j

j

 
 
 

Wj   (11) 

 Again placing uniform priors on the fixed effects and variance components 
over the range of possible values for these parameters, it can be shown that: 

θ | .  ~   MVN4(
∧

θ , Dθ),   (12) 

where 

∧

θ  = [∑
=

J

j 1
Wj′(T2,3)

-1 Wj ]
-1

 ∑
=

J

j 1
Wj′(T2,3)

-1β(2,3) j  (13) 

and 

Dθ = [∑
=

J

j 1
Wj′(T2,3)

-1 Wj ]
-1

.  (14) 

As in the case of the LVR-HM2 model discussed above, the joint posterior of all 
unknowns for the above LVR-HM3 can be subdivided into a number of subsets such 
that the full conditional posterior of each subset has a known distributional form 
and can be sampled from readily. Such Gibbs sampling formulations can be easily 
extended to more complex LVR-HM3 settings in which observed covariates are also 
included at any level of the model. 

An Illustrative Example Using Data From the LSAY 

 To help illustrate various possibilities that arise in employing LVR-HM3 in 
school effects research, we turn to analyses of the time series data for 2,628 students 
nested within 45 schools in the LSAY sample. We focus on mathematics 
achievement time series data collected at the start of Grades 7, 8, 9 and 10.  
Mathematics achievement scores are based on a scale that was developed using IRT 
methods. The mean achievement scores at Grades 7, 8 9 and 10 are, respectively, 
50.09, 53.74, 58.57, and 63.45 (see Table 1). The corresponding standard deviations 
are 9.97, 10.89, 12.56, and 13.63.   

 Extensive preliminary analyses of the data indicate that a linear model of 
individual growth (see Equation 4) tends to provide an adequate representation of 
growth (see Appendix for details). We discuss extensions of our framework to 
settings in which growth is nonlinear in a later section of our paper. 
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Table 1 

Descriptive Statistics Based on the LSAY Data 

 Variable name N Mean   SD 

Outcomes     

Math achievement at Grade 7 Y1ij 2,592 50.09 9.97

Math achievement at Grade 8 Y2ij 2,257 53.74 10.89

Math achievement at Grade 9 Y3ij 1,952 58.57 12.56

Math achievement at Grade 10 Y4ij 1,784 63.45 13.63

Student-level variables      

Home resources HOMERESij 2,628 2.54 1.14  

Behavioral problems BEHAV_PBLMSij 2,628 0.17 0.37

Educational expectations ED_EXPECij 2,628 4.00 1.41

School-level variables     

School mean home resources 
jHOMERES .  45 2.53 0.30

Teacher effort 
jTCHEFF.  45 4.41 0.55

 We first discuss the specification of priors for the fixed effects and variance 
components in our models.  Next, to help explore the heterogeneity in within-school 
initial status/rate of change slopes, we fit the two-level LVR model defined by 
Equations 1, 3a and 3b to each school’s data. We then fit the LVR-HM3 specified in 
Equations 4, 5 and 6 (Model 1), and then expand this model by including key 
observed student- and school-level covariates (Model 2). 

 Note that all examples were carried out using WinBUGS1.4 (Spiegelhalter, 
Thomas, Best,  & Lunn, 2003). Annotated copies of our programs are available upon 
request. 

 Specification of priors. For the fixed effects and variance components in our 
models, we employed diffuse priors, that is, priors that allow the data to dominate 
our inferences. Specifically, for the fixed effects, we specified normal priors with a 
mean of 0 and extremely low precision (i.e., 1.0E-5).  Such priors are functionally 
equivalent to uniform priors. 

 We placed uniform priors on all scalar variances (e.g., σ2  in Equation 4; τπ0j, τπ1j  (j 
=1, . . ., J) in Equations 5a and 5b; τβ00 in Equation 6a).  Models in WinBUGS are 
parameterized in terms of precisions (e.g., 1/τβ00) rather than variances (e.g., τβ00).  
Spiegelhalter et al. (2003) noted that placing uniform priors on scalar variances 
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translates to placing particular Pareto priors on scalar precisions.  Thus we 
employed Pareto priors of the form Pareto(1, .0001). 

 Finally, we consider the prior specification for the random effects variance-
covariance matrix connected with the level-3 equations for β10j and Bwj in our models 
(see, e.g., T2,3 in Equation 6e). In specifying priors for a random effects variance-
covariance matrix of dimension m, a common choice in the literature is to employ 
inverse Wishart (IW) priors with small degrees of freedom (ν) and scale matrix S. 
(Note that ν must be at least as large as m.) Such priors translate to Wishart priors 

with ν degrees of freedom and scale matrix S-1 for precision matrices (e.g., T
1

2,3

−
). (In 

WinBUGS, one is limited to specifying Wishart (W) priors for precision matrices 
connected with random effects assumed multivariate normally distributed.)   

 It is important to note that the mode of an IW or W prior will, for a given value 
of ν, depend critically upon one’s choice of S. Hence S must be chosen with care. In 
situations where there is little prior information concerning the variance 
components, one may try one’s best to use such information in choosing sensible 
values for S. However, one may find retrospectively that the mode of one’s prior 
conflicts substantially with the mode of the likelihood (e.g., the mode of L(T2,3)). This 
can have some undesirable consequences, especially when the number of clusters in 
a sample is small or moderate. For example, focusing on two-level HMs, Seltzer et 
al. (2002) noted that if the prior modes for random effects variance parameters are 
substantially smaller than the ML estimates of such parameters, the marginal 
posterior intervals of fixed effects of interest may in fact be appreciably narrower 
than those based on an empirical Bayes (EB) approach (i.e., an approach in which 
the ML estimates of the variance components are treated as the known, true values 
of such parameters).   

 An increasingly common approach that helps avoid such difficulties and 
attendant calibration problems involves using information based on the data at hand 
to help specify S (see Seltzer et al., 2002, and Browne & Draper, 2000, 2003). Such an 
approach is now the default in MLWin’s MCMC routines developed by Browne and 
Draper (see Rasbash et al., 2002). This approach gives rise to IW and W priors that 
are data-dependent, but with ν set to a small value, their information content is very 
low in relation to the likelihood. Thus we employed diffuse data-dependent priors 
for T2,3 in our analyses. See Endnote 1 for specific details, along with details 
concerning an alternative strategy that we also employed. (For important work on 
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the use and value of data-dependent priors in other modeling settings, see 
Wasserman, 2000, and Natarajan & Kass, 2000.)   

 As Wasserman (2000) and Browne and Draper (2003) noted, in settings in 
which little information is available a priori, it is useful to seek diffuse priors that 
yield posterior intervals for parameters of interest whose actual levels of coverage 
are close to nominal, and point estimates (e.g., posterior means) with low bias. We 
later present results from a simulation study that suggest that our strategy for 
specifying priors for the fixed effects and variance components in our models gives 
rise to results with such properties. 

 Assessing convergence. For assessing convergence and mixing of the Gibbs 
sampler, we examined trace plots and autocorrelation function (ACF) plots. For each 
analysis, we ran two chains using different starting values with a burn-in period of 
2,000 iterations, and ran each chain for an additional 30,000 iterations. We then 
compared results based on the two chains (e.g., posterior means and 95% intervals) 
and found them to be extremely similar in each of the analyses presented below. To 
help ensure results with high degrees of accuracy in each analysis, we pooled the 
two chains. Thus all results are based on a sample size of 60,000 deviates.  Using a 
Pentium IV 2.5 MHz machine, approximately 10 minutes of CPU time were required 
to complete 30,000 iterations of the algorithms for our LVR-HM3 analyses; 
considerably less time was required in the case of our LVR-HM2 analyses.   

 Heterogeneity in within-school initial status/rate of change slopes. To gauge 
the degree of heterogeneity in within-school initial status/rate of change slopes, we 
now fit the two-level LVR model defined by Equations 1, 3a and 3b to each school’s 
data using WinBUGS1.4. In these analyses we placed diffuse normal priors on the 
fixed effects and diffuse Pareto priors on the precision parameters 1/σ2, 1/τ00 and 
1/τ11 (i.e., Pareto(1, .001)). Note that at level 1 (Equation 1), ati  = (GRADEti – 7) where 
GRADEti takes on values from 7 – 10. As such, π0i represents the status of student i at 
the start of grade 7. 

 Figure 1 shows the resulting posterior mean and 95% interval for each school’s 
initial status/rate of change slope (b). Note that the horizontal reference line 
corresponds to the average of the posterior means for the 45 schools in our sample 
(i.e., 0.11).   
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Figure 1. School-by-school two-level LVR analyses: The marginal posterior mean and 
95% interval for each school’s initial status/rate of change slope (b). The horizontal line 
represents the average of the initial status/rate of change slopes for the 45 schools in 
our sample. The top, middle, and bottom lines of each bar correspond, respectively, to 
the .975 quantile, the mean, and the .025 quantile of the marginal posterior distribution 
of the initial status/rate of change slope for a given school. 

 The range of the posterior means is considerable; the smallest value is –0.03 
(School 22) and the largest is approximately 0.26 (School 13). Note further that the 
95% posterior intervals for 4 schools (i.e., approximately 9% of the sample) lie above 
or below the reference line (i.e., Schools 14, 18, 19 and 22). As can also be seen, the 
posterior intervals for 25 schools contain a value of 0, whereas the posterior intervals 
for the remaining 20 lie above a value of 0.   

 Note that we also obtained an estimate of b for each school and its standard 
error using HLM 5 (Raudenbush et al., 2000). The resulting point estimates and 95% 

intervals for b (i.e., 
∧
b±1.96 SE(

∧
b )), which are based on the ML estimation strategy 

outlined in Raudenbush and Sampson (1999), are very similar to those obtained via 
WinBUGS1.4.  For example, while the 95% intervals based on the Raudenbush and 
Sampson approach are slightly narrower than the fully Bayesian intervals shown in 
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Figure 1, the same four schools (i.e., 14, 18, 19 and 22) emerge as the ones whose 
intervals lie above or below the reference value of 0.11. 

Results for Model 1 

 As can be seen in Table 2, the posterior mean for the grand mean of initial 
status (γ000) is 49.72 points, and the posterior mean of the grand mean rate (γ100) is 3.85 
points per grade. Note that the posterior mean for the mean initial status/rate of 
change slope (Bw_0) is 0.101, which is similar to the value upon which the reference 
line in Figure 1 is based. Furthermore, we see that the lower and upper boundaries 
of the resulting 95% interval are 0.077 and 0.126, respectively. 

Table 2 

Model 1: Estimating Within-School Initial Status/Rate of Change Slopes (Bwj) and a Between-School 
Initial Status/Rate of Change Slope (Bb) 

 Mean SD 95% Interval Median Prop. > 0

Fixed effects       

Model for school mean initial status 
(β00j) 

     

Grand mean (γ000) 49.72 0.63 (48.47, 50.96) 49.72 1.0000 

Model for school mean rate of change 
(β10j) 

     

Grand mean (γ100) 3.85 0.15 (3.56, 4.14) 3.85 1.0000 

School mean init. status (Bb) 0.076 0.038 (0.001, 0.152) 0.076    .9759 

Model for within-school init. status/ 
Rate of change slope (Bwj) 

     

Mean init. status/Rate of change 
slope (Bw_0) 

0.101 0.012 (0.077, 0.126) 0.100 1.0000  

School mean init. status (Bw_1) –.006 0.003 (–0.013, 0.000) –0.006 .0275 

Variance components       

Level-1 error (σ2) 16.69  0.37 (15.97, 17.43) 16.68  

Level-3 variance       

Initial status (τβ00) 16.35 4.083 (10.060, 25.890) 15.780  

Rate of change (τβ10) 0.665 0.191 (0.370, 1.109) 0.638  

Init./Rate of change  slope (τBW) 0.002 0.001 (0.001, 0.004) 0.002  

Cov. (Sch. rate of change, Init./ 
Rate of change slope) 

–.017 0.010 (–0.040, 0.001) –0.016  

Note. Proportion of the values generated for a given parameter via the Gibbs Sampler that lie above 
a value of 0.  These proportions provide estimates of the marginal posterior probability that a given 
parameter exceeds a value of 0. 
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 The results for Bb indicate a positive relationship between school mean initial 
status and school mean rates of change, whereas the results for Bw_1 point to a 
negative relationship between school mean initial status and within-school initial 
status/rate of change slopes.  Note that the upper boundary of the 95% interval for 
Bw_1 just barely includes a value of 0.  However, the posterior probability that Bw_1 
exceeds a value of 0 is extremely small (0.028), and a 90% marginal posterior interval 
for Bw_1 (i.e., –0.012, –0.001) spans only negative values (see Figures 2 through 6 for 
the density plots of posteriors for γ000, γ100, Bb, Bw_0 and Bw_1). 

gamma000 sample: 60000
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0.0
0.2
0.4
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Figure 2. Density plot for γ000. 

gamma100 sample: 60000
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Figure 3. Density plot for γ100 . 

Bb sample: 60000

   -0.1     0.0     0.1     0.2

   0.0
   5.0
 10.0
 15.0

 
Figure 4. Density plot for Bb. 
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Bw0 sample: 60000
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Figure 5. Density plot for Bw_0. 

Bw1 sample: 60000
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Figure 6. Density plot for Bw_1. 

 We now consider the implications of these results from a practical standpoint 
and what they might disclose about patterns of change within and between schools. 
Note that in Table 2, the posterior mean of the variance in school mean initial status 
(τβ00) is equal to a value of 16.35. Though not shown in Table 2, the posterior mean of 
the standard deviation in school mean initial status ( 00βτ ) is approximately 4 points. 

As noted above, the posterior mean of the grand mean for initial status is 49.72 
points. In Figure 7 we display the expected trajectories for three schools with mean 
initial status values that are, respectively, 8 points (i.e., approximately 2 SDs) above 
a value of 49.72 (School A), equal to a value of 49.72 (School B), and 8 points below a 
value of 49.72 (School C). The expected trajectories for these schools are labeled with 
a darkened box.  

 We computed expected growth rates for students in these schools based on the 
posterior means for the grand mean rate (3.85) and for Bb (0.076). Thus, the expected 
growth rate for students in school A is 4.47 points per grade (i.e., 3.85 + 0.076*(8)), 
the expected rate for school B is 3.85, and the expected rate for school C is 3.25. In 
Figure 7 we see that expected rates decrease as school mean initial status decreases. 
However, even for schools whose initial status values differ substantially (e.g., 
Schools A and C), the difference in expected rates is fairly modest. The expected 
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Figure 7. Expected growth trajectories for three schools with mean initial status values that are, 
respectively, 8 points (i.e., approximately 2 SD) above a value of 49.72 (School A), equal to a value of 
49.72 (School B), and 8 points below a value of 49.92 (School C). The numbers attached to each line 
denote the differences between expected scores at Grade 10 and initial status values.  In other words, 
these are gain scores based on the fitted model. The number in the box denotes the expected 
difference at Grade 10 between a student who starts 12 points above a given school’s mean initial 
status value and a student who starts 12 points below the mean initial status value. 

gain in achievement for a student in School A over the course of 3 years is 3*4.47 = 
13.4 points, whereas the expected gain in achievement for a student in School C over 
the course of 3 years is 3*3.25 = 9.7 points. 

 Turning to the distribution of achievement within schools, we computed 
expected initial status/rate of change slopes based on the posterior means for Bw_0 

(0.101) and Bw_1 (–0.006). The expected initial status/rate of change slope for School 
A is 0.053 (i.e., 0.101 + (–0.006)*(8)), and the expected slopes for Schools B and C are 
0.101 and 0.149, respectively. This indicates that as school mean initial status 
decreases, differences in initial status within schools appear to be more 
consequential with respect to subsequent achievement. 
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 We now consider two students in School A whose initial status values are, 
respectively, 12 points above and below the mean initial status value for School A.  
Based on the expected rate and expected initial status/rate of change slope for this 
school, the initial gap of 24 points between two such students is expected to increase 
slightly by Grade 10 to a value of 27.8 points (see Figure 7).  In School C, however, 
we see that the initial gap of 24 points for students with initial status values 12 
points above and below the mean initial status value for school C, is expected to 
increase by more than 10 points by Grade 10 (i.e., 34.7 points). 

 It is instructive to examine the increases in the initial gaps in achievement for 
these schools more closely.  We first consider expected gains in achievement by 
Grade 10 for students with initial status values that are 12 points above the mean 
initial status values of their respective schools.  That is, we first focus on students 
with initial levels of achievement that are high in relation to the other students in 
their respective schools.  Based on the expected rates and expected initial status/rate 
of change slopes for these schools, the expected gains for such students are 
approximately 15 points in all three schools (see Figure 7). 

 The results are quite different, however, when we consider the expected gains 
in achievement for students with initial status values that are 12 points below the 
mean initial status values of their respective schools.  In the case of School A, the 
expected gain is substantial (11.5 points), but for School C, we see that the expected 
gain is rather minimal (i.e., 4.4 points) (see Figure 7).  Thus, the differences in the 
expected gains for such students would appear to underlie the differences that we 
see in the extent to which initial gaps in achievement become magnified over time in 
these schools. 

Results for Model 2 

 We now expand the level-2 (within-school) model as follows: 

π0ij  =  β00j  +  β01j (HOMERESij − ..HOMERES ) + β02j (ED_EXPECij − .._ EXPECED ) + 

β03j (BEHAV_PBLMSij − .._ PBLMSBEHAV ) + r0ij  r0ij ~ N (0, τπ0j)  

π1ij =  β10j  + Bwj (π0ij  − β00j) + β11j (HOMERESij − ..HOMERES ) +  

β12j (ED_EXPECij −  .._ EXPECED ) + β13j (BEHAV_PBLMSij − .._ PBLMSBEHAV ) + r1ij

 r1ij ~ N (0, τπ1j) (15) 

Cov (r0ij, r1ij ) = 0. 
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where HOMERESij, ED_EXPECij and BEHAV_PBLMSij are student-level measures of 
home resources, educational expectations and behavioral problems, respectively (see 
Endnote 2). Note importantly that Bwj is now the initial status/rate of change slope 
for school j holding constant the student characteristics that have been added to the 
model.   

 As can be seen in Equation 15, HOMERESij, ED_EXPECij and BEHAV_PBLMSij 
have been centered around their grand means. Following the terminology used in 
Raudenbush and Bryk (2002), β10j and β00j, by virtue of this centering, represent 
adjusted means for rate of change and initial status for school j. For example, if the 
relationship between student educational expectations (ED_EXPECij) and student 
rate of change (π1ij) is positive, and if the educational expectations of the students in 
school j are on average lower than the grand mean, the mean rate for school j would 
be adjusted upwards. Raudenbush and Bryk pointed out that such adjustments are 
analogous to the computation of adjusted treatment group means in ANCOVA 
analyses (2002, pp. 32-33). Note that such adjustments for the effects of student-level 
characteristics can facilitate, for example, the search for school practices and policies 
and other characteristics that may be related to rates of change.      

 The level-3 (between-school) model for Model 2 is as follows: 

β00j  =  γ000  +  γ001( jHOMERES .  – ..HOMERES ) + u00j   u00j ~ N(0,τβ00) 

β01j  =  γ010 

β02j  =  γ020 

β03j  =  γ030 

β10j  =  γ100   +  Bb*(β00j  – γ000)  +  γ101( jHOMERES . – ..HOMERES ) +  

γ102 ( jTCHEFF. –  ..TCHEFF ) + u10j u10j ~ N (0, τβ10) 

β11j  =  γ110 

β12j  =  γ120 

β13j  =  γ130 

Bwj    = Bw_0   + Bw_1 (β00j  – γ000)  +  Bw_2 ( jHOMERES . – ..HOMERES ) + 

Bw_3 ( jTCHEFF. – ..TCHEFF )  +  uBwj uBwj ~ N (0, τBw) (16) 

Cov (u00j, u10j) = 0 , Cov (u00j, uBwj) = 0, Cov (u10j, uBwj) = τβ10,Bw 
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where jTCHEFF.  is a measure of teacher effort and concern for school j (see Endnote 
3 for details), and jHOMERES .  is the average home resources measure for the sample 

of students in school j, thus constituting a measure of school j’s compositional 
characteristics.  As can be seen, random effects are specified in the equations for β00j , 
β10j and Bwj .  The variance in the coefficients of the observed student predictors in 
the level-2 model is constrained to 0 (i.e., β01j  =  γ010; β02j  =  γ020; β03j  =  γ030; β11j  =  γ110; β12j  =  
γ120; β13j  =  γ130).  

 We first focus on results concerning parameters of interest in the level-3 
equation for Bwj.  Bwj, as noted above, now represents the initial status/rate of 
change slope for students in school j holding constant the student-level predictors 
that we have included in the level-2 model, and Bw_0 represents the grand mean or 
population mean of Bwj. As can be seen in Table 3, the posterior mean of Bw_0 is 
0.08, which is somewhat smaller than the result we obtained when student 
background variables were not included at level 2 (i.e., 0.101; see Table 2). Note, 
however, that the lower boundary of the resulting 95% posterior interval (i.e., 0.058) 
is appreciably larger than a value of 0. 

 The results for Bw_2 signal that larger initial status/rate of change slopes are 
expected in schools with low mean home resource values. As jHOMERES .  decreases, 

initial gaps in achievement within a school are expected to become magnified over 
time.  It is important to note that jHOMERES .  is likely a proxy for a number of 

factors that potentially underlie this relationship.  In many schools with low 
jHOMERES .  values, appreciable numbers of students enter school with poor prior 

preparation. Such schools typically have limited resources and, in particular, may 
have insufficient resources for mounting the kinds of programs that could help 
promote more rapid growth among entering students with very low levels of initial 
achievement. Ability grouping (e.g., tracking) may also be much more prevalent in 
such schools. Probing these potential explanations would require conducting studies 
that attend carefully to within-school processes and practices. 

 We now turn to the results concerning key parameters in the model for school 
mean adjusted rates. As can be seen in Table 3, the posterior mean and resulting 95% 
interval for γ102 suggest that after adjusting for the student-level effects of 
HOMERESij, ED_EXPECij and BEHAV_PBLMSij, and holding constant school mean 
initial status and jHOMERES . , a 1-unit increase in teacher effort implies an increase 

in school mean rate of change of approximately two-thirds of a point per grade.  
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Table 3 

Model 2: Including Observed Student- and School-Level Predictors in the 3-Level LVR-HM 

 Estimate SE 95% Interval Median Prop. > 0

 Fixes effects      

Model for school mean initial status (β00j)      

Grand mean (γ000) 50.02 0.45 (49.14, 50.92) 50.02 1.0000 

School mean home resources (γ001) 6.45 1.56 (3.39, 9.51) 6.45 .9999 

Model for school mean rate of change (β10j)       

Grand mean (γ100) 3.905 0.115 (3.677 4.131) 3.905 1.0000 

School mean init. status (Bb) –.022 0.049 (–0.120, 0.074) –0.022 .3250 

School mean home resources (γ101) 1.191 0.504 (0.207, 2.195) 1.189 .9906 

Teacher effort (γ102) 0.657 0.207 (0.251, 1.064) 0.655 .9990 

Model for within-school init. status/Rate of 
change slope (Bwj) 

     

Mean of init. status/Rate of change slope 
(Bw_0) 

0.080 0.011 (0.058, 0.103) 0.080 1.0000 

School mean initial status (Bw_1) 0.002 0.005 (–0.007, 0.011) 0.002 .6491 

School mean home resources (Bw_2) –.095 0.043 (–0.180, –0.010) –0.095  .0143 

Teacher effort (Bw_3) –.016 0.018 (–0.051, 0.020) –0.016 .1875 

Effects of student-level characteristics on 
init. status (π0ij) 

     

Home resources (γ010) 0.998 0.157 (0.690, 1.305) 0.998 1.0000 

ED_EXPEC(γ020) 1.773 0.128 (1.522, 2.026) 1.772 1.0000 

BEHAV_PBLMS(γ030) 3.224 0.480 (–4.165, –2.283) –3.224 .0000 

Effects of student-level characteristics on 
rate of change (π1ij) 

     

Home resources (γ110) 0.063 0.060 (–0.055, 0.180) 0.063 .8521 

ED_EXPEC (γ120) 0.183 0.053 (0.076, 0.288) 0.183 .9998 

BEHAV_PBLMS (γ130) –.225 0.202 (–0.621, 0.168) –0.224 .1348 

Variance components      

Level-1 error (σ2) 16.67 0.38 (15.95, 17.43) 16.67  

Level-3 variance      

Initial status(τβ00) 7.768 2.144 (4.501, 12.84) 7.465  

Rate of change(τβ10) 0.376 0.124 (0.191, 0.668) 0.357  

Initial/rate of change slopes (τBW) 0.001 0.000 (0.000, 0.002) 0.001  

Cov. (School rate of change, initial/Rate 
of change slopes) 

–0.004 0.006 (–0.017, 0.007) –0.004   
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 (Note that a 1-unit increase in teacher effort represents an increase of slightly less 
than 2 standard deviations; see Table 1). 

 By virtue of the fact that we are adjusting for the student-level effects of 
HOMERESij (via the use of grand-mean centering at level 2), γ101 represents the 
contextual effect of home resources. (See Raudenbush and Bryk, 2002, for a detailed 
discussion of the estimation and interpretation of contextual effects, especially pp. 
135–141.) Thus, for example, consider two students who are similar in terms of 
HOMERESij but who attend schools that differ by one unit with respect to 

jHOMERES . .  γ101 represents the expected difference in rate of change for two such 

students, holding constant all other predictors in the model. The results suggest a 
contextual effect of home resources on a rate of approximately 1.2 points per grade. 
(As can be seen in Table 1, a 1-unit increase in jHOMERES .  represents an increase of 

nearly 3 standard deviations.) Note that a number of factors potentially underlie 
contextual effects, including differences in the quality of instructional programs, in 
the normative climate of schools, and in the quality of help that peers are able to 
provide one another with school work.    

 In contrast to Model 1, we see that school mean initial status, after the inclusion 
of the observed student- and school-level predictors in our model, is no longer a 
significant predictor of school mean rate of change and within-school initial 
status/rate of change slopes. Finally, comparing the posterior means of the level-3 
variance components with those in Model 1, we see that the inclusion of the 
observed predictors in Model 2 results in reductions in the random effects variance 
of β00j , β10j , and Bwj of  52.5%, 43.4%, and 50.0%, respectively. 

Re-Fitting Model 2 Under t Distributional Assumptions 

 In contrast to conducting analyses under normality assumptions, parameter 
estimates and intervals obtained under heavy-tailed distributional assumptions are 
less vulnerable to outliers. To gauge the sensitivity of our results to possible outliers 
(e.g., outlying time-series observations, students or schools), we re-fit Model 2 
employing t distributional assumptions with small degrees of freedom (ν = 4) at 
each level: εtij ~ t4(0, σ2); r0ij ~ t4(0, τπ0j), r1ij ~ t4(0, τπ1j); u00j ~ t4(0, τβ00), (u10j , uBwj) ~ MVT4 
(0, T2,3) (see Endnote 4).  Note that fitting HMs under t distributional assumptions 
can be carried out via the Gibbs sampler using the scale mixture of normals 
representation of the t (e.g., εtij ~ N (0, σ2 /ωtij),  ωtij ~ 2

νχ
− / ν) (see e.g., Carlin, 1992; 
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Racine-Poon, 1992; Seltzer, 1993; Seltzer et al., 2002; Spiegelhater, Best, Gilk, & 
Inskip, 1996). This strategy provides the basis of t modeling in WinBUGS1.4.  

 We found that the resulting posterior means and 95% intervals for the 
parameters in Model 2 based on t assumptions tended to be extremely close to the 
corresponding posterior means and intervals based on normality assumptions.  The 
largest change occurred for the fixed effect capturing the relationship between  

jHOMERES .  and Bwj (i.e., Bw_2).  Specifically, there is a small upward shift in the 

posterior mean (–.080) and 95% interval (–.165, .002) for Bw_2 (versus a posterior 
mean of –.095 and an interval of (–.177, –.014) under normality).  Thus the evidence 
of a negative relationship between  jHOMERES .  and Bwj is slightly weaker under 

heavy-tailed assumptions.  Note, however, that the marginal posterior probability 
that Bw_2 < 0 is still very high under t assumptions, that is, 0.975 (versus 0.989 
under normality assumptions). 

Improving the Performance of the Gibbs Sampler: The Use of Different 

Centerings in the LVR-HM3 

 In implementing the Gibbs sampler in HM settings, we need to be alert to the 
possible occurrence of poor mixing, that is, situations in which successive values in 
the chains generated for one or more parameters in a given model are highly 
autocorrelated. When mixing is poor, it can be difficult to assess convergence of the 
Gibbs sampler. Even if one is reasonably confident that the sampler has converged, 
it is difficult to know whether all regions of the joint posterior have been adequately 
traversed in a given set of M iterations. 

 One strategy to reduce high posterior correlations and improve mixing is to 
center the covariates in one’s model (see Gilks et al., 1996, chapter 6; Spiegelhalter et 
al., 2003). In this section we focus on the importance of centering latent variable 
predictors. Thus in the case of our models, one option would be to center student 
initial status around its school mean (i.e., π0ij  − β00j) and to center school mean initial 
status around the grand mean (i.e., β00j  – γ000).  We explored the effects of using 
various centerings on the performance of the Gibbs sampler in estimating Model 2. 

 No centering of latent variable predictors at levels 2 and 3 

π0ij – β00j (level-2 centering) 

β00j – γ000 (level-3 centering) 

π0ij – β00j ; β00j – γ000 (centering at levels 2 and 3). 
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Note that the performance of the Gibbs sampler for each of the above conditions was 
monitored by means of computing autocorrelations among the deviates in a chain. 
Plots of a series of autocorrelations (i.e., autocorrelation functions [ACF] plots) 
provide an important tool for assessing mixing.     

 In Table 4 for each condition, we categorize parameters based on whether their 
ACF values are smaller than .10 at a series of different lag (k) values. Note that the 
autocorrelation functions (ACF) in Table 4 are constructed based on 4,000 deviates 
for each parameter generated over iterations 2,001 to 6,000 of the Gibbs sampler. 

Table 4 

Comparison of the Performance of the Gibbs Sampler Employing Different Centerings in Model 2: 
Parameters With Autocorrelation Function (AFC) Values Below .10 at Lag = k (ρ(k) < .10) 

 No  
centering 

Level-2  
centering 

Level-3  
centering 

Centering at  
levels 2 and 3 

ρ(k) < .10 
k = 5 

γ000, γ001, γ010, γ020, 
γ030,σ

2,τβ00 

γ000, γ001, γ010, γ020, γ030, 
γ102, σ

2,τβ00 
γ001, γ010, γ020, γ030, σ

2, 
τβ00 

γ000, γ001, γ010, γ020, γ030, 
τβ00 

ρ(k) < .10 
k = 10 

 γ110,τβ10 γ000 γ102, γ100, τβ10 

ρ(k) < .10 
k = 50 

γ110, γ120, γ130, 
τBw 

Bw_3, γ120, γ130, τβ10 γ110, γ120, γ130, τBw Bb, Bw_0, Bw_1, 
Bw_2, Bw_3, γ101, 
γ110, γ120, γ130, σ

2,τBw 

ρ(k) < .10 
k = 100 

Bw_2, Bw_3, 
γ101, γ102, τβ10 

 Bb,Bw_0, Bw_1, 
Bw_2, Bw_3,  γ100,  
γ101, γ102, τβ10 

 

ρ(k) < .10 
k = 150 

    

ρ(k) < .10 
k = 200 

    

ρ(k) < .10 
k = 250 

    

ρ(k) > .50 
k = 300 

Bb,  Bw_0, 
Bw_1, γ100 

Bb, Bw_0, 
Bw_1, Bw_2, γ100, γ101
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 First, for condition 1, (i.e., no centering at levels 2 or 3), ACF values for γ000, γ001, 
γ010, γ020, γ030, γ020, σ

2, and τβ00 are smaller than .10 at k = 5, while the ACF values for Bb, 
Bw_0, Bw_1, and γ100 are very high even at k = 300. Note that γ100 and Bb are fixed 
effects in the level-3 equation for β10j (school rates of change) and Bw_0 and Bw_1 are 
fixed effects in the level-3 equations for Bwj  . The ACF values at k = 300 for those 
four parameters are .59, .63, .63, and .62, respectively. Thus for γ000 , for example, the 
autocorrelations are decreasing very quickly and are close to 0 before k = 5 (see 
Figure 8). In contrast, for γ100 , the autocorrelations hardly decrease as k increases (see 
Figure 9). 

Figure 8. Plot for γ000 : An example of good mixing. 

 

Figure 9. Plot for γ100 : An example of poor mixing. 
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 With centering at level 2, we see that there is still a set of fixed effects in the 
level-3 equations for β10j and Bwj for which mixing is extremely poor. With centering 
at level 3, autocorrelations for all parameters are less than .10 by lag 100. Finally, we 
see a further improvement in mixing for fixed effects in the level-3 equations for β10j 

and Bwj when centering is employed at levels 2 and 3. As can be seen, ρ < .10 by k = 
50. We have found that this general patterns tends to hold in fitting numerous LVR-
HM3s to the LSAY data (Choi, 2002).  

Simulation Study 

 We conducted a small-scale simulation study to examine issues of coverage 
and bias connected with our fully Bayesian approach to estimating LVR-HM3s. In 
particular, we focused on the actual levels of coverage of nominal 95% posterior 
intervals for the fixed effects in the LVR-HM3, and on the degree of bias of the 
marginal posterior means for the fixed effects, employing diffuse priors for the fixed 
effects and variance components as outlined above (see also Endnote 1).   

 The design of this simulation study is based on Model 1. Specifically, we 
generated 300 data sets using our results based on Model 1 (i.e., the posterior means 
in Table 2) as true values for the parameters in the model. Note that the posterior 
means of τπ0j and τπ1j ( j = 1, …, J) were used as true values for the level-2 variance 
components. Mirroring the structure of the LSAY sample, each data set consists of 
8,585 simulated time series observations nested within 2,628 students, who in turn 
are nested within 45 schools. We fit Model 1 to each simulated data set using 
WinBUGS1.4.  For each data set we employed a burn-in period of 2,000 iterations 
and then ran the Gibbs sampler for an additional 80,000 iterations. Thus the 
posterior mean and (nominal) 95% posterior interval for each fixed effect (i.e., γ000, γ100, 
Bw_0, Bw_1, Bb) were based on a sample of 80,000 deviates. 

 From the 300 95% posterior intervals obtained for a given fixed effect (e.g., 
Bw_1) we calculated the percentage of intervals that captured the corresponding 
true value used to generate the data. We also used the 300 posterior means obtained 
for a given fixed effect to compute the degree of bias and relative bias.   

 Table 5 summarizes the simulation results. We can see that the actual levels of 
coverage for nominal 95% fully Bayesian intervals for all of the fixed effect 
parameters are very close to 95%.  In addition, the resulting marginal posterior 
means are on average very close to the corresponding true values. Note that the bias 
and relative bias of the posterior means for γ000, γ100, Bw_1, and Bb are negligible. As 
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Table 5 

Summary of the Simulation Study: Posterior Means, Bias, Relative Bias, and Actual Levels 
of Coverage of Nominal 95% Iintervals 

 
 
 
Parameter 

 
 

True value 
(θ) 

 
Average 
posterior 
mean(s) 

 
 

Bias  
(s-θ)  

 
 

Relative bias 
(s-θ)/(θ)  

Actual 
coverage of 

nominal  
95% intervals

γ000 49.72 49.709 –.0011 –.000 .948 

γ100 3.86 3.857 –.0028 –.001 .957 

Bw_0  .089 .084 –.005 –.056 .943 

Bw_1 –.005 –.005  .000024 .005 .950 

Bb .076 .0763 .0003  .004 .953 

can be seen, the resulting posterior means of Bw_0 are on average slightly negatively 
biased (.084 vs. .089), with a relative bias of 5.6%. Though this is a small-scale 
simulation, the results suggest that our fully Bayesian approach to estimating LVR-
HM3s is extremely promising with respect to coverage and bias, especially when we 
consider that the number of schools in our simulated data sets and the number of 
students per school were moderate in size. 

Discussion 

 There are many research settings, particularly in education, in which 
individuals are observed on only two occasions (e.g., at the start and end of a school 
year), and interest centers on individual change (e.g., learning) during that span of 
time. When standard errors of measurement are available, it is possible to 
implement LVR-HM3s in such situations. For example, let Y1ij and Y2ij represent, 
respectively, the math achievement scores at the start and end of the school year for 
student i in school j, with standard errors of measurement SE(Y1ij) and SE(Y2ij). We 
pose a level-1 model of the following form: 

1
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Y
Y

i

i
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1 0
1 1
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π
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 2
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ε
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 (17) 

and scale the left- and right-hand sides of Equation 17 by the inverse of the standard 
errors of measurement for student i such that ε1i ~ N (0, 1) and ε2i ~ N (0, 1). In a 
level-2 (e.g., within-school) model, we can then model the latent gains (π1i) for the 
students in school j as a function of initial status (π0i). Initial status/latent gain 
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slopes, along with school mean gains and initial status, can then be treated as 
varying across schools in a level-3 model.   

 In settings in which individuals are observed on four or more occasions and 
individual growth exhibits curvature, several options are available. First, in an 
approach that can be viewed as an extension of the above strategy for two time-
point settings, one could fit a quadratic model to each student’s time-series data via 
OLS, and, based on an individual’s fitted trajectory, obtain estimates of initial status 

(Y
∧

1ij) and final status (Y
∧

2ij). Note that residuals from the fitted trajectories (Y
∧

tij – [( π
∧

0ij  

–  π
∧

1ij atij + π
∧

2ij 
2
tija ]) could be used to obtain a pooled estimate of within-person 

variance(σ
∧

2), which, in turn, could be used in computing standard errors for Y
∧

1ij and 

Y
∧

2ij ( SE(Y
∧

1ij), SE(Y
∧

2ij) ).  Replacing   (Y1i  Y2i  )′  with (Y
∧

1ij   Y
∧

2ij )′  in Equation 17 and 
scaling the left- and right-hand sides by the inverse of the corresponding standard 
errors, we can then model latent gains as a function of initial status and pose level-2 
and level-3 models similar to those illustrated above.   

 Another possibility, which requires further research, entails posing a quadratic 
model for individual growth at level 1, employing initial status (π0ij) as a predictor of 
initial rate (π1ij) and acceleration (π2ij) at level 2, and treating initial status/initial rate 
slopes and initial status/acceleration slopes as varying across schools. A possible 
strategy for studying the relationship between initial status and instantaneous rates 
at later points in time is briefly discussed in Endnote 5. 

 As discussed at the outset, LVR-HM3s have valuable applications in 
longitudinal multi-site studies of programs. Of particular interest are multi-site 
studies in which data are collected at several points in time prior to the start of a 
treatment, and then at several points during the treatment phase. In such instances, 
one could pose a within-site model in which rates of change during the treatment 
phase are modeled as a function of final status or rates of change during the pre-
treatmental phase. It may be the case that individuals with extremely low final 
status values or with markedly slow rates of change in the pre-intervention phase 
make little subsequent progress in some sites, but substantial progress in others. Are 
such differences related to differences in certain aspects of program implementation 
across sites? Question of this kind could be addressed via the kinds of models 
discussed in this report.   
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 In the case of cross-sectional studies, and two-time-point studies in which 
student pretest measures are employed as covariates, the heterogeneity in within-
cluster slopes is often of substantive interest. In analyses of the High School and 
Beyond (HSB) data, for example, investigations have focused on the question of 
whether within-school SES/achievement slopes are flatter in Catholic schools than 
public schools (see, e.g., Raudenbush & Bryk, 1986). In studies of instruction, 
researchers have examined whether class mean achievement is higher and 
pretest/posttest slopes flatter when teachers employ particular instructional 
practices (see, e.g., Cronbach, 1976; Seltzer, 1995). When standard errors of 
measurement are available, we can, in the LVR-HM3 framework, employ a 
measurement model at level 1, pose within-cluster models in which latent variable 
outcomes are modeled as a function of latent variable predictors (level 2), and treat 
the corresponding LVR coefficients as varying across clusters (level 3). This strategy 
can help overcome possible attenuation problems connected with employing 
observed predictors at level 2. In summary, the LVR-HM3 framework that we have 
presented would appear to be of potential value in a variety of research settings. 
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Endnotes 

1. In the case of each of our LVR-HM3s, we first treated u10j and uBwj as univariate 
normally distributed (i.e., u10j ~  N (0, τβ10);  uBwj ~ N (0, τBw); τβ10,Bw = 0), and placed 
Pareto priors on 1

β10τ− and 1
Bwτ− .  (Note that re-fitting hierarchical models with random 

effects covariances set to 0 provides a means of checking for possible model mis-
specification; see Raudenbush & Bryk (2002, p. 272).  In each of these analyses we 

found the modes of p(τβ10| y) and p(τBw | y), which we denote τ
∧

β10 and τ
∧

Bw . 

 From Zellner (1971), note that if a priori T2,3 ~ W-1(3, S), then a priori τβ10 and τBw 
are inverse χ2 distributed with 2 degrees of freedom: τβ10 ~ χ-2 (νIC = 2, S11) ; τBw ~ χ-2 (νIC 

= 2, S22), where S11 and S22 are the diagonal elements of S.  From the properties of the 
inverse χ2 distribution, the modes of p(τβ10) and p(τBw) are, respectively, S11 / (νIC + 2) 
and S22 / (νIC + 2).  Based on a strategy detailed in Seltzer et al. (2002, pp. 214-218), we 

chose S11 and S22 so that the modes of p(τβ10) and p(τBw) are equal to τ
∧

β10 and τ
∧

Bw , 

respectively (i.e., S11 = τ
∧

β10 × 4; S22 = τ
∧

Bw × 4).  Thus, in the case of Model 1: 

1
2, 3

2.57 0
T ~ 3,

0 .005
W −   

  
  

;  

for Model 2: 1
2, 3

1.434 0
T ~ 3,

0 .0036
W −   

  
   

. 

2. We have three observed student characteristics variables. First, the variable 
ED_EXPECij captures a student’s educational expectations at the start of Grade 7. 
This variable takes on 5 possible values: 1 = high school degree; 2 = vocational 
training; 3 = 2-year college; 4 = 4-year college; 5 = masters degree; 6 = doctorate or 
professional degree. Secondly, BEHAV_PBLMSij is a measure of student behavioral 
problems obtained at the start of Grade 7. It takes on a value 1 if a student reported 
that he or she had ever been suspended, arrested by the police, or had considered 
dropping out (0 otherwise). Third, HOMERESij is a measure of a student’s home 
resources obtained at the start of Grade 7. It is the sum of a student’s responses to 
questions concerning whether the student has his or her own place to do homework, 
owns a computer, has his or her own room, and has more than 50 books in his or her 
home. A response of “yes” to each question is coded 1 (0 otherwise).  Thus possible 
values for this variable range from 0 to 4.  
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3. The teacher effort variable is based on averaging teachers’ responses to the 
following two questions: “I sometimes feel it is a waste of time to try to do my best 
as a teacher”; and “The teachers in this school push the students pretty hard in their 
academic subject.” Each question is measured on a 5-point Likert scale ranging from 
1 (strongly disagree) to 6 (strongly agree). Note that the teacher effort variable was 
measured based on the responses of the science and math teachers in the sampled 
schools to a questionnaire administered in spring 1988 when students in the sample 
were in Grade 7.     

4. Paralleling the strategy detailed in Endnote 1, we first treated u10j and uBwj as 
univariate t distributed, and placed Pareto priors on 1

β10τ− and 1
Bwτ− .  The marginal 

posterior modes of τβ10 and τBw were then used to obtain values for S11 and S22, as in 

the MVN case.  Thus 1
2, 3

1.025 0
T ~ 3,

0 .0026
W −   

  
   

 . 

5. Consider a quadratic model for individual growth: 

Ytij  = π0ij   +  π1ij atij  + π2ij 
2
tija  + εtij            εtij ~ N (0, σ2) .        

Suppose that each person is observed on 5 occasions, corresponding to atij  values of 
0, 1, 2, 3, 4.  If we are interested in how differences in initial status relate to 
differences in change, one thing we could do is employ initial status as predictor of 
acceleration and initial rate:   

π0ij  =  β00j  +  u0ij (a) 

π1ij  = β10j  + B1wj (π0ij - β00j) + u1ij  (b) 

π2ij  = β20j  + B2wj (π0ij - β00j) + u2ij  . (c) 

It can be shown that the instantaneous rate of change at a given point in time for 
person i in school j is :  π1ij  +  2π2ij atij.  Thus, for example, student i’s rate at atij = 2 
would be equal to π1ij  +  4π2ij.  Furthermore, if we were to modify Equation b as 
follows: 

π1ij  = β10j  + B1wj (π0ij - β00j) - 4π2ij + u1ij , (d) 

then B1wj in Equation d would capture the relationship between initial status and rate 
at atij = 2 for students in school j.  To help see this, note that if we were given π0ij, π1ij 
and π2ij in a step of the Gibbs sampler, then Equation d could be re-written as: 

π1ij  + 4π2ij  = β10j  + B1wj (π0ij - β00j) + u1ij . (e) 
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In a personal communication, Spiegelhalter pointed out that an aspect of this 
approach that requires further investigation is the specification of the prior of the 
variance-covariance matrix for u1ij and u2ij.  
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Appendix 

 In our analyses, individual growth is modeled as a linear function of GRADE.  
Extensive preliminary analyses that we conducted pointed to this as being a fairly 
adequate representation of individual growth.  Specifically, we first inspected 
displays of the time series data for the students in each school.  Next, using the HLM 
5 program (Raudenbush et al., 2000), we fit two different two-level HMs to each 
school’s data.  In the first HM (Model A), we specified a linear model for individual 
growth, and in the second we specified a quadratic model (Model B).  Model A is 
identical to the HM specified in Equations 1, 2a and 2b, and Model B is as follows: 

Yti = π0i   +  π1i ati  +   π2i 
2
tia   +    εti         εti ~ N (0, σ2), (A1) 

π0i   = β00   +  r0i r0i ~ N (0, τ00) (A2) 

π1i   = β10   +  r1i r1i ~ N (0, τ11)  (A3) 

π2i   = β20   +  r2i r2i ~ N (0, τ22) , (A4) 

where, for the students in a given school, π0i and π1i  represent, respectively, the 
status and rate of change for student i at the start of Grade 7 (i.e., GRADE = 0), and 
π2i captures the acceleration or deceleration connected with student i’s trajectory (i.e., 
π2i is the quadratic component for student i). At level 2, β00, β10 and β20 represent, 
respectively, the mean initial status, mean initial rate and mean quadratic 
component for the students in a given school, and the variability among students in 
their initial status, initial rate and curvature is captured by τ00, τ11 and τ22 . The level-2 
model also includes the following covariance terms: Cov (r0i ,r1i ) = τ01 = τ10; Cov (r0i ,r2i ) 
= τ02 = τ20; and Cov (r1i ,r2i ) = τ12 = τ21 . 

 In fitting Models A and B to each school’s data, we found that for 37 of 45 
schools in our sample, the estimate of the fixed effect for the quadratic component 

(β
∧

20) was not statistically significant.  Furthermore, for each of these 37 schools, a 

likelihood ratio test revealed no improvement in fit based on a model in which the 
quadratic component was allowed to vary across individuals versus a model in 
which the variance in the quadratic component was constrained to a value of 0 (i.e., 
τ22 = 0). 

 Of the remaining 8 schools, β
∧

20 is statistically significant for schools S11, S28 

and S43, and there is evidence that τ22 is non-zero in the case of schools S19, S37 and 
S45.  For 2 schools, S10 and S12, there is evidence that both β20 and τ22 are non-zero. 
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 For each of these schools, how different from a practical standpoint are the 
results regarding various key aspects of change based on the use of a linear model 
and a quadratic model for individual growth?  To address this question, we will 
focus on differences in estimates of initial status under the two models, and 
differences in estimates of final status conditional on particular values of initial 
status. 

 Again conducting HM analyses school by school, for each student in a given 
school we computed an empirical Bayes (EB) estimate of initial status based on the 
HM for quadratic growth specified above, and an EB estimate of initial status based 
on the HM for linear growth specified in Equations 1, 2a and 2b; we term these 
estimates *

0π iQ and *
0π iL , respectively. We then computed the difference between these 

estimates: DIFF0i = *
0π iL - *

0π iQ . Next, we computed the mean DIFF0i value for each of 

the 8 schools (M (DIFF0i)), as well as the SD of the differences (SD (DIFF0i)).  

 As can be seen in Table A1, the smallest mean difference is –.05 points (S19), 
and 7 of 8 schools have mean differences under 1 point. The largest mean difference 
is 1.59 points (S11). In terms of the standard deviations of the differences, the 
standard deviations for 5 of the schools range from 0.57 to 0.80; 2 schools (S12 and 
S28) have standard deviations of 1.09 and 1.21, respectively, and the largest standard 
deviation is 1.86 (S45). 

Table A1 

Comparing EB Estimates of Initial Status Based on Linear and Quadratic Models for 
Individual Growth 

School # M (DIFF0i) SD (DIFF0i) σ
∧

L  – σ
∧

Q ( τ
∧

00 L)
1/2 – ( τ

∧

00 Q)1/2

S10 –.72 .68 3.77 – 3.22 = 0.55 7.24 – 7.13 = 0.11  

S11 –1.59 .79 4.38 – 3.56 = 0.82 8.83 – 8.63 = 0.2  

S12 .51 1.09 4.20 – 3.62 = 0.58 9.40 – 10.22 = –0.82

S19 –.05 .61 3.91 – 3.10 = 0.81 7.16 – 6.93 = 0.23  

S28 –.74 1.21 4.62 – 4.14 = 0.48 9.52 – 10.16 = –0.64 

S37 .13 .80 3.21 – 2.63 = 0.58 7.16 – 7.53 = –0.37  

S43 –.83 .57 4.28 – 4.06 = 0.22 5.80 – 5.51 = 0.29  

S45 .15 1.86 4.51 – 3.82 = 0.69 7.05 – 8.18 = –1.13 
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 To put these mean differences and SD (DIFF0i) values in perspective, note that 
estimates of the level-1 (within-student) standard deviation parameters under these 

two models ( Lσ
∧

; Qσ
∧

) for the 8 schools range from 2.63 to 4.62, and estimates of the 

standard deviation in initial status under the two models (( τ
∧

00 L)
1/2; ( τ

∧

00 Q)1/2) range 
from 5.51 to 10.22.  Against this backdrop, the differences between π*

0iQ and π*
0iL that 

we tend to see within each of the 8 schools are relatively small.     

 Comparing the estimates of the standard deviations in initial status under the 

two models (i.e., ( τ
∧

00 L)
1/2; ( τ

∧

00 Q)1/2), we see that the estimates are extremely similar, 
with differences ranging between 0.11 and 1.13.  In addition, comparing the 
estimates of σ obtained under the two models, we see that the differences are 
relatively small, ranging between values of 0.22 and 0.82. 

 We now focus on the relationship between initial status and subsequent change 
in these 8 schools.  Specifically, we examine differences in estimates of final status 
conditional on particular values of initial status when we employ quadratic and 
linear models for individual growth. Employing the quadratic level-1 model 
specified in Equation A1, we can investigate the relationship between initial status 
and growth via a level-2 model of the following form: 

π0i   = β00Q   + r0i r0i ~ N (0, τ00) (A5) 

π1i   = β10Q   +  b1(π0i)   +    r1i r1i ~ N (0, τ11)  (A6) 

π2i   = β20Q   +  b2(π0i)   +    r2i r2i ~ N (0, τ22)  (A7) 

In Equation A6, b1 relates differences in initial status to differences in initial rate, and 
in Equation A7, b2 relates differences in initial status to differences in curvature. 

 Based on such a model, it is then useful to compare the expected final status 
(i.e., achievement in the fall of Grade 10 (ati = 3)) for a student whose initial status is 
relatively high versus a student whose initial status value is relatively low.  
Consider, for example, school S28.  We fit the model defined by Equations A1, A5, 
A6, and A7 to the data for S28 using the latent variable modeling feature in HLM 5, 
and then computed the expected final status (FS1Q) for a student who is 8 points 

above the mean initial status estimate for that school (i.e., IS1 = β
∧

00Q + 8), and the 

expected final status (FS2Q) for a student who is 8 points below that school’s mean 

initial status estimate (i.e., IS2 = β
∧

00Q  - 8).  (Note that the average ( τ
∧

00)
1/2 value in 

Table A1 is approximately 8 points.) For school 28, we see that IS1 = 58.12 and IS2 = 
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42.12 (see Table A2).  To compute FS1Q and FS2Q, we substitute the right hand side of 
Equations A6 and A7 into Equation A1 and then proceed as follows: 

FS1Q =  IS1  +  (β
∧

10Q  +  b1(IS1) ) *3   +    (β
∧

20Q  +  b2(IS1) ) *9 (A8) 

and 

FS2Q =  IS2  +  (β
∧

10Q  +  b1(IS2) ) *3   +    (β
∧

20Q  +  b2(IS2) ) *9 (A9) 

As can be seen in Table A2, the FS1Q and FS2Q values for S28 are, respectively, 70.80 
and 54.90 points.  The expected difference in final status between two students in 
S28 who are, respectively, 8 points above and 8 points below the mean initial status 
estimate for that school is:  GAPQ =  FS1Q – FS2Q  =  15.90 points.  Thus the initial 
difference between two such students at the outset (i.e., 16 points) remains virtually 
unchanged based on this analysis. 

 We proceeded in a similar manner for each school.  Consider, for example, S19.  
Note that for this school IS1 = 45.97 + 8 = 53.97, and IS2 = 45.97 – 8 = 37.97.  The 
corresponding expected final status values are FS1 = 69.02 points and FS2 = 42.78 
points, respectively.  Thus for two such students, who are 16 points apart at the 
outset, the expected difference by fall of Grade 10 is approximately 10 points wider 
(i.e., GAPQ = 26.24).  As can be seen in Table A2, the GAPQ values for the set of 8 
schools range from 15.90 to 26.24. 

 Using the same IS1 and IS2 values in Table A2, we then computed expected 
final status values for each school based on a linear model for individual change 

Table A2 

Comparisons of Final Status Values Based on Quadratic and Linear Models for Individual Growth 

 
School β

∧

00 Q 

    IS1 

(β
∧

00 Q + 8) 

    IS2 

(β
∧

00 Q – 8) 
 

FS1Q 
 

FS2Q 
GAPQ 

(FS1Q –FS2Q) 
 

FS1L 
 

FS2L 
GAPL 

(FS1L –FS2L) 
DIFFGAP 

(GAPL –GAPQ)

S10 56.89 64.89 48.89 79.32 60.09 19.23(4) 79.62 57.52 22.10(5) 2.87 

S11 56.90 64.90 48.90 78.48 61.12 17.37(3) 78.82 59.93 18.89(3) 1.52 

S12 48.02 56.02 40.02 70.55 50.19 20.37(5) 71.06 50.64 20.42(4) 0.06 

S19 45.97 53.97 37.97 69.02 42.78 26.24(8) 69.62 42.26 27.36(8) 1.12 

S28 50.12 58.12 42.12 70.80 54.90 15.90(1) 70.92 54.12 16.80(1) 0.91 

S37 47.26 55.26 39.26 65.59 48.30 17.29(2) 65.76 48.10 17.67(2) 0.37 

S43 46.59 54.59 38.59 72.51 48.19 24.32(7) 73.11 47.43 25.69(7) 1.37 

S45 51.00 59.00 43.00 73.12 51.33 21.79(6) 74.83 49.88 24.95(6) 3.16 
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 (i.e., FS1L and FS2L).  Specifically, using HLM 5, we fit an HM to the data for each 
school consisting of the linear model for individual change at level 1, and a level-2 
model in which rates of change are modeled as a function of initial status:    

Yti  = π0i   +  π1i ati  +  εti  εti ~ N (0, σ2)     (A10) 

π0i   = β00L   +  r0i r0i ~ N (0, τ00) (A11) 

π1i   = β10L   + b (π0i)   +   r1i r1i ~ N (0, τ11) (A12) 

To compute FS1L and FS2L, we substitute the right-hand side of Equations A11 and 
A12 into Equation A10 and then proceed as follows: 

FS1L =  IS1  +  (β
∧

10 L + b (IS1) ) *3   (A13) 

and 

FS2L =  IS2  +  (β
∧

10 L  + b (IS2) ) *3   (A14) 

 Thus for school S28, the FS1L and FS2L values for students with initial status 
values of IS1 = 58.12 and IS2 = 42.12, are, respectively, 70.92 and 54.12.  Note that 
these expected final status values are extremely similar to those that were obtained 
using a quadratic model for individual growth (i.e., FS1Q and FS2Q).  Note further 
that GAPL = FS1L – FS2L = 16.80 differs from GAPQ by slightly less than a point 
(DIFFGAP = GAPL – GAPQ = 0.91).   

 For each school, we can see that the resulting FS1L, FS2L and GAPL values are 
fairly similar to the corresponding FS1Q, FS2Q and GAPQ values.  Note, in particular, 
that the differences between GAPL and GAPQ values range from 0.06 to 3.16 points, 
and that for 6 of the 8 schools, the differences are approximately a point and a half 
or less.  Also, note that the rank order of the schools based on their FSQ values is 
nearly identical to the rank order based on their FSL values; as can be seen in Table 
A2, there is one reversal:  S10 and S12 rank fourth and fifth, respectively, based on 
their GAPQ values, and fifth and fourth based on their GAPL values. 

 Thus predicted final status values conditional on initial status values 8 points 
above and below a school’s mean initial status estimate seem to be relatively 
insensitive to the use of a linear model versus a quadratic model for our set of 8 
schools. Note that, interestingly, in the schools with the largest DIFFGAP values (i.e., 
S10 and S45), a substantial number of students do not have fall Grade 10 test scores. 
This is the case for nearly half of the students in S10, and for approximately one 
third of the students in S45. 
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 We now turn to questions concerning features of growth at the school level. 
Consider again Models A (Equations 1, 2a and 2b) and B (Equations A1–A4). First, 
how similar are the resulting estimates of school mean initial status based on these 

models? (Note that we term these estimates β
∧

00 Lin and β
∧

00 Quad.) Computing the 

difference between these estimates for each of the 8 schools (DIFFMN IS = β
∧

00 Lin – β
∧

00 

Quad), we find that the absolute differences range from 0.05 to 0.83 for 7 of the 8 
schools (see Table A3).  The largest absolute difference is 1.59 (S11).  

Table A3 

Comparisons of School Mean Initial Status and School Mean Rates Based on 
Linear and Quadratic Models for Individual Change 

School β
∧

00 Lin β
∧

00 Quad DIFFMN IS β
∧

10Lin β
∧

10 Mid DIFFMN RATE

S10 56.17 56.89 –0.72 3.89 4.27 –0.38 

S11 55.31 56.90 –1.59 4.15 4.30 –0.15 

S12 48.53 48.01 0.52 4.28 4.11 0.17 

S19 46.02 45.97 0.05 3.32 3.30 0.02 

S28 49.38 50.12 –0.74 4.13 4.24 –0.11 

S37 47.39 47.26 0.13 3.22 3.22 0.00 

S43 45.77 46.60 –0.83 4.55 4.58 –0.03 

S45 51.15 51.00 0.15 3.78 3.74 0.04 

We now turn to school mean rates of change. First, consider a quadratic model for 
individual growth in which GRADEti is centered around a value of 8.5: ait = GRADEti 
– 8.5, where 8.5 represents the midpoint of the series of grades in which LSAY 
students were observed (i.e., 7, 8, 9, 10). It can be shown that for a student who has 
been observed at all four time points, the OLS estimate of that student’s rate of 

change under a linear model for growth, which we term  π
∧

1i Lin , will be identical to 
the OLS estimate of the instantaneous rate of change at GRADE = 8.5, which we term 

π
∧

1i Mid (see Seigel, 1975). Note also that following Seigel (1975), estimates of the 
expected amount of change across Grades 7–10 would be equivalent based on the 

two models:  3 × π
∧

1i Lin  =  3 × π
∧

1i Mid .  If each student in a school were observed at all 
four time points, then it follows that the estimate of the mean rate of change based 

on a linear model for growth (β
∧

10 Lin) would be identical to the estimate of the mean 

instantaneous rate at GRADE = 8.5 (β
∧

10 Mid), and hence the expected amount of 
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change for students in that school across Grades 7–10 would be equivalent based on 
both models. 

 Though not all students in our sample have complete data, it is still instructive 
to compare estimates of mean rate of change based on a linear model for change and 
a quadratic model with GRADE centered around a value of 8.5.  Comparing the 

differences in the resulting estimates (DIFFMN RATE = β
∧

10 Lin – β
∧

10 Mid), we see that for 7 of 

8 schools, the absolute values of the differences range between 0.00 and 0.17 (see 
Table A3).  The largest absolute difference is 0.38 (S10).  Recall that nearly half of the 
students in this school do not have fall Grade 10 test scores.  In sum, for these 8 
schools we tend to see little difference in results regarding key concepts of change 
based on the use of linear and quadratic models for individual change. 
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