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FROM EVIDENCE TO ACTION: 

A SEAMLESS PROCESS IN FORMATIVE ASSESSMENT? 

 
Margaret Heritage, Jinok Kim, Terry P. Vendlinski, & Joan L. Herman 

CRESST/University of California, Los Angeles 
 

Abstract 

Based on the results of a generalizability study (G study) of measures of teacher 
knowledge for teaching mathematics developed at The National Center for Research, on 
Evaluation, Standards, and Student Testing (CRESST) at the University of California, 
Los Angeles, this report provides evidence that teachers are better at drawing reasonable 
inferences about student levels of understanding from assessment information than they 
are in deciding the next instructional steps. We discuss the implications of the results for 
effective formative assessment and end with considerations of how teachers can be 
supported to know what to teach next. 

Assessment is essential to effective teaching and learning. Black and Wiliam (1998; 
2004) stress the critical role of formative assessment, in particular. Formative assessment is a 
systematic process to continuously gather evidence and provide feedback about learning 
while instruction is underway. The feedback identifies the gap between a student’s current 
level of learning and a desired learning goal (Sadler, 1989).  

In the process of formative assessment teachers elicit evidence about student learning 
using a variety of methods and strategies, for example, observation, questioning, dialogue, 
demonstration, and written response. Teachers must examine the evidence from the 
perspective of what it shows about student conceptions, misconceptions, skills and 
knowledge. Sometimes teachers examine evidence on a moment-by-moment basis during the 
course of a lesson. Other times they review evidence after a lesson or series of lessons. In all 
instances, they need to infer the gap between the students’ current learning and desired 
instructional goals, identifying students’ emerging understanding or skills so that they can 
build on these by modifying instruction to facilitate growth. The analysis and interpretation 
of evidence is pivotal for the effectiveness of formative assessment. Inaccurate analyses or 
inappropriate inference about students’ learning status can lead to errors in what the next 
instructional steps will be, with the result that the teacher, and the learner fail to close the 
gap. 

For assessment to be formative, action must be taken based on the evidence elicited to 
close the gap (Black, Harrison, Lee, Marshall & Wiliam, 2003; Sadler, 1989; Wiliam & 
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Thompson, 2007). For teachers this means knowing what action to take based on the 
evidence that they have obtained so that they “adapt the teaching work to meet the learning 
needs” (Black et al., 2003, p. 2). However, is adapting instruction to meet learning needs 
always within the competence of teachers? In this report, we illustrate through the results of a 
generalizability study (G study) of measures of teacher knowledge for teaching mathematics, 
that moving from evidence to action may not always be the seamless process that formative 
assessment demands. While initially aimed at the properties of teacher knowledge measures, 
the G study results provide interesting data showing that teachers do better at drawing 
reasonable inferences of student levels of understanding from assessment evidence, while 
having difficulties in deciding the next instructional steps. 

First, we will describe the measures of teacher knowledge that were used in the study, 
then present a description of the G study and results, and finally we will discuss some 
possible ways in which teachers can be supported to use evidence more effectively to inform 
action. 

Teacher Knowledge Measures 

The purpose of the teacher knowledge measures used in the G study is to gauge the 
effects of POWERSOURCE©, a formative assessment strategy being developed at the 
National Center for Research on Evaluation, Standards, and Student Testing (CRESST) at the 
University of California, Los Angeles. POWERSOURCE© is expected, through professional 
development and job aids, to influence teachers’ domain knowledge and pedagogical content 
knowledge and assessment practices in key principles underlying mastery of algebra I— 
specifically, the distributive property, solving equations and rational number equivalence. 
The measures conceptualize teacher knowledge as central to, and embedded in, the everyday 
practice of teaching, irrespective of teachers’ specific curriculum or approach to teaching. 
This includes the knowledge that teachers draw on: (a) to interpret students’ understanding of 
mathematical ideas and plan instruction (Ball, Lubienski & Mewborn, 2001; Shulman, 1986; 
Wilson, Shulman, & Rickert, 1987); (b) to give students feedback (NRC, 2000; 2001a); and 
(c) to explain, justify and model mathematical ideas to students (NRC, 2001b).  

The measure is a series of performance tasks in which teachers are asked to review 
student responses to assessments and answer a series of questions. Shown in Figure 1 is an 
example of one student’s response to an assessment of understanding of the distributive 
property.  
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Figure 1. Student response to an assessment checking understanding of the distributive property 

After reviewing the student response, teachers are asked to answer the following 
questions: 

1. What is the key principle that these assessments address? Why do students need to 
understand this principle for algebra I? 

2. What inferences would you draw from this student’s responses? What does this 
student know? What does this student not know? 

3. If you were this child’s teacher what written feedback would you give to this 
student? 

4. If this student were in your class, based on your responses to Questions 2 and 3, 
what would you do next in your instruction? 

Developing the Teacher Knowledge Measures and Scoring Rubric 

The student responses included in the teacher knowledge measures were drawn from a 
pilot study of the POWERSOURCE© assessments focusing on the distributive property, 
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rational number equivalence and solving equations. Students in the Los Angeles Unified 
School District (LAUSD) completed the assessments. A group of mathematicians and expert 
mathematics teachers analyzed 40 LAUSD student responses to each of the 
POWERSOURCE© assessments and selected responses that were representative of the gaps 
in knowledge and misconceptions demonstrated by the students, as well as those that showed 
an understanding of the key principles. These student responses and the accompanying 
questions described above formed the teacher knowledge measures, which were designed to 
be scored by raters using a scoring rubric. 

The development of the rubric was undertaken in several stages. First, eight 
mathematics teachers of varying levels of experience and expertise completed the teacher 
knowledge measures. Their responses represented a considerable range of knowledge. For 
example, in response to the question about the principle that the assessment shown in Figure 
1 addresses, and why it is essential for algebra, responses ranged from “order of operations—
essential for solving problems” to “distributive property, which is needed in algebra I” to 
“solve algebraic equations and multiply mononomials and polynomials.” There were also 
many different ways that teachers expressed what they would teach next based on the student 
responses, including “repeated addition of the same thing,” to “explain that the multiplier 
hooks up with one addend and must hook up with the other so it doesn’t feel left out,” to 
“factoring in reverse,” as well as answers that bore no relationship to the distributive 
property, whatsoever.  

Second, a group of university mathematics experts and expert teachers reviewed the 
teacher responses to each question and put them into four categories. The categories reflected 
the most rudimentary response (i.e. no mention of the distributive property) to those that the 
group viewed as the most sophisticated (i.e. distribution as repeated addition). They 
developed summaries for each category, which became the first draft of the 4-point score 
rubrics  

Third, the draft rubrics were reviewed by another group of seven expert mathematics 
teachers, all involved in professional development, and with over 200 years of experience 
among them. This group used the draft rubrics to examine over 100 teacher responses. The 
content of each score point was discussed and consensus reached on revisions that needed to 
be made. Figure 2, for example, represents the consensus scoring rubric for the question 
“What would your next instructional steps be?” in relation to the student’s response 
represented in Figure 1.  
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• Explain the distributive property as repeated addition 
• Explain factoring as distribution in reverse 
• Model the use of the distributive property with whole numbers 
• Model generalizing to other numbers and variables  

3 

Either 
• Explain the distributive property as repeated addition 
Or 
• Explain factoring as distribution in reverse 
• Model the use of the distributive property with at least whole numbers 

2 • Explain procedures for how to use the distributive property, equating 
procedures with the order of operations 

1 • No explanation of the distributive property 

Figure 2. Scoring rubric for teachers’ explanations of next instructional steps in teaching 
the distributive property. 

• A score of 4 shows that the teacher understands the distributive property as repeated 
addition, factoring as distribution in reverse, using the distributive property with 
whole numbers and generalizing the distributive property to other numbers and 
variables. 

• A score of 3 shows that the teacher has an understanding of either the distributive 
property as repeated addition or of factoring as distribution in reverse and of using 
the distributive property with at least whole numbers. 

• A score of 2 shows the teacher has a rudimentary, procedural, rather than principle-
based understanding of the distributive property. 

• A score of 1 indicates that the teacher response contains no explanation of the 
distributive property. 

The G Study 

In our G study, the object of measurement was teachers’ pedagogical knowledge in 
mathematics. We aimed to determine which components of variability in teachers’ 
knowledge were likely to be responsible for overall scores on the teacher knowledge 
measures, and to determine how applicable our conclusions from our sample of teachers in 
the study were to teachers in general.  

Sample of participating teachers. One hundred and eighteen sixth grade teachers 
from across Los Angeles County participated in the study. The teachers completed the 
measures online within their own time frame and at their own pace. In addition to completing 
the measures, teachers responded to questions about their professional background. At the 
time they completed the performance tasks, 97% of the teachers mostly taught Grade 6. 
About half of the teachers taught in a self-contained classroom, with responsibility for 
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teaching all subjects, while the other half taught in a mathematics department, with 
responsibility for teaching mathematics only. Fifty percent of the teachers who taught in 
mathematics departments, not in self-contained classrooms, taught general mathematics and 
the rest were distributed across pre-algebra, remedial mathematics, special education 
mathematics geometry (3%), integrated mathematics program, and algebra. About half of the 
teachers had taught math for 5 or less years, ranging from 0–38 years.  

About half the sample had taken three or more undergraduate or graduate level classes 
in mathematics. Approximately 25% had taken two classes, while the remainder had taken 
one class or none. When asked about the total time they spent on in-service education in 
mathematics during the past year, 24% of the teachers reported none, 23% reported less than 
6 hours, 17% reported 6–15 hours, 17% reported 16–35 hours, and 20% reported more than 
35 hours. In other subjects, 15% of the teachers reported none, 30% reported less than 6 
hours, 22% reported 6–15 hours, 18% reported 16–35 hours, and 15% reported more than 35 
hours. In response to question about the number of undergraduate or graduate level classes 
they took in mathematics, about 9% reported none, 17% reported one class, 23% reported 
two classes, and 53% reported three and more classes. In methods of mathematics, 24% 
reported none, 40% reported one, 17% reported two, and 18% reported three or more classes. 

A number of questions were asked about teaching credentials. In terms of grade levels, 
more than 90% of the teachers had credentials for kindergarten to Grade 6, about 60% for 
Grades 7–8, and a lesser percentage for higher grades (34% for Grade 9, about 20% for 
Grades 10–12). In terms of subject matter 90% of the teachers had general credentials (i.e., 
all subjects), 14% for mathematics and 3% for science. In terms of credential status 72% had 
completed credentials, 20% had preliminary, and 6% had intern status. 

Performance Tasks 

As already described, the teacher knowledge measures used in our study were a series 
of performance tasks designed to be scored by raters using a 4-point scoring rubric. As in any 
other measurement instrument, scores based on performance tasks may be subject to various 
sources of error. In this study, we assumed three potential sources of error in assessing 
teachers’ demonstrated mathematical knowledge for teaching. First, scoring of the same 
teacher’s response may vary depending on the rater. For example, some raters may be more 
stringent while others more lenient, even when provided with an identical, detailed rubric. 
Second, the different principles may be a source of error. Among the three key mathematical 
principles that we focused on (i.e., the distributive property, solving equations, and rational 
number equivalence), the same teacher may have more knowledge about one principle than 
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the others, which may lead to variability in scores for that teacher. Third, scores may vary 
depending on the assigned task. For example, variation in the same teacher’s scores could be 
because the teacher may be better at identifying the principle and evaluating students’ 
understanding, whereas the teacher may struggle with planning the next instructional steps. 
These different conditions that may give rise to the variability of a teacher’s score are 
considered sources of measurement error, also known as facets. 

Method and Results 

We performed an (o × r × p × t) G study to examine the magnitude of the score 
variation due to the main and interactions effect of: teacher—the object of measurement (o), 
rater (r), principle (p), and type of task (t). From this design the total variation of the 
observed score was partitioned into 15 terms, shown in Table 1. In addition to the partitioned 
terms, Table 1 presents the results of the G study analysis, showing the estimated variance 
components and percentages of the magnitudes of estimated variance components as 
compared to the total score variability. 
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Table 1 

Estimated variance components and percentage of score variation for scores in 
teacher performance tasks 

Source of Variability n EVC % 

Teacher (o)  0.0594 5.7 

Principle (p) 3 0.0172 1.7 

Type of task (t) 3 0.2591 24.9 

Raters (r) 6 0.0024 0.2 

 op 3 0.0149 1.4 

 ot 3 0.0049 0.5 

 or 6 0 0.0 

 pt 9 0.0848 8.2 

 pr 18 0.0026 0.3 

 tr 18 0.0007 0.1 

 opt 9 0.4098 39.4 

 opr 18 0.0016 0.2 

 oqr 18 0 0.0 

 ptr 54 0.0086 0.8 

 opqr,e 54 0.1736 16.7 

Note. Two small negative variance components were considered to be 
negligible and were subsequently set to zero. 

The results show that the true-score variance (Estimated Variance Component [EVC] 
of teacher main effect) is only about 6% of the variability of observed scores, which indicates 
that a large extent of the variability is associated with other facets contributing to 
measurement error. Among the main effects, both the main effect of principle and rater are 
negligible. The main effect of the seven raters in the study is extremely small, contributing to 
only 0.2% of the total variability. However, one main effect large enough to be problematic 
(25%) is type of task. This suggests that teachers’ scores may not be generalizable across the 
different tasks: (a) identifying key principles; (b) evaluating student understanding; and (c) 
planning the next instructional step based on the evaluation of student understanding. In other 
words, some of the tasks are more difficult, in general, for all teachers than the other tasks. 

Among the interaction effects, the results show that any interaction terms that involve 
rater facet contribute to only a negligible percentage of the total variability. This shows that 
raters are very consistent; therefore, we determined that using samples of a small number of 
raters should be enough to obtain dependable scores. However, two interaction terms 
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represent a noticeably large percentage of the total variability. One is a two-way interaction 
between principle and type of task (8%), while the other is a three-way interaction among 
teachers, principle, and type of task (39%). Two issues are worth noting from these 
interaction terms. First, the EVC of the three-way interaction is the largest magnitude (39%) 
among all 15 terms, which is problematic. Second, both interaction terms involve two facets: 
principle and type of task.  

The two-way interaction term, (principle and type of task) that is of a relatively 
moderate magnitude, indicates that some combinations of principle and type of task are more 
difficult for teachers than others. The three-way interaction term (teacher, principle and type 
of task) that resulted in the largest magnitude implies that teachers’ average scores are fairly 
inconsistent from one combination of principle and type of task to another. To elaborate, the 
two-way interaction term suggests some combinations of principle and type of task tend to be 
more difficult (no matter who the teacher is), whereas the three-way interaction term further 
suggests that some combinations are more difficult for some teachers but not for others. 
Thus, the large magnitude of the three-way interaction implies that the relative standings of 
teachers will change depending on the combination of principle and type of task. 

Based on the results of the G theory study1 we examined scores in different types of 
tasks and principles in order to generate hypotheses on underlying sources of such 
inconsistencies (i.e., inconsistencies across tasks, inconsistencies across task and principle 
combinations, and inconsistencies of teacher rankings across task and principle 
combinations). We hypothesized that teachers would have greater difficulty determining the 
next instructional steps from evidence than identifying the key principle addressed by the 
assessment and drawing inferences about student understanding. 

As seen above, all of the terms that include raters—both main and interaction effects—
have negligible magnitudes, which implied that we could select scores from a small number 
of raters and have them represent scores that teachers would have received from the 
population of raters. Based on these results, we averaged scores over raters. Table 2 shows 
the descriptive statistics of scores averaged over raters, by mathematics principle and by type 
of task. 

                                                
1 For readers who may be interested, G theory provides a generalizability coefficient (a G coefficient) that is 
analogous to the reliability coefficient, as well as partitioning and estimating variance components from various 
sources. G coefficients can be defined and calculated in two ways: one for the relative decision and the other for 
the absolute decision. The above analysis presented in Table 1 yields G coefficients of 0.52 for the relative 
decision, and of 0.27 for the absolute decision. 
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Table 2 

Scores measuring teachers’ pedagogical knowledge averaged over raters, by principle and by type of task 

Variable N Mean Std Dev Min Max 

Principle: distributive property      

 Task: identifying key principle 114 2.07 0.63 1 3.67 

 Task: evaluating student understanding 113 2.14 0.94 1 4.00 

 Task: planning next instruction 113 1.21 0.36 1 2.00 

Principle: solving equation      

 Task: identifying key principle 112 1.82 0.89 1 3.83 

 Task: evaluating student understanding 111 2.06 0.93 1 3.83 

 Task: planning next instruction 112 1.21 0.39 1 2.83 

Principle: rational number equivalence      

 Task: identifying key principle 105 2.94 0.47 1 4.00 

 Task: evaluating student understanding 102 2.07 0.98 1 4.00 

 Task: planning next instruction 101 1.36 0.48 1 2.83 

 

Table 2 suggests that regardless of the math principle, determining the next 
instructional steps based on the examination of student responses tends to be more difficult 
for teachers. For all three principles, the teachers, on average, scored only 1.2–1.4 on this 
task, although they scored on average 1.8–2.9 in other tasks. This may underlie the large 
variance component of the main effect of type of task. This result illustrates, as we 
hypothesized, that teachers tend to be better at identifying the principle and drawing 
inferences about students’ understanding than they are at deciding the next instructional 
steps. 

One result from the G study that is hard to examine with the descriptive results in Table 
2, is the three-way interaction among teacher, principle, and task. Since the scores are 
averaged over principle and task, inconsistency in teachers’ relative standing across 
principles and tasks should not appear in the average scores—higher scores for some teachers 
and lower scores for others will cancel each other out, resulting in average scores that do not 
reflect relative ranks of teachers. Since this inconsistency is the largest component that 
contributes to error variability, it is important to consider why this happens. For instance, one 
combination of task and principle may have been more difficult for some teachers but not for 
others, probably because teachers have different areas of expertise and or different amounts 
of exposure to teaching with regard to key principles. Alternatively, teachers may have 
different capabilities in one type of task as opposed to the others: For example, some teachers 
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may be better at planning the next instructional step given similar levels of knowledge in 
identifying key principles and in evaluating student understanding. 

These results raise an important question about teachers’ abilities to determine what to 
teach next in response to assessment information. Although they are only focused on three 
topics in mathematics, other researchers have also found similar issues with regard to 
teachers’ knowing what to teach next in reading and mathematics (for example, Fuchs & 
Fuchs, 2008). As discussed previously, the purpose of formative assessment is to adjust 
teaching based on evidence about learning so that students can close the gap between their 
current learning status and desired goals. If teachers are not clear about what the next steps to 
move learning forward should be, then the promise of formative assessment to improve 
student learning will be vitiated. We now turn to some considerations of how teachers could 
be supported to improve their skills in moving more effectively from evidence to action. 

Improving the Translation of Evidence to Action  

To know what to do next instructionally in response to formative assessment evidence, 
teachers need clear conceptions of how learning progresses in a domain; they need to know 
what the precursor skills and understandings are for a specific instructional goal; what a good 
performance of the desired goal looks like; and know how the skill or understanding 
increases in sophistication from the current level students have reached. In this regard, 
conceptions of how learning progresses that are represented in typical curricula and standards 
at this time are not helpful to teachers. For example, standards rarely present a clear 
conception of how learning progresses in a domain, and curricula are often organized around 
scope and sequence charts, usually defining discrete objectives that are not connected to each 
other in a larger network of organizing concepts that show a clear trajectory in learning 
(NRC, 2000).  

Recently, considerable interest has emerged in learning progressions (Gong, 2006, 
2007; Heritage, 2008; NRC, 2001a; NRC, 2005). Learning progressions describe how 
concepts and skills increase in sophistication in a domain from the most rudimentary to the 
highest level, showing the trajectory of learning along which students are expected to 
progress. From a learning progression, teachers can access the big picture of what students 
need to learn, they can grasp what the key building blocks of the domain are, while having 
sufficient detail for planning instruction to meet short-term goals (for a more complete 
description of learning progressions, see Heritage, 2008). Teachers are able to connect 
formative assessment opportunities to short-term goals as a means to keep track of how their 
students’ learning is evolving to meet the goal. Sometimes this will mean that teachers have 
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to move backwards along the progression: for example, if formative assessment evidence 
shows that students are missing key building blocks. Similarly, they might move learning 
further forward if the evidence indicates that some students are outpacing their peers. In both 
cases, the progression helps teachers to make an appropriate match between instruction and 
the learners’ needs. Such descriptions of learning will go a long way to helping teachers 
understand how learning progresses in a domain and to make appropriate matches between 
the learner and what needs to be learned next.  

However, learning progressions, by themselves, will not be sufficient. A deep 
knowledge of the domain represented in the learning progression is also needed. Specifically, 
for effective formative assessment, teachers need to know what good performance of  
specific short-term learning goal looks like. This means they must also know what good 
performance does not look like. For example, in mathematics, can teachers identify what 
forms student misunderstandings or misconceptions can typically take? If teachers are clear 
about these aspects, they are better placed to respond to them when they show up in 
formative assessment. They have a depth of knowledge about how the concepts develop that 
enables them to adapt instruction to meet the learners’ needs. In other words, they know what 
to teach next. 

The depth of teacher knowledge of U.S. teachers, particularly as it relates to teaching 
mathematics, is an issue that has attracted attention. A number of researchers have contrasted 
the development of U. S. teachers’ knowledge in mathematics with that of teachers in high-
performing countries as measured by international assessments (for example, Ma, 1999; 
Stigler & Hiebert, 1999). U.S. teachers, by and large, are expected to know how and what 
they will teach upon graduating from teacher preparation programs (Schifter, 1996). In high-
performing countries, after the completion of teacher preparation programs, teachers learn 
from teaching. This is well exemplified in Japan, where through a process of lesson study, 
groups of teachers collaborate to develop, evaluate and revise lessons on particular problem 
areas. Teachers “can collect information on how students are likely to respond to challenging 
problems, and they can plan which responses to introduce and in which order” (Stigler & 
Hiebert, 1999, p. 156.) The net result of the lesson study process is deep knowledge of how 
students reveal specific problems and how to address them. Teachers are able to anticipate 
student misunderstandings and misconceptions, and know what to do about them when they 
arise.  

Lesson study in Japan is a meticulous, ongoing process that is ingrained in the culture 
of teaching and designed to build deep knowledge for teaching mathematics. While a lesson 
study process may not be the answer to deepening U. S. teachers’ knowledge, nonetheless, it 
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stands in contrast to the professional training reported by the teachers in our sample: 47% of 
teachers reported less than 6 hours of in-service mathematics training during the previous 
year, with only 20% reporting more than 35 hours; only 18% reported three or more classes 
in mathematics methods during graduate or undergraduate courses, while 64% reported one 
or less. These reports hardly evidence experiences that lead to deep knowledge of 
mathematics for teaching. In addition, as U.S. teachers have many more contact hours that 
teachers in Organisation for Economic Co-operation and Development (OECD) countries 
(OECD, 2003, cited in Wiliam, 2006) it is fair to assume that the sample of teachers, even in 
schools and districts with structures in place for teacher collaborative learning, do not have 
adequate time to engage in deep, reflective and ongoing discussion with each other that could 
lead to the kind of in-depth mathematical knowledge of their Japanese counterparts.  

Ma (1999) makes a compelling case for the relationship between students’ 
mathematical knowledge and teachers’ mathematical knowledge. We hypothesize that if the 
teachers in our sample clearly understood the developmental trajectory of mathematical 
ideas—such as the distributive property, rational number equivalence and solving equations, 
represented in a learning progression—and had a deep knowledge of how the elements of 
these ideas manifest in student learning, they would likely have performed better on 
determining next instructional steps. Such knowledge would remove the uncertainty of 
knowing what to teach next based on evidence that is accumulated during the course of 
instruction through formative assessment and better realize the benefit of formative 
assessment to learning. 

Conclusion 

In this report, we have presented the results of a G study of measures designed to assess 
teachers’ mathematics knowledge for teaching (Ball & Bass, 2000; Hill, Rowan & Ball, 
2005). The measures required teachers to use their mathematical content knowledge and 
pedagogical content knowledge in ways that mirror classroom practice. Specifically, 
participants had to use assessment information to infer what students did and did not know 
about key principles, decide what they would teach next based on their inferences, and 
provide feedback that would help students improve.  

The interaction effects in the G study reveal considerable complexity in assessing 
teachers’ pedagogical knowledge with performance task measures, and highlight the 
challenge of developing valid and reliable measures of teacher knowledge. Many questions 
remain from our study, including, what are the underlying characteristics of teachers that 
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make a particular combination of task and principle more or less easy? This will require 
further research. 

Despite the complexity demonstrated in the G study, one finding that clearly emerges is 
that using assessment information to plan subsequent instruction tends to be the most 
difficult task for teachers as compared to other tasks (for example, assessing student 
responses). Given the importance of adjusting instruction to formative assessment, this 
finding gives rise to the question: can teachers always use formative evidence effectively to 
“form” action, (Shepard, 2005)? Further research will reveal the degree to which this 
question bears on formative assessment in other aspects of mathematics and other learning 
domains. Given that the teachers’ ability to know what to teach next and how to adapt 
instruction in light of evidence is critical to formative assessment, we believe that this is an 
area that warrants further investigation. 

We have concluded that while evidence may provide the basis for action, it cannot in 
and of itself “form” the action. Action is dependent on teachers’ knowledge of how learning 
develops in the domain and on their pedagogical content knowledge. We have considered 
some possible directions for deepening teacher knowledge in ways that could contribute to 
effectively “forming” action—in other words, translating evidence into the next appropriate 
instructional steps that will move student learning forward. It is beyond the scope of this 
report to discuss the means by which this kind of teacher knowledge can be more broadly 
acquired in the profession. However, we see teacher knowledge as critical to effective 
formative assessment. It is particularly significant in knowing what to do with evidence. 
Until teachers have better conceptions of learning to work with better conceptions of 
learning, and deepening their knowledge of how the elements of student learning are 
manifested, then the movement from evidence to action as a seamless process will remain a 
somewhat distant goal. This situation inevitably diminishes the potentially powerful impact 
of formative assessment on student learning. 
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