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Center for Research on Evaluation, Standards, and Student Testing 

University of California, Los Angeles 
 

Abstract 
The characteristics of expert knowledge—interconnectedness, understanding, and ability to 

transfer—are inextricably linked, a point that is critically important for educators and 

constitutes a major theme of this paper. In this paper we explore how an analysis of the 

architecture of expert knowledge can inform the development of assessments to help teachers 

move students toward greater expertise in mathematics, and we present examples of such 

assessments.  We also review student responses and preliminary results from pilot tests of 

assessments administered in sixth-grade classes in a large urban school district. Our 

preliminary analyses suggest that an assessment strategy based on the structure of 

mathematical knowledge can reveal deficiencies in student understanding of and ability to 

apply fundamental concepts of pre-algebra, and has the potential to help teachers remediate 

those deficiencies. 

Introduction 
For educators, researchers and others who are interested in improving learning, 

and particularly learning of complex skills and knowledge, a fundamental challenge is 
understanding how isolated skills and pieces of knowledge learned in a variety of 
classroom contexts can become inter-connected, meaningful, and generalizable. As 
cognitive science research has convincingly demonstrated, it is the connections among 
elements of knowledge, understanding of important concepts and principles, and the 
ability to apply knowledge flexibly and effectively in a wide variety of situations, that 
characterize the development of knowledge toward greater expertise (e.g., Ausubel, 
1968; Bereiter & Scardamalia, 1986; Chi & Ceci, 1987; Chi, Glaser, & Rees, 1982; Glaser & 
Chi, 1988; Larkin, McDermott, Simon, & Simon, 1980; Niemi, 1996; NRC, 2002, 2004; 
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Silver, 1981). This is true for all domains that cognitive scientists have studied, 
including mathematics, science, history, reading, writing, and other school subjects.  

 

The Importance of Big Ideas 

Decades of cognitive research and educational experience have shown that when 
specific responses to specific tasks or questions are learned by rote, that knowledge 
does not generalize (e.g., Bassok & Holyoak 1989a, b; Bransford, Brown, & Cocking, 
1999; Carpenter & Franke, 2001; Chi, Glaser, & Farr, 1988; Ericsson, 2002; Larkin, 1983; 
Newell, 1990; NRC, 2004). Despite the robustness of this finding, however, mathematics 
instruction in the U. S. has historically focused on the memorization of specific 
responses to specific questions, and as a result, the knowledge most students have is 
extremely context bound and not generalizable. Most K-12 mathematics students do not 
construct the meaning of core concepts and principles, cannot relate concepts to 
problem-solving skills and procedures, and view mathematics as a collection of 
isolated, meaningless procedures to be memorized, not understood (e.g., Carpenter & 
Lehrer, 1999; Heibert & Carpenter, 1997; Porter, 1989; Schmidt, 2001; Stodolsky, 1988). 

In contrast to the piecemeal, context-bound knowledge that beginning learners 
have, expert knowledge has a relational structure: this is one of the strongest and most 
powerful conclusions to be drawn from decades of cognitive science research on the 
nature and development of knowledge—strongest, in the sense that it has been 
extensively and compellingly validated in a large number of studies, and powerful, in 
the sense that it has great explanatory force and broad implications for teaching, 
learning, and educational practice in general.  For someone who has advanced 
knowledge in a domain, every element of that knowledge is connected to other 
elements in a highly organized structure, with certain statements, expressing important 
ideas, dominating and organizing other types of knowledge (e.g., Bereiter & 
Scardamalia, 1986; Chi & Ceci, 1987; Chi, Glaser, & Rees, 1982; Glaser & Chi, 1988; 
Larkin, McDermott, Simon, & Simon, 1980; Bransford, Brown & Cocking, 1999; Niemi, 
1996; Wineburg, 2002). That certain ideas organize other kinds of knowledge, including 
problem-solving strategies and skills, was first and most dramatically revealed in a 
series of studies by Glaser and colleagues (Chi & Glaser, 1981; Chi et al., 1982).  

In one study, for example, when physics experts and novices were asked to sort 
problems printed on index cards (Chi et al., 1981), the experts put together problems on 
the basis of abstract concepts and principles, e.g., Newton’s laws, conservation of 
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energy. Novices, on the other hand, sorted on the basis of physical features of the 
problem situation, e.g., “there’s an inclined plane in these problems”. The novices either 
did not understand the theoretical principles or did not know how and when to apply 
them to problem-solving situations. One effect of representing problems in terms of 
theoretical concepts is that expert problem solvers can activate and implement problem-
solving procedures linked to those concepts, e.g., formulas for solving conservation of 
energy problems. Novices have to resort to remembering how they solved problems 
with similar surface features, which can lead to ineffective solution strategies as 
problems with the same surface features (e.g., inclined planes) may be conceptually 
very different.  

A follow-up study (Chi et al., 1982) using a different method, concept mapping, 
further confirmed that experts’ problem-solving schemas were organized primarily 
around the laws of physics and conditions for applying them, while novice schemas 
were organized around the surface features of the problems. Chi et al. (1982) concluded 
that weakness in novices’ problem solving could be attributed primarily to deficiencies 
in their knowledge base and its organization. A range of studies have replicated these 
findings in many other domains, and in each case researchers have found that experts 
have highly structured schemas, or knowledge structures, that are organized around 
central concepts or principles, or “big ideas”. The nature of these concepts differs from 
domain to domain, but in general they are abstract principles that can be used to 
organize broad areas of knowledge and make inferences in the domain, as well as 
determining strategies for solving a wide range of problems.  

It has been known for many years that the understanding of big ideas leads to 
more flexible and generalizable knowledge use, improves problem solving, makes it 
easier to make sense of and master new facts and procedures, and enables transfer (e.g., 
Ausubel, 1968; Chi & Ceci, 1987; Gelman & Lee Gattis, 1995; Larkin, McDermott, Simon, 
& Simon, 1980; Silver, 1981). The importance of understanding the core principles of a 
subject area and using them to organize knowledge (or for schema) has been found in 
many different subject areas, from interpreting X-rays, solving navigational problems, 
or playing chess (Chi, Glaser, & Farr, 1988; Ericsson, 2002; Larkin, McDermott, Simon, & 
Simon, 1980) to mathematics (Ball & Bass, 2001; Carpenter, Fennema, & Franke, 1996; 
Carpenter & Franke, 2001; Collis & Romberg, 1991; diSessa & Minstrell; 1998; Lane, 
1993; Porter, Kirst, Osthoff, Smithson, & Schneider, 1993). 
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Identifying Big Ideas 

Given the importance of big ideas—organizing concepts and principles—in the 
organization of expert knowledge and in expert problem solving, the obvious question 
is how to determine what the big ideas are in a domain. Chi and Glaser ingeniously 
chose tasks that could be classified in terms of big ideas, but they did not offer a 
comprehensive list of big ideas in physics. One could follow their lead and administer a 
lot of tasks to a lot of experts (mathematicians in our case). Presumably the experts 
would identify the big ideas represented by those tasks, assuming that the tasks 
actually reflected and required knowledge of the big ideas. Without knowing what the 
big ideas are, however, it would be difficult to insure that the tasks comprehensively 
covered the big ideas in question. There would be no way to guarantee that one had the 
right set of tasks, without identifying ahead of time the big ideas to be targeted by those 
tasks. To address this problem, we developed a procedure for eliciting big ideas directly 
from experts. We did this because we found that neither state standards nor existing 
curricula make clear what the big ideas in a domain are, nor how other elements of 
knowledge relate to the big ideas. Once experts identified the big ideas for their 
domains, we were able to use the big ideas to develop a structured framework of 
knowledge for each domain, and the framework was then used to build a content 
blueprint for assessment development. 

For this study we focused on identifying big ideas in algebra, because of the 
importance of algebra as a gateway to higher education, advanced mathematics 
coursework, and a wide range of careers. Many states have pushed to require that all 
high school students be proficient in algebra, and even that first-year algebra be 
mastered by the end of eighth grade (California Mathematics Frameworks [CMF], 1999; 
NCTM, 2000). Yet success in algebra has been elusive for too many students, 
particularly those from underrepresented groups, and one likely explanation for this is 
that students are not mastering the big ideas that could serve as a foundation for 
mastering algebra (Carpenter et al., 2003). The work described in this paper is 
embedded in a larger project that seeks to alleviate this problem in two ways: first, by 
working with mathematicians and mathematics educators to develop an ontology or 
conceptual map of algebra knowledge and its prerequisites; second, by using this 
ontology to develop and test a series of diagnostic assessments that teachers can use in 
elementary through middle school to help assure that their students are developing the 
fundamental knowledge and skills they will need to succeed in algebra. The 
assessments will be one component of an intervention that will include professional 
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development and instructional activities and resources to help students who have not 
mastered the big ideas. This comprehensive intervention will be experimentally tested 
in the 2007-08 school year in a large sample of classrooms (see, for example, Baker, 
2006). This paper covers the initial steps in this project, analysis of the domains to be 
assessed and development and pilot testing of several types of assessments. 

We have worked closely with experts, including university professors and 
working scientists and mathematicians in several disciplines to identify the big ideas in 
their domains. Our methodology has evolved with experience, and the process for 
elucidating big ideas has been gradually refined. For example, to create a list of big 
ideas in algebra we initially worked with three university-level mathematicians and 
two high-school teachers. Rather than consider how topics are typically organized for 
pedagogical purposes, or how content is conventionally organized in curricula, the 
experts were asked to consider which ideas were most important in their own thinking 
and problem solving. The expert panel first identified first the big ideas that organized 
their thinking and work in the domain, then subordinate or supporting ideas that 
elaborate and give meaning to the organizing concepts. The list of big ideas and 
supporting ideas was subsequently reviewed and the language slightly revised by six 
other mathematicians working in two separate groups. As an example of the kinds of 
statements comprising the final list, Statement 1 below is an overarching big idea and 
Statement 2 is a related supporting idea: 

1) A number is any entity that obeys the laws of arithmetic; all numbers obey the 
laws of arithmetic.   

2) Equivalence is a fundamental property of rational numbers: equivalent 
fractions, percents, and decimals all name the same relationship between two 
values. 

(There are 20 big ideas in the final list, which may be obtained from the authors.) 

Using Big Ideas to Build Assessments 

From the algebra big ideas list created by experts, three conceptual domains, each 
representing one or more big ideas, were selected for assessment trials with sixth-grade 
students in the Los Angeles Unified School District. These domains were selected 
because they are: a) heavily represented in state standards and state and district test 
blueprints; b) historically difficult for students to master; and c) important prerequisites 
for learning and mastering algebra.  In each domain we specified the conceptual-
declarative and procedural knowledge to be assessed, as follows:  
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1) Properties of arithmetic: The conceptual-declarative knowledge associated with 
this domain involves understanding these big ideas: the multiplicative identity, order of 
operations, and the distributive law for multiplication. Procedural knowledge 
associated with these big ideas includes using the ideas to evaluate expressions and 
solve single-step equations.  

2) Principles for solving equations: The conceptual-declarative knowledge or big 
ideas involved here include knowing what it means to solve an equation and the 
meaning of the equals sign, as well as the principles that underlie solution procedures. 
Procedural knowledge includes the ability to solve simple one-step equations (e.g., 
divide both sides of the equation by a non-zero number).  

3) Rational number equivalence: The big idea here is that equivalent representations 
of a rational number can by generated by applying the multiplicative identity (e.g., 
multiply a given fraction by a/a). Procedural knowledge includes the procedures for 
recognizing and finding equivalent representations of fractions, decimals, and percents; 
finding fractions that are equivalent to a given fraction; and determining when two 
fractions are equivalent.  

Strategy for Developing Assessments 

To develop assessments of big ideas (which we call POWERSOURCE assessments) 
for each the three domains, we drew on assessment models we have validated in an 
extensive series of studies over many years (e.g., Baker, 1997; Baker, Freeman, & 
Clayton, 1991; Niemi, 1996; Niemi, Sylvester, & Baker, in press). In general, the 
POWERSOURCE assessments we have been developing involve students confronting a 
brief problem, description, or other symbolic representation, determining the 
underlying concept(s) and principle(s) and then either simply solving the problem, or 
solving and explaining why their procedures work, or inspecting partial solutions or 
planned strategies and then explaining (or selecting) which principles they exhibit and 
whether the solutions adhere to the principles’ requirements or limits. Other constraints 
on the assessments are that they must be relatively easy to evaluate by teachers and 
must provide information to guide follow-up instructional decisions to help students 
deepen their understanding. (Ultimately, we will be designing professional 
development and instructional supports for teachers and students, but in this paper we 
are focusing on analysis of the domains and initial development and testing of 
assessments.) 
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Under the general assessment model described above, we have developed three 
main types of assessment to date: basic computation tasks, partially-worked problems 
(with or without explanations), and explanation tasks. Initially we included the 
computation tasks because we wanted to compare performance on those tasks with 
performance on more complex measures of understanding; we were not necessarily 
expecting to include computation tasks in the final version of the assessment-with-
instruction intervention that we plan to test in the future (for more on long term project 
plans, see Baker, 2006). Later development and pilot testing will encompass word 
problems with and without explanations, and other types of open-ended problems. We 
report here on tasks developed for two of our three conceptual domains: properties of 
arithmetic and principles for solving equations.  

The basic computation tasks are designed to assess whether or not students can 
recognize problems as instances of particular ideas and can then solve the tasks 
successfully. Tasks are simple, well-defined problems representing an application of the 
relevant big idea, e.g., for the distributive property a typical task is:  

                       6 (3 + 1) = 6 •     + 6 • 1 

With respect to the second category of tasks, partially-worked problems, some 
evidence suggests that learning from worked examples (problems including solution 
steps and often the final solution with some parts missing) is an effective way of 
gaining cognitive skills in well-structured domains such as math and physics (Renkl, 
Atkinson, Maier, 2000; Sweller, van Merrienboer, & Paas, 1998; VanLehn, 1996). Indeed, 
Sweller (1989) found that studying worked examples was more effective than 
traditional problem solving alone.  The use of worked examples does not, however, 
guarantee positive learning outcomes.  Other research has shown the extent to which 
students are asked to explain how each step plays a role in the effectiveness of the 
learning method (Renkl, 2002) as does the way in which the tasks are structured. As 
suggested in the literature, well-designed worked examples, particularly those 
requiring explanations, may allow us to make inferences about students’ understanding 
(or lack thereof) rather than merely providing information about the ability to recall and 
execute procedures. 

In the worked examples we have developed, the student must read and 
understand problem-solving steps completed by another person and fill in one to three 
boxes representing missing numbers or symbols in the problem solution, or fill in a 
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complete problem-solving step (see Figure 1 for an example). These problems are 
preceded by a short fully-worked example (Figure 2), involving no more than 3-4 
problem-solving steps, which the student can read to see what is expected. The fully-
worked example covers a topic similar, but not identical to, the topic to be assessed.  

 

 

 

 

 

 

 

Figure 1. Examples of partially-worked problems 

 

 

 

 

 

Figure 2. A fully-worked sample 

 

The third type of assessment developed is the partially-worked example with 
justifications. In order to solve these problems, the student must read and understand 
problem-solving steps completed by another person, and must provide a principled 
explanation for one of these steps (see Figure 3). As in the case of partially-worked 
problems, these problems are preceded by a short fully-worked example containing no 
more than 3-4 problem-solving steps and covering a related but not identical topic. 
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Figure 3. Example of a partially-worked problem with explanation 

 

Explanation tasks constitute the fourth type of assessment developed for the 
project. In explanation tasks, students are expected to generate a clear, coherent 
explanation and how it can be used to solve problems and support their explanations 
with examples and illustrations, as in the example below: 

In the space below, explain the distributive property and give 
several examples of how it can be used to solve problems or 
transform expressions. 

Pilot Testing Procedures  

For pilot testing, the tasks described were assembled into forms that students 
should be able to complete in 15 minutes. This time frame was imposed by the district 
staff we are working with. Any assessment longer than that, they felt, would be seen by 
teachers as a test and evoke complaints about too much district testing.  

Teachers participating in pilot tests received two test forms, with each form 
containing between 3-4 tasks. The forms were randomly assigned to students within 
classrooms, and each teacher administered the assessments to two of their classrooms. 
In all cases the first two items on the test forms were basic computation items. The 
subsequent items were either partially-worked problems with or without explanation, 
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or open-ended explanation tasks. Forms containing explanation tasks did not contain 
any other tasks besides the basic computational items.  

Five sixth-grade teachers were recruited from three middle schools. Teachers were 
advised to administer the forms to their highest and second highest achieving classes. 
Two of the teachers administered forms containing problems on principles for solving 
equations and three gave administered forms that focused on properties of arithmetic. 
Although each teacher received forms for the same domain, they received two forms 
containing different assessment items (Form A and Form B). All teachers described their 
classes as low achieving relative to the rest of the district. 

In addition to determining whether students could read and understand the tasks, 
the pilot tests were designed to compare different types of assessments with respect to 
the quality of information they provide, their diagnostic utility, and the information 
value they provide in relation to other tasks. Would some tasks provide us more 
information about students’ understanding of a particular big idea than others? The 
data we report here are a first step toward addressing these concerns. All teachers 
confirmed that the fifteen time frame for the assessments was sufficient, which 
answered another key pilot test question. 

Results 

As basic computation tasks and partially-worked examples were very easy to score 
(dichotomously or on an ordinal scale, respectively), we analyzed these data first, in 
order to investigate what each allowed us to infer about student understanding. We 
have also reviewed student responses from explanation tasks, but these data will be 
reported at a later date.  

As noted earlier, data were collected from 10 classes at three schools.  Four classes 
received tasks on principles of solving equations and six classes received tasks focused 
on properties of arithmetic.  Table 1 shows the percentage of students with correct 
responses for each test item for the test forms containing properties of arithmetic items 
and Table 2 shows results for the solving equations forms.   
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Table 1 

Percentage of Students Taking the Properties of Arithmetic Tasks with Correct 
Responses by Item, Teacher and Classroom.  

Task Type Basic 
computation 

Basic  
computation 

Partially 
worked 

Partially 
worked 

Partially 
worked 

Partially 
worked 

Partially 
worked 

Task Name Task 1 Task 2 Task 3a Task 3b Task 4a Task 4b Task 4c 

Teacher  Class        

Teacher 1 84 39 41 59 38 21 18 

 1 79 32 38 69     13 13 07 

 2 88 45 43 50 58 26 26 

Teacher 3 79 42   33 39 36 

 1 93 54   58 68 63 

 2 66 31   0 0 0 

Teacher 5 89 82 79 82    

 1 85 81 86 93    

 2 93 83 71 71    

         

Overall          54 60 71 36 30 27 84 
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Table 2 

Percentage of Students Taking the Solving Equations Tasks with  

Correct Responses by Item, Teacher and Classroom 

Task Type Basic 
Task 

Basic 
Task 

Partially 
worked 

Partially 
worked  

Partially 
worked  

Partially 
worked  

Task Number Task 1 Task 2 Task 3a Task 3b Task 4a Task4b

Teacher  Class    

Teacher 2 92 29 78 81 29 71 

 1 100 26 87 87 33 75 

 2 83 33 67 75 25 67 

Teacher 4 95 64 90 63 34 52 

 1 97 77 94 63 20 67 

 2 93 50 86 64 50 36 

     

Overall  94 48 84 72 32 60 

 

As Tables 1 and 2 indicate, there was a large range of performance on the different 
assessment items, giving us valuable information about the relative difficulty of these 
items. For subsequent analyses we focused on two pairwise comparisons of the 
properties of arithmetic tasks. The first was a comparison of performance on Task 1 and 
Task 2 from Table 1 (properties of arithmetic tasks) and the second looked at the 
differences in performance on all parts of Task 3 and Task 4 (see Table 3 for illustrations 
of the tasks compared).    
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Table 3  

Tasks Used for Subsequent Analyses  

Task number  Task 

Task 1  

6 (3 + 1) = 6 ●         + 6 ● 1 

 

Task 2  

3 (15 + 5) =          ●15 + 3 ● 5 

 

Task 3  

 

 

 

 

Task 4—parts 

 a, b and c 

 

 

 

 

 

 

 

 

Frequencies of response for each of the items shown in Table 3 were calculated. 
We took the top five most frequently given responses and collapsed the rest into the 
other category. For the most part, responses appearing in the ‘other’ category were 
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given by 1 or 2 students. Table 4 shows that almost 84% of students responded correctly 
to Task 1 where they were asked to fill in the box representing the second digit in the 
response. The alternative responses to this and all of the problems analyzed provide 
valuable insight into students’ misconceptions and errors of thinking. Further analyses 
were done on these problems and are presented in a later section.    

Table 4 

Frequency of Responses to Task 1 

Response Frequency %

3 * 146 83.9

4 9 5.2

24 5 2.9

1 4 2.3

12 3 1.7

All Other 7 4

Total 174 100

* correct answer 
 

Table 5 

Frequency of Responses to Task 2 

Response Frequency %

3* 94 54

2 15 8.6

5 11 6.3

23 10 5.7

60 8 4.6

All Other 36 20.8

Total 174 100

* correct answer 
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Table 6 
Frequency of Responses to Task 3 

Part A  Part B 

Response Frequency %   Response Frequency %

4* 33 60  8* 39 70.9

7 7 12.7  2 3 5.5

16 3 5.5  4 3 5.5

2 3 5.5  0 1 1.8

0 2 3.6  13 1 1.8

All Other 7 12.7  All Other 8 14.5

Total 55 100   Total 55 100

*correct answer 
 
 
Table 7 
Frequency of Responses to Task 4 

Part A  Part B Part C 

Response Frequency %   Response Frequency %  Response Frequency %

4* 24 35.8  8* 20 29.9 28* 18 26.9

7 8 11.9  2 10 14.9 22 8 11.9

5 5 7.5  14 5 7.5 34 4 6

11 4 6  7 5 7.5 11 3 4.5

2 4 6  20 4 6 14 3 4.5

All Other 22 32.8  All Other 23 34.2 All Other 31 46.2

Total 67 100   Total 67 100 Total 67 100

*correct answer 
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Properties of Arithmetic—Basic Computational Tasks 

The first set of items we investigated involved the distributive principle:   

Task 1:   6 ( 3 + 1)  =  6 •  + 6 • 1 

Task 2:   3(15 + 5) =  • 15 + 3 • 5 

We knew from personal teaching experience and a review of textbooks that 
students understanding of distribution is sometimes assessed using problems that 
resemble Task 1, but almost never in the form of Task 2.  We used this form as a 
baseline comparison to see if students found such questions easy to answer and 
teachers would impute “understanding” to students who answered such answers 
correctly. 

For Task 2 we made two changes from Task 1.  First, since the items were on the 
same form we changed the actual numbers. As we were asking students to merely fill in 
numbers, we hypothesized that this was not a significantly different task from the 
previous task (i.e., near transfer). This hypothesis will be more fully tested in a 
subsequent round of studies on similar items. The second difference between the two 
items was the part of the distribution we asked students to fill in. In this case we 
hypothesized that students would require a deeper understanding of distribution to 
successfully complete an item like Task 2. 

Data were analyzed using a 1pl (Rausch) model to quantify the differences in item 
difficulty and a Chi-square analysis to determine response patterns for students 
attempting both items (n = 175 ). On a difficulty scale from –3 (easiest) to +3 (hardest), 
the difficulty of Task 1 was estimated to be around –2.08 (.28) and the difficulty estimate 
of Task 2 was -.31 (.21). Error estimates are given in the parenthesis following each 
difficulty estimate. While large because of the small student sample and the mix of 
other items on the test, we feel that, given the large disparity in difficulty estimates, 
these errors do not obviate our conclusion that the second item was significantly more 
difficult for students than was the first item. As might be expected from the IRT (Item 
Response Theory) analysis, while most students (84%) answered the first question 
correctly, only slightly more than half (54%) answered the second question correctly. 
Nevertheless, the correctness of a response to Task 1 did correlate in a significant way 
with the correctness of a response on Task 2 ( 2 = 21.5, p<.001). 
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Given these results, the fact that the cognitive demands of both problems are 
similar, and that students are apparently less likely to have seen the second type of 
item, we suspect that the second item might be a better indicator of student 
understanding than the first. In future piloting we will test the effects of moving the fill-
in box to other places in the expanded distribution. This analysis has also prompted us 
to test problems that ask the distribution question in “reverse” (i.e., as a “factoring” 
problem”). For example, we have begun piloting items such as: 6 • 3 + 6 • 1 = •( 3 + 1) 

This new item not only probes understanding of distribution, but also makes 
explicit the relationship between distribution, factoring, and the “big idea” that 
multiplication is repeated addition. 

Properties of Arithmetic—Partially-Worked Examples 

While we piloted Tasks 1 and 2 described above with every student in the sample 
population, Tasks 3 and 4 were each answered correctly by one third of the original 
study population. Another (constructed response) item on the distribution principle 
was answered by the remaining third of the students. Both Tasks 3 and 4 required 
students to use the distributive property in the context of simplifying a problem, but 
Task 4 required students to simplify to a single answer (see Figure 7).  

 

Task 3-a and b (student has only two blanks to fill in and the final answer is 
shown). 

2 (7 + 4) 
2 • 7 + 2 •  
14 +  
22 

 
Task 4-a, b and c (student has three blanks to fill in) 

4(5 + 2) 
4 • 5 +  • 2 
20 +  
 

 
 
Figure 7. Partially-worked examples  
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We expected Task 3 to be easier for the students for two reasons: First, based on 
the results from the analysis of Tasks 1 and 2, placing the box after the multiplier 
seemed to be easier for students. Second, the construction of Task 3 allows students to 
work both from top to bottom as well as from bottom to top (“backwards”). We were 
uncertain of our conclusion, however, as we felt that many students could easily 
simplify the original problem in Task 4 using proper order of operations and 
multiplication, and then fill in the final answer box directly for themselves. 

To perform an IRT analysis on these items, we separated responses for Task 4 into 
three distinct sub-tasks (the answer to 4 • 5 + • • 2, the answer to 20 + •, and the final 
answer), labeled a – c respectively (see Table 3).  Task 3 was similarly separated into 
two sub-tasks, labeled a – b respectively (see Table 3).  

Not surprisingly, a 1-pl logistic model suggested that, on the same –3 to +3 scale 
described above, Task 4a was the least difficult (+0.5) of the three sub-tasks in Task 4, 
followed by 4b (+ 0.85) and 4c (+ 0.98). Error estimates were .39, .42, and .44, 
respectively. Again, while these estimates were large because of the small student 
sample and the mix of other items on the test, we feel that, given the relatively large 
disparity in difficulty estimates, these errors do not obviate our conclusion that the 
second sub-item was significantly more difficult for students than was the first sub-
item, and the third sub-item was the most difficult. 

This same trend is borne out in a crosstabs analysis (see Table 8 ). The correlations 
among the three sub-tasks are significant ( 2 = 59.5, p<.001) indicating that the sub-
items are not independent of one another.  
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Table 8 

Task 4 Chi-Square Analysis 

  Incorrect answer 4c Correct answer 4c 

Incorrect answer 
4a  

   

 Incorrect answer 
to 4b 

40 0 

 Correct answer to 
4b 

1 2 

Correct answer to 
4a 

   

 Incorrect answer 
to 4b 

7 0 

 Correct answer to 
4b 

1 16 

    

χ2 = 59.5, p<.001 
 

This analysis also suggests that students might not actually calculate a final 
answer to the distribution problem and work “backward”. To test such contextual 
scaffolding, we administered Task 3 to a second one-third of the population. Difficulty 
estimates for Tasks 3a and 3b were made using the same 1-pl model used for the 
previous items. Not surprisingly, we found that, when students knew the final answer, 
the second answer (3b) was significantly easier (-1.04) for them students to find than a 
similar answer without such a cue (4b described above). Moreover, finding the first 
answer (3a) was now more difficult (-0.49) for the students than finding the second 
answer (3b). This was exactly opposite the results we found for item 4, suggesting that 
students may have used the supplied answer in item 3 (and not their knowledge of 
distribution) to arrive at their answer. 
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As indicated in Table 9, although Tasks 3a and 3b are dependent on each other ( 2 
= 11.5, p<.001), students incorrectly answering Task 3a are about equally likely to get 
Task 3b correct as to get it wrong.  

 

Table 9 

Task 3 Chi-Square Analysis 

 Incorrect answer 3b Correct answer 3b 

Incorrect answer 3a 12 10 

Correct answer 3 a 4 29 

χ2 = 11.5, p<.001 
 

More importantly, when we collapse the data in Table 8 to exclude the effect of a 
correct or incorrect answer to Task 4c, and consider only how students did on Tasks 4a 
and 4b (see Table 10), we find the correlation between the two sub-tasks are still 
significant ( 2 = 29.9, p<.001). Moreover, a comparison of Tables 9 and 10 suggests that 
students are far more likely to get the second sub-task (4b) wrong without the aid of 
“contextual scaffolding” (70%) than students who took the sub-task (3b) that was 
followed by contextual scaffolding (29%). As was suggested by IRT analysis, the item 
with contextual scaffolding was significantly easier for students than was a similar item 
without this scaffolding. 

 

Table 10 

Task 4 Chi-Square Analysis Using Sub-Tasks a and b 

 Incorrect answer 4b Correct answer 4b 

Incorrect answer 4a 40 3 

Correct answer 4a 7 17 

χ2 = 29.9, p<.001  
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More importantly, the difficulty of the distribution sub-tasks changed significantly 
when contextual scaffolding was present. As was noted above, when a sub-task was 
part of a problem in which the final answer was provided, the difficulty of the 
distribution of Task 4a was significantly easier (-0.49) than a similar sub-task (3a) 
situated in a problem in which students had to supply the final answer as well (+0.5). 
As implied by these difficulty parameters, students were far more likely to correctly 
complete the distribution sub-item when scaffolding was present (60% on 3a) than they 
were to correctly complete a similar sub-task which was not scaffolded (36% on 4a). 

Conclusions 
Our review of student responses, descriptive data, and IRT results converge on the 

fact that different assessments can reveal different information about student 
understanding, and that overall, students’ responses to even fairly simple items can 
provide significant and useful information about their understanding. Even given the 
simplicity of the tasks, results suggest two important conclusions. First, when assessing 
the distributive principle using worked example or computation items, it is important 
that we consider which elements of the distribution equation or expression we ask 
students to supply. Asking for an answer in only one highly-typical format may not 
allow us to validly infer that students understand a general principle. In fact, we may 
only be seeing their ability to recall similar instances of such problems. As Carpenter, 
Fennema and Franke (1999) and many others suggest, when teaching a mathematical 
concept, it is critically important to expose students to a wide variety of instances and 
representations of the concept, and assessment strategies should reflect this point. We 
intend to do this very thing in future pilot studies by changing the elements we request 
students to supply as well as by flipping the equation (i.e., creating problems that look 
more like factoring). 

The second conclusion is that we must consider the contextual scaffolding we 
supply in worked example problems. Not surprisingly, we found that the distribution 
step was much easier for students when we supplied a final answer to the problem than 
when we did not supply the answer. This suggests that understanding of distribution 
was not the only trait being measured by both problems, and that we will need to revise 
some of the items to address this problem. 

Finally, in this study we also piloted a number of open-ended items which asked 
students to explain the distribution principle (e.g., why it “works,” or how does it 
represent “repeated addition,” etc.). We are currently analyzing these items and their 
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impact on the conclusions reported here. In addition, we are developing other items 
including word problems based on the results and conclusions outlined above. We have 
found that well-designed computation and worked example tasks can allow us to make 
inferences about understanding (or lack thereof) rather than merely informing us 
whether a student has memorized a procedure. Ultimately, we will be investigating the 
diagnostic utility and overall validity of these assessments in comparison with other 
methods for assessing understanding of big ideas, including word problems, 
graphically represented problems, and open-ended explanations. We will also be 
testing the impact of embedding all POWERSOURCE assessments in an ongoing manga 
or comic book style narrative, which will be designed to enhance the motivation and 
effort put forth by students. 
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