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Abstract 

Individual differences in response to a given treatment have been a longstanding interest in 

education. While many evaluation studies focus on average treatment effects (i.e., the effects of 

treatments on the levels of outcomes of interest), this paper additionally considers estimating the 

effects of treatments on the dispersion in outcomes. Differences in dispersion can, under certain 

circumstances, signal individual differences in response to a given treatment, thereby helping us 

identify factors that magnify or dampen the effects of treatments that might otherwise go 

unnoticed. Much of this paper focuses on quasi-experiments in nested settings, which are 

commonly encountered in multi-site evaluation studies. In such settings, studying differences in 

dispersion as well as in means (e.g., differences in levels of outcomes for treatment and control 

group students) entails jointly modeling mean and dispersion structures in a hierarchical 

modeling (HM) framework. This paper shows how a well-elaborated dispersion structure based 

on substantive theories mitigate the problem of confounding by cluster characteristics, while a 

well-elaborated mean structure helps avoid confounding by individual characteristics, with 

regard to inferences concerning dispersion. We illustrate these ideas with analyses of the data 

from a study of the effectiveness of two innovative instructional programs relative to traditional 

instruction in elementary mathematics classrooms. We employ a fully Bayesian approach and 

discuss its advantages in modeling dispersion. We further discuss possible extensions of the 

methodology to other evaluation settings, including longitudinal evaluation settings. 
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Introduction 

 Many questions and analyses in educational evaluation research focus on 
average treatment effects or expected differences in outcomes of interest given the 
assumption that possible confounding variables are controlled for: What is the 
expected difference in posttest scores between students assigned to an innovative 
program versus those assigned to a more traditional program? What is the expected 
difference in mathematics achievement between students attending public high 
schools versus those attending Catholic schools? 

 While estimating expected differences in outcomes is of primary interest in 
many studies, often overlooked in such analyses are potential differences in 
individual responses in outcomes to a given treatment. In settings where the true 
treatment effect is constant across individuals (i.e., the assumption of `constant 
effect' [Holland, 1986]), the average treatment effect is a reasonable estimate for 
every individual in the population. In contrast, when the true treatment effect varies 
substantially across individuals, the average treatment effect either represents only a 
partial picture of the true treatment effect, or can be misleading. In such situations, 
the entire distribution of the outcome around the means of treatment and control 
conditions will reflect the true variable effect across individuals.  

 Individual differences in response to a given treatment have been a long-
standing interest in education. As noted in classic pieces in the educational research 
literature (Cronbach & Snow, 1977; Cronbach, 1975), when one considers 
`treatments,' such as a remedial reading interventions, opportunities to learn 
fractions, certain school policies, or particular types of parental involvement, it is 
very likely that the true effect of such educational experiences will vary substantially 
across students. What may be occurring is two-way or even three-way interactions 
among personal characteristics and treatment (e.g., Aptitudes and Treatment 
interaction [ATI]), with the personal characteristics being either identified or 
unidentified.  

 Attending to differences in dispersion in outcomes can be a useful way of 
bringing to light individual differences in responses to a given treatment. 
Differences between treatment and control conditions with respect to dispersion in 
outcomes can, under certain circumstances, signal that the treatment effect is not 
constant but varying across individuals. In particular, when the treatment effect 
varies systematically as a function of individual characteristics, unequal dispersion 
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between conditions may indicate interactions between treatment and individual 
characteristics. Thus, addressing heterogeneity of dispersion and studying factors 
underlying the heterogeneity can help us identify important factors that magnify or 
dampen the effect of a treatment that might otherwise go unnoticed. 

 Toward this end, this paper examines the effects of treatments on dispersion in 
outcomes (i.e., expected differences in dispersion between individuals under 
treatment and control conditions) as well as the effects of treatments on mean in 
outcomes (i.e., expected differences in means between individuals under treatment 
and control conditions). Although the literature on causal inference has been 
proliferating in the last couple of decades, it has been concerned with assessing 
``causal effects'' on means in outcomes but not on dispersion. The perspective of 
causal inference would be beneficial to drawing inferences concerning the effects of 
treatments on dispersion as well as inferences on means. Just as there has been much 
focus on obtaining unbiased estimates of average treatment effects on means in 
outcomes by assuring that possible confounding variables are controlled for via 
randomization, analytic adjustment (e.g., adjusting for covariates), or adjustment 
built in the design stage (e.g., matching or stratification), in inferences concerning 
dispersion, it is also important to control for possible confounding variables.  

 This paper first suggests a conceptual framework to think profitably about the 
effect of a treatment on dispersion. The framework helps us see how heterogeneity 
in dispersion can signal the presence of unspecified interactions between treatment 
and subject characteristics, and sensitize us to factors that make it difficult to draw 
sound inferences concerning the effects of treatments on dispersion in quasi-
experimental settings. As will be seen, as we move from experiments to quasi-
experiments, and particularly from quasi-experiments in non-nested settings to 
quasi-experiments in nested settings, it becomes more challenging to draw sound 
inferences concerning dispersion. Much of the focus in this paper is on quasi-
experiments in nested or multilevel settings, which is a common framework in 
multisite evaluation studies.  

 The conceptual framework is based on multiple sources of literature. In 
particular, we draw on the work by Bryk and Raudenbush (1988) that examines 
heterogeneity in dispersion in experimental studies, primarily in non-nested settings 
(e.g., one-way ANOVA, or regression). They show that unequal dispersion between 
treatment and control conditions in randomized studies may be empirical evidence 
of interactions between treatment and subject characteristics. We also draw on the 
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work by Raudenbush and Bryk (1987) that investigates how differences in cluster 
characteristics relate to differences in within-cluster dispersion. The main interest in 
Raudenbush et al. (1987) is in identifying cluster characteristics (e.g., within-school 
standard deviation in number of math courses taken) that predict within-cluster 
variability (e.g., within-school variability in math performance). They show that in 
randomized studies unequal dispersion between conditions arise entirely from the 
treatment, while in non-randomized studies unequal dispersion may stem from 
differences in dispersion prior to the treatment (e.g., pre-existing differences in 
dispersion in student SES). 

 Our conceptual framework combines and extends the work by Bryk et al. 
(1988) and Raudenbush et al. (1987) to incorporate nested settings, thereby 
addressing confounding by cluster characteristics in addition to confounding by 
subject characteristics. Furthermore, this paper constructively uses concepts from 
theories of potential outcomes (Holland, 1986; Rubin, 1974, 1978) and lays out 
sources of differences in dispersion respectively in experiments, quasi-experiments 
in non-nested settings, and quasi-experiments in nested settings. By enumerating the 
sources of differences in dispersion, we show that characteristics in different levels 
give rise to confounding in distinctive ways with regard to inferences concerning 
dispersion in the Hierarchical Modeling (HM) framework. 

 Secondly, this paper suggests modeling strategies and procedures to address 
the effects of treatment on dispersion as well as on mean, and to identify important 
interactions between treatment and individual characteristics, for commonly 
encountered designs in multi-site evaluation studies. This entails modeling 
dispersion structures as well as mean structures in hierarchical models (HMs). By 
mean structure, we mean hypothesized relationships between an outcome of interest 
and covariates (e.g., regression models), while by examining dispersion, we mean 
modeling the residual variance from the mean structure as a function of covariates 
(cf. McCullagh & Nelder, 1989). While HMs are widely used in educational research 
(for example, Goldstein, 1995; Raudenbush & Bryk, 2002), typically the residual 
variances at each level are assumed to be homogeneous, or independently and 
identically distributed (i.i.d.). Even in some applications of modeling residual 
variance (see, e.g., Browne, Draper, Goldstein, & Rasbash, 2000; Goldstein, Healy, & 
Rasbash, 1994; Kasim & Raudenbush, 1998; Littell, Milliken, Stroup, Wolfinger, 1996; 
Raudenbush & Bryk, 2002; Snijders & Bosker, 1999, chapter 8; Wolfinger, 1996), the 
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applications are in general limited to specifying heterogeneous variances and 
pursuing better-fitting models.  

 Our approach makes connections between such HMs used in experimental or 
quasi-experimental studies and causal inferences concerning dispersion, and present 
modeling strategies and procedures that are useful especially in quasi-experiments 
in nested settings. A series of HMs will help us see how a well-elaborated dispersion 
structure based on substantive theories mitigate the problem of confounding by 
cluster characteristics, while a well-elaborated mean structure helps avoid 
confounding by individual characteristics, with regard to inferences concerning 
dispersion. In cases where significant effect of treatment on within-site dispersion is 
present after careful considerations of the confounding variables, both in the 
individual and cluster levels, we suggest to proceed to further elaboration of the 
mean structure by including possible interactions between treatment and individual 
characteristics. 

 We illustrate this framework and the modeling strategies and procedures with 
analyses of data from a study that assessed the effectiveness of two innovative 
instructional programs relative to traditional instruction in elementary mathematics 
classrooms in the domain of fractions (Gearhart, Saxe, Seltzer, Schlackman, & Ching, 
1999). As will be seen, by modeling both the mean and dispersion structures in HMs, 
we found that classes of students in the two treatment conditions not only 
performed better in terms of problem-solving posttest scores in the domain of 
fractions, but also had larger within-classroom dispersion, relative to the classes of 
students in the control condition, after we controlled for possible confounding by a 
student characteristic and by a class characteristics, respectively in the mean and the 
dispersion structures. Larger dispersion in the treatment conditions helped us 
uncover interactions between treatment and student characteristics that might have 
otherwise gone unnoticed. We use the fully Bayesian (FB) approach implemented by 
WinBUGS (Spiegelhalter, Thomas, Best, & Lunn, 2003). The advantages using FB in 
inferences concerning dispersion will be discussed.  

Conceptual Framework 

Sources of Differences in Dispersion in Experiments  

 Let us start with a simple situation in which there is a treatment group and a 
control group and in which the variances around the mean levels are different for 



 

6 

the treatment and control groups. Then one may ask why this difference arises. One 
quick answer might be that the outcome of interest is more similar or diverse across 
subjects in the presence of treatment than in the absence of treatment. Theories of 
potential outcomes (Holland, 1986; Rubin, 1978; Rubin, 1974) may help formalize 
this idea. 

 The key idea behind theories of potential outcomes is that potentially the 
outcome of interest y for an individual i, yi, could have been observed either in the 
treatment T or in the control condition C. Let yiT denote the outcome for individual i 
that could potentially be observed in the treatment condition T; and yiC denote the 
outcome that could potentially be observed in the control condition C. In this 
framework, the effect of treatment T relative to control C on the outcome of interest 
y is defined as the difference between two potential outcomes, yiT - yiC, for subject i. 

 A fundamental difficulty arises in estimating this effect of treatment for 
individual i, because it is typically not feasible for a subject to receive both treatment 
and control conditions independently (i.e., it is typically impossible to observe both 
yiT and yiC). A `statistical solution' (Holland, 1986) to this problem is to obtain the 
expected treatment effect over subjects in the population, E(yiT - yiC) = E(yiT) - E(yiC). 
While the average causal effect is the difference between two expected values E(yiT) 
and E(yiC), what one can estimate in practice is the difference between two expected 
values over such subjects as who are actually observed in either condition. Thus, the 
estimated quantity is 

 
E(yiT|Si=T) - E(yiC|Si=C),                                               (1)   
where the assignment of individual i is denoted as Si. 

 In experimental settings, the assignment Si is independent of all variables 
including yiT and yiC (i.e., the assumption of `independence' [Holland, 1986]). Thus 
the two observed expectations in Equation 1 are respectively equivalent to the two 
expected values over subjects in the population. That is, E(yiT) = E(yiT|Si=T) and 
E(yiC) = E(yiC|Si=C). As such, the estimated quantity in Equation 1 becomes E(yiT- 
yiC), which shows that experiments provide unbiased estimates of the expected 
effectiveness of treatments. 

 As for dispersion modeling, a relevant point in this account is that the `true' 
treatment effect (relative to the control condition) is originally defined for an 
individual on which the treatment exerts an effect (i.e., yiT- yiC). Based on this 
formalization, heterogeneity of variance between treatment and control groups 
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implies that Var(yiT|Si=T) - Var(yiC|Si=C) is significantly different from zero. By the 
independence assumption, the above quantity is equivalent to Var(yiT)- Var(yiC). This 
means that the variance in the outcome in the treatment condition is significantly 
different from that variance in the control condition. This means that the variance in 
the outcome in the presence of treatment is significantly larger or smaller than that 
variance in the absence of treatment. It may indicate that the true treatment effect 
relative to control, yiT- yiC, is variable across individuals. 

 
 

Figure 1. Summary plots of average performances of three subgroups. H, M, and L indicate high, 
medium, and low achievement groups, respectively. A vertical arrow represents dispersion in 
outcome for each treatment group. 

 Figure 1 displays three hypothetical settings in which the experiment is 
concerned with assessing the effectiveness of an innovative educational program 
(i.e., a treatment) on student achievement (i.e., an outcome of interest). For heuristic 
purposes, three subgroups are assumed in the population, high, medium, and low 
achievement groups, which are represented respectively by H, M, and L in the 
figure. Since the students are randomly assigned to either condition, we can assume 
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that E(yiT|Si=T) = E(yiC|Si=C) and E(yiT|Si=T) = E(yiC|Si=C) for the sample, and also 
for the subgroups given a large enough sample size within the subgroups. Then, the 
lines in the figure represent the effectiveness of treatment, i.e., the increment in 
outcome from absence of treatment to presence of treatment. 

 In scenario (a) the treatment effect (relative to control) is constant across 
subjects and across subgroups, which is indicated by the parallel lines. The parallel 
lines convey that there is a constant increment from control to treatment. In this 
setting, the dispersions, represented by the vertical lines, of the two groups are 
equivalent. 

 The two other scenarios are examples of varying treatment effect across 
individuals. In these examples, one can see that heterogeneity in variance arises 
between the two groups. In scenario (b), the treatment effect is larger for the higher 
achievement subgroup, which is indicated by the steeper line for the higher 
achievement group. As a result, one can see that the dispersion of the treatment 
group is larger than that of the control group. In contrast, in scenario (c), the 
treatment effect is larger for the lower achievement subgroup, which is represented 
by a steeper slope for the lower achievement group. As can be seen, the dispersion 
of the treatment group is smaller. 

 Bryk and Raudenbush, in an independent line of work, provide further 
clarification of this issue. They conceive heterogeneity of variance in experimental 
studies as ``empirical evidence of an interaction of treatments with some unspecified 
subject characteristics'' (Bryk & Raudenbush, 1988, p.396). That is, the treatment 
effect varies, or the treatment exerts differential effects across subjects, because 
subjects with different characteristics respond to the fixed treatment differentially. 

Sources of Differences in Dispersion in Quasi-Experiments in Non-Nested 

Settings  

 Experimental studies are not feasible in numerous situations in educational 
research or, more broadly, in social science research. When random assignment has 
not been achieved, groups might differ from each other in many ways prior to the 
exposure to treatments. Thus, in such settings as quasi-experimental studies, a 
number of confounding sources may exist in inferences concerning dispersion as 
well as in inferences concerning mean. Specifically, if the mean model is not fully 
specified, omitting some important variables that account for initial differences in 
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dispersion between groups prior to the exposure to treatment, then the inference 
concerning dispersion may be confounded by the variables that are omitted from the 
mean model. 

 For illustrative purposes, let us assume that there are two covariates X1 and X2 
that are related to the outcome and distributed with unequal variance across groups, 
prior to treatment (Raudenbush & Bryk, 1987). Then a proper mean model would 
be: 

 
yi = β0 + β1Trti + β2X1i + β3X2i + ei .                                        (2)   

 Assume now that the mean model is not properly specified omitting X2i. The 
residual term in Equation 2 then becomes β3X2i + ei, which includes the covariate 
that has been omitted from the mean model. Therefore, the residual variance 
becomes a quadratic function of the omitted variable, X2i. In this case, the dispersion 
inference is subject to a confounding problem, because the heterogeneity in the 
residual dispersion might be either due to differential treatment effects across 
subjects or due to different initial dispersions in X2i between the groups, or due to a 
mix of both. 
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Figure 2. Scatter plots of outcome (y) and predictor (X2). Vertical Arrows represent outcome 
dispersion, while horizontal arrows represent predictor dispersion. OLS lines are superimposed. 

 Figure 2 displays how differences in dispersion of an outcome result from 
differences in dispersion of a predictor. In Group A shown in panel (a), the 
dispersion of a predictor X2 is larger than that of Group B in panel (b). As can be 
seen by the vertical lines indicating the dispersions of the outcome, the larger 
dispersion in the predictor X2 in Group A directly leads to the larger dispersion in 
the outcome in Group A. Therefore if this predictor is not included in the mean 
model, the residual dispersion will be different between Groups A and B due to the 
difference in the predictor dispersion. 

Sources of Differences in Dispersion in Quasi-Experiments in Nested Settings  

 So far the framework has dealt with non-nested settings in which there is no 
nesting structure in the data such as multiple regressions. Studying differences in 
dispersion in quasi-experimentation can be more complicated in nested settings 
(e.g., settings where the individuals are nested within clusters). In addition to the 
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sources of confounding in non-nested settings, differences in observation-level 
dispersion (i.e., within-cluster dispersion) may also arise from differences in cluster-
level characteristics. 

 For example, let us think of a multilevel situation in which student i is nested 
within school j and in which different schools are assigned to different treatments. 
The following equation extends Equation 2 to this multilevel situation: 

 
yij = β0 + β1Trti + β2X1i + β3X2i + β4W1j + uj + eij ,                             (3)   

where the two subscripts i and j indicate the data nesting; uj is a cluster-level 
residual; and  W1j denotes a cluster-level variable. A primary feature of multilevel 
models such as Equation 3 is to partition the outcome variability into different 
levels: student-level variability and cluster-level variability. As such, the variance of 
the student-level residuals eij represents the pooled within-school residual 
dispersion, while the variance of the cluster-level residuals uj represents the 
between-school residual dispersion. 

 Note that, unlike observation-level characteristics (i.e., student characteristics), 
cluster-level characteristics (i.e., school characteristics) can be related to the within-
school residual dispersion, regardless of whether they are omitted from the mean 
model or not. As one can see from Equation 3, omitting W1j in the model would 
change the cluster-level residuals to β4W1j + uj, but would not directly change the 
within-school or student-level residuals. Thus, in nested settings, differences in 
within-school dispersion, which is captured by the variance of Level-1 residuals eij, 
might also arise from differences in any cluster-level characteristic Wj that are either 
included or not included in the mean structure.  

 Among cluster-level characteristics, intake characteristics of clusters can be 
related to within-cluster dispersion. For example, larger enrollment of schools may 
contribute to larger within-school dispersion in student achievement. Policies or 
practices of clusters may also be related. School policies such as tracking may lead to 
larger dispersion in student achievement, while policies that employ more unified 
curricula units for all students may lead to smaller dispersion. 

 Even some aggregates of observation-level characteristics may be related to 
within-cluster dispersion after the characteristics are specified in the mean model. 
For instance, the standard deviation of student academic backgrounds may be 
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related to dispersion in student achievement, after including the variable in the 
mean structure. 

 In schools dealing with very diverse populations of students in terms of their 
academic backgrounds compared to schools with homogeneous populations in 
which virtually all students have very weak academic backgrounds, even students 
with similar academic backgrounds may be expected to perform in a different way 
in the outcome (e.g., posttest scores). A student in a very diverse population may 
interact with peers with diverse backgrounds and receive instruction that is geared 
toward students with a broad range of prior educational experiences. The expected 
outcome of this student would have more uncertainty since plausible outcomes 
could range from very low to very high. In contrast, a typical student in a 
homogeneous population composed of students with weak backgrounds is likely to 
do poorly on the test, as are his or her peers. The expected outcome thus has less 
uncertainty since plausible outcomes are apt to fall in a restricted range in such 
situations. Thus, diverse initial academic backgrounds may contribute to larger 
outcome dispersion, while homogeneous initial academic backgrounds may yield 
smaller outcome dispersion. This can be viewed as a contextual effect on dispersion. 

 Contextual or compositional effects are viewed as existing in settings where, 
even after controlling for a student characteristic at the student level, the aggregate 
of the student characteristics is related to the outcome. Contextual effects have 
normally been discussed in connection with means (e.g., relationships between 
school mean SES and school mean achievement), but not with dispersion. However, 
the same logic applies to variances. Even when student characteristics are 
controlled, the entire environment of schools in terms of the characteristic can have 
an impact on the dispersion in the outcome of interest as well as the central 
tendency. 

 Efforts to attend to relationships between within-cluster dispersion and various 
cluster characteristics can be found in Raudenbush and Bryk (1987). In analyzing the 
High School and Beyond data, Raudenbush et al. (1987) found that, within-school 
residual variability after accounting for various student characteristics was 
significantly related to various school characteristics, such as the within-school 
standard deviation of student SES, the within-school standard deviation of student 
academic backgrounds, whether the school is a Catholic or public school, school 
size, and the within-school standard deviation in the number of math courses taken. 
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Raudenbush et al. (1987) refer to these characteristics as “correlates of diversity,” in 
a sense that they help predict the outcome dispersion. 

 To summarize, in quasi-experimental studies that employ single-level 
regression models (e.g., Equation 2), a main possible source of confounding in 
estimating treatment effects on dispersion involves omission of variables in the 
mean structure, which is considered as a model misspecification problem. In quasi-
experimental studies that use multilevel models (e.g., Equation 3), however, 
differences in cluster-level characteristics, which may be an additional source of 
confounding, is not associated with the problem of the misspecification of mean 
structure. Cluster-level characteristics can be related to differences in observation-
level residual variance irrespective of the mean structure. 

Summary on Confounding Variables in Inferences Concerning the Effects of 
Treatments on Dispersion  

 The conceptual framework lays out sources of differences in dispersion 
respectively in experiments, quasi-experiments in non-nested settings, and quasi-
experiments in nested settings. As we move from experiments to quasi-experiments 
in non-nested settings, and from quasi-experiments in non-nested settings to quasi-
experiments in nested settings, more sources are involved in differences in 
dispersion. Therefore, it is more challenging to make sound inferences concerning 
the effect of treatments. 

 In experimental settings where randomization assures that treatment 
assignment will be independent of all variables, the difference in dispersion in the 
outcome between treatment groups arises entirely from the effect of treatment on 
dispersion. In quasi-experimental settings, however, the effect of treatment on 
dispersion may be confounded by misspecification of the mean model, such as 
omitting important variables from the model (e.g., student characteristics that are 
related to outcomes and that have unequal dispersions across treatment groups). 
Thus, differences in dispersion between treatment groups may arise either from a 
treatment effect on dispersion or omitted variables from the model, or even a mix of 
both. 

 In addition to this, multilevel quasi-experimental studies confront another 
source of confounding. Differences in within-cluster or level-1 dispersion may also 
be due to differences in cluster characteristics. For example, in multisite evaluation 
studies, certain school policies (e.g., tracking) may be related to within-school 
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dispersion. Thus, multilevel quasi-experimental studies, which are common in 
educational evaluation research, face the challenge of disentangling three sources of 
differences in variance: treatment effect on dispersion; model misspecification at the 
student level (e.g., omission of student characteristics in the mean structure); and 
differences in cluster characteristics that are related to within-cluster dispersion (e.g., 
school characteristics that are related to dispersion).  

Hierarchical Models (HMs) for Modeling Mean and Dispersion Structures 

 In multisite evaluation studies, it is often the case that intact schools or 
classrooms are the unit to which different treatments are assigned. As a result, 
individuals are nested within different clusters (e.g., sites, schools, or classrooms). 
This characteristic of the data calls for Hierarchical Models (HMs) to account for the 
dependency among the observations within clusters. This paper focuses on HMs for 
continuous outcomes, with possible applications to multisite evaluation studies. 
HMs for continuous outcomes commonly assume normal assumptions in the 
observation level (Level 1) and normal assumptions for random effects that are 
associated with each nesting unit (Level 2). We first present a 2-level HM with 
homogeneous variance assumption. Next, we present how to extend these HMs to 
model dispersion as well as means simultaneously. 

 In design settings where intact clusters are nested within treatment types, 
treatment status becomes a Level-2 variable. Specifically, at level one, the outcome yij 
for student i in cluster j is a function of student characteristics, Xqij, q = 1, …, Q. 

 
yij = β0j + Σ βqjXqij + rij,             rij ~ N(0, σ2),                       (4a)   

where a key coefficient is the intercept, β0j, which is the adjusted mean of the 
outcome for cluster j, given that the student characteristics are centered around their 
grand-means. 

 For the purpose of simplicity, let us assume that the coefficients of student 
characteristics do not vary across clusters. Then at level two the intercept can be 
modeled as a function of treatment status and other cluster-level characteristics, Wsj, 
where s=2, …, S, such as 

 
β0j = γ00 + γ01Trtj + Σ γ0sWsj + u0j,      u0j ~ N(0, τ00), 
βqj = γq0,                           q = 1, …, Q,                       (4b) 
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where γ01 captures the expected relative effectiveness of the treatment; and τ00 is the 
residual variability of intercepts across sites after accounting for treatment status 
and other site characteristics. 

 Although the above HM can provide much useful information concerning the 
average effect of a treatment under certain conditions, relaxing the homogeneity 
assumption of the level-1 residual variance and modeling it as a function of key 
covariates opens up the possibility of examining another dimension of the outcome, 
which is dispersion in the outcome. We will refer to this part of the analysis as 
dispersion modeling, in contrast to mean structure modeling. 

 What follows in this section deals with dispersion modeling, in which we frame 
the procedure to consist of two stages: detecting and probing stages. Examining 
dispersion starts with checking to see if there is detectable heterogeneity of variance 
in the data: specifically, whether the residual variances are unequal across treatment 
type or across clusters. We refer to this as a “detecting” stage. Once heterogeneity of 
variance is detected, the next step would be to probe the current model and the data 
further in pursuit of investigating possible factors that underlie the heterogeneity. 
We refer to this as a “probing” stage. 

Detecting Heterogeneity  

 Based on the discussion in the conceptual framework, in multisite evaluation 
studies, unless it is a perfectly randomized study with a large enough cluster sample 
size, one is confronted with at least three possible sources of the heterogeneity in 
level-1 residual variance. Since the focus in experimental or quasi-experimental 
studies is on estimating the effect of treatment on dispersion, which is one source of 
the heterogeneity, the other two sources become confounding variables. One 
confounding source is from differences in site characteristics, which were referred to 
as correlates of diversity following Raudenbush et al. (1987). The other confounding 
source is from model specification errors at Level 1, e.g., omitting student 
characteristics that are related to the outcome and have unequal dispersions across 
treatment type (see, e.g., Figure 2). 

 Relationships of key interest, i.e., the effect of a treatment on dispersion, can be 
examined by Level-1 dispersion modeling, i.e., modeling the Level-1 residual 
variance as a function of site characteristics as well as treatment indicator variables. 
With the mean model being specified as above in Equations 4a and 4b, the 
dispersion model can be specified in a log-linear model as follows: 
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ln(σ2ij) = α0 + α1 Trtj + Σ αpWpj,  p=2, …, P .                              (5) 

 The coefficient α1 captures the key parameter, i.e., whether the Level-1 residual 
variance depends on treatment membership. The variable Wpj are site characteristics 
such as site sample size, school policies or practices of sites, site dispersions of 
student characteristics (e.g., within-site standard deviations of student academic 
background). The coefficients of the site characteristics, αp, represent the 
relationships of site characteristics to within-site dispersion in the outcome.  

 To obtain unbiased estimate of the key parameter indicating whether the Level-
1 residual variance depends on treatment membership, it is important to adjust for 
the site-level confounding variables (Wj) in the dispersion structure. The adjustment 
is required especially in quasi-experimental settings, because the treatment indicator 
(Trtj) is likely to be correlated with some site characteristics (Wj). Even in 
experimental studies, it is warranted to specify the site characteristics in the 
dispersion model to decrease within-treatment variability in the dispersion structure 
and thereby increasing the statistical power to detect differences associated with 
treatment membership, and to adjust for possible existing imbalance between 
treatment types. 

 Unlike site-level confounding variables (Wj), possible biases due to the student-
level confounding variables (Xij) should rather be removed by modifying the mean 
structure than modeling the dispersion structure. As detailed in the conceptual 
framework, inferences concerning the effect of treatment on dispersion can be 
misleading due to student-level confounding variables, if they are omitted from the 
mean structure. Thus, student characteristics that have unequal dispersions between 
treatment groups should be included in the mean structure to avoid associated 
biases. 

 Differences in level-1 dispersion may come from other kinds of model 
misspecification errors than omitting student-level confounding variables. For 
example, Raudenbush and Bryk (2002, chapters 7 & 9) suggest a statistical test, to see 
whether the Level-1 residual variances of each Level-2 unit are variable across Level-
2 units. When heterogeneity in residual variance exists across clusters, it may 
indicate model specification errors at level one. According to Raudenbush et al. 
(2002), some possibilities are; 1) a slope (e.g., β1j, the effect of treatment at site j) that 
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varies appreciably across sites is erroneously specified as fixed; 2) there may be 
outliers in some sites; or 3) the distribution of outcome has heavier tails than normal. 

 Statistical tests of this kind and subsequent modifications or careful selections 
of the mean structure should be preceded to ensure the validity of the mean 
structure and to avoid confounding that arises from the mean model 
misspecification in inferences concerning the effect of a treatment on dispersion.  

 
Probing Heterogeneity of Dispersion  

 Once heterogeneity of dispersion is detected between treatment and control 
groups despite efforts to take into account possible confounding sources, one may 
proceed to search for possible interactions empirically and substantively. The search 
should be guided by relevant theory and empirical work in the literature. One may 
also consult with developers of the treatment to get a sense of whether they think 
the treatment effect will be larger for students with certain characteristics. Empirical 
evidence is also important. It would be helpful to search carefully for measured 
student characteristics, to see whether any of them interacts with the treatment. 

 In design settings where intact clusters are nested within treatment types, the 
interaction of treatment with student characteristics is a cross-level interaction, that 
is, an interaction between a Level-2 variable (i.e., Trtj) and a Level-1 variable (i.e., 
Xij). For illustration, suppose that we have one covariate (X1ij) in our Level-1 model, 
and that the slope for X1ij does not significantly vary across sites. Suppose further 
that we fit the following model to the data in a detecting stage: 

 
 yij = β0j + β1jX1ij + rij,               rij ~ N(0, σ2j),  
β0j = γ00 + γ01Trtj + Σ γ0sWsj + u0j,     u0j ~ N(0, τ00), 
β1j = γ10,                 
ln(σ2j) = α0 + α1Trtj + α2Wj,          Trt=0, 1,                         (6) 

where one finds that the estimate for α1 is statistically significant, indicating a 
possible interaction between a Level-1 characteristic and treatment. To investigate 
whether there is an interaction between X1ij and Trtj we can expand the mean model 
as follows as part of a probing stage: 

 
 yij = β0j + β1jX1ij + rij,             rij ~ N(0, σ2j),  
β0j = γ00 + γ01Trtj + Σ γ0sWsj + u0j,   u0j ~ N(0, τ00), 
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β1j = γ10 + γ11Trtj .                                                                            (7) 

Note the non-randomly varying slope of the student characteristic. Rewriting this 
model as a mixed model helps us see the interaction: 

 
yij = γ00 + γ01Trtj + γ10 X1ij + γ11X1ijTrtj + Σ γ0sWsj + u0j + rij . 

 Iterations between the detecting and probing stages based on our conceptual 
framework may result in more elaboration both in the mean and dispersion 
structures. For example, heterogeneity in Level-1 residual variance may turn out to 
be due to omitting an important student characteristic from the mean model. This 
will lead to specifying the variable in the model, which is an elaboration in the mean 
structure. Likewise, heterogeneity in variance across treatment type may signal 
interactions between treatment and subject characteristics; and then the mean 
structure will be more elaborated by adding the interaction term to the model. 

 One may think of a situation where heterogeneity in Level-1 residual variance 
is related to a site characteristic (e.g., tracking). Then one includes the site 
characteristic in the dispersion model, which implies an elaboration of the 
dispersion structure. As mentioned above, in settings where the site characteristics is 
correlated with treatment type, specification of these site variables is required to get 
an unbiased estimate of a treatment effect on dispersion.  

 In principle, full elaboration of both the mean and dispersion structures should 
explain away the heterogeneity of level-1 residual variance between treatment types. 
By full elaboration, we mean identifying all main sources of heterogeneity in 
dispersion and specifying them in the mean and/or dispersion models. In multisite 
evaluation studies, we fully elaborate a hierarchical model, when we include in the 
mean structure all student characteristics that are related to the outcome dispersion 
and to treatment type; in the mean structure all significant interactions between 
treatment and student characteristics; and in the dispersion structure all site 
characteristics that are related to within-site dispersion and to treatment type. 

 Although, after the iterative procedures, it would be ideal to explain away the 
heterogeneity in residual dispersion between treatment types, one may not have 
enough information to do so in many studies. For instance, information about all 
important student and site characteristics may not have been collected or observed. 
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Illustrative Example 

Study Background  

 The National Council of Teachers of Mathematics (NCTM) Standards calls for a 
conceptual, problem-solving approach to mathematics instruction. The 
implementation of the Standards is contingent on teachers' deep understandings of 
``both mathematics and the ways that students interpret mathematical problems and 
build knowledge'' (Gearhart, Saxe, Seltzer, Schlackman, & Ching, 1999, p.287). In 
relation to this set of Standards, the state of California adopted and promoted 
curriculum units designed to supplement or replace chapters from traditional texts. 
The study focused on two such units, Seeing Fractions and My Travels with 
Gulliver. These units are designed to be aligned with the Standards: to support 
students' involvement with mathematical problem-solving and enhance their 
conceptual understanding. Gearhart et al. (1999) term this reform-minded 
instruction. 

 A pool of teachers was selected from volunteers from upper elementary 
schools. Teachers who had used and would be continuing with a traditional 
curriculum were assigned to the Traditional (TRAD) group. Teachers who had 
experience with the two state-adopted units were randomly assigned to one of two 
forms of professional development termed Integrating Mathematics Assessment 
(IMA) and Collegial Support (CS). 

 In the IMA program, teachers went through an intensive professional 
development program, a 5-day summer institute followed by 13 meetings during 
the year. The integrated series of workshops the IMA teachers attended dealt with 
the following activities: Teachers' Mathematics, Children's Mathematics, Children's 
Motivation, and Implementation of Integrated Mathematics Assessment. For more 
details on each activity, please refer to Gearhart et al. (1999). In contrast, in the CS 
program, the teachers did not receive any intensive workshops but met with other 
teachers in the program to discuss various issues concerning the implementation of 
the two curriculum units. 

 Researchers in the study believe that while reform-minded curricula have the 
potential to enhance student problem-solving skills and conceptual understanding 
of mathematics, teachers need extensive professional development in order to 
implement such curricula successfully. Thus the IMA and CS conditions provide an 
opportunity to study the effect of reform-minded curricula when teachers receive 
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intensive training (i.e., IMA) and when they receive training that is much more 
typical (i.e., CS). 

 The assignment to either IMA or CS was done by a stratified random 
assignment procedure; a simple random assignment procedure was inappropriate 
due to the small sample size. Teachers were matched on the following 
characteristics: years of experience, experience with the problem-solving units, 
additional professional development, and student characteristics. As the assignment 
of teachers was conducted before the school year started, the students on which 
matching was based were not the ones in the sample, but the ones the teachers 
taught in the year prior to the study. This procedure resulted in 9, 7, and 5 teachers 
in the three groups, IMA, CS, and TRAD, respectively. For more details, refer to 
Gearhart et al. (1999). 

 A key feature of this study is that extensive observations were conducted in 
each classroom. One main aim of the study was to develop measures of 
opportunities in student learning that are aligned with reform-minded principles of 
instruction. In a slightly distinctive perspective from the original study, we view this 
study as a quasi-experimental intervention study in which two treatment groups 
(i.e., IMA and CS) and one control group (i.e., TRAD) are compared. We attempt to 
assess the effect of treatments on the dispersion as well as the mean level of student 
achievement in the domain of fractions. Specific research questions follow. 

 First, what is the expected difference in the outcome of interest (i.e., problem-
solving posttest scores in the domain of fractions) between students assigned to the 
IMA program versus students assigned to traditional instruction? What is the 
expected difference in the outcome between students assigned to the CS program 
versus students assigned to traditional instruction? 

 The second question is: What is the expected difference in within-classroom 
dispersion in the outcome between IMA classrooms and traditional classrooms; and 
between CS classrooms and traditional classrooms? Is there significant heterogeneity 
in within-classroom dispersion across classrooms? 

 Third, in cases where we detect significant heterogeneity in within-classroom 
dispersion, what are the underlying sources of the heterogeneity? What would be 
the evidence of the presence of interactions between the IMA program and student 
characteristics, and between the CS program and student characteristics? In 



 

21 

addition, what are the classroom characteristics that help predict within-classroom 
dispersion? 

Variables and Exploratory Analyses 

 In terms of prior student characteristics that are expected to relate to the 
outcome (i.e., problem solving posttest in the domain of fractions), four student 
characteristics were the focal interest of the researchers studying reform-minded 
practices in the domain of fractions. The four variables include three pretest 
measures and a language status measure: 

 a) a computation pretest score (Prep), which is the sum of the computation 
items that a student got right; b) a problem-solving pretest score (Prec), which is the 
sum of the problem-solving items that a student got right; c) a binary indicator of 
incipient understanding of fractions (Incip), which indicates whether a student 
shows a rudimentary understanding of fractions; and d) a binary indicator of a 
student's language fluency (Lang), which measures whether a student is fluent in 
English. The information is provided from school data of the prior year. Table 1 
presents the means and the standard deviations of all four student characteristics by 
treatment type. Although, as mentioned above, the stratified randomization in the 
design stage used student characteristics from the students who the teachers in the 
sample taught in the previous year, the results from the distributions of various 
student characteristics show substantial overlaps across groups prior to the 
implementation.  
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Table 1 

Descriptives of Student Characteristics for all Sample and by Treatment Type. 

 
Student Characteristics Sample IMA CS TRAD  
Problem-solving pretest     

mean 2.67 3.46 1.97 2.12  
sd 2.23 2.56 1.53 1.88  

Computation pretest     
mean 2.95 4.00 1.81 2.55  

sd 3.67 3.92 2.89 3.64  
Language status     

mean 0.82 0.94 0.80 0.64  
sd 0.38 0.24 0.40 0.48  

Incipient understanding status     
mean 0.65 0.76 0.54 0.59  

sd 0.48 0.43 0.50 0.49  

  

 As for the average level, in all four characteristics, the CS group and the control 
group are rather similar, while the IMA group appears to be more advantaged. The 
IMA group students performed better on the Problem-solving pretest and 
Computation pretest. Also a higher proportion of them was English proficient (94%) 
and had an incipient understanding of fraction (76%). According to ANOVA tests 
and Duncan post hoc comparisons, the average problem-solving pretest (Prec) in the 
IMA group is significantly higher than that of the other groups (Anova p-
value=0.03). The other variables did not show differences in the average level across 
the treatment groups. 

 As for the dispersion, the Levene's test for homogeneity of the variance in 
English language proficiency status (Lang) is also rejected with borderline 
significance (p-value=0.05). The other variables did not show differences in 
dispersion across the treatment groups.  

 Since the problem-solving pretest (Prec) and English language proficiency 
status (Lang) show differences across groups, respectively in terms of the average 
level and the average dispersion, the adjustment of the differences in Prec is required 
to avoid confounding in inferences concerning the effects of treatments on the mean 
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level; and the adjustment of the differences in Lang is required to avoid confounding 
in inferences concerning the effects on the dispersion. 

Analyses and Results  

 The analysis consists of a series of three HMs. Model 1 is a base HM, in which 
we focus on modeling the mean structure, while assuming homogeneous variance at 
level 1 and level 2. This model provides estimates of differences in the mean level of 
the outcome between treatment and control groups. Model 2 examines differences in 
the dispersion of the outcome between treatment and control groups, and in relation 
to site characteristics. This is done by embedding a log-linear model for dispersion 
in the base HM (i.e., Model 1). Model 3 extends the mean structure of Model 2 by 
including interactions between treatment and student characteristics. Model 2 
generally corresponds to the "detecting" stage in the dispersion modeling, and 
Model 3 to the "probing" stage, although the two stages are iterative and cannot be 
entirely separated.  

 All model estimation is done through fully Bayesian computation using the 
software WinBUGS (Spiegelhalter, Thomas, Best, & Lunn, 2003). A practical 
advantage of using fully Bayesian approach in this illustration is to allow us to 
compute of the posterior distributions of unknown quantities of more direct interest 
as well as the parameters in specified models, and thereby facilitating inferences 
based on Bayesian probabilistic statement. For example, from the log-linear models 
for the dispersion structure, we construct posterior distributions of residual 
variances of each treatment group. Also, for the interaction between student prior 
computational knowledge on fractions (Prec) and the CS treatment, we directly 
construct the posterior distribution of the slope of prior computational knowledge 
(Prec) of students in CS classes, and compute the Bayesian probability that the slope 
is greater than 0. Another advantage of FB approach is to provide a systematic way 
of checking and retrospectively improving the specification of the models, which is 
referred to as posterior model checks (e.g., Belin & Rubin, 1995).  

Model 1: Base HM .   The base model attempts to estimate the effects of treatments 
on the level in the outcome. Similarly to an exemplary HM in the previous section in 
Equations 4a and 4b, the base HM is specified as follows: 
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ij 0j 1j ij .. 2j ij .. 3j ij .. 4j ij .. ij

2
ij

y  = + (Prec -Prec ) + (Prep -Prep ) + (Lang -Lang ) + (Incip -Incip ) + r ,         

                                                                          r  ~ N(0, ),

β β β β β

σ

0j 00 01 j 02 j 0j 0j 00

qj q0

  =  + IMA  + CS  + u ,                u  ~ N(0, ), 
  = ,                                                           q=1, ... , 4.                                        (8)

β γ γ γ τ

β γ

 

 The outcome, yij, is the Problem-solving posttest score for student i in 
classroom j. The within-classroom relationships between student characteristics and 
the outcome, β1j, β2j, β3j, and β4j, are specified as non-varying across classrooms -- 
that is, there are no random components attached to the slopes, since there was no 
empirical evidence that the within-class slopes are varying across classrooms. 

 Given that all four predictors are grand-mean centered at Level 1, the intercept 
β0j is the classroom mean for classroom j adjusted for the between-classroom 
differences in the Level-1 predictors included in the model. The same logic of 
ANCOVA applies to this. At Level 2, the adjusted classroom means are specified as 
a function of treatment indicators, of which the coefficients γ01 and γ02 are the key 
parameters. They are, respectively, the expected difference between the IMA and the 
control groups and the expected difference between the CS and the control groups. 

 Table 2 presents the results of the model. The expected difference between the 
IMA and the control classes is 2.2, while the difference between the CS and the 
control classes is 1.2. The CS-control contrast is barely significant - the lower end of 
95% interval is only a little above zero. 

 The pooled within-class slopes are all positive, and also significant except for 
the ELP indicator, controlling for all other variables in the model. The slope of the 
Problem-solving pretest is 0.52, indicating that a 5-point difference in the pretest 
implies an expected difference of 2.6 points in the outcome, when all other variables 
in the model are held constant. The slope of the Computation pretest is 0.15, and so a 
5-point difference in the pretest results in an expected difference of 0.75 points in the 
outcome, given that all other conditions are equal. Again controlling for all other 
predictors, the students with incipient understanding tend to perform better by 1 
point. 
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Table 2 

Results from Model 1. 

 
 Estimate 95% Interval Median 

Fixed Effects:    
Model for adjusted class means    

CTL Grand Mean (γ00) 3.925 (2.985  4.872) 3.927 

IMA/CTL contrast (γ01) 2.217 ( 1.026  3.402) 2.215 

CS/CTL contrast (γ02) 1.218 ( 0.001  2.442) 1.216 
    
Average Within-class slopes:    

Prec/Posttest slope (γ10) 0.516 ( 0.383  0.649) 0.516 

Prep/Posttest slope (γ20) 0.152 ( 0.073  0.233) 0.152 

ELP/Posttest slope (γ30) 0.077 (-0.645  0.792) 0.077 

Incip/posttest slope (γ40) 0.987 ( 0.433  1.542) 0.987 
    
Variance Components:    
Between class:    

Var. in adjusted mean (τ00) 0.812 ( 0.351  1.665) 0.744 
Within class:    
Residual Var. (σ2) 6.245 ( 5.485  7.118) 6.145 
 

Model 2: HM with heterogeneity of residual dispersion.  With the mean structure 
being identical to Model 1, Model 2 extends Model 1 by modeling the Level-1 
dispersion structure. The natural logarithm of the Level-1 residual precision (i.e., the 
inverse of variance) is specified as a function of treatment indicators and the 
proportions of ELP students in classrooms, shown as follows: 

 

ij 0j 1j ij .. 2j ij .. 3j ij .. 4j ij .. ij

ij

y  = + (Prec -Prec ) + (Prep -Prep ) + (Lang -Lang ) + (Incip -Incip ) +  r ,         

                                                                           r  ~ N(0, j

β β β β β

σ2

0j 00 01 j 02 j 0j 0j 00

qj q0

2
0 1 j 2 j 3 .j

),

  =  + IMA  + CS  + u ,                u  ~ N(0, ), 

  = ,                                                           q=1, ... , 4,

ln(1/ )   =  + IMA  + CS  + (Langj

β γ γ γ τ

β γ

σ α α α α .. - Lang ) .                                            (9)
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 The parameters α1 and α2 in the dispersion model are the expected differences 
in dispersion, respectively between the IMA and control groups and between the CS 
and control groups, controlling for the classroom proportion of ELP students. The 
parameter α3 is the expected change in dispersion when the ELP proportion changes 
from 0% to 100%, holding constant the treatment type. Table 3 presents the results. 

 The key parameters, the IMA/control and the CS/control contrasts in 
dispersion, are significant, which indicates that both the IMA and CS dispersions are 
significantly greater than the control group dispersion. The slope of the classroom 
proportion of ELP students is also significant holding constant treatment type. 

 Transformed back to the original scale as the last three lines of Table 3 shows, 
the posterior means of the residual variances (standard deviations) for the IMA, CS, 
and control groups are respectively 6.86, 6.55, and 4.13. The upper end of the 95% 
interval of the control group variance overlaps the lower ends of those of treatment 
groups. The classroom proportion of ELP students is also significant, with a 
coefficient of -0.69 holding constant treatment type. On the variance scale, it is 2.00. 

 Since student language status is already included in the mean model, the 
relationship between dispersion and the classroom proportions of ELP students can 
be viewed as a contextual effect on dispersion. Even students with the same level of 
language proficiency and other important characteristics may be expected to vary 
more in outcome, by being in a classroom with a larger proportion of ELP students.  
 



 

27 

Table 3 

Results from Model 2 

 Estimate 95% Interval Median 
Fixed Effects:    
Model for adjusted class means    

CTL Grand Mean (γ00) 3.941 ( 3.066  4.820) 3.940 

IMA/CTL contrast (γ01) 2.175 ( 1.016  3.309) 2.181 

CS/CTL contrast (γ02) 1.205 ( 0.027  2.394) 1.204 
    
Average Within-class slopes:    

Prec/Posttest slope (γ10) 0.545 ( 0.411  0.679) 0.545 

Prep/Posttest slope (γ20) 0.151 ( 0.071  0.233) 0.151 

ELP/Posttest slope (γ30) 0.054 (-0.607  0.717) 0.051 

Incip/posttest slope (γ40) 1.030 ( 0.517  1.543) 1.030 
    
Variance Components:    
Between class:    

Var. in adjusted mean (τ00) 0.799 ( 0.341  1.655) 0.731 
Within class:    

Ln. of CTL precision (α0) -1.410 (-1.722 -1.114) -1.403 

IMA/CTL contrast (α1) -0.513 (-0.900 -0.110) -0.515 

CS/CTL contrast (α2) -0.465 (-0.841 -0.083) -0.466 

ELP proportion slope (α3) -0.693 (-1.313 -0.054) -0.696 
IMA variance 6.856 ( 5.571  8.444) 6.805 
CS variance 6.546 ( 5.193  8.204) 6.487 
CTRL variance 4.133 ( 3.048  5.598) 4.069 
Difference between:    
IMA and CTRL variance 2.722 ( 0.620  4.781) 2.730 
CS and CTRL variance 2.413 ( 0.448  4.438) 2.402 
 

Model 3: HM with both heterogeneity of residual dispersion and interactions. 
Model 3 extends Model 2 to include two interactions between treatment type and 
student characteristics: IMAj ×  Langij and CSj ×  Prepij. Since the treatment variables 
are Level-2 or cluster-level variables, their interactions with student characteristics 
constitute cross-level interactions. The model is specified as follows: 
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 The parameters, γ21 and γ31, are the key coefficients in this model, capturing the 
magnitudes of the interactions. Note that the cross-level interactions make the slopes 
of the corresponding Level-1 variables (i.e., β2j and β3j) non-randomly varying, that 
is, varying depending on Level-2 covariates, but no random component is attached 
to the slopes. Table 4 presents the results. 
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Table 4 

Results from Model 3 

 Estimate 95% Interval Median 
Fixed Effects:    
Model for adjusted class means    

CTL Grand Mean (γ00) 3.891 ( 3.009  4.772) 3.893 

IMA/CTL contrast (γ01) 2.155 ( 1.012  3.295) 2.157 

CS/CTL contrast (γ02) 1.364 ( 0.176  2.547) 1.363 
    
Average Within-class slopes:    

Prec/Posttest slope (γ0) 0.555 ( 0.419  0.691) 0.555 

Prep/Posttest slope others (γ20) 0.119 ( 0.028  0.210) 0.119 

difference from CS (γ21) 0.131 (-0.045  0.306) 0.131 

ELP/Posttest slope others (γ30) -0.144 (-0.878  0.576) -0.142 

difference from IMA (γ31) 1.064 (-0.654  2.781) 1.066 

Incip/posttest slope (γ40) 1.015 ( 0.500  1.533) 1.015 

Prep/Posttest slope CS (γ20+ γ21) 0.250 ( 0.094  0.405) 0.250 

ELP/Posttest slope IMA (γ30+ γ31) 0.920 (-0.650  2.481) 0.922 
    
Variance Components:    
Between class:    

Var. in adjusted mean (τ00) 0.795 ( 0.336  1.638) 0.729 
Within class:    

IMA/CTL contrast (α1) -0.521 (-0.905 -0.127) -0.523 

CS/CTL contrast (α2) -0.456 (-0.828 -0.081) -0.457 

ELP proportion slope (α3) -0.628 (-1.248  0.013) -0.632 
IMA variance 6.889 ( 5.580  8.490) 6.839 
CS variance 6.465 ( 5.129  8.117) 6.409 
CTRL variance 4.118 ( 3.044  5.538) 4.055 
 

 Although both key parameters capturing the interactions are only border-line 
significant or insignificant, both are worth investigating. In multisite studies in 
which intact clusters are assigned to different treatment programs, the studies may 
suffer from lack of power for estimating the main effect of treatment unless they 
have many clusters in each treatment program. This problem may be aggravated 
when estimating interactions with the treatment. Given that the data have only 21 
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sites, and at most 9 sites within a treatment type, it is warranted to study the 
interactions further. 

 The coefficient capturing the interaction, i.e., the difference in slopes, between 
CS and the Computation pretest is 0.13. Although the 95% interval still does not 
exclude the value 0, note that the 96% of the mass of the posterior distribution is 
above 0 (Bayesian p-value=.96). The magnitude of slope seems to matter as well. 
While, for other groups, the posterior mean of the computation pretest slope is 0.12, 
the CS group slope is 0.25 which is more than two times the magnitude of other 
groups. 

 The coefficient capturing the interaction between IMA and language status is 
1.2. As is the other interaction above, although the interaction is not significant, most 
of the mass of the posterior distribution lies above 0 (Bayesian p-value=.92). For 
other groups, the expected difference in outcome between ELP and non-ELP 
students is -0.14 which is insignificant. The expected difference in IMA group is 1.0, 
which is clearly significant (Bayesian p-value=1.0). 

 
Figure 3. Summary plots of estimated relationships between outcome and student characteristics for 
each treatment type. 
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 Figure 3 displays the estimated relationships between the two student 
characteristics and the outcome. Different lines display the relationships for different 
treatment types. Since treatment groups tend to perform better in the outcome given 
the value of the covariates, the lines for treatment groups (i.e., IMA and CS) are 
located higher for both plots. 

 In the left panel which plots the relationship between the ELP status and the 
posttest, the slope of the IMA group is positive and steeper compared to the other 
two groups. In the CS and the control groups, ELP and non-ELP students tend to 
perform at a similar level controlling for other student characteristics in the model, 
while in the IMA group ELP students tend to perform better than non-ELP students. 

 In the right panel which shows the relationship between the Computation 
Pretest and the posttest, the slope of the CS group is steeper than those of the other 
groups. One can see that, for students with very low computation skills on fractions 
prior to treatment, with other characteristics being equal, CS group students tend to 
perform much worse in the posttest than IMA group students. For students who 
have more computation knowledge prior to treatment, CS group students tend to 
perform as well as IMA group students. 

 The two treatment programs, IMA and CS, employed the same innovative 
curriculum units that are designed to encourage reform-minded instruction. As 
noted earlier, the IMA teachers received intensive training in reform-minded 
instruction in general and in the use of the innovative curricular units in particular, 
while the CS teachers had a chance to meet and discuss the challenges implementing 
curricular units with each other. One might wonder why these interactions would 
arise; different student characteristics interacting with different treatment programs.  

 Two measures from classroom observations, Conceptual/Assessment OTL 
measure and Numerics OTL measure, are extremely beneficial for understanding 
the interactions, by providing information about the dynamics of classroom 
instructions. The IMA classrooms have a high average score in the 
Conceptual/Assessment OTL measure, which means that in these classes there 
tended to be appreciably more whole-class discussion in the context of problem 
solving. Given this method of instruction, it is obvious that the ability to benefit 
more from the instruction will depend on student's English proficiency to some 
extent. 
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 The CS classrooms have a very low average score in the Numerics OTL, while 
the IMA and the CTRL classrooms have high average scores alike. This means that 
in the CS classes there was insufficient instruction dealing with numerical 
representations and operations of fractions. Researchers believed that this would 
probably be due to the graphical focus of the innovative curricula used in the 
instruction (Gearhart et al., 1999). When students have low opportunity of dealing 
with computations of fractions, it appears that students who came with relatively 
low level of skill in the area were unable to learn much from the CS classes. 

 The coefficients, α1 and α2, estimate the expected differences in dispersion 
between IMA and the control groups, and between CS and the control groups, 
respectively, holding constant the proportion of ELP students. After including the 
interactions that, we hypothesize, caused the heterogeneity in the residual variance 
across treatment type when unspecified, we expect the degree of heterogeneity to 
decrease. However, the coefficients in the model indicating the degree of 
heterogeneity, α1 and α2, remain almost the same as those in the HM that does not 
contain the interactions (Model 2). 

 In order to understand the results, we can think of the variance reduction in 
terms of simplified statistical models in which there are only two conditions, 
treatment and control, in a non-nested setting (Bryk & Raudenbush, 1998). First, as 
for the comparison between the IMA and the control groups, when the interaction is 
unspecified, the residual term of the IMA group includes γ31Langij while the residual 
term of the control group does not. This term yields the variance difference of γ312 
Var(Langij), which is 0.21. Likewise, as for the comparison between the CS and the 
control groups, when the interaction is unspecified, the residual term of the CS 
group includes γ21Prepij whereas the residual term of the control group does not. 
This term gives rise to the variance difference of γ212 Var(Prepij), which is 0.32. The 
actual estimated reductions do not exactly agree with these values in both 
comparisons, because the HMs are more complex and involve more terms in the 
residual variance. 

 However, even the simplified reductions in the residual variance, 0.21 and 0.32, 
are too small in comparison to the magnitudes of differences in the residual variance 
between the treatment groups and the control group. The differences reach more 
than 2.8 for the IMA vs. control, and about 2.3 for the CS vs. control. This implies 
that a considerable portion of the heterogeneity across treatment types may arise 
from sources other than unspecified interactions between treatment and student 
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characteristics. There may be unmeasured site characteristics that are related to both 
treatment type and dispersion, in addition to the proportion of ELP students. 

Summary and Discussion 

 This paper views dispersion in outcomes as an important dimension of a study, 
and provides a conceptual framework and statistical models for studying dispersion 
in experimental and quasi-experimental settings. While a primary interest in many 
studies and questions has been obtaining unbiased estimates of the effects of 
treatments on the mean levels in the outcome (Holland, 1986; Rubin, 1974, 1978; 
Shadish, Cook, & Campbell, 2002), this paper focuses on drawing sound inferences 
on the effects of treatments on dispersion and thereby suggesting a way to enhance 
understandings about the effects of treatments, e.g., uncovering interactions 
between treatment and subject characteristics (e.g., Cronbach & Snow, 1977; 
Cronbach, 1975).   

 We started with a conceptual framework laying out sources of differences in 
dispersion in various research settings: experiments, quasi-experiments in non-
nested settings, and quasi-experiments in nested settings. The framework draws on 
the work by Bryk and Raudenbush (1988), Raudenbush and Bryk (1987), and 
theories of potential outcomes (Holland, 1986; Rubin, 1974, 1978). We then focused 
on the most complex setting, i.e., quasi-experiments in nested settings, and 
presented a series of HMs and procedures that are helpful in efforts to draw sound 
inferences concerning the effects of treatments on dispersion. By enumerating 
sources of differences in dispersion using the logic of potential outcomes, key 
statistical equations, and graphical representations, the conceptual framework helps 
us understand how sources of confounding at different levels (e.g., student, class) 
can be adjusted for with regard to inferences on dispersion, and how a significant 
effect of a treatment on dispersion may signal unspecified interactions between 
treatment and subject characteristics.  

 Our example illustrates procedures for drawing sound inferences concerning 
the effects of treatments on dispersion as well as on mean levels in the outcome of 
interest. The base HM (Model 1) addresses the basic questions of evaluation studies, 
i.e., it provides an estimate of the expected differences in the posttest scores between 
the IMA and control groups, and between the CS and control groups. By carefully 
controlling for possible differences in student characteristics prior to the treatments, 
this model addresses the effect of treatments on expected levels of outcomes. 
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 Although many evaluation studies may end with estimates of expected 
differences in outcomes, the framework presented in this paper suggests attending 
to the heterogeneity in residual variance. Model 2 is set up for this purpose. In our 
example, we elaborated the dispersion structure and modeled the residual variance 
as a function of treatment indicators and a site characteristic, i.e., the classroom 
proportion of English Language Proficient (ELP) students. Based on our conceptual 
framework, Model 2 carefully makes covariance adjustments both for the student-
level and for class-level confounding variables. The initial difference in dispersion in 
student status in proficiency in English (i.e., student-level or Level-1 variable) is 
adjusted for by elaborating the mean structure, while the initial difference in 
dispersion in the classroom proportion of ELP students (i.e., class-level or Level-2 
variable) is adjusted for in the dispersion structure.  

 Since both the IMA and CS dispersions are significantly greater than the control 
group dispersion after adjusting for pre-existing differences, it suggests that the true 
treatment effect may be different across students. The rough interpretation would be 
that the treatments, IMA and CS, may be more effective for students with higher 
``aptitude'' than lower ``aptitude'' (e.g., Scenario [b] in Figure 1; cf. Cronbach & 
Snow, 1977). We then ask: What would be the dimension of aptitude that is 
interacting with the treatment? Model 3 further elaborates the mean structure, by 
including two interactions between treatment type and student characteristics. In 
IMA classes, students who are proficient in English tend to benefit more from the 
instruction. In CS classes, students who came with better capability of solving more 
computational items on fractions tend to profit more than students who do not.  

 The modeling strategies and procedures we present result in greater 
elaboration of the mean and dispersion structures (e.g., Equation 10), which can be 
beneficial to evaluation studies in important ways. First, the elaboration with regard 
to interactions can provide critical insights into individual differences in responses 
to a given treatment and enhance understandings about the treatment of interest. 
For example, we gain understanding about the characteristics of students who might 
benefit more from the treatment, or the conditions (e.g., site characteristics, or level 
of implementation) under which the treatment might be more effective. 

 In our illustrative example, the interaction results yield far more detailed 
knowledge about the innovative curricula and professional development than 
simple results concerning which treatment produces a higher average level of 
achievement. Teaching with the innovative curricula involves much whole class 
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discussion and thus it is possible that non-ELP students may be left out. Also, 
without professional development about how to properly use the innovative 
curricular units, it seems likely that teachers may implement them improperly, and 
neglect important but more traditional instructional foci, i.e., dealing with 
operations of fractions. 

 It is notable that these important interactions are more likely to be overlooked 
unless we pay attention to the signal arising from the differences in dispersion. Since 
the slopes of individual characteristics do not turn out to be significantly varying 
across Level-2 units (i.e., classrooms), it is easy to forget the possibility that the 
slopes may vary depending on characteristics of Level-2 units, which is the 
treatment type in this case. (See Raudenbush & Bryk’s [2002] discussion of non-
randomly varying slopes.) It appears that, by virtue of the link between 
heterogeneous variance and interactions, the interactions are possible to find. 

 Next, the elaboration with regard to the prior characteristics of students or 
clusters can increase the validity and the statistical power of the inferences as well as 
contributing to substantive knowledge about the study. Inclusion of the prior 
characteristics results in ANCOVA-like adjustments in the HMs both in the mean 
and dispersion structures (cf. Raudenbush & Bryk, 2002, Chapter 2). This helps us 
draw valid inferences concerning the effect of treatment, by controlling for possible 
pre-existing differences between treatment and control groups, especially in quasi-
experimental studies. In addition, by decreasing the within-group variability in the 
outcome, it helps increase the power of the inferences concerning the effect of 
treatment. 

 Also the relationship between a prior characteristic and an outcome of interest 
can be of substantive interest in and of itself. In our illustrative example, students 
with a rudimentary understanding of the concept of fractions prior to treatment 
tended to perform significantly better on the outcome controlling for other 
important characteristics compared to students without such understanding, while 
ELP students tended to show no significant difference in their performance 
compared to non-ELP students. Although ELP status did not make a difference at 
the student level on average, the classroom proportion of ELP students was 
significantly related to the dispersion in outcomes. This indicated the contextual 
effect of ELP on dispersion in outcomes. By being in a class with more ELP students, 
the potential outcomes of students may have tended to be more variable around the 
expected value. The investigation of heterogeneity in the residual dispersion 
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resulted in identifying a key classroom-level source of diversity: the classroom 
proportion of ELP students.  

 The conceptual framework, and the statistical modeling and procedures in this 
paper can be applicable to other types of evaluation studies, such as multisite 
evaluation studies that use a different design, longitudinal evaluation studies, or, 
under certain circumstances, observational studies (e.g., surveys such as High 
School and Beyond, or NELS) that may focus on the effect of certain practices or 
policies (Rosenbaum, 2002).  

 The modeling strategies are most readily applicable to another multi-site 
evaluation design. Commonly encountered designs in multi-site studies tend to fall 
into two broad categories (Seltzer, 2004; see also Kirk 1982 and Raudenbush, 1993). 
This paper has focused on one type of design, in which different treatment 
conditions are assigned to different intact clusters (e.g., classrooms), but no blocking 
is employed. This would give rise to a sample of clusters nested within each 
treatment condition. The other type of design involves blocking, e.g., forming 
matched pairs of schools or classrooms. Different treatment conditions are assigned 
to intact clusters within each matched pair. We refer to the first type as nested 
design and the second as crossed design.  

 One can use dispersion models such as Equation 9 to detect the effect of 
treatment on dispersion. For the crossed design, however, in settings where the 
treatment effect may be substantially variable across sites, it is still possible for 
variance heterogeneity to go unnoticed by applying the dispersion model presented 
in Equation 9, unlike the nested design. For example, if the variance of the treatment 
group is greater for some sites while the variance of the control group is greater for 
other sites, then they may cancel each other out, resulting in a null difference on 
average. In such settings, dispersion modeling may entail examining heterogeneity 
in dispersion between groups in each site and identifying site characteristics that 
relate to the extent of heterogeneity in dispersion between groups. 

 Specifically, the estimate of σ2j Trt=1 – σ2j Trt=0, captures the difference between 
treatment and control groups in the within-site residual variance at site j, after 
accounting for treatment type and student characteristics. When the difference is 
significant, it implies that the treatment effect is variable across students at site j, and 
moreover signals the interaction between the treatment and particular student 
characteristics at site j. When the differences in the residual variance in different 
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sites are related to certain site characteristics, one may also test if the relationship is 
significant by modeling the difference, σ2j Trt=1 – σ2j Trt=0, as a function of relevant site 
characteristics. A significant relationship may reveal how differences in site-level 
factors relate to differences in the extent of interactions between treatment and 
student characteristics. 

 Furthermore, the logic and procedures presented in this paper apply to 
longitudinal evaluation studies, although the HMs require another level of nesting. 
In longitudinal evaluation studies, the focus is on the change trajectories before, 
during, or even after treatment, rather than on the outcome score at the end of the 
treatment in cross-sectional studies. Let us assume that intact classrooms are 
assigned to either treatment or control conditions, and that students within 
classrooms are measured on several occasions on the outcome of interest. For this 
longitudinal study, three-level HMs (i.e., HMs with repeated observations, nested 
within students, who in turn are nested within classrooms) may be used in contrast 
to the two-level HMs in pretest-posttest evaluation studies (Raudenbush & Bryk, 
2002, Chapter 6).  

 Then the dispersion structure of interest would be the Level-2 residual 
dispersion instead of the Level-1 residual dispersion in pretest-posttest studies, 
especially the dispersion of student rates of change. The differences in the dispersion 
of student rates of change between treatment and control conditions can, under 
certain circumstances, indicate individual differences in responses to a given 
treatment. In addition, in inferences concerning dispersion, student-level possible 
confounding variables should be adjusted for by including in the mean structure, or 
specifically in the Level-2 (i.e., student-level) mean structure, while cluster-level 
possible confounding variables should be adjusted for by including them in the 
dispersion structure, or specifically modeling the dispersion in student rates of 
change. 

 Throughout, this paper assumes either experimental or quasi-experimental 
studies, with more focus on the quasi-experimental studies. Although quasi-
experimental studies do not directly employ random assignment, they potentially 
offer more control compared with observational studies in terms of the subjects 
chosen for the study, methods of assignment, and measures of prior characteristics, 
etc. (Shadish, Cook, & Campbell, 2002). As a result, in well-conducted quasi-
experimental studies, the treatment and control groups tend to be rather similar in 
important prior characteristics. In contrast, in observational studies (Rosenbaum, 
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2002), the group of individuals who were exposed to the ‘treatment’ of interest are 
likely to be very different in important prior characteristics than the group of 
individuals who were not exposed. 

 Direct application of the modeling strategy of this paper to such observational 
studies can be rather limited, mainly because the modeling strategy is based on 
covariance adjustment of confounding variables. We identify sources of 
confounding by individual or site characteristics, and make covariance adjustment 
of individual characteristics in the mean structure, and of cluster characteristics in 
the dispersion structure. This model-based adjustment may not be as effective to 
remove biases in observational studies. Much literature (e.g., Cochran, 1957; 
Cochran 1965; Rubin, 2001) show that, in settings where there is considerable 
disparity in the means or variances between treatment and control groups in 
covariates, the covariance adjustment may be either ineffective to remove biases or 
even increases the biases.  

 However, once comparable samples are constructed to draw sound inferences 
in observational studies, e.g., using matching, stratification, weighting based on 
propensity scores (Rosenbaum & Rubin, 1983; Rosenbaum, 2002), the conceptual 
framework and strategies are readily applicable just as in quasi-experimental 
studies. Propensity scores have been increasingly applied to many observational 
studies in recent years. By yielding comparable distributions in all observed 
variables, adjustment for propensity scores removes biases and thus can help us in 
efforts to draw valid causal inferences. Once the constructed comparison group 
sample becomes similar to the individuals in the treated or exposed group in terms 
of the distributions of all observed variables as a result of the use of propensity score 
methods, the modeling strategies of this paper such as covariance adjustment both 
in the mean and dispersion structures, or the elaboration with regard to interactions, 
remain a viable option for uncovering important individual differences to a given 
‘treatment’ of interest.  
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