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USING DATA AND BIG IDEAS: 

TEACHING DISTRIBUTION AS AN INSTANCE OF REPEATED ADDITION  

Terry P. Vendlinski, Keith E. Howard, Bryan C. Hemberg, Laura Vinyard, Annabel Martel,  
Elizabeth Kyriacou, Jennifer Casper, Yourim Chai, Julia C. Phelan and Eva L. Baker 

CRESST/University of California, Los Angeles 
 

Abstract 

The inability of students to become proficient in algebra seems to be widespread in 
American schools. One of the reasons often cited for this inability is that instruction 
seldom builds on prior knowledge. Research suggests that teacher effectiveness is the 
most critical controllable variable in improving student achievement. This report details a 
process of formative assessment and professional development (called PowerSource©), 
which is designed to improve teacher effectiveness and student achievement. We 
describe the process we used to develop a model of distribution over addition and 
subtraction, one of three big ideas developed during the year, and the interactions we had 
with teachers about teaching distribution in various ways. As a consequence of these 
interactions, we were able to test whether teaching distribution using the notion of 
multiplication as repeated addition (a concept which students had learned previously), 
using array or area models, or teaching it procedurally had the greatest effects on student 
learning. We found that the repeated addition model was not only less likely to create 
certain student misconceptions, but also found that students taught using the repeated 
addition model were more likely to correctly answer questions involving distribution than 
were their counterparts taught using either of the other methods. Teachers subsequently 
reported that they preferred teaching distribution as an instance of repeated addition than 
teaching it using other available methods.  

Introduction 

Although general mathematics ability among U.S. fourth and eighth graders has 
seemingly improved over the last 15 years (Mullis, Martin, Gonzalez, & Chrostowski, 2004; 
Perie, Grigg, & Dion, 2005), the inability of many of these same students to understand and 
apply their learning in courses like elementary algebra appears to be an unyielding problem 
for the nation. The problem seems to become most apparent in courses like elementary 
algebra because it is both a transitional and a gateway course (Gollub, Bertenthal, Labov, & 
Curtis, 2002). First-year algebra is transitional because it is often the first course where 
students must abstract the concrete representations of arithmetic; it is considered a gateway 
course because proficiency in this course is so highly correlated with success in higher 
education and future economic success (Atanda, 1999; Horn, Nunez, & Bobbitt, 2000). 
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Increasingly, however, algebra is becoming less of a gateway and more of a barrier to 
students, especially students of color (Ball, 2003; Berkner & Chavez, 1997).  

The inability of students to become proficient in algebra seems to be widespread in 
American schools. In one 4-year study involving more than 50 school districts, the 
percentage of graduating seniors who had earned a grade of “C” or better in algebra was only 
about 63% and some individual schools reported pass rates of less than 38% (Business Wire, 
2000). Recent media accounts from large urban schools districts report similar disappointing 
results (see for example, Helfand, 2006). This trend is not confined merely to American high 
schools. A recent study of the California Community College system, for example, suggested 
that only about 75% of students who initially enroll in first semester algebra are still enrolled 
at the deadline to withdraw and, of these students, over half ultimately fail the course. This 
trend mirrors nation-wide results (Meehan & Huntsman, 2004). 

At least one of the reasons cited for the difficulty students often encounter when 
transitioning from arithmetic to algebra is that the instruction they receive (in both arithmetic 
and algebra) seldom builds on the ways in which people actually learn (Bransford, Brown, & 
Cocking, 1999; Kilpatrick, Swafford, & Findell, 2001). In particular, teachers often have 
difficulty building on students’ prior preconceptions, understanding, intuition, or innate 
problem solving strategies (Saxe, 1999). Because teachers are one of, if not the most 
powerful instruments of change in education (Alliance for Excellent Education, 2003; Carey, 
2004; Hanushek, 2002; Mayer, Mullens, & Moore, 2000; Mullis et al., 2000; National 
Commission on Mathematics and Science Teaching for the 21st Century, 2000; Wright, 
Horn, & Sanders, 1997), it seems that changing the way algebra and its predecessor courses 
are taught should produce some of the greatest improvements in the current state of affairs. In 
fact, the work of Marzano (2006) suggests that improving teacher effectiveness would 
enhance student learning more than any other controllable variable in education. 

Although the suggestions for enhancing teacher effectiveness are too numerous to 
outline here, many of those recommendations can be categorized into three areas: (a) efforts 
to improve teachers’ content knowledge; (b) efforts to improve teachers’ knowledge for 
teaching; and (c) efforts to improve teachers’ ability to assess student understanding and use 
such assessments to inform instruction. Research suggests that mathematics instruction is a 
function of what a teacher knows about the domain (content knowledge), what a teacher 
knows about how to teach that content knowledge (pedagogical content knowledge), and a 
teacher’s beliefs about the importance of each (Millsaps, 2005).  Research seems just as 
clearly to lead to the conclusion that knowing what students actually know and how to use 
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that knowledge to inform instruction is critical to student improvement (Black & William, 
1998; Hiebert & Stigler, 2004).  

Teacher Content Knowledge 

It is generally believed that increasing a teacher’s content knowledge will lead to 
improvements in student achievement; however, the relationship does not seem to be as 
linear as one might expect. Whereas research does seem to support the conclusion that 
content knowledge is critical to effective teaching, especially in elementary algebra (Hawk, 
Coble, & Swanson, 1985), it seems that acquiring content knowledge well beyond the 
content taught can produce decreasing returns in terms of student achievement (Monk, 1994). 
We might conclude, therefore, that teachers need a depth of content knowledge about the 
material taught and knowledge of how that material will be used to build more abstract 
concepts, but that they may not need advanced degrees to teach courses like introductory 
algebra effectively. Similarly it seems that an appreciation of how one goes about learning 
such content is important. For teachers, this suggests that an important trait for effectiveness 
is a deep understanding of what they are teaching, an appreciation of how others learn the 
content of interest and knowledge about how one goes about facilitating such learning 
(pedagogical content knowledge). 

Teacher Pedagogical Content Knowledge 

In fact, Hill, Rowan, and Ball (2005) report findings suggesting that an increase of one 
standard deviation in what they termed a teacher’s mathematical knowledge for teaching 
(pedagogical content knowledge) was associated with a 0.1 standard deviation increase in 
student achievement.  Similarly, Darling-Hamond (2000) has concluded that knowledge of 
how to teach content is more predictive of student achievement than a student’s 
demographics, the class size, or the level of teacher education (e.g. number of math courses 
taken). Nevertheless, it does seem clear that both content knowledge and pedagogical content 
knowledge are critical to student achievement (Nathan, Koedinger, & Martha, 2001). Taken 
together with previous research on what teachers need to know, the research of Cohen and 
Hill (2000) suggests that addressing both deep content understanding and pedagogical 
content knowledge of the content to be taught is important to improving student achievement. 

Teacher Knowledge of What Students Know 

Substantial evidence from prior reform efforts, however, also indicates that changes in 
teachers’ course taking, classroom curriculum content, or textbooks makes little difference if 
teachers do not know how to use these tools well and how to diagnose their students’ 
learning needs (Darling-Hammond, 1997). Whereas using information from formative 
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assessments, for example, has proven effective in convincing teachers to alter their 
pedagogical approaches and thereby improving student achievement (see for example, 
Carpenter, Fennema, Levi, Franke, & Empson, 2000; Wiliam, 2007), merely giving teachers 
formative assessment tools or information collected from assessments that are designed to 
inform instruction may not actually have the intended effect unless teachers know what to do 
with that information (Black & William, 1998). Effective formative assessment requires 
effective professional development focusing on improving engagement and enriching the 
knowledge of educators. Once these components are in place, then formative assessment can 
dramatically improve student achievement (Wiliam & Thompson, 2007). Like students, 
Wiliam (2007) suggests that we have to develop the ability of teachers to react appropriately 
to situations for which they have not been specifically prepared. Teachers must be able to 
provide contextually appropriate instruction. 

Developing Appropriate Instruction 

Even with improved content knowledge, information about pedagogy and access to 
formative assessments, teachers often develop their pedagogical methods based on their own 
experiences as a student (Ball, 1994), teach the way they were taught (Walsh & Sattes, 2005) 
and teach the way they feel comfortable learning (Britzman, 1991). The adage that “teachers 
teach the way they were taught” has become common in the literature over the last thirty 
years1, and seems to appear often when discussing knowledge domains like mathematics. 
Whether the adage is true or not, a review of teaching practice in the United States suggests 
that math, in particular, is often taught as a set of rules, procedures, and facts; that these bits 
of knowledge are often presented in a seemingly random or disorganized manner; and that 
procedural knowledge is often divorced from what the process or results mean (Fuson, 
Kalchman, & Bransford, 2005).  

Because many U.S. teachers were taught and have often been successful in a system 
that stressed procedure rather than understanding, and because of the dearth of guidance on 
how teachers might change their teaching (Kieran, 2003), changing practice can prove 
difficult. 

Although the authors’ personal experiences suggests teachers can and will change for 
the better when shown how and why such changes are efficient and effective in improving 

                                                
1While often attributed to Lortie (1975) and his notion of the “apprenticeship of observation” (see for example, 
p. 61), many have expressed their view that this conclusion results from an erroneous reading of Lortie’s actual 
findings (for example, Mewborn & Tyminski, 2004) and others have suggested that, given the limited scope of 
the original study, such a conclusion should not be extrapolated to all teachers (see for example, Geer, 1976). 
Nevertheless, the adage persists. 
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student performance, there seems to be little statistical evidence that links participation in 
quality professional development and teacher effectiveness (Mayer et al., 2000, p. ii). The 
modicum of work that does exist, however, is encouraging. For example, using instructional 
methods such as direct instruction to build meaningful connections (Miller & Hudson, 2007), 
guided learning and practice, especially a “concrete to representational to abstract” (CRA) 
instructional sequence (Polloway, Patton, & Serna, 2005; Swanson & Deshler, 2003; Witzel, 
Smith, & Brownell, 2001), and student formative assessment and feedback (Marzano, 
Pickering, & Pollock, 2001; Wiliam, 2007) have all been shown to be effective. In the area of 
student formative assessment, the research of Black and Wiliam and others suggests that 
improving the use of assessment for learning has been shown to roughly double the speed of 
learning (Wiliam, Lee, Harrison & Black, 2004), and is most effective when it is frequent 
(Bangert-Drowns, Kulik, & Kulik, 1991) and when it tells students not just what to improve, 
but how to go about making improvements (Black, Harrison, Lee, Marshall, & Wiliam, 
2003). 

Nevertheless, in the absence of guidance on how to use these methods and to 
incorporate the results of formative assessment to develop lesson plans, research suggests 
that teachers, especially novice or pre-service teachers have little idea of how to proceed 
(Schmidt, 2005). Research further suggests that, absent such guidance, many teachers rely on 
the course textbook for direction (Brown, 1998; Fan & Kaeley, 1998; Sturino, 2002). For 
various reasons the textbook is likely to be an insufficient guide (Skowron, 2006).   

In fact, a review of common texts and discussions with teachers suggests that 
procedural expositions are used extensively and almost exclusively in available textbooks. A 
more empirical review of many of the most popular, commercially available middle-school 
math textbooks concluded that they are weak in their development of conceptual and 
sophisticated understanding, weak in their instructional support of teachers and students, and 
typically do not promote thinking or account for different student ideas (AAAS 
Program/Committee: Project 2061, 1999). In particular, our review of how rational number 
equivalence and the distributive property were taught in commonly used texts in California 
revealed that both topics were frequently explained in an algorithmic manner and were 
unlikely to be connected with key mathematical principles a student had already learned (e.g. 
“Use repeated addition, arrays, and counting by multiples to do multiplication” [CA Grade 2 
Mathematics Content Standards] or “Understand the special properties of 0 and 1 in 
multiplication” [CA Grade 3 Mathematics Content Standards]). For example, rational 
number equivalence is taught by a number of textbooks as “multiply the top (numerator) and 
bottom (denominator) by the same thing,” or is represented as shown in Figure 1.  
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Figure 1. Explaining Rational Equivalence 

Similarly, the distributive property is often taught as a procedure that instructs students 
to multiply each term in the quantity by the multiplier and to separate the resulting products 
by the addition or subtraction operators present in the original quantity. As shown in Figure 
2, this instruction is often accompanied by a graphic which includes arrows to represent the 
multiplications. 

 
Figure 2. Explaining Distribution 

Our experience suggests that such representations are likely to create a number of 
misconceptions in the minds of students. For example, students often believe that rational 
numbers are equivalent because “whatever you did to the top, you did to the bottom” or that 
numbers can be distributed across multiplication and division as well as across addition and 
subtraction. In this latter case, 2(3 · x) becomes 2·3 · 2·x or 6 · 2x or 12x. Moreover, without 
a complete understanding of distribution, first-year algebra students are likely to incorrectly 
believe that they can distribute exponents over addition so that (x + 2)2 becomes x2 + 22

. 

Not only does merely memorizing such procedures often lead both students and adults 
to erroneous conclusions, such memorization leads many to conclude that mathematics is, at 
its core, about remembering a large number of unrelated facts and recalling them at the 
appropriate time (Stigler & Hiebert, 2004). Research suggests that this type of belief can 
have negative effects not only in students’ ability to use the tools afforded by mathematics, 
but in their learning of other subjects as well (Donovan & Bransford, 2005; Dweck, 1999; 
Kilpatrick et al., 2001). 
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The PowerSource© Approach 

The Center for Research on Evaluation Standards and Student Testing (CRESST) is in 
the third year of a 5-year study called PowerSource©. This effort is funded by the U.S. 
Department of Education. The PowerSource© project has the goal of facilitating student and 
teacher understanding of key big ideas that will form the foundation for proficiency in 
algebra and connecting concepts being taught in, before, and after middle school. At the heart 
of PowerSource© is the use of formative assessments (called Checks for Understanding) 
which are designed to provide the teacher vital information about student learning. As was 
suggested above, however, we know that merely providing teachers with formative 
assessments, or even assessment data is not likely in and of itself to lead to beneficial 
changes in practice (Black et al., 2003). Consequently, PowerSource© researchers also 
developed a program of teacher professional development to provide appropriate content and 
a set of instructional aids to assist teachers in their teaching of key big ideas underlying 
proficiency in algebra.  

As do others, we see quality professional development as an opportunity to deepen 
subject content knowledge, improve pedagogical content knowledge, create new knowledge 
through the interaction of teachers, and to improve the use of formative information to 
encourage pedagogical changes (Kahle, 1999; National Commission on Mathematics and 
Science Teaching for the 21st Century, 2000).  We are also aware of the need to integrate 
quality research into professional development sessions, and to encourage each teacher to 
rigorously evaluate their teaching by studying their own practice (Hiebert, Morris, & Glass, 
2003). Furthermore, we acknowledge that educators must be given the time, explicit 
examples, and an opportunity to explore student response patterns if instruction is to change 
(Hiebert & Stigler, 2004). At its heart, however, this report addresses the persuasive power of 
using formative assessment data to motivate and empower knowledgeable teachers to make 
necessary adjustments to instruction in the course of their normal curriculum.  

PowerSource© Professional Development 

The design of the professional development (PD) component of PowerSource© is based 
on findings in the field of cognitive science about how students learn (Donovan & Bransford, 
2005), on expert-novice literature that suggests how expertise in a subject like mathematics 
develops (Chi & Roscoe, 2002; Schraw, 2006), on the role of formative assessment in 
facilitating this process (Black & Wiliam, 2004), and how these components can be 
effectively combined to improve teacher practice (Ball, 2003; Carpenter, Franke, & Levi, 
2003). Our objective is to provide an intellectually stimulating and supportive environment 
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that builds teacher knowledge and pedagogical content capacity, provides time for reflection, 
and monitors the effectiveness and the impact of our activities (Lee, 2001). 

During the 2006–2007 academic year, we focused on developing sixth-grade teacher 
capacity around the teaching and understanding of three key organizing “big” ideas that 
experts have suggested are critical to student proficiency in algebra: (a) the multiplicative 
identity as applied to rational number equivalence, (b) the distributive property, and (c) the 
meaning of the equal sign as it applies to solving equations. In each case, it was our goal to 
ensure that the teachers knew how to use the results of the formative assessments for a 
particular big idea. In addition, we wanted to minimize known student misconceptions and 
errors. To accomplish these goals, we presented the content knowledge we felt necessary to 
effectively teach the big idea and reviewed the instructional guide that suggested how a 
sample lesson might be taught. While the content knowledge presentation complemented the 
instructional guide, it did not duplicate it. The teachers were told that, although the content 
was designed for their growth and edification, they were free to use any of this content 
knowledge with their students. This process is described in greater detail in the Methods and 
Data Sources section below. 

Our general hypotheses were that: (a) PowerSource© would not only minimize known 
student errors, but also would not make other misconceptions more likely to occur than 
would normally occur in students of teachers involved in the “normal” district professional 
development program. In other words, we wanted to ensure that PowerSource© wasn’t 
mitigating certain misconceptions and replacing these with one or more other 
misconceptions; and (b) students of PowerSource© teachers would be more likely to correctly 
apply the concepts of rational number equivalence, the distributive property and to solve one-
step equations for an unknown than would students of teachers involved in the “normal” 
district professional development program. 

This report describes a unique opportunity we had to test these hypotheses using the 
second of the three big ideas—the distributive property—with 22 teachers working in a 
medium-size, suburban Southern California school district. 
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METHODS AND DATA SOURCES 

After an introductory professional development session of 4 hours designed to 
elaborate the foundation of the project and to provide information on teaching Rational 
Number Equivalence, PowerSource© treatment teachers and researchers met for three more 
professional development sessions of approximately 90 minutes each. During the first 45 
minutes of each of these 90-minute sessions, teachers and researchers discussed student work 
on prior Checks for Understanding, possible misconceptions identified by those assessments 
and instructional interventions to correct those misconceptions. The last 45 minutes of each 
session focused on another single “big idea”, how that big idea would be developed from its 
nascent form into abstract concepts in algebra, and how the big idea could be appropriately 
taught and applied to sixth grade subject matter.  To aid teachers with their instruction, 
teachers were given an instructional handbook on each of the big ideas during the second half 
of each 90-minute session. The professional development integrated this instructional 
handbook (pedagogical content) with the conceptual development of each of the big ideas 
(content knowledge).  

The teachers then returned to their classrooms to develop their actual instructional plan 
and to instruct their students on the applicable big idea for two class periods of 
approximately 40 minutes each. Although researchers asked that teachers instruct each big 
idea in a way similar to that presented in the instructional handbook, the teachers were not 
required to follow the handbook exactly, nor did researchers actually monitor the match 
between actual instruction and the pedagogy found in the handbook. Researchers, however, 
did collect teacher self-reports of the similarity of their instruction to the handbook following 
their classroom presentation of each big idea. After the initial presentation of a big idea to 
their students, teachers were encouraged to continue to use each big idea in other 
instructional units they developed during the year. 

At the end of the first day of instruction, each teacher assessed student understanding 
using a researcher developed Check for Understanding. Because of time constraints on the 
curriculum, the instructional unit and Check for Understanding were designed to last 
approximately 55 minutes total. On the second day of instruction, each teacher used a 
researcher-developed worksheet to allow students to practice a big idea and to allow teachers 
an opportunity to correct student misunderstandings identified by the first Check for 
Understanding. Researchers encouraged each teacher to use the worksheet in a way that best 
responded to the needs of their students as suggested by student work on the first Check for 
Understanding (e.g. whole class, small group, individual, etc.). At the start of the third day, 
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teachers collected worksheets (if they had not already done so) and then administered a 
second, 15-minute Check for Understanding. 

Subsequent to each complete instructional unit, teachers and researchers met in another 
90-minute professional development session. Here again, the first 45 minutes were devoted 
to reviewing the composite results of all students in the teachers’ school district, and 
discussing apparent student misconceptions and the pedagogical implications of the results 
from the previous unit. The second 45 minutes developed the next big idea in the sequence. 
In total, researchers spent 90 minutes with the teachers on each of the three big ideas and 45 
minutes on an end of the year session called “Review and Applications” designed to tie the 
other three big ideas together. Consequently, the total face-to-face professional development 
time teachers and researchers shared during the year was approximately 9.25 hours. 

A randomized group of control teachers in each district only administered the 
researcher-developed assessments. These teachers did not participate in the professional 
development aspects of PowerSource© and were not given the instructional handbook. These 
teachers were, however, encouraged to continue participating in their ordinary district 
professional development program in lieu of PowerSource© professional development. 
Although the content of and teacher participation in that professional development were not 
directly monitored by researchers, these teachers were asked to self-report on their 
pedagogical methods. 

Our experience with 22 teachers working in a medium-size suburban Southern 
California school district is illustrative of the importance of the synergistic contribution 
practitioners and researchers can make to professional development and improving 
pedagogy. This experience also offered an opportunity to investigate the hypotheses outlined 
above in the context of teaching the distributive property.  

To develop the big idea of distribution, the instructional handbook showed 
PowerSource© teachers how to instruct students on the distributive property using array and 
area models. The professional development session added the idea that the distributive 
property could be built on the notion that multiplication means to repeatedly add the same 
quantity a given number of times. For example, 3 times 4 can be interpreted as 3 + 3 + 3 + 3 
or, because multiplication is commutative, the product could be represented as 4 + 4 + 4. 
This same conceptualization of multiplication could also be applied to multiplication of 
fractions and integers (e.g. ¾ times 5) to produce ¾ + ¾ + ¾ + ¾ + ¾ and multiplication 
involving quantities [e.g. 5 times the quantity (x + 2) to produce (x+2) + (x + 2) + (x+2) + (x 
+ 2) + (x+2)]. In turn, each product could be simplified. In the case of the first multiplication, 



 

 11 

the sum would be 

� 

15 4  and, in the case of the second multiplication the sum would be 5x + 
5·2 or 5x + 10. Teachers in the professional development group were encouraged, if they felt 
it appropriate, to review the meaning of multiplication with students and to expand this idea 
from integer representations to representations involving an integer multiplier and a quantity 
to be multiplied, in addition to using representations such as the array and area models. 

In the initial 4-hour session in this district, three researchers met with 13 treatment 
teachers to discuss the rationale for teaching to the big ideas and then, in another 45-minute 
session, researchers and teachers discussed the distributive property, as described above.  In 
this context, teachers were shown how to develop the meaning of multiplication as repeated 
addition of the same thing and how to apply this concept to integer multiplication of other 
integers, fractions, variables and quantities such as (3 + 1) or (x + 2).  Specifically, teachers 
were shown how to connect concepts with this definition rather than to develop new rules for 
the students to memorize (such as “combine like terms” or “multiply the outside number with 
the first and last numbers in the quantity and then drop the operator”). As such, our 
professional development activities addressed the growth of big ideas from nascent forms of 
understanding to abstract algebraic concepts with the teachers. 

During the follow-up session (the 45-minute session dedicated to reviewing student 
work), three of the treatment teachers voiced their reluctance to continue to use the repeated 
addition model of distribution developed in our professional development. Based on their 
review of their students’ work, these teachers expressed their belief that the use of the 
repeated addition approach was more likely to cause a common misconception than were the 
array and area models. Specifically, these teachers felt that representing a distribution such as 
2(3 + 1) as (3 + 1) + (3 + 1) and then as 2 · 3 + 2 · 1 was far more likely to lead to the student 
misconception that a distribution like 3(2 + 1) should be expanded to (2 + 1) + (2 + 1) or 3 · 2 
+ 3 · 2. It should be noted that, while all three teachers were new to PowerSource© (as were 
all the other treatment teachers), one of the three had taught mathematics for 4 years, the 
second for 14 years, and the third teacher had taught mathematics for more than 35 years.  

To explain their view, these three teachers each suggested that they had followed the 
professional development presentation much more closely in developing their instructional 
plan than other PowerSource© teachers and they felt that such an adherence to teaching the 
repeated addition model was the source of perceived misconceptions in their students. For 
example, the teacher with the most experience suggested that, “I think my students were 
confused by the idea of multiplication as repeated addition and transferred the idea when they 
answered (the third question on the last day).” Another PowerSource© teacher (not one of the 
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three) noted that, “I did not teach or mention repeated addition as multiplication in the lesson 
because it was not in the [instructional] handbook.” 

Based on this feedback and the ensuing discussion, researchers agreed to investigate the 
hypothesis that the students of these teachers (hereafter referred to as “the teachers of 
interest”) were more likely to answer distribution questions on our Checks for Understanding 
in a way indicative of this particular misconception than other PowerSource© teachers, as 
well as the hypothesis that the students of these teachers were more likely to answer in a way 
indicative of the misconception than the students in the control group.  

Because the Checks for Understanding addressed the big idea of distribution in a 
number of ways, we focused our analysis on 3 of the 11 assessment questions we felt likely 
to identity this misconception. One question came from the Check for Understanding given 
after the first day of instruction (Check 1) and two other questions came from the Check for 
Understanding given after the second day of instruction (Check 2). Respectively, these 
questions are: 
 Check 1 (item 3):  

Fill in the missing number  
3 (15 + 5) = 3 • __ + 3 • 5 

 
 Check 2 (item 2): 

Fill in the missing number 
6 (3 + 1) = 6 • __ + 6 • 1 

 
Check 2 (item 4, Step 2): 
A student simplified the expression 2 (7 + 4) like this. Can you fill in steps 2, 

3, and 4? 
 

Simplifying Step 

1 2 (7 + 4) 

2 (2 • 7) + (2 • __ ) 

3 14 +  

4   

To test the contention that using a repeated addition model of multiplication to develop 
the distributive property was more likely to cause the unwanted misconception in these three 
items than was an area or array model of instruction, we developed the following null 
hypotheses: 
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• H01: Students of the teachers of interest were no more likely than students of the other 
treatment teachers to write “5” in the blank of Check 1 (item 3). 

• H02: Students of the teachers of interest were no more likely than students of the other 
treatment teachers to write “1” in the blank of Check 2 (item 2). 

• H03: Students of the teachers of interest were no more likely than students of the other 
treatment teachers to write “7” in the blank of Check 2 (item 4, step 2). 

In addition, researchers also wanted to investigate whether the repeated addition 
conceptualization of multiplication as a basis to teach distribution was more likely to produce 
the response indicative of the misconception than was the traditional method. To investigate 
this relationship, researchers developed the following three null hypotheses: 

• H04: Students of the teachers of interest were no more likely than students of the 
control teachers to write “5” in the blank of Check 1 (item 3). 

• H05: Students of the teachers of interest were no more likely than students of the 
control teachers to write “1” in the blank of Check 2 (item 2). 

• H06: Students of the teachers of interest were no more likely than students of the 
control teachers to write “7” in the blank of Check 2 (item 4, step 2). 

Given that the ultimate goal of PowerSource© is to aid in the improvement of student 
learning, we also wanted to know if the students of the teachers of interest were more likely 
to answer each of the problems correctly than their counterparts in the control group. 
Therefore, researchers developed the following three null hypotheses: 

• H07: Students of the teachers of interest were no more likely than students of the 
control teachers to answer Check 1 (item 3) correctly. 

• H08: Students of the teachers of interest were no more likely than students of the 
control teachers to answer Check 2 (item 2) correctly. 

• H09: Students of the teachers of interest were no more likely than students of the 
control teachers to answer Check 2 (item 4, step 2) correctly. 

Finally, we wanted to know if the students of the teachers of interest were more likely 
to answer each of the problems correctly than were the students of the other PowerSource© 
teachers. In particular, we were interested in knowing if teaching distribution from a context 
of repeated addition rather than just using diagrammatic representations like area or array 
models made a significant difference in student outcomes. To test this comparison, 
researchers developed and tested the final three null hypotheses: 

• H010: Students of the teachers of interest were no more likely than students of the 
other treatment teachers to answer Check 1 (item 3) correctly. 
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• H011: Students of the teachers of interest were no more likely than students of the 
other treatment teachers to answer Check 2 (item 2) correctly. 

• H012: Students of the teachers of interest were no more likely than students of the 
other treatment teachers to answer Check 2 (item 4, step 2) correctly. 
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FINDINGS 

We tested each of the null hypotheses above using the Pearson Chi-Square statistic at a 
significance level of α = .01. We chose this rigorous level of significance because we wanted 
the teachers to understand that the inferences we made about differences between groups 
were very unlikely to have occurred by random chance. From a statistical viewpoint, this 
level of significance is also warranted because we will be considering numerous null 
hypotheses (Cohen, 1992).  Consequently, when differences between groups are present, they 
are very likely correlated with differences between pedagogical methods used by members in 
the various groups. The first three null hypotheses were constructed to compare differences 
within PowerSource©. Specifically, we wanted to determine the difference in the likelihood 
of certain student response patterns for teachers teaching the content as presented in 
professional development and those teachers teaching the content as presented in the 
instructional materials. It should be noted, however, that all the teachers had been exposed to 
all the same content. In the second set of hypotheses, we looked for similar differences in 
response patterns between students who had been taught by the teachers of interest using the 
instructional methods presented in PowerSource© professional development and students of 
more traditional methods of instruction. 

The results from these analyses of the data are provided below. Observed values are 
reported on the first line of each cell and expected values are given in parentheses on the 
second line of each cell. 

In the first comparison, we hypothesized that students of the teachers of interest are no 
more likely than students of the other treatment teachers to answer each of the questions with 
an answer suggesting that they had misapplied the notion of “repeated addition of the same 
thing” to the three distribution problems. Each of the null hypotheses tested is given in the 
respective table below. 
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Table 1 

Null Hypothesis 1a: Incorrect Answer of 5 on Item 3 (TI vs. Other Treatment) 

 
Answer responses 

Students of  
teachers of interest 

Students of  
other treatment teachers 

All other answers 167  
(162)b 

407 
 (412)b 

Answer of “5” 2  
 (7)b 

21  
 (16)b 

aH01: Students of the teachers of interest were no more likely than students of the other 
treatment teachers to write “5” in the blank of Check 1 (item 3). 
bExpected values.  
Note. TI = Teachers of interest. 

Table 2 

Null Hypothesis 2a: Incorrect Answer of 1 on Item 2 (TI vs. Other Treatment) 

 
Answer responses 

Students of  
teachers of interest 

Students of  
other treatment teachers 

All other answers 170 
 (166)b 

420 
 (424)b 

Answer of “1” 0 
 (4)b 

14 
 (10)b 

aH02: Students of the teachers of interest were no more likely than students of the other 
treatment teachers to write “1” in the blank of Check 2 (item 2). 
bExpected values.  
Note. TI = Teachers of interest. 

Table 3 

Null Hypothesis 3a: Incorrect Answer of 7 on Item 4 (TI vs. Other Treatment) 

 
Answer responses 

Students of  
teachers of interest 

Students of  
other treatment teachers 

All other answers 169 
 (164)b 

415 
 (420)b 

Answer of “7” 1 
 (6)b 

19 
 (14)b 

aH03: Students of the teachers of interest were no more likely than students of the other 
treatment teachers to write “7” in the blank of Check 2 (item 4, step 2).  
bExpected values.  
Note. TI = Teachers of interest. 

Each of these null hypotheses was accepted. In each of the three cases, the observed 
values did not differ enough from the expected values to conclude the students in the two 
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groups were significantly different in their response patterns (at a level of α = .01). For H01: 
χ2 = 4.53, p = .033, for H02: χ2 = 5.61, p = .018, and for H03: χ2 = 5.48, p = .019. 
Consequently, contrary to the original belief of some teachers, we found that students of the 
teachers who indicated that they had taught the principle of distribution using a repeated 
addition model (the teachers of interest) were no more likely to exhibit a response pattern 
indicative of the anticipated misconception than were students of PowerSource© teachers 
who indicated they had not used that model.  

We then analyzed the data to determine if students of the teachers of interest were more 
likely to respond in a way indicative of the misconception we were investigating than were 
students of the control teachers. In this comparison, we were concerned that the 
PowerSource© professional development not prove more likely to contribute to particular 
student misconceptions than traditionally employed instructional methods. Each of the null 
hypotheses tested is given in the respective table below. 

Table 4:  

Null Hypothesis 4a: Incorrect Answer of 5 on Item 3 (TI vs. Control) 

 
Answer responses 

Students of  
teachers of interest 

Students of  
control teachers 

All other answers 167 
 (158)b 

442 
 (451)b 

Answer of “5” 2 
(11)b 

39 
 (30)b 

aH04: Students of the teachers of interest were no more likely than students of the control 
teachers to write “5” in the blank of Check 1 (item 3).  
bExpected values.  
Note. TI = Teachers of interest. 

Table 5:  

Null Hypothesis 5a: Incorrect Answer of 1 on Item 2 (TI vs. Control) 

 
Answer responses 

Students of  
teachers of interest 

Students of  
control teachers 

All other answers 170 
 (165)b 

454 
 (459)b 

Answer of “1” 0 
 (5)b 

20 
 (15)b 

aH05: Students of the teachers of interest were no more likely than students of the control 
teachers to write “1” in the blank of Check 2 (item 2).  
bExpected values.  
Note. TI = Teachers of interest. 
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Table 6:  

Null Hypothesis 6a: Incorrect Answer of 7 on Item 4 (TI vs. Control) 

 
Answer responses 

Students of  
teachers of interest 

Students of  
control teachers 

All other answers 169  
 (155)b 

420  
 (434)b 

Answer of “7” 1  
(15)b 

54  
 (40)b 

aH06: Students of the teachers of interest were no more likely than students of the control 
teachers to write “7” in the blank of Check 2 (item 4, step 2). 
bExpected values.  
Note. TI = Teachers of interest. 

In this case, each of the three null hypotheses above was rejected at the α = .01 level. 
On Check 1 (item 3) students in the control group were significantly more likely than 
students taught by the teachers of interest to complete the item using a number (5) that might 
indicate that they were blindly following the pattern suggested by repeated addition (χ2 = 
10.15, p = .001). Similarly, both null hypotheses concerning the two items of interest on 
Check 2 were rejected. In both cases, students in the control group were significantly more 
likely to respond with answers that indicated they might be following a pattern suggestive 
that they were misapplying repeated addition than were students in the classrooms of the 
teachers of interest. Consequently, both H05 (χ2 = 7.40, p = .007) and H06 (χ2 = 18.70, p < 
.000) were rejected. Contrary to the original hypotheses expressed by the teachers of interest, 
our findings suggest that students of the teachers of interest are significantly less likely to 
make the anticipated error than are students in classrooms taught by teachers in the control 
group and no more likely to make the error than other students in PowerSource© classrooms. 

Ultimately, the goal of PowerSource© (both the professional development and 
instructional aids) is to help teachers improve the achievement of their students. 
Consequently, we also wanted to know if the students of the teachers of interest were more 
likely to answer each of the problems correctly than their counterparts in the control group. 
Both teachers and researchers wanted to know if teaching distribution from a context of 
repeated addition resulted in a significant improvement in student outcomes over traditional 
instructional methods. The following tables compare the ability of students of the teachers of 
interest to correctly answer each of the researcher developed distribution questions compared 
to the students of control group teachers, and the students of other PowerSource© teachers, 
respectively. The null hypothesis tested for each question and each group is given below. 
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Table 7 

Null Hypothesis 7a: Correct Answer Item 3 (TI vs. Control) 

 
Answer responses 

Students of  
teachers of interest 

Students of  
control teachers 

Correct answer 157  
 (114)b 

280  
 (323)b 

All other answers 12  
 (55)b 

201  
 (158)b 

aH07: Students of the teachers of interest were no more likely than students of the control 
teachers to answer Check 1 (item 3) correctly.  
bExpected values.  
Note. TI = Teachers of interest. 

Table 8:  

Null Hypothesis 8a: Correct Answer Item 2 (TI vs. Control) 

 
Answer responses 

Students of  
teachers of interest 

Students of  
control teachers 

Correct answer 167  
 (143)b 

373  
 (397)b 

All other answers 3  
(27)b 

101  
   (77)b 

aH08: Students of the teachers of interest were no more likely than students of the control 
teachers to answer Check 2 (item 2) correctly. 
bExpected values. 
Note. TI = Teachers of interest. 

Table 9:  

Null Hypothesis 9a: Correct Answer Item 4 (TI vs. Control) 

 
Answer responses 

Students of  
teachers of interest 

Students of  
control teachers 

Correct answer 167  
 (139)b 

360  
 (388)b 

All other answers 3  
(31)b 

114  
   (86)b 

aH09: Students of the teachers of interest were no more likely than students of the control 
teachers to answer Check 2 (item 4, step 2) correctly.  
bExpected values.  
Note. TI = Teachers of interest. 

As was seen in the previous comparisons of the students of the teachers of interest and 
the students of the control teachers, these two groups were significantly different in their 
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likelihood of providing certain answers on each of the questions of interest. Here again, for 
all three distribution questions, the students of the teachers of interest were significantly more 
likely to provide a correct answer than were students of the teachers in the control group. 
(H07: χ2 = 68.30, p < .000; H08: χ2 = 35.29, p < .000; H09: χ2 = 41.80, p < .000). 

Somewhat surprisingly to both researchers and PowerSource© teachers however, was 
the discovery that the ability of students of the teachers of interest to provide a correct answer 
to each of the three distribution questions also differed significantly from their counterparts 
in the treatment group. The null hypothesis tested for each question and each group is given 
below. 

Table 10:  

Null Hypothesis 10a: Correct Answer Item 3 (TI vs. Other Treatment) 

 
Answer responses 

Students of  
teachers of interest 

Students of  
other treatment teachers 

Correct answer 157  
 (141)b 

341  
 (357)b 

All other answers 12  
 (28)b 

87  
 (71)b 

aH010: Students of the teachers of interest were no more likely than students of the other 
treatment teachers to answer Check 1 (item 3) correctly.  
bExpected values.  
Note. TI = Teachers of interest. 

Table 11:  

Null Hypothesis 11a: Correct Answer Item 2 (TI vs. Other Treatment) 

 
Answer responses 

Students of  
teachers of interest 

Students of  
treatment teachers 

Correct answer 167  
 (158)b 

393  
 (402)b 

All other answers 3  
(12)b 

41  
 (32)b 

aH011: Students of the teachers of interest were no more likely than students of the other 
treatment teachers to answer Check 2 (item 2) correctly. 
bExpected values. 
Note. TI = Teachers of interest. 
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Table 12:  

Null Hypothesis 12a: Correct Answer Item 4 (TI vs. Other Treatment) 

 
Answer responses 

Students of  
teachers of interest 

Students of  
other treatment teachers 

Correct answer 167  
 (158)b 

396  
 (405)b 

All other answers 3  
(12)b 

38  
 (29)b 

aH012: Students of the teachers of interest were no more likely than students of the other 
treatment teachers to answer Check 2 (item 4, step 2) correctly. 
bExpected values. 
Note. TI = Teachers of interest. 

Unlike the findings reported for differences between the likelihood of students of the 
teachers of interest to provide a particular wrong answer more often than students in classes 
of the other treatment teachers (insignificant at the α = .01 level), differences between these 
groups of students when providing a correct answer were significant. For each of the three 
different distribution questions, students of the teachers of interest were significantly more 
likely to provide the correct answer to each of the three distribution problems than students in 
the classrooms of the other treatment teachers at the α = .01 level (H010: χ2 = 15.32, p < .000;  
H011: χ2 = 10.67, p = .001; H012: χ2 = 9.44, p = .002). 
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CONCLUSIONS 

Teachers often find new pedagogical methods difficult to implement and often rely on 
experience to suggest instructional methods. Although such a process may produce 
satisfactory results for these teachers, the currently available statistics suggest that such 
methods are not producing similar results for the majority of students attempting to master 
introductory algebra. As a gateway course, algebra proficiency is critical for the economic 
and academic well being of all students. To help improve proficiency of students in 
introductory algebra, researchers at CRESST have developed a program of formative 
assessments and professional development targeted on key big ideas necessary for the 
mastery of algebra.   

In the present report, we discuss the findings of one small part of that study. In this 
case, the teachers who used a repeated addition model of multiplication to develop the 
concept of distribution (the teachers of interest) felt their students were more likely than other 
treatment or control teachers to respond in a way indicative of a misconception engendered 
by a repeated addition model. Contrary to the original beliefs of their teachers, however, the 
students of the teachers of interest were less likely to answer in a way that suggested teaching 
distribution as an example of repeated addition of the same thing was likely to result in a 
response pattern that suggested a certain misconception in these students. Specifically 
students of the teachers of concern were less likely to respond to questions like 6 (3 + 1), 
with the answer of 6 • 3 + 6 • 3. In fact, students of teachers in the control group were 
significantly more likely to respond in this way than students of any of the teachers who 
received the PowerSource© professional development and the instructional materials. 
Moreover, the students of the teachers of interest were not significantly more likely to make 
this error than were the students of the other PowerSource© teachers. In fact, the students of 
teachers who indicated that they taught distribution by connecting this concept to their 
students’ understanding that multiplication is repeated addition of the same thing were less 
likely to produce a pattern seemingly indicative of the misconception than were students of 
the other treatment teachers. The difference, however, was not significant at the α = .01 level. 
This suggests that PowerSource© materials (both professional development and the 
instructional handbook) were correlated with a decrease in the likelihood students would 
respond in manner indicative of a particular misconception. 

It should be noted here that we are not inferring that students responding in a manner 
suggestive of repeated addition actually hold that misconception or are answering because 
they are applying a repeated addition schema to this problem. Rather we are testing whether 
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students of teachers who instructed using a repeated addition model were more likely to 
respond in a particular manner more often than other groups of students and whether teaching 
from the standpoint of repeated addition was likely to increase the likelihood of a certain 
wrong answer pattern than either of the other instructional methods (array–area or more 
traditional). It was not. It should also be noted that because the instruction of the teachers in 
the control group was not monitored, researchers had no way of knowing how distribution 
was actually taught in those classrooms. The study design does, however, allow us to 
conclude how the students of teachers of interest responded to assessment questions about 
distribution relative to students of teachers who had only been exposed to traditional 
professional development in this particular school district.  In each case, the analysis of the 
data leads us to believe that teaching distribution using a repeated addition model was 
significantly less likely to result in a response pattern teachers and researchers felt indicative 
of a particular misconception. Moreover, neither of the suggested PowerSource© instructional 
treatments (area–array model or repeated addition) seemed significantly different in their 
likelihood to engender such a response pattern from students. Rather, such a response pattern 
was associated with students in non-PowerSource© classrooms significantly more often than 
with students in the classrooms of teachers receiving PowerSource© professional 
development. 

In addition to analyzing response patterns indicative of a particular misconception, we 
were also interested in the overall performance of students in different groups. Aside from 
the significant differences in a specific incorrect response pattern, there were also differences 
between the students of the teachers of interest and the students of the control group in the 
likelihood that students answered each of the questions correctly. Students of the teachers of 
interest were significantly more likely to answer each of the three distribution questions 
correctly than were students of teachers in the control group. Moreover, these same students 
were also significantly more likely to answer the distribution questions correctly than were 
the students of the other PowerSource© teachers. This latter result is interesting as it controls 
for time in professional development in addition to the teacher and student effects controlled 
for by randomization between the treatment and control groups. Whereas researchers were 
not able to control for the amount or type of professional development the control group 
received, all the teachers in the PowerSource© group received the same amount of 
professional development and the teachers then decided to teach the unit on distribution in 
the way they thought would best illustrate the big idea. Although the teachers of interest were 
a “self selected group” in the sense that they decided to teach the concept of distribution as 
repeated addition, the results are suggestive that teaching distribution in this way can have 
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positive effects on student achievement without engendering a specific unwanted 
misconception. Nevertheless, this same result might not be replicated if teachers were 
constrained to teach distribution using either an array–area model or repeated addition. We 
would recommend a future experimental study to see if teaching distribution using array and 
area models versus teaching this concept as repeated addition using randomized groups 
would generate the significant differences in student performance as suggested in this report. 

One final conclusion suggested by this research is that focusing professional 
development on developing conceptual understanding of a single “big idea” with teachers, 
over a relatively small number of hours is correlated with significant positive differences in 
student performance. We plan to explore these differences further by comparing student 
results on state standardized assessments and pre- to post-test changes on a researcher 
developed transfer measure to see if the trends reported for the students and teachers 
involved in the present research are replicated in larger groups of students and teachers and 
across multiple districts and on non-researcher developed assessments.  

In the end, all PowerSource© teachers in this district responded well to the findings 
reported here and their responses suggested that they would continue or begin to teach 
distribution as an instance of repeated addition. In fact, our interactions with them 1 year 
later suggest this repeated addition model has been adopted by nearly every PowerSource© 
teacher in the district. 
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