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Studying the Sensitivity of Inferences to Possible Unmeasured Confounding 

Variables in Multisite Evaluations1

 

Michael Seltzer and Jinok Kim CRESST/University of California, Los Angeles 

Ken Frank, Michigan State University,   

Abstract 

In multisite evaluation studies, questions of primary interest often focus on whether 

particular facets of implementation or other aspects of classroom or school environments 

are critical to a program’s success.  However, the differences with which teachers 

implement programs can depend on an array of factors, including differences in their 

training and experience, in the prior preparation of their students, and in the degree of 

support they receive from school administrators.  As such, a crucially important implication 

is that in studying connections between various aspects of implementation and the 

effectiveness of programs, we need to be alert to factors that may be confounded with 

differences in implementation.  Despite our best efforts to anticipate and measure possible 

confounding variables, teachers who differ in terms of the quality and frequency with 

which they implement various program practices use particular  program materials and the 

like, may differ in important ways that have not been measured, giving rise to possible 

hidden bias.  In this paper, we extend Frank’s (2000) work on assessing the impact of 

omitted confounding variables on coefficients of interest in regression settings to 

applications of HMs in multiste settings in which interest centers on testing whether certain 

aspects of implementation are critical to a program’s success.  We provide a detailed 

illustrative example using the data from a study focusing on the effects of reform-minded 

instructional practices in mathematics (Gearhart et al., 1999; Saxe et al., 1999). 

                                                           
1 Acknowledgements:  We wish to thank Maryl Gearhart and Geoff Saxe for permission to use the 
data from their study Integrating Mathematics Assessment with Instruction in Elementary 
Mathematics, which was supported by NSF grand MDR 9154512.  Many thanks to Hyekyung  Jung 
for valuable discussions about this work, and for her help with various calculations, constructing 
tables and figures, and formatting equations. 
 

 4



Introduction 

Much emphasis in multisite studies of educational programs over the years has 
centered on single-number summaries of overall differences in outcomes between 
those assigned to treatment and those assigned to comparison conditions (i.e., 
intent-to-treat (ITT) estimates).  Such estimates, however, can mask potentially 
substantial variability in program effects across sites, the possibility that 
implementation may have been good in some sites but poor in others, and that the 
students with certain prior educational experiences may have benefited from the 
program far more than others (see, e.g., Burstein, 1980; Cronbach, 1976, 1982; see, 
also, Seltzer, 2004). 

To make studies of the effects of educational programs as useful as possible to 
an array of stakeholders, including policy makers, school administrators, teachers, 
program developers, and parents, it is necessary to extend our investigations 
beyond estimating ITT effects.  It is important to study how differences in level of 
implementation magnify or dampen the effects of programs, to test whether certain 
program components are critical to a program’s success, and to investigate whether 
a program is more beneficial for students with certain background characteristics 
and prior skills.  For discussion of the use of Hierarchical Models in addressing such 
questions, see, for example, Hong (2004; 2006), Raudenbush and Willms (1991), 
Seltzer (1994;  2004), and. 

However, efforts to draw sound conclusions concerning the kinds of questions 
outlined above can be extremely challenging.  In particular, the lack of random 
assignment of classes of schools, for example, to treatment or control conditions in 
multisite studies can give rise to numerous potential confounding variables that we 
must attend to. 

Even when assignment of teachers, for example, to treatment and control 
conditions is random, it is important to note that teachers are not randomly assigned 
to different levels of implementation.  The differences with which teachers 
implement programs (e.g., differences in the skill with which, and extent to which, 
they are able to implement particular instructional practices), can depend on a 
whole host of factors, including differences in their training and experience, in the 
prior preparation of their students, the degree of support teachers receive from 
school administrators and the like.  As such, a crucially important implication is that 
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in studying connections between various aspects of implementation and the 
effectiveness of programs, we need to be alert to factors that may be confounded 
with differences in implementation. 

Despite our best efforts to anticipate and measure possible confounding 
variables, teachers who differ in terms of the quality and frequency with which they 
implement various program practices, use particular  program materials and the 
like, may differ in important ways that have not been measured, giving rise to 
possible hidden bias.  In this paper, we extend Frank’s (2000) work on assessing the 
impact of omitted confounding variables on coefficients of interest in regression 
settings to applications of HMs in multisite settings in which interest centers on 
testing whether certain aspects of implementation are critical to a program’s success. 

We are especially interested in two commonly employed designs in multisite 
field studies.  One type of design entails forming matched pairs of organizational 
units (e.g., classrooms or schools), and assigning one organizational unit within a 
pair to an innovative program of interest and the other to a comparison condition.  
This essentially gives rise to a series of mini-experiments or mini-quasi-experiments.  
The within-pair (level-1) parameter of primary interest in such designs would be a 
treatment/control contrast for each pair (e.g., 1 jβ ).  In a between-pair model, the 1 jβ  
are modeled as function measures of implementation and other site-level 
characteristics.   

The second type of design, in contrast, does not involve forming blocks (e.g., 
pairs) before assigning organizational units to treatment or control conditions.  
Rather than yielding a series of mini-experiments, such designs provide us with a 
sample of treatment classrooms, for example, that are compared with a sample of 
control classrooms.  The level-1 (e.g., within-class) parameter of primary interest in 
such settings is typically a mean outcome score for each class adjusted for 
differences among classes in their student intake characteristics (e.g., 0 jβ  ).  In a 
between-class model, the 0 jβ  are modeled as a function of various class-level 
characteristics, which might include treatment group indicator variables, measures 
of implementation, and various compositional characteristics.  Given the prevalence 
of this type of design in multisite evaluations, we provide a detailed illustrative 
example of our strategy for sensitivity analysis using the data from a study focusing 
on the effects of reform-minded instructional practices in mathematics (Gearhart et 
al., 1999; Saxe et al., 1999).  A brief example using the data from a study that 
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employed a paired design—a study of an innovative pre-algebra program called 
Transition Mathematics (TM; see Seltzer, 2004)—is sketched in Appendix B.  

Frank’s approach to assessing the impact of a confounding variable was 
initially developed for use in settings in which one is working with linear models in 
analyses of non-nested data, i.e., settings in which OLS provides a sensible strategy 
for obtaining estimates of regression coefficients and their standard errors.  Suppose, 
for example, that the OLS estimate of the regression coefficient for a predictor of 
interest ( ) is statistically significant, i.e., X ˆ ( )t β se β̂=  exceeds the relevant t critical 
value.  Suppose further that there is an unmeasured confounding variable (CV ).  
How large would the correlation need to be between the outcome (Y ) and CV , and 
between  and CV  to impact the estimate of X β  and its standard error to the point 
where it is no longer significant at the chosen α  level?  Frank’s approach addresses 
questions of this kind.  As will be seen, a key facet of his approach capitalizes on the 
fact that OLS regression estimates and their standard errors can be re-expressed in 
terms of standard deviations of Y and  and various relevant correlations (e.g., 

).   
X

•XYr

To help set the stage for extending Frank’s work on sensitivity analysis to 
multilevel settings, we begin by discussing the estimation of fixed effects in means-
as-outcomes HMs in cases where the number of observations per cluster is equal.  
We first focus on a model with a single level-2 predictor ( jW ), and then expand this 
model to include an observed level-2 covariate ( jCV ) that we wish to control for.  
We then consider the situation in which jCV  is unobserved and outline a strategy 
for assessing its impact based on Frank’s approach (2000).  Next we discuss the 
extension of our strategy to HMs in which adjusted means ( 0 jβ ) are treated as level-
2 outcomes, and models in which level-1 treatment/control contrasts ( 1 jβ )—more 
generally level-1 slopes—are treated as level-2 outcomes.  We then turn to our 
illustrative examples. 

Note that pioneering work in the area of sensitivity analysis has been 
conducted by Paul Rosenbaum and his colleagues (e.g., Gastwirth, Krieger & 
Rosenbaum, 1998; Rosenbaum, 2002; Rosenbaum & Rubin, 1983).  Some advantages 
of employing Frank’s approach to sensitivity analysis in our work in HM settings is 
discussed in the concluding section of our paper. 
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Estimation of Fixed Effects in Means-as-Outcomes Models 

Means-As-Outcomes Models that Contain a Single Level-2 Predictor 

To motivate the extension of Frank’s approach to multilevel settings, we first 
focus on the estimation of fixed effects in means-as-outcomes models in cases in 
which the number of observations per cluster is equal.  At level 1, the outcome score 
for each student ( ) in cluster j (1, ,i = L n 1, ,j J= L ) is modeled as a function of the 
mean outcome score for cluster j ( 0 jβ ): 

 

0ij j ijY β r= + , 2~ (0, )ijr N σ                                   (1) 

 

where  is a residual assumed normally distributed with mean 0 and variance .  
At level-2, cluster outcome means are modeled as a function of various cluster 
characteristics.  We begin by focusing on a simple level-2 model containing a single 
predictor (

ijr
2σ

jW ): 
 

0 00 01 0j j jβ γ γ W u= + + ,                   (2) 0 ~ (0, )ju N τ

 

where , our parameter of primary interest, is a fixed effect capturing the 
relationship between 

01γ

jW  and cluster means, and 0 ju  is a random effect assumed 
normally distributed with mean 0 and variance .   τ

The error variance connected with the sample mean outcome score ( jY ) for 
each cluster is 2

jV V σ n= = .  For heuristic purposes we begin by employing a 
REML/Empirical Bayes (EB) estimation approach (see chapters 3 and 13 in 
Raudenbush & Bryk, 2002).  Setting the variance components equal to their REML 
estimates (i.e., ;  ), we construct the weights 2 2ˆσ σ= ˆτ τ= 1 1ˆ ˆ ˆˆΔ Δ 1 ( )j τ V− −= = + , where  
= 

V̂
2σ̂ n ;  since the error variances of the jY are equal, each cluster receives equal 

weight.  We then obtain an estimate of  and its standard error using the following 
formulas: 

01γ

 
1

.
01 1 2

1

Δ̂ ( )(
ˆ

Δ̂ ( )

J
j j

j j

Y Y W W
γ

W W

−

−
=

− −
=

−
∑

)
                               (3) 
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and 
 

1

1
01

1

ˆˆ( ) Δ ( )
J

j
j

SE γ W W 2

−

−

=

⎡ ⎤
= −⎢ ⎥
⎣ ⎦
∑                             (4) 

                                                        
1 2

1

1

Δ̂ ( )
J

j
j

W W−

=

=
−∑

 

                                                        
2

1

ˆˆ

( )
J

j
j

τ V

W W
=

+
=

−∑
 

Note that the weights in the numerator and denominator in Equation 3 cancel 
out.  This helps us see that in the balanced case, estimating fixed effects in means-as-
outcomes models can be viewed as an OLS regression of sample mean outcome 
scores on level-2 predictors.  Thus in the case of our example: 
 

. 00 01j j jY γ γ W e= + + ~ (0, )j D , e N                     (5) 

 

where .  The formulas for the OLS estimate of and its standard error are 
as follows: 

D τ V= + 01γ

 

.
01 2

1

( )(
ˆ

( )

J
j j

j j

Y Y W W
γ

W W=

− −
=

−∑
)

                                    (6) 

and 
 

01
2

1

ˆ
ˆ( )

( )
J

j
j

DSE γ
W W

=

=

−∑
                                     (7) 

 

 

 

 9



where  

 

2
. 00 01

1

ˆ ˆ( [ ])
ˆ

2

J

j j
j

Y γ γ W
D

J
=

− +
=

−

∑
                                  (8) 

Note that the resulting estimate of D will be equal to 2ˆ ˆτ σ n+ .  Thus in means-
as-outcomes settings in which there are equal numbers of observations per cluster 
we see that the OLS estimate of  and its standard error based on a cluster-level 
regression of 

01γ

jY  on jW  will be identical to those obtained via a REML/EB estimation 
strategy in this setting. 

To help lay the groundwork for implementing Frank’s sensitivity analysis 
approach, note that the OLS estimate of  and its standard error can be expressed 
in terms of the standard deviations of the outcome and predictor variables in 
Equation 5, and the correlation between the outcome and predictor variables: 

01γ

 

01 •ˆ j

j j

j

Y
Y W

W

S
γ r

S
= ×                                                         (9) 

where 

 

2
.

1
( )

1j

J

j
j

Y

Y Y
S

J
=

−
=

−

∑
, 

2

1
( )

1j

J

j
j

W

W W
S

J
=

−
=

−

∑
 and 

.
1

•
2 2

.
1 1

( )( )

( ) (
j j

J

j j
j

Y W J J

j j
j j

Y Y W W
r

Y Y W W

=

= =

− −
=

− −

∑

∑ ∑ )
 (10) 

and 

 

2 2
. •

1

01
2

1

( ) 1

2ˆ( )
( )

j j

J

j Y W
j

J

j
j

Y Y r

JSE γ
W W

=

=

− −

−=

−

∑

∑
                     (11a) 

 10



                

2
•1

2
j jj

j

Y WY

W

rS

S J

−
= ×

−
                                     (11b) 

Furthermore, utilizing the above equations, we see that dividing the OLS 
estimate of  by its standard error yields the following t ratio: 01γ
 

•

2
•1

2

j

j j

j

j jj

j

Y
Y W

W

Y WY

W

S
r

S
t

rS

S J

×

=
−

×
−

                                                 (12) 

                                          
•

2
•1

2

j j

j j

Y W

Y W

r

r

J

=
−

−

 

 

Equation 12 shows that the resulting t ratio reduces to the correlation between 

jY  and jW  divided by its standard error.  Hence drawing inferences concerning the 
OLS estimate of  is tantamount to drawing inferences regarding 01γ •j jY Wr .  This is 
central to the application of Frank’s sensitivity analysis approach in multilevel 
settings. 

For later reference, note also that given the value of the resulting t ratio, it is 
possible to compute •j jY Wr  : 
 

• 2( 2)j jY W
tr

J t
=

− +
                                              (13) 

 

Controlling for an Observed Level-2 Covariate 

Suppose that we now add a predictor that we wish to control for to our level-2 
model: 
 

                         0 00 01 02 0j j j jβ γ γ W γ CV u= + + + 0 ~ (0, )ju N τ ,                (14) 

 11



 

Again assuming equal numbers of observations in each cluster, an OLS 
regression of the jY ’s on jW and jCV  will, analogous to the single level-2 predictor 
setting, result in estimates of the fixed effects and their standard errors identical to 
those obtained via a REML/EB estimation strategy.  Thus we write: 
 

                           . 00 01 02j j j jY ,                  (15) γ γ W γ CV e= + + + ~ (0, )je N D

 

Paralleling Equations 9 and 11b, we can re-express the OLS estimate of and its 
standard error in terms of standard deviations and correlation coefficients.  The 
formula for the OLS estimate of is as follows: 

01γ

01γ
 

2
•

01 •2
•

1
ˆ

1
jj j

j jj

j j j

Y Y CV

Y W CV
W W CV

S r
r

S r

−
= ×

−
γ                                (16) 

where 

                

•• •

• 2 2
••1 1

j jj j j j

j jj j

j j j

W CVY W Y CV

W CVY CV
Y W CV

r r r

r r
r

−
=

− −
                        (17) 

 

Thus a key statistic in Equation 16 is 
•j j jY W CVr , i.e., the partial correlation 

between jY  and jW   holding constant jCV .  We now inspect the formula for the 
partial correlation more closely.  Note that the numerator in Equation 17 consists of 
the simple correlation between jY and jW minus the product of the simple correlation 
between jY  and jCV  ( •j jY CVr ), and the simple correlation between jW  and jCV  
( ).  In addition, the simple correlations involving • jW CVr

j jCV  appear in the 
denominator as well.  As can be seen, if  •j jY CVr = 0, and similarly = 0, then  •jW CVr

j

•j j jY W CVr = •j jY Wr .  Conversely, if jCV  is strongly correlated with jY  and jW then 
inclusion of jCV  in the model will appreciably impact the resulting partial 
correlation. 
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The formula for the standard error is as follows: 
 

                          
•

•

22
•

01 2 3

11
ˆ( )

1
jj j

j jW

j

j

Y CV Y W CV

W CV

Y

J

rS r
SE γ

S r −

−−
= ×

−

j j
                         (18) 

 

To help see that Equation 18 translates to a form that is more familiar, note that: 

 

                          2
• •

21 1
j j j j jY CV Y W CV
r r− × − 2

,
1

j j jY W CV
R= −                    (19) 

 

Thus Equation 18 can be re‐written as follows: 

 
2

,

2
• 3

1

1

j j j j

j j j

Y Y W CV

W W CV J

S R

S r −

−

−
                                           (20a) 

2
.

1

2

1

2
,

2
•

( )

3

( )

1

1

j j j

j j

J

j
j

J

j
j

Y W CV

W CV

Y Y

J

W W

R

r

=

=

−

−

−

−

=
−

∑

∑
                              (20b) 

 

Note that the numerator of Equation 20b provides us with D̂ , where  is the 
estimate of the residual variance term in Equation 15.  And analogous to the 
previous example,  will be equal to the REML estimate of the random effects 
variance parameter in Equation 14 plus the error variance term 

D̂

D̂
2σ̂ n . 

Dividing the OLS estimate of  (Equation 16) by its standard error (Equation 
18), yields the following t ratio: 

01γ
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2
•

•2
•

22
••

2
• 3

1

1

11

1

j j j

j j j

j j j

j j jj j j

j j j

W W

W W

Y Y CV

Y W CV
CV

Y W CVY Y CV

CV J

S r
r

S r
t

rS r

S r −

−
×

−
=

−−
×

−

                         (21a) 

   
•

2
•

3

1
j j j

j j j

Y W CV

Y W CV

J

r

r

−

=
−

                                                       (21b) 

 

Paralleling the single-predictor setting, we see that the t ratio reduces to 

•j j jY W CV
r divided by its standard error. Thus drawing inferences concerning  
holding constant 

01γ

jCV  is tantamount to drawing inferences concerning 
•j j jY W CV

r . 

It can also be shown that: 
 

• 2( 3)j j jY W CV
t

J t
r =

− +
                                         (22) 

 

Assessing the Impact of an Unobserved Level-2 Covariate 
 

Suppose that in fitting the means-as-outcomes model containing only jW  as a 
level-2 predictor, we find that  is statistically significant, which, from above, 
implies that 

01γ

•j jY Wr is statistically significant as well.  Now suppose that rather than 
being an observed covariate, jCV  is an unmeasured potential confounding variable, 
and we wish to assess its impact on inferences concerning .  Frank’s approach 
capitalizes on the fact that drawing inferences concerning  holding constant 

01γ

01γ jCV  
would be equivalent to drawing inferences concerning the partial correlation 

•j j jY W CV
r .   Focusing on the formula for 

•j j jY W CV
r in Equation 17 we can ask:  How 

large must •j jY CVr  and •j jW CVr  be to result in a partial correlation such that the t ratio 
formed by dividing 

•j j jY W CV
r by its standard error is less than the relevant t critical 

value?  To implement Frank’s approach, we employ the following steps: 
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1. For a chosen α  value, find the relevant critical value based on a t distribution 
with  degrees of freedom, which we will term , i.e., the threshold t value. 3J − #t

 

2.   Employing Equation 22, find the value of 
•j j jY W CV

r that corresponds to : #t
#

#
• # 2( 3) ( )j j jY W CV

t
J t

r =
− +

                                    (23) 

 

We will refer to #
•j j jY W CV

r  as the threshold value of the partial correlation. 

 

3.  Substituting #
•j j jY W CV

r  for 
•j j jY W CV

r in Equation 17 we have: 

                                      
•• •#

• 2 2
••1 1

j jj j j j

j j j

j jj j

W CVY W Y CV

Y W CV
W CVY CV

r r r

r r
r

−
=

− −
                      (24) 

 

4. Drawing from Frank (2000), the impact of jCV  will be maximized when 
2

•j jY CVr 2
•j jW CVr=   •• j jj j W CVY CVr r= × = k . Thus we rewrite Equation 24 as follows: 

•#
• 1 1

j j

j j j

Y W

Y W CV

r k

k k
r

−
=

− −
                                           (25a) 

                 
•

1
j jY Wr k

k

−
=

−
                                                  (25b) 

  

5.  Since •j jY Wr is estimated from the data, the only unknown in Equation 25 is k, and 
so we now solve for k: 

                                   
• •

•1
j j j j j

j j j

Y W Y W CV

Y W CV

r r
k

r

−
=

−
                                              (26) 

 

6.  The resulting value for k provides us with the desired threshold correlations:     
     •j jY CVr = •j jW CVr k=  
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Substituting the value of these correlations into Equation 24 will result in a partial 
correlation between jY  and jW  controlling for jCV  equal to #

•j j jY W CV
r , which results in 

a t ratio equal to the threshold t value: 

 

   

#
•#

# 2
•

3

1 ( )
j j j

j j j

Y W CV

Y W CV

J

r
t

r

−

=
−

                                           (27) 

 

Note that if •j jY CVr  and  exceed •jW CVr
j

k , then the resulting partial correlation will be 
less than #

•j j jY W CV
r , and as such the corresponding t ratio will be less that .  #t

7.  Note further that #
•j j jY W CV

r  and the resulting values for •j jY CVr  and   can be 
substituted into Equations 16 and 18 to obtain the corresponding values for and 
its standard error holding constant 

• j jW CVr

01γ̂

jCV .  Note also that substituting these values 
into Equations 19 and the numerator of 20b, provides us with a corresponding R-
squared value, and an estimate of the MSE that would reflect the amount of random 
effects variance that remains after taking into account jW and jCV  plus the error 
variance in the jY ’s.  As will be seen, the resulting MSE can be used to obtain rough 
estimates of  based on the inclusion of τ jCV  in the analysis, and we will also discuss 
a way of assessing the reasonableness of such estimates. 

Note that in addition to finding the value of k that will result in a partial 
correlation equal to the threshold t value, we can also find the value of k that will 
reduce the estimate of by an amount deemed substantively significant.  
Furthermore, Frank (2000) shows, the above approach can be extended readily to 
situations in which we have a model that includes a predictor of interest along with 
other covariates (e.g.,

01γ

jZ ), and we want to assess the impact of an unobserved 
confounding variable ( jCV ). 

Extending the Above Strategy for Sensitivity Analysis  

to More Complex Settings 

How widely applicable is the approach to sensitivity analysis that we outlined 
above?  Answering this question entails answering the following question:  When is 
it sensible to re-cast HM analyses as cluster-level regression analyses employing 
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OLS estimates of level-1 intercepts or slopes as outcomes?  That is, in what situations 
or settings will cluster-level regression analyses yield point estimates and standard 
errors for fixed effects of interest that are highly similar to those produced via a 
REML/EB estimation strategy? 

Means-as-outcomes settings 

In means-as-outcomes settings in which the data are balanced, we saw that an 
OLS regression of jY  on cluster-level predictors will produce estimates of fixed 
effects and their standard errors identical to those produced via a REML/EB 
approach.  It is also likely that an OLS cluster-level regression approach will 
produce fairly similar results when cluster sample sizes vary but not to a large 
degree, or when the variability in jn  is appreciable but  is large relative to the error 
variances of the 

τ̂

jY ’s.  In such situations, the weight accorded to each cluster should 
be somewhat similar. 

Note that a Weighted Least Squares (WLS) cluster-level regression approach 
provides a valuable option when cluster sample sizes vary.  Consider, for example, a 
means-as-outcomes setting in which there is a single level-2 predictor and jn  varies 
across clusters.  In this case we could use weights based on REML estimates of the 
variance components (i.e., 1/( ˆˆ jτ V+ ), where 2ˆ ˆjV σ n= j ) to compute weighted 
versions of 

jY
S , 

j
 and WS •j jY Wr , and then substitute these quantities into Equations 9 

and 11b to obtain a WLS estimate of  and its standard error (see Appendix A).  
Note that the resulting t ratio would reduce to the WLS estimate of 

01γ

•j jY Wr  divided by 
its standard error.  Such an approach will yield point estimates for fixed effects 
identical to those produced via a REML/EB approach in means-as-outcomes 
settings, and standard errors that will be extremely close, though not necessarily 
equal to, those produced via REML/EB.  (This is due to a subtle difference in how 
standard errors are computed under these two approaches, which will be discussed 
below.  As will be seen, a WLS approach analogous to the one depicted in Appendix 
A provides certain advantages when we wish to incorporate weights in our 
sensitivity analysis.) 

Adjusted means as outcomes  

In evaluation studies in which clusters (e.g., classes) are nested within 
treatment type, the level-1 parameter of primary interest is typically an adjusted 
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mean outcome score for cluster .  Consider, for example, the following two-level 
model: 

j

 

0 1 ( )ij j j ij ijY X X ⋅⋅= + − +β β r                               (28a) 

 

where  is a level-1 covariate that is centered around its grand mean, and at level-
2: 

ijX

                                    0 00 01 0j j jβ γ γ W u= + +                                                  (28b) 

                                    1 1j 0β γ=  

     

Analogous to ANCOVA models, 0 jβ  represents an adjusted mean outcome 
score for cluster .  Suppose that  is a pretest score that is positively related to 
outcome scores.  If, for example, pretest scores in class  are, on average, lower than 
the grand mean, then the expected outcome score for class  will be adjusted 
upwards. 

j ijX
j

j

In this example we see that the adjusted means are modeled as a function of a 
single level-2 predictor, but of course the model may contain multiple predictors.  
Treatment group indicator variables, measures of implementation, and various 
compositional characteristics are possible predictors that might be included in the 
level-2 equation for 0 jβ . 

Now suppose primary interest centers on inferences concerning .  In 
programs for multilevel modeling, a mixed-modeling strategy such as the one 
depicted in Raudenbush and Bryk (2002, pp. 44-45) is used to obtain estimates of the 
fixed effects in “adjusted-means-as-outcomes” models such as the one depicted 
above.  But conceptually, we can view the level-2 model for 

01γ

0 jβ  as a regression 
model relating differences in jW  to 0 jβ .  Thus to estimate , an alternative 
approach would entail regressing OLS estimates of the 

01γ

0 jβ  (i.e., ( ) jADJY ) on jW : 
( ) 00 01jADJ j jY γ γ W e= + +  

where 

( ) . 10ˆ ( )
jADJ j jY Y γ X X⋅ ⋅⋅= − −  
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Note that  can be obtained in an analysis in which we fit the HM defined by 
Equations 28a and b using a REML/EB estimation strategy.  Estimates of the error 
variances of the

10γ̂

( ) jADJY , i.e.,  , can be obtained from REML/EB analyses as well.  
This will be discussed further in the context of our illustrative examples. 

ˆ
jV

Thus, for example, in Equations 9 and 11b, we could replace 
jY

S with the 
standard deviation of the ( ) jADJY  (i.e., 

( )ADJ jYS ), and similarly replace •j jY Wr  with the 
correlation of ( ) jADJY  and jW  (i.e., 

( ) •ADJ jj
).  Note that we could also employ a WLS 

strategy analogous to the means-as-outcomes case described above.  That is, we can 
use weights based on REML estimates of the variance components (i.e., 

Y Wr

ˆˆ1 ( )jτ V+ ), 
compute weighted versions of 

( )ADJ jYS , 
j

 and WS ( ) •ADJ jj
, and substitute these 

quantities into Equations 9 and 11b.  Both the un-weighted and weighted 
approaches extend readily to settings in which adjusted means are modeled as a 
function of two or more predictors. 

Y Wr

We have found these strategies to produce estimates and standard errors for 
fixed effects in level-2 equations for adjusted means that are extremely similar to 
those produced via programs such as HLM.  As will be seen in our first illustrative 
example below, there are simple checks that one can do to gauge if one is in a 
situation where cluster-level regressions employing the ( ) jADJY as outcomes produce 
estimates of fixed effects of interest and their standard errors that are similar to 
those obtained via a REML/EB strategy.  (Note that there is one situation we have 
encountered where such an approach may result in underestimation of standard 
errors.  See Endnote 1.) 

Slopes as outcomes 

Such models come into play in settings in which within site treatment/control 
group contrasts ( 1 jβ ) are treated as outcomes at level 2 and modeled as a function of 
measures of implementation.  This involves re-casting the estimation of fixed effects 
in the level-2 equation for 1 jβ  as a cluster-level regression of 1̂ jβ  on various cluster-
level predictors.  Similar to cluster-level regressions involving jY  or ( ) jADJY as 
outcomes, the estimate of a fixed effect of interest and its standard error can be re-
expressed as a function of standard deviations and correlations (e.g., 

1̂ jβ
S and  

1̂ •j jβ W
r ).  

Such quantities would be substituted into the various equations presented above 
(e.g., Equations 9 and 11b).   
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As in cluster-level regressions involving jY  or ( ) jADJY discussed above, one can 
carry out weighted (WLS) or un-weighted (OLS) regressions.  In the analyses we 
have conducted, we have found that cluster-level regressions employing the 1̂ jβ  as 
outcomes yield point estimates and standard errors for fixed effects of interest that 
are very similar to those obtained via the HLM program.   

A cluster-level regression approach employing 1̂ jβ  as an outcome can be 
expected to produce results fairly similar to those obtained via REML/EB in settings 
in which the same set of predictors is used to model cluster intercepts and slopes 
(i.e., 0 jβ  and 1 jβ  ) at level 2.  As Raudenbush and Bryk note (2002, pp. 272-3), this 
can help mitigate possible dependencies between the estimates of the fixed effects in 
the level-2 equation for 0 jβ  and in the level-2 equation for 1 jβ .  Group-mean 
centering the level-1 treatment/comparison group indicator variable will help 
mitigate such dependencies as well, since the resulting sampling covariance between 
the OLS estimates of 0 jβ  and 1 jβ  will be equal to 0.  Also, as will be shown in the 
analyses of the Transition Mathematics data – our second example – there are simple 
checks we can do to see if we are in a situation where it is sensible to employ a 
cluster-level regression approach 

Potential advantages of WLS 

WLS has a couple of features that make it particularly useful in situations in 
which there is some uncertainty about the magnitude of τ .  (For a valuable 
overview of WLS, see Neter, Kutner, Nachtscheim & Wasserman, 1996.)  Let’s begin 
by extending the cluster-level regression model shown in Equation 5 to unbalanced 
settings: 

. 00 01j j jY γ γ W e= + +  , ~ (0, )j je N D  

The residual term je  essentially consists of two components:  A random effect ( 0 ju ) 
connected with cluster j and an error component stemming from the sampling 
variance of jY  ( jr ), where 0 ju  ~ N(0, ) and τ jr ~ N(0, jV ).  Thus j jD τ V= + .  Note 
that when  and τ jV  are known, and we multiply the left- and right-hand sides of the 
above equation by 1 ( )jτ V+ , then 

(1 ( ) )j jVar τ V e+ × 1 ( ) ( )j jτ V Var e= + × 1 ( )j jτ V D= + × 2
WLSσ= 1= .  Thus in a WLS 

setting in which τ  and the sampling variances are known, we could simply set the 
residual variance parameter  equal to a value of 1. 2

WLSσ
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  But generally we will be working with estimates of τ  and jV  as shown in the 
formulas in Appendix A.  Rather than fixing  equal to a value of 1, a reasonable 
thing to do is to obtain an estimate of  based on the data.  Note that an estimate 
of the mean square error appears in the numerator of the standard error for  
(see Equation A.4).  We can see that the squared residual for each cluster 
(i.e.,

2
WLSσ

2
WLSσ

01( )ˆ WLSγ

2
. 00( ) 01( )ˆ ˆ( [ ])j WLS WLS jY γ γ W− + ) is divided by the quantity ˆτ̂ jV+ .  Note that if we are 

working with an estimate of τ  that is a good reflection of the amount of random 
effects variance that remains after taking into account jW —for example, the REML 
estimate of τ —then the resulting estimate of the MSE (i.e., ) will be 
approximately equal to 1.   But if we are working with an estimate of τ  that is too 
big, then we will obtain an estimate of the MSE that is appreciably less than 1; with 
weights of the form 

2ˆWLSσ

ˆˆ )jτ V+1 ( , we would essentially be dividing the squared 
residuals that appear in the formula for the MSE by amounts that are too large, 
which would diminish the magnitude of the MSE.  Similarly, if we are employing an 
estimate of τ  that is too small, then we will obtain an estimate of the MSE that is 
appreciably larger than 1, since we would be dividing the squared residuals by 
quantities that are too small, thus inflating our estimate of the MSE.  For a discussion 
of this role of the estimated MSE in connection with using WLS in analyses of non-
nested data, see Neter et al. (1996).    

When we consider the impact of an unmeasured confounding variable ( jCV ) 
on inferences concerning , theoretically the inclusion of 01γ jCV  in the analysis 
should result in a reduction of τ .  As we noted on p. 13, the resulting MSE from a 
sensitivity analysis based on an OLS approach can be used to obtain rough estimates 
of  in such situations.  As will be seen in our illustrative example, weights based on 
such estimates of τ  along with estimates of sampling variances can be used to 
conduct sensitivity analyses via WLS.  The resulting MSE from the WLS analysis 
provides a kind of gauge regarding the adequacy of our estimate of τ .  Thus, for 
example, if the resulting MSE is substantially smaller than a value of 1, this signals 
that our estimate of τ  is overestimating the amount of random effects variance that 
remains after taking into account

τ

jCV ;  if the resulting MSE is approximately equal to 
1, this would signal that our estimate of τ  seems to adequately reflect that amount 
of random effects variance which remains. 

Another nice feature of WLS is that even if we might be dividing the squared 
residuals by quantities that are, for example, too big, we will also be dividing the 
squared deviations of the predictor values in the denominator of the standard error 
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by quantities that are too big as well (see, e.g., Eq. A.4), and so these two things will 
tend to counterbalance each other to some extent.  Thus the resulting standard error 
may not be too adversely affected when employing estimates of  that are too large 
or too small; that is, this kind of counterbalancing may provide us with some 
robustness. Again, this can be useful when we are conducting analyses to assess the 
impact of unmeasured confounding variables.  Our example helps illustrate these 
ideas.  Situations in which estimates of fixed effects and their standard errors may be 
somewhat sensitive to the estimate of  that we employ are discussed below. 

τ

τ

Illustrative Example One: The Integrated Mathematics Assessment Study 

In this example, we focus on the data from a study of mathematics curricula 
and instructional practices called for in such reform-minded documents as the 
NCTM standards (see Gearhart et al., 1999; Saxe, Gearhart & Seltzer, 1999).  In 
particular, this study focused on a mathematics instructional unit for upper 
elementary students called Seeing Fractions, and on the development of teaching 
practices and skills thought to be integral to the successful implementation of such 
units (see Gearhart et al., 1999; Saxe et al., 1999).   Seeing Fractions was designed to 
enhance engagement with mathematical concepts and the development of problem-
solving skills.  However, implementing these materials successfully is very 
challenging, and requires considerable skill and training.  For example, teachers 
must be adept at eliciting and building on student thinking in the context of whole-
class discussions of problem-solving.   

The sample for this study consisted of 21 upper elementary teachers and their 
students in the greater Los Angeles area.  Sixteen of the teachers in the sample had 
prior experience using Seeing Fractions, and used Seeing Fractions during the course 
of study.  Based on a random assignment procedure discussed in Gearhart et al. 
(1999) and Seltzer (2004), 9 of these teachers were assigned to an intensive 
professional development program called Integrated Mathematics Assessment 
(IMA), which was intended to help teachers develop the kinds of instructional skills 
viewed as being central to the successful implementation of Seeing Fractions, and 7  
were assigned to a program called Collegial Support (SUPP), which provided 
teachers with opportunities to discuss and reflect on their instructional practices.  In 
addition, 5 teachers committed to using traditional texts were recruited for the 
study, and used traditional instructional materials with their students during the 
course of the study;  we term this condition TRAD.  Note that the three groups of 
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teachers were similar in terms of years of teaching experience, and the IMA and 
SUPP teachers were similar, on average, in terms of participation in relevant prior 
professional development programs. 

As noted in Gearhart et al. (1999) and Seltzer (2004), the assignment procedure 
for this study resulted in a situation in which the IMA students tended to be more 
advantaged in terms of their pretest skills and knowledge and their English 
language proficiency.  Therefore adjustment for important ways in which the 
students in these 21 classes differ at the outset is essential.   

We now pose the following level-1 model: 
 

.... ..0 1 2 3( ) ( ) (ij j j ij j ij j ij ijY )β β PREC PREC β PREP PREP β INCIP INCIP r= + − + − + − +  , 

                                                                                                    (30) 2~ (0, )ijr N σ

 

where  is the score for student i  in class  on a 13 item problem-solving posttest 
in the domain of fractions;  the items on this test could not be solved employing 
routine, algorithmic approaches.  and  are student ’s scores on a 
problem-solving pretest and a procedural-item pretest, respectively, and 

ijY j

ijPREC ijPREP i

ijINCIP  is 
an indicator variable that takes on a value of 1 if student i  began the school year 
with an incipient understanding of fractions (0 otherwise).  Note that we initially 
included an indicator variable in our level-1 model capturing a student’s English 
language proficiency (ELP).  However, the resulting point estimate of the ELP 
coefficient was extremely close to a value of 0 and not statistically significant; hence, 
we excluded this covariate from our analyses in this example. When ELP is 
included, the results are extremely similar to those presented below. Though not 
quite statistically significant, there is some suggestion of a cross-level interaction 
between and  (see Kim and Seltzer, 2006).  IMA ELP

As a result of grand-mean centering the level-1 predictors, 0 jβ , analogous to 
ANCOVA models,  represents the adjusted problem-solving posttest mean for class 

.  In a between-class (level-2) model, we model adjusted class posttest means as a 
function of  and  indicator variables: 
j

IMA SUPP
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                 0 00 01 02 0β j j j jγ γ IMA γ SUPP u= + + + 0 ~ (0, )j τ

0

, u N               (31) 

                 1 1jβ γ=  

                 2 2j 0β γ=  

                 3 3j 0β γ=  

 

where  is coded 1 if class  was taught by a teacher who participated in the 
 program (0 otherwise), and 
IMA j

IMA jSUPP  is coded 1 if class  was taught by a teacher 
who participated in SU  (0 otherwise).  Thus  represents the expected 
difference in problem-solving posttest scores between students taught by IMA  and 

 teachers holding constant the covariates in our level-1 model, and similarly, 
 captures the expected difference between students taught by SU  and TR  

teachers. 

j
PP 01γ

TRAD

02γ PP AD

In Table 1 we see that the expected difference between IMA  and TR  classes 
in problem-solving posttest scores is substantial (i.e., 2.24 points), and highly 
significant.  (Note that the expected score for TR  classes is approximately 3.9 
points.)  In addition, the SU  vs. TR  contrast is statistically significant as well, 
though the magnitude of the point estimate is approximately 1 point less than the 

 vs.  contrast. 

AD

AD
PP AD

IMA TRAD
 

Table 1.   
Estimates of the Effects of the IMA and SUPPORT Programs Before and after Adding 
Conceptual/Assessment OTL to the Level‐2 Model 
 

  Coefficients (SE) 

Predictors 
 
 

1. Model without 

jCNCPT  
 

2. Model with 

jCNCPT  
 

3. Reduced model 
with 

jCNCPT  

IMA vs. TRAD  2.24 (.56)    t = 4.03  .59 (.81)     t = .72   

SUPP vs. TRAD  1.23 (.58)    t = 2.13  ‐.13 (.73)     t = ‐.18   

CNCPT    .84 (.33)    t = 2.55  .98 (.20)    t = 4.95 

                                                           .69                                τ̂ = τ̂ =  .47                             .49 τ̂ =

 24



 

A goal of reform-minded curricula in combination with professional 
development programs such as IMA or SUPP, is to help teachers provide students 
with certain kinds of potentially powerful learning opportunities.  Thus an 
important facet of this study focused on collecting data on teachers’ instructional 
practices via videotape and field notes.  A key measure developed from these data 
captures the extent to which a teacher provides opportunities for engagement with 
mathematical (i.e., fractions) concepts in discussions of problem-solving in ways that 
build on students’ thinking.  Gearhart et al. (1999) refer to this measure as 
Conceptual/Assessment Opportunity to Learn (C/A OTL). 

We employ the same level-1 model in Equation 30 and expand the level-2 
model as follows: 
 

0 00 01 02 03 0j j j j jβ γ γ IMA γ SUPP γ CNCPT u= + + + + 0 ~ (0, )j τ, u N         (32) 

 

where jCNCPT  is the C/A OTL score for the teacher of class .  Note that this 
measure has been standardized.  As can be seen in Table 1, adding this measure of 
teacher practice to the model reduces the  contrast to approximately .60 
points ( ), and the  contrast to a value that is quite close to 0 
( ).  The estimate of the fixed effect connected with CNCPT , however, is more 
that twice its standard error.  The magnitude of the point estimate suggests an 
increase in expected class posttest performance of a little under a point when C/A 
OTL increases one standard deviation.   

j

/IMA TRAD
.72t = /SUPP TRAD

.18t = −

The question arises, however, whether C/A OTL is in fact a key mechanism –-a 
key constellation of practices—through which Seeing Fractions and similar reform-
minded materials impact student problem-solving skills. It may be the case, for 
example, that other types of OTL or instructional practices are confounded with 
C/A OTL.  Or it may be the case that certain class compositional characteristics are 
confounded with C/A OTL.   

Another measure of teacher practice constructed by Gearhart et al. is termed 
Numerics OTL, which measures the extent to which a teacher provides 
opportunities to use and interpret numeric representations of fractions that capture 
important underlying concepts.  Despite very low degrees of power (i.e., the data set 
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contains only J=21 classes, and there is appreciable collinearity among the predictors 
in Equation 32), the results change very little when we add Numerics OTL to 
Equation 32.  The pattern of results is similar when we add less proximal measures 
one variable at a time (e.g., removing Numerics OTL and adding, for example, years 
of teaching), or add various class mean intake characteristics one at a time, including 
class mean pretest scores and the proportion of students in a class who are English 
language proficient.  Note that in all of these analyses except one, the p-value 
connected with the fixed effect estimate for C/A OTL was less than .05.  In an 
analysis in which class-mean procedural pretest performance was added to 
Equation 32, the p-value for the resulting fixed effect estimate of C/A OTL was .12.  
The fixed effect estimates for IMA, SUPP and the various covariates that were added 
never reached statistical significance.      

We now re-fit our model with the treatment group indicators set aside: 
 

                              0 00 01 0j j jβ γ γ CNCPT u= + +  ,                (33) 0 ~ (0, )ju N τ

As can be seen in Table 1, the estimate of the level-2 random effects variance 
component based on the reduced model (Model 3) is nearly as small as the estimate 
based on Model 2 (.49 vs. .47), and both of these estimates are substantially smaller 
than the estimate based on Model 1 (.69), which does not containCNCPT .  The 
reduced model results in a point estimate for CNCPT that is a little larger than the 
estimate based on Model 2 (i.e., .98 vs. .84).  One difference in results that stands out 
a bit more is that the standard error for  based on the reduced model is 
substantially smaller (i.e., .197 vs. .330).  As Kenny  points out, possible mediating 
variables will be highly correlated with treatment indicators, which will result in 
large standard errors for the predictors in the model (see, for example, the notes on 
mediation on David Kenny’s website, and Judd & Kenny [1981]).  In this connection, 
note that regressing CNCPT on the IMA  and  indicators results in an R-
squared value of .65. 

01γ

SUPP

But questions concerning unmeasured confounding variables arise.  Are there 
various unmeasured aspects of practice that are confounded with C/A OTL?  For 
example, Gearhart et al. attempted to construct a measure of Graphics OTL but 
levels of rater agreement were found to be unacceptable.  If such a measure were 
available and added to Equation 33, one might wonder whether the impact would 
be such that the estimate of the fixed effect for C/A OTL is no longer statistically 
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significant.  In addition, the students in the IMA ,  and TR  classes perhaps 
may also have differed in important ways at the outset of the study not fully 
captured by the available student intake/pretest measures.  Suppose that such a 
measure were available, aggregated to the classroom level, and added to Equation 
33.  The coefficient for this covariate would capture the between-class relationship 
between the covariate and adjusted class posttest means, which can be viewed as a 
combination of the within-class relationship between the covariate and the outcome 
(e.g., ) and the contextual effect of the covariate (e.g., ) (i.e.,  + ) .  Again 
the question is what impact might this covariate have on results concerning C/A 
OTL? 

SUPP AD

wβ cβ wβ cβ

Extending Frank’s work (2000) to multilevel settings, we now illustrate our 
strategy for assessing the impact of an unobserved confounding variable on results 
concerning a fixed effect of interest in a level-2 equation for adjusted cluster mean 
outcome scores.  We first consider whether we are in a situation where it is sensible 
to re-cast multilevel analyses as cluster-level regression analyses employing OLS 
estimates of adjusted means (i.e., ( ) jADJY ) as outcomes.  Figure 1 presents a plot of the 
adjusted means versus C/A OTL, and we see a roughly linear upward trend.   
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       Figure 1.     OLS estimates of adjusted class mean outcome scores versus 
                                          conceptual OTL values. 
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 Note that an OLS regression of ( ) jADJY on jCNCPT  results in a point estimate, 
standard error and t ratio for   (i.e., the fixed effect for C/A OTL) that are 
extremely similar to those produced by a REML/EB strategy using the HLM 
program (see Table 2).   

01γ

 

 Table 2.    
Fixed Effect Estimates ( ) for Conceptual OTL Based on the HM Defined in Equations 30 
and 3, and Corresponding Correlations 

01γ̂

 

  01γ̂  (SE)  t   ( ) •ADJY CNCPTr  

HLM  .976 (.197)  4.949  .750 

OLS  .975(.190)  5.140  .763 

WLS  .976(.192)  5.068  .758 

 

Employing weights based on the HLM analysis (i.e., 1/[ ]), a WLS 
regression of 

ˆˆ jτ V+

( ) jADJY on jCNCPT  yields results that are even closer to those produced 
by HLM.  Thus it appears that we are in a situation where employing a cluster-level 
regression approach via OLS or WLS is quite sensible.   

Note further that the un-weighted (OLS) correlation between ( ) jADJY  and 

jCNCPT  is .763, while the weighted (WLS) correlation is .758.  Note also that 
transforming the t ratio produced by HLM (4.949) to a correlation (i.e., 

24.949 ( 2) (4.949)J − + ) yields a value of .750.  As can be seen, the values of these 
three correlations are extremely close.        

We now follow steps 1 – 7 on pages 11-13 above, substituting ( ) jADJY  for jY  
throughout.  We will be conducting several sensitivity analyses, and for each one the 
threshold t value ( ) is the upper .025 critical value based on a t distribution with 

= 18 degrees of freedom, i.e., .  The corresponding threshold partial 
correlation value is 

#t
3J − # 2.101t =

 

( )

#
#

• # 2(21 3) ( )ADJ j jjY CNCPT CV

tr
t

=
− +

                      (34) 

                                                                    .444=   
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We first employ an OLS approach. Using the un-weighted correlation 
coefficient (

( ) • .763
ADJ jjY CNCPTr = ) and the threshold partial correlation (i.e.,  

( )

#
• .444

ADJ j jjY CNCPT CVr = ), we solve for  as in Step 5 above: k
 

                                    
( ) ( )

( )

#
• •

#
•1

ADJ j ADJ j jj j

ADJ j jj

Y CNCPT Y CNCPT CV

Y CNCPT CV

r r
k

r

−
=

−
                            (35) 

                                         .574=
 

Taking the square root of , we obtain k
( ) • .758
ADJ jjY CVr = , and . • .758

j jCNCPT CVr =

Substituting 
( )ADJ jYS , , 

jCNCPTS
( )

#
•ADJ j jj

, Y CNCPT CVr
( ) •ADJ jjY CVr  and  into Equations 

16 and 18, gives us the corresponding estimate of  and its standard error holding 
constant 

•j jCNCPT CVr

01γ

jCV  (see Table 3).  Using these quantities, we can also obtain an estimate of 
the resulting R-squared value and Mean Square Error based on the inclusion of jCV  
in the model. (See Table 3;  see, also, Equations 19 – 20b). 

 

Table 3.   
Sensitivity of Inferences Concerning the Effects of Conceptual OTL to the Impact of an 
Unmeasured Confounding Variable 

 

  OLS  WLS I  WLS II 

( ) •ADJ jjY Wr   .763  .758  .757 

( )ADJ jYS   1.278  1.465  1.627 

jW
S   1.000  1.139  1.262 

k   .574  .565  .563 

k
( ) •ADJ jjY CVr=  and  

 •j jCNCPT CVr
.758  .752  .750 

01( )ˆ CVγ   .567  .571  .572 

01( )ˆ( )CVSE γ   .270  .272  .272 

2R   .658  .650  .649 

MSE   .621  .833  1.032 
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This analysis suggests that the correlation between an unmeasured 
confounding variable jCV  and ( ) jADJY , and between jCV and jCNCPT , would need to 
exceed values of approximately .76 to result in a partial correlation between 

( ) jADJY and jCNCPT  (holding constant jCV  ) that yields a t ratio below .  
Similarly, correlations of this magnitude would be needed to result in a fixed effect 
estimate for 

# 2.101t =

jCNCPT  (holding constant jCV ) and its standard error that yields a t 
ratio below the threshold t value.   

Correlations exceeding .76 are large by social science standards.  Note also that 
among the various observed covariates in this study (see Table 4), only one has a 
correlation with ( ) jADJY or jCNCPT  that exceeds .76, i.e., Relevant Prior Professional 
Development (see Table 4).  But while this covariate has a correlation with jCNCPT  
of .77, its correlation with ( ) jADJY  is only .41.  As can be seen, many of the correlations 
in Table 4 are small to medium in size.  We also see that the correlations between 

 and IMA ( ) jADJY , and between IMA  and jCNCPT are fairly substantial.  Note further 
that when we compute the partial correlations between ( ) jADJY and jCNCPT  holding 
constant the observed covariates one at a time, we can see in Table 4 that all of the 
resulting partial correlations far exceed the threshold value of .444.  The smallest 
partial correlation that we obtain (i.e., .667) arises when we hold constant IMA, and 
clearly the magnitude of that correlation far exceeds .444. 
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Table 4. 
Correlations of observed covariates with adjusted problem‐solving posttest means and with 
Conceptual OTL.  Each entry in the last column is the product of the correlations for a given 
predictor with adjusted problem‐solving posttest means and with Conceptual OTL. 
  

 
Adjusted Prob.‐

Solving  
Posttest Mean 

Conceptual OTL 
 

 

( ) • . .ADJ jjY CNCPT obs covr  

 
 

Conceptual OTL      0.763**     

Numerics OTL  0.109  ‐0.001  0.768 

IMA Indicator      0.578**     0.514*  0.667 

Support Indicator  ‐0.058  0.173  0.786 

Relevant Prof. Dev.  0.408       0.768**  0.769 

Math Specialist  0.247  0.189  0.753 

Years Teaching  0.052  ‐0.230  0.797 

Prop. English Lang. 
Proficient 

0.393  0.381  0.721 

Prop. W. Incip. 
Understanding 

0.194  ‐0.016  0.781 

Procedural Pretest Mean  ‐0.104  ‐0.109  0.760 

Problem‐solving Pretest 
Mean 

0.243  0.136  0.760 

N=21; **: p<.01; *: p<.05 
 

Table 4 provides an opportunity to make a more general point.  Namely, 
examining correlations of observed covariates (e.g., Numerics OTL) with a level-2 
outcome and predictor of interest (e.g.,  ( ) jADJY and jCNCPT ) provides a valuable 
frame of reference for thinking about the magnitudes of correlations with 
unobserved covariates (e.g., 

( ) •ADJ jjY CVr  and ) needed to impact the partial 
correlation or fixed effect estimate of interest to the point where it is below a 
threshold t value.  That is, we can begin to get a sense of how likely it might be to 
obtain correlations of such magnitude.  In particular, one would hope to have a 
number of covariates that provide measures of various aspects of instructional 
practice (proximal factors) and of various compositional characteristics that might, 
based on the relevant research literature or on pilot work, be confounded with one’s 
predictor of interest (e.g., 

•j jCNCPT CVr

jCNCPT ), and pay particular attention to the correlations 
of such observed covariates with one’s level-2 predictor and outcome of interest.  In 
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short, we need to do more than simply examine the magnitude of quantities such as 
the square root of k. 

In Table 3, we also present results from two analyses employing weighted 
correlations between ( ) jADJY and jCNCPT , and weighted versions of 

( )ADJ jYS and 

j
.   As can be seen, the resulting values for CNCPTS

( ) •ADJ jj
 and are extremely 

similar to those obtained via an OLS (un-weighted) approach. The first weighted 
analysis (WLS I) employs weights based on the REML estimate of τ obtained in the 
HLM analysis in which 

Y CVr •j jCNCPT CVr

0 jβ was modeled as a function of jCNCPT (see Equation 33), 
i.e., ˆˆ1 ( )jτ V+ , where .49.  But note that the inclusion of a confounding variable 
should, theoretically, result in a reduction in τ .  Thus to obtain a rough estimate of 

 that reflects the inclusion of a confounding variable in the level-2 model, we 
subtracted the average value of the ’s from the estimate of the MSE obtained in 
the sensitivity analysis in which no weights were employed (i.e., .621).  This resulted 
in a value of .35, which we used as our estimate of τ  in the second weighted 
analysis. As can be seen in Table 3, both weighted analyses yield results that are 
quite similar to the first analysis. 

τ̂ =

τ
ˆ
jV

As noted above, WLS has a couple of features that make it useful in situations 
in which there is some uncertainty about the magnitude of τ .  In general, if we are 
working with an estimate of τ  that is a good reflection of the amount of random 
effects variance that remains after taking into account the level-2 predictors in a 
given model, then the estimate of the MSE obtained via WLS should be close to a 
value of 1.  If our estimate of τ  is too big, then WLS will produce an MSE that is 
appreciably less than 1; with weights of the form ˆˆ1 ( )jτ V+ , we would essentially be 
dividing the squared residuals that appear in the formula for the MSE by amounts 
that are too large, which would diminish the magnitude of the MSE.  Note that in 
the WLS I analysis, in which we employ an estimate of τ̂ = .49—an estimate that 
does not take into account the impact of jCV — the resulting MSE is .833.  In 
contrast, in the WLS II analysis, in which we employ an estimate of .35, the 
resulting MSE is 1.032.  Another nice thing about WLS is that even if we might be 
dividing the squared residuals by quantities that are too big, we will also be 
dividing the squared deviations of the predictor values in the denominator of the 
standard error by quantities that are too big (see, e.g., Equation A.4), and so these 
two things may tend to counterbalance each other in numerous settings.  In this 
particular example, the SEs obtained in the WLS I and WLS II analyses are the same.  
Note, however, that the 

τ̂ =

jV ’s are not too heterogeneous in this application.  
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Differences in values of τ  that we employ can be consequential in settings in which 
the number of clusters is small and the sample contains an influential outlying 
cluster whose sampling variance is very large or small in relation to the sampling 
variances of the other clusters.  In such situations, differences in values for τ  can 
increase or diminish the influence of the outlying cluster on estimates of the fixed 
effects, which in turn can impact the magnitudes of the squared residuals, which are 
key elements of the MSE.   

The above results in combination with various studies of reform-minded 
mathematics instruction cited Saxe et al. (1999) would seem to point to 
Conceptual/Assessment OTL (or perhaps a particular facet of it) as being a key 
mechanism through which Seeing Fractions impacts student problem-solving skills.  
But this may not be the only mediating factor.  For example, in future studies, one 
might want to investigate whether graphics OTL or the extent to which particular 
kinds of examples are employed might also, along with Conceptual/Assessment 
OTL, be mediating factors. 

Discussion 

In many multisite evaluation studies, questions of primary interest often focus 
on whether particular facets of implementation or other aspects of classroom or 
school environments are critical to a program’s success.  From a statistical analysis 
standpoint, addressing such questions entails drawing inferences concerning fixed 
effects that capture how differences in implementation, for example, relate to 
differences in adjusted class mean outcome scores ( 0 jβ ) or in site treatment/control 
contrasts ( 1 jβ ).  In carrying out such analyses, it is crucial that we attend to both 
measured and unmeasured variables that may be confounded with the effects of 
implementation.  While measured potential confounding variables can be included 
as covariates in our analyses, attending to the possible effects of unmeasured 
confounding variables on our inferences is clearly very challenging.   

In this paper we have outlined a strategy for studying the sensitivity of 
inferences concerning fixed effects of interest in analyses of multisite data to 
unmeasured confounding variables.  Our strategy builds on Frank’s (2000) approach 
to sensitivity analysis, which was developed for use in settings in which one is 
working with linear models in analyses of non-nested data.  The crux of our strategy 
entails re-casting focal cluster-level (level-2) equations in Hierarchical Models as 
weighted or un-weighted cluster-level regressions in which OLS estimates of 0 jβ  or  
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1 jβ  (i.e., ( ) jADJY ; 1̂ jβ ) are employed as outcomes  and modeled as a function of key 
cluster-level predictors.  The weighted approach that we outlined entails 
constructing weights using estimates of variance components obtained from HLM 
analyses.   

The example that we focused on above provides an illustration of our approach 
in situations in which intact organizational units are nested in different levels or 
types of treatment.   Multilevel analyses in such cases typically involve modeling 
adjusted class means, for example, as a function of various class-level characteristics, 
including treatment type, key aspects of implementation, and various observed 
covariates.  In matched-pairs designs, treatment/comparison contrasts for the pairs 
(i.e., blocks) in our sample are modeled as a function of key pair characteristics (e.g., 
particular facets of implementation, observed site-level covariates).  For a sketch of 
our approach in matched-pairs settings, please see Appendix B. 

In our illustrative example, we focused on inferences concerning a fixed effect 
( ) relating differences in Conceptual/Assessment OTL (01γ jCNCPT ) to adjusted 
class-mean problem-solving posttest scores (see Equation 33).  Specifically, we used 
our approach to investigate the sensitivity of inferences concerning to an 
unmeasured potential confounding variable (

01γ

jCV ), and found that the correlations 
between adjusted mean outcome scores and jCV  , and between jCNCPT  and jCV , 
would both need to exceed a value of .76 to result in an estimate of jCNCPT  holding 
constant jCV  that is no longer statistically significant. 

Note that the level-2 (between-class) model in this example contained only one 
observed predictor (i.e., jCNCPT ).  As pointed out above, our approach can easily be 
extended to settings in which level-2 models contain more that one observed 
predictor.  Suppose, for example, that we were to include  as a covariate in 
Equation 33.  The resulting fixed effect relating 

IMA

jCNCPT  to  ( ) jADJY , holding constant 
whether a class was taught by a teacher who participated in the IMA program or 
not, is .80 (t = 3.732).  To assess the sensitivity of inferences concerning jCNCPT  in 
this setting to an unobserved confound ( jCV ), we focus on the partial correlation 
between adjusted mean outcome scores and jCV  holding constant IMA, and the 
partial correlation between jCNCPT  and jCV holding constant IMA, and ask how 
large must these partial correlations be to render our results for jCNCPT  no longer 
statistically significant?  Extending our approach to this setting, we find that these 
partial correlations must exceed values of .61. 
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Employing Frank’s work on sensitivity analysis in developing our strategy for 
conducting sensitivity analysis in HM settings offers several advantages.  First, it 
provides a fairly direct way of addressing the question:  How strongly correlated 
must a potential confounding variable ( jCV ) be with an outcome and predictor of 
interest such that if we were able to control for jCV  in our analysis, the fixed effect 
estimate connected with the predictor of interest would no longer be statistically 
significant at a chosen alpha value?  As noted above, we can also find the magnitude 
of the correlations that would reduce the estimate of the fixed effect by an amount 
deemed substantively meaningful.  Secondly, as noted in the previous paragraph, 
our approach can be easily extended to situations in which the focal level-2 equation 
in our model includes a predictor of interest ( jW ) along with one or more observed 
covariates ( jZ ).  In this connection, our approach enables us to alter assumptions 
concerning the degree to which jCV and jZ  are associated.  For example, we might 
conduct a sensitivity analysis in which we assume that jCV  and jZ are independent;  
in a subsequent analysis, we might assume that a moderately large proportion of the 
variability in jCV  (e.g., 50%) is accounted for by jZ .  

While we have focused on the use of our approach to sensitivity analysis in 
multisite studies of educational programs, note that our approach can be employed 
in an array of hierarchical modeling settings and applications.  For example, the 
estimation of key fixed effects in many growth modeling applications could be 
recast as regressions of OLS estimates of individual growth parameters (e.g., growth 
rates) on person-level predictors.  In addition, many meta-analyses could be recast 
as regressions of effects size estimates on study-level characteristics.  Furthermore, 
our approach could be extended to settings in which time-series observations (level-
1) are nested within students (level-2) who, in turn, are nested within different 
schools (level-3), and where interest centers on inferences concerning how certain 
school-level policies or programs relate to differences in school-mean rates of 
change.  In such cases, the estimation of key fixed effects at the school level could be 
recast as regressions of estimates of school-mean rates of change on sets of school-
level predictors.   
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Endnote 1:  We have found that cluster-level regressions employing OLS 
estimates of adjusted means (i.e., ( ) jADJY ) as outcomes can produce underestimates of 
standard errors for contextual effects—that is, situations in which the level-2 
predictor of interest is, for example, the mean of  aggregated to the cluster level 
(i.e., 

ijX

. jX ).  In such cases, in Equation 28b is the contextual effect of the pretest, 
which is in effect a contrast between the estimates of the between-cluster and within-
cluster pretest fixed effects (i.e., 

01γ

ˆ
bβ  - ˆ

wβ  using the notation in Raudenbush and Bryk 
[2002, chpt. 5]).  In the case of the HSB example on p. 140 in Raudenbush and Bryk 
(2002), one can see that the standard error of the contextual effect of SES is equal to 
the square root of the quantity 2ˆ( ) ( )bSE β SE 2ˆ

wβ+ .   (As Raudenbush and Bryk [2002] 
point out, the standard error of the contextual effect can be determined from the 
sampling variance/covariance matrix for the fixed effect estimates based on a model 
in which SES is group-mean centered at level 1, and school-mean SES is employed as 
a predictor of 0 jβ .)  Using a WLS strategy in which the ( ) jADJY are regressed on school 
mean SES, the resulting point estimate of the contextual effect is identical to the 
value produced by HLM.  However, the standard error that we obtain is 
approximately equal to ˆ( )bSE β , i.e., it does not reflect the fact that the point estimate 
we have is in essence a contrast between the between-cluster and within-cluster 
fixed effects of SES.  Note that if we include SECTOR as well as MEAN SES at level 
2, the point estimate and standard error that we obtain for SECTOR using a WLS 
strategy are extremely similar to the values produced by HLM.  Thus the 
underestimation of standard errors seems to be confined to the estimate of the 
contextual effect. 

The extent to which the standard errors for contextual effects via regressions 
involving ( ) jADJY  are too small will depend on the magnitudes of  2ˆ( )bSE β  and 

2ˆ( )wSE β .  Typically 2ˆ( )wSE β  will be substantially smaller than 2ˆ( )bSE β .    
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Appendix A:  WLS Formulae for Means-as-Outcomes Models with a Single Level-

2 Predictor 
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Appendix B:  Sketch of the TM Example 

To help sketch the application of our approach to studies in which blocks are 
crossed with treatment type we consider an example from Seltzer (2004) that focuses 
on an analysis of the data from an evaluation of Transition Mathematics (TM), which 
is an innovative pre-algebra curriculum developed by the University of Chicago 
School Mathematics Project.  Details concerning the design of the study can be found 
in Seltzer (2004).  Briefly our sample consists of 20 carefully matched pairs of 
classrooms located within various school districts throughout the U.S.  Within each 
pair, the students in one class were taught by a teacher who utilized the TM text, 
while the students in the other class were taught by a teacher who used the 
materials already in place at that particular school.  The decision as to which teacher 
at a site would use TM and which would use the materials already in place was 
based on random assignment in the case of 10 sites;  logistical reasons precluded this 
in the case of the 10 other pairs.  (An analysis in Seltzer [2004] shows that the effects 
of TM appear to be similar on average at sites in which teachers were randomly 
assigned and at sites where the assignment was not random) 

We now consider an analysis of one of the outcomes of interest, i.e., a measure 
of geometry readiness based on a 19-item test.  We pose the following level-1 
(within-site) model: 
 

0 1 2. .( ) ( )jij j j ij j ij ijjY β β TRT TRT β PRE PRE r= + − + − + 2~ (0, )ijr N σ,  

 

where  is the geometry readiness score for student i in site j, is a treatment 
indicator variable that takes on a value of 1 if student i in site j is a member of the 
TM class (0 otherwise), and is the score for student i in site j on a general math 
pretest.  The level-1 parameter of primary interest is

ijY ijTRT

ijPRE

1 jβ , which represents the 
expected TM/Comparison class contrast for site j holding constant pretest 
performance.  By virtue of group-mean centering, 0 jβ  is the mean geometry 
readiness score for site j.  (Note also that group-mean centering removes the 
sampling covariance between OLS estimates of  0 jβ  and 1 jβ .) 
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Employing a between-site model containing no predictors, we find that the 
average TM effect is a little over 1 point, which is basically worth 1 item on the 19-
item geometry readiness test.  Furthermore, we find that there is substantial 
heterogeneity in the effects of TM.  To begin to get a sense of this, note that the OLS 
estimates of the site TM effects ( 1̂ jβ ) range from -2.15 to 4.67.   

The developers of TM view daily discussion of the reading passages in the TM 
text as a key element of the program.  As such, information regarding the usage of 
reading in the text was obtained through a teacher questionnaire administered at the 
end of the school year.  The TM teachers fell into two categories, i.e., those who 
indicated they discussed the reading in the text on a daily basis, which we term high 
implementation (i.e., jIMPLRDG = 1), and those who indicated that reading was 
discussed frequently but was not part of the daily routine, which we term low 
implementation ( jIMPLRDG = 0). 

At level-2 we model 0 jβ  as a function of site-mean pretest scores, and we 
model site TM effects as a function of jIMPLRDG : 
 

0 00 01 0.( )j jjβ γ γ PRE PRE u= + − + ,  0 0~ (0, )ju N τ 0

1 10 11 1j j jβ γ γ IMPLRDG u= + + ,  1 1~ (0, )ju N τ 1

02 2jβ γ=  

 

and .  Note that the equation for 0 1 01 10( , )j jCov u u τ τ= = 1 jβ  is our focal level-2 
equation.  The base or intercept in this model represents the expected effect of TM at 
low implementation sites, and represents the expected increment in the 
effectiveness of TM when the level of implementation is high. 

11γ

Note that the HLM estimate for  is =2.03 and its standard error is .76 
(t=2.68).  An OLS regression of the 

11γ 11γ̂

1̂ jβ  on jIMPLRDG  yields extremely similar 
results:  =2.05, SE=.78 (t=2.61).  Point estimates and SEs for the base are very 
similar as well:  .12 (SE=.53) for HLM, and .16 (SE=.55) based on a cluster-level 
regression analysis.  This points to the reasonableness of re-casting the estimation of 
the fixed effects in the level-2 equation for 

11γ̂

1 jβ  as a cluster level regression. 

To consider the impact of an unmeasured confounding variable on inferences 
concerning , we can essentially follow the same steps as in the analysis for the 11γ
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IMA data but substituting 1̂ jβ  for ( ) jADJY and jIMPLRDG  for jCNCPT .  To implement 
our approach we need the correlation between 1̂ jβ  and jIMPLRDG , the standard 
deviation of the 1̂ jβ ’s, and the standard deviation of jIMPLRDG .  Note that the 
correlation that we obtain without employing weights is .524.  Employing a 
threshold t value of 2.11, which corresponds to the upper .025 critical value based on 
a t with 17 degrees of freedom, we obtain a value of  k =.126, and so 

1̂ •j jβ CV
r  =  = 

.35, and the corresponding estimate of  holding constant 
•j jW CVr

11γ jCV  is 1.78.  (Note that 
here jW represents jIMPLRDG .)  Thus the correlation between jCV  and 1̂ jβ ,  and 
between jCV  and jIMPLRDG  would need to exceed a value of .35 to result in a 
partial correlation between 1̂ jβ  and jIMPLRDG  (holding constant jCV ), or to result 
in an estimate of holding constant 11γ jCV , that yields a t ratio below the threshold t 
value.  Note that if we set the threshold t value equal to the upper .05 critical value, 
we obtain 

1̂ •j jβ CV
r  =  = .47, and the corresponding estimate of holding 

constant 
•jW CVr

j 11γ

jCV is 1.52. 

Further work needs to be done in terms of interpreting the results of these 
analyses, and comparing values for 

1̂ •j jβ CV
r and 

j
with correlations based on 

observed covariates as in Table 4 for the IMA example.  But this sketch is intended to 
provide a sense of the applicability of our approach to a commonly encountered 
design in evaluation studies. 

•jW CVr
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