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Abstract 

In this report, an alternative item response theory (IRT) observed score equating method 
was newly developed. The proposed equating method was illustrated with two real data 
sets and the equating results were compared to those of traditional IRT true score and 
IRT observed score equating methods. Using three loss indices, the new method appeared 
to produce equating equivalents more similar to those of the IRT observed score equating 
than those of the IRT true score equating. In addition to the conversion relationships 
between new form scores and their equating equivalents on the old form scale, the 
bootstrap standard errors of equating were provided and compared for the three IRT 
equating methods. These methods performed similarly. 

Introduction 

The number-correct scores from different test forms often need to be equated for the 
purpose of evaluating examinees’ proficiency across different forms or years. Traditionally, 
under item response theory (IRT), there are two equating methods to adjust the raw test 
scores of the new form X onto the old form Y metric (Lord, 1982): IRT true score equating 
(IRT-TSE) and IRT observed score equating (IRT-OSE). The former discovers the 
equivalent score on Y metric, )x(ϕ , for an observed score x on form X using the test 

characteristic curves for both forms which respectively define the relationship between 
person location parameters (i.e., θ) and the corresponding true test scores. The latter depends 
upon the traditional equipercentile equating method after constructing the expected raw score 
distributions of two test forms which are typically obtained with the use of the recursive 
algorithm (Lord & Wingersky, 1984; Thissen, Pommerich, Billeaud, & Williams, 1995).  

IRT-OSE has explicit advantages over IRT-TSE because IRT-OSE deals with observed 
scores of actual interest in addition to the fact that it could be controversial to treat estimated 
true scores as substitutes for observed scores under IRT-TSE. Also, whereas the IRT-TSE 
method cannot produce equating equivalents for a perfect score or an observed score of x less 
than the sum of the guessing parameters under the 3-parameter logistic model, the IRT-OSE 
method can (Han, Kolen, & Pohlmann, 1997; Harris & Crouse, 1993; Kolen & Brennan, 
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2004; Lord, 1977). In practical situations, however, IRT-TSE has been widely used as an 
alternative to IRT-OSE because this method is easier to conduct and does not require the use 
of any distribution of ability or expected raw scores.  

The main goal of this report is to propose an alternative IRT observed score equating 
method (AIRT-OSE) that does not require relying on the use of classical equipercentile 
equating method. The newly proposed AIRT-OSE method employs estimated θ  values 
associated with each number-correct score for equating the observed scores on the two test 
forms. To this end, Thissen and Orlando’s (2001) ability estimation method known as 
expected a posteriori under summed scoring (EAPSS) is used. In this report, the results of the 
AIRT-OSE method are compared to those of the traditional IRT-OSE and IRT-TSE methods. 
The next section begins with an introduction to EAPSS and details the AIRT-OSE procedure.  

The AIRT-OSE method 

Expected a posteriori under summed scoring (EAPSS) 

For item i on an I-item test, let ui = 1 if an examinee responded correctly and ui = 0 
otherwise. Let ∑=

i
ux

θ̂  denote the EAPSS values for students being administered form X. 

According to Thissen and Orlando (2001), the EAPSS for a student who earned a raw score x 
on form X is given by 

∑
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where )( qxL θ  is the likelihood for each score x at a given quadrature point 
q

θ . The likelihood 
)( qxL θ in Equation 1 can be computed as follows:  
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where )(
q

θφ  represents a discrete distribution emulating the population density, u denotes the 

item response pattern of an examinee such that ∑=
i
ux , and )( qiP θ  is the probability of 

the correct response to item i at a given q
θ . Under the IRT model employed for analyzing 

test data, )( qiP θ  is computed. For example, in the case of the 3-parameter logistic model 

(3PLM), it is 
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where 
i
a , i
b  and 

i
c  denote the discrimination, difficulty and guessing parameter estimates, 

respectively. Under the EAPSS approach, consequently, the ability estimate will be the same 
for all students having the same raw score on form X regardless of their response patterns. 
The EAPSS for a student who got the number-correct score y on form Y (i.e., ∑= iuy

θ̂ ) can be 

computed using the same procedure. 

The AIRT-OSE procedure 

Among various linking designs are the common-item-test design and random-
equivalent-group design. For the former, the item parameters can be placed on the same 
metric via several approaches using a set of common items (e.g., mean-sigma method, test 
characteristic curve method, concurrent calibrations, etc.). Under a random-equivalent-group 
design, separate calibrations produce item parameter estimates that are considered to be on 
the same scale. Once the item parameter estimates of two forms are placed onto a common 
scale, ∑=

i
ux

θ̂  and ∑= iuy
θ̂  values calibrated using them are considered to be on the same 

metric. 

When the EAPSS estimates of two forms X and Y are available, the procedure for 
implementing AIRT-OSE can be summarized as follows: 

1. Specify an observed score x on form X. 

2. Find the EAPSS ( ∑=
i
ux

θ̂ ) that corresponds to the observed score x. Let the 

magnitude of this EAPSS be represented by
*

θ̂ . 

3. Find the equating equivalent, )(xϕ , on the form Y scale that corresponds to
*

θ̂ .  

Typically, most )(xϕ  values resulting from Step 3 will not be whole numbers. This is 

because the nonlinear relationship between the EAPSS values and the raw scores is one-to-
one unique for each form. Thus, to estimate )(xϕ  in Step 3, a few possible interpolation 

methods are suggested in this report and will be explained following an example detailing the 
3-step process presented above. 

Assume there are two 40-dichotomous-item test forms X and Y, which share a set of 
common items. Upon successful calibration of each form, their item parameter estimates are 
placed on a common scale through, for example, the Stocking and Lord (1983) method. The 
conversions between the EAPSS and the observed raw scores for each form are then 
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computed using these item parameter estimates, which are on the same metric. Figure 1 
exhibits the plots of the conversions for this illustrative example.  

 

Figure 1. An illustrative equating based on the 3-step process of AIRT-OSE. 

In Figure 1, for an examinee having an observed score x = 20 on the new form X, the 
corresponding EAPSS is found to be 82.ˆ

*
−=θ  and the corresponding equivalent on the form 

Y scale, )20( =xϕ , is found to be between y = 17 and y = 18. To decide a point-estimate 
)20( =xϕ , subsequently, three methods are considered: The first method is a polynomial 

curve fitting (PCF) approach, the second method is the linear spline interpolation (LSI) 
approach, and the third method is a cubic spline interpolation (CSI) approach. Following is a 
discussion of the three approaches. 

Under the PCF method, the following nth degree polynomial is employed to fit the score 
points of the old form Y:  

εβθβθβθβ +++++= −
− 01

1

1

ˆˆˆ L
n

n

n

n
y   (4) 

where y and θ̂  are the observed raw score for form Y and the corresponding EAPSS, 
respectively. The β s represent the fitting coefficients and

n
β  is expected to be larger than 

zero. The degree of the polynomial, n, is thought of as an odd integer (e.g., 3, 5, 7, 9, etc.) in 
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this report. In Equation 4, the β s can be estimated, for example, using the built-in routine, 

POLYFIT, of the computer software MATLAB (The MathWorks, 2003). For the previous 
example, the estimate of )20( =xϕ is given as follows: 

0*1

1

*1*
ˆˆˆˆˆˆˆ)20(ˆ βθβθβθβϕ ++++== −

− L
n

n

n

n
x . 

The second approach for estimating )x(ϕ is the linear spline interpolation (LSI).  

In mathematics, a spline is a function constructed of piecewise polynomial functions. The 
piecewise functions are connected at the endpoints of contiguous intervals with a certain 
degree of smoothness for the resulting function. An extensive explanation of spline is 
provided by de Boor (2001). For LSI, the piecewise function for each interval is linear, which 
is the simplest spline. Under LSI, )20( =xϕ in the interval of (17, 18) for the previous 

example can be estimated by the following 

17)1718(
ˆˆ

ˆˆ
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1718
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The third approach for estimating )x(ϕ considered in this report is cubic spline 

interpolation (CSI). For this report, another MATLAB routine, CSAPS which is based on the 
cubic spline method introduced in Schoenberg (1964) and Reinsch (1967), is used for 
implementing CSI. In contrast to LSI which uses linear piece-wise functions, the cubic spline 
applies third-order polynomial, S, within an interval. As de Boor (2001) explained, the 
function of a cubic spline curve can be obtained by minimizing  

∑ ∫
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where i indicates each data point (e.g., I = 41 when a test has 40 dichotomous items). The 
first and second terms in Equation 5 are called the error measure and the roughness measure, 
respectively, while the degree of smoothness is controlled by the smoothing parameter 

]1,0[∈p . The smaller the p value, the smoother the spline. For 0=p , the fitted curve will be 
linear as the ordinary least squares (OLS) line. The choice of 1=p  produces an unsmooth 
curve that passes through all data points. In this report, four levels of smoothness with =p 1, 

0.75, 0.50, and 0.25 are considered. 

For the IRT observed score equating methods (i.e., both IRT-OSE and AIRT-OSE) 
under examination in this study, an operational rule was applied in deciding )(ˆ xϕ  values:  
If )(ˆ xϕ  is less than zero, it is set to be zero. And, when )(ˆ xϕ  is higher than the perfect score 



 6 

of the old form Y, it is assigned the perfect score of form Y. This rule was adopted for the 
practical reason that IRT-OSE or AIRT-OSE could produce )(ˆ xϕ  lower than zero or higher 
than the perfect score. Under AIRT-OSE, for example, in Figure 1, )2(ˆ =xϕ  was set to zero 
rather than a negative value. In other words, when an EAPSS estimate 

x
θ̂  is lower than the 

minimum of y
θ̂  (i.e., 

0

ˆ
=yθ ), the corresponding )(ˆ xϕ  was set to zero, the lowest raw score. 

And, when an EAPSS estimate 
x

θ̂  is higher than the maximum of y
θ̂  (i.e., perfecty=θ̂ ), the 

corresponding )(ˆ xϕ  was set to be the perfect score of form Y.  

Evaluation and comparison of the results of the three IRT equating methods  

In the following section, the application of the AIRT-OSE method is illustrated with 
two real test data sets. The results of the method are compared to those of IRT-OSE and IRT-
TSE. The comparisons are presented numerically and graphically in terms of the following:  

Three loss indices including mean signed difference (MSD), mean absolute difference 
(MAD), and root mean squared difference (RMSD) in )(ˆ xϕ  values for two different 
equating methods (Han, Kolen, & Pohlmann, 1997). Each index is weighted by the 
frequency of form X scores. The three loss indices are computed as follows: 

[ ]
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where A and B denote two different IRT equating methods under investigation, fx is the 
observed frequency, and N is the sample size of the group that was administered form X. 

Patterns of the conversion from form X to form Y scores. Here, xx −)(ϕ̂  values are 
plotted against the raw score x of form X.  

The standard errors of equating estimated using the bootstrap method (Efron, 1982; Efron 
& Tibshirani, 1993; Kolen & Brennan, 2004). From both forms X and Y, 500 random 
bootstrap samples are drawn, respectively. And, the standard error of equating at a given 
raw score x is estimated by the standard deviation of the 500 )(ˆ x

r
ϕ  values where r = 1, 

…, 500. 
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Two Illustrations 

The three IRT equating methods under investigation were applied to real data for two 
tests. One is a job skills assessment and the other an academic achievement assessment. Note 
that results and analyses presented here are only for illustrative purposes and should not be 
viewed from any other perspective.  

Job Skills Assessment 

This report used data from two forms of a mathematics job skills assessment consisting 
of 30 multiple-choice items. The two forms used in the example share 11 common items with 
each other. One form (Y) was administered to about 3,000 examinees, and the other form (X) 
was taken by about 1,800 examinees. The data for each form were separately calibrated with 
the 3-parameter logistic model (3-PLM) using binary logistic models (BILOG; Mislevy & 
Bock, 1990). The calibrations converged successfully, and the item parameter estimates for 
form X were placed on the form Y scale using the Stocking and Lord (1983) method.  
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As mentioned earlier, IRT-TSE was not able to estimate  for a perfect score or an 
observed score of x less than the sum of guessing parameters. To circumvent the former 
problem, 10=θ  was used in determining the equating equivalent corresponding to x = 30, 

)30(ˆ =xϕ , on the test characteristic curve of form Y. To solve the latter problem, Kolen’s 
(1981) ad hoc procedure was adopted. For instance, )2(ˆ =xϕ  was calculated as 

� 

(5.35 / 5.21) × 2 = 2.12  when the sums of guessing parameters for forms X and Y were 5.21 
and 5.35, respectively. 

For the raw scores of form X ranging from zero through four, )(ˆ xϕ  values under 

AIRT-OSE were found to be zero, which resulted from the operational rule mentioned 
earlier. The 

x
θ̂  values for x = 0, 1, 2, 3 and 4 were smaller than the minimum y

θ̂  for y = 0. 

This case can happen when form X is easier than form Y for low ability levels. Because an 
examinee who got x = 0, 1, 2, 3, or 4 appeared to be less able than another examinee who got 
y = 0 in terms of EAPSS, it is reasonable that )(ˆ xϕ  values for x = 0, 1, 2, 3, and 4 are zero.  

Table 2 

Job Skills Assessment Data: MSD, MAD, and RMSD Calculated with Two Sets of )(ˆ xϕ s  

MSD MAD RMSD 
Difference Indices 
Equating Methods IRT-TSE IRT-OSE  IRT-TSE IRT-OSE  IRT-TSE IRT-OSE 

IRT-TSE 0 0.039 0 0.166 0 0.328 

IRT-OSE -0.039 0 0.166 0 0.328 0 

AIRT-OSE       

PCF: 3rd Degree Poly. -0.091 -0.052 0.576 0.425 0.739 0.484 

PCF: 5th Degree Poly. -0.029 0.009 0.272 0.145 0.599 0.305 

PCF: 7th Degree Poly. -0.034 0.005 0.284 0.139 0.593 0.298 

PCF: 9th Degree Poly. -0.037 0.001 0.293 0.138 0.587 0.295 

LSI -0.034 0.005 0.297 0.144 0.587 0.295 

CSI: p = 1.00 -0.038 0.001 0.297 0.142 0.586 0.295 

CSI: p = 0.75 -0.037 0.001 0.437 0.284 0.666 0.373 

CSI: p = 0.50 -0.033 0.006 0.528 0.372 0.717 0.445 

CSI: p = 0.25 -0.011 0.027 0.578 0.421 0.749 0.490 

Note. MSD = mean signed difference, MAD = mean absolute difference, RMSD = root mean squared 
difference, IRT = item response theory, TSE = true score equating, OSE = observed score equating, AIRT = 
alternative item response theory, PCF = polynomial curve fitting, LSI = linear spline interpolation, CSI = cubic 
spline interpolation. 
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Table 2 presents the observed values of MSD, MAD and RMSD computed using the 
job skills assessment data. As shown in Table 2, the observed values of MSD, MAD, and 
RMSD for IRT-TSE versus IRT-OSE were 0.039, 0.166, and 0.328, respectively. Differences 
in the magnitudes of the three loss indices were found to be smaller for AIRT-OSE and IRT-
OSE than for IRT-TSE and IRT-OSE except for the case of AIRT-OSE with third order 
degree polynomial curve fit. Also, it is noted that the observed differences in MAD values 
between IRT-OSE and AIRT-OSE were always smaller than those between IRT-TSE and 
AIRT-OSE. The same results were found for RMSD. In summary, the observed values for 
the three loss indices given in Table 2 indicate AIRT-OSE produced results closer to IRT-
OSE than to IRT-TSE. Among the nine AIRT-OSE approaches, PCF with the ninth degree, 
LSI, and CSI with p = 1.00 provided the closest results to those for IRT-OSE in terms of 
RMSD (= 0.295).  

 

Figure 2. Job skills assessment data: Estimated equating patterns for the three 
IRT equating methods.  

In Figure 2, the relationships between form X scores and their )(ˆ xϕ s under three IRT 

equating methods (IRT-TSE, IRT-OSE, and AIRT-OSE with CSI using p = 1.00) were 
plotted. Because for AIRT-OSE, the three cases (PCF with the ninth degree, LSI, and CSI 
with p = 1.00) yielded very similar results in terms of RMSD, only the last one was 
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considered in the following analysis. The three conversions exhibited in Figure 2 appeared 
noticeably different for low scores. 

Between IRT-TSE and IRT-OSE, the largest difference was around x = 5 which is 
approximately equal to the sum of the guessing parameter estimates. This was coincidental 
with the finding of Kolen and Brennan (2004). It was interesting that for x = 0, 1, 2, 3, 4 and 
5, IRT-TSE provided )(ˆ xϕ  values higher than x, whereas the )(ˆ xϕ s under both IRT-OSE 

and AIRT-OSE were less than the corresponding x values. 

 

Figure 3. Job skills assessment data: Standard errors of equating. 

Figure 3 compares the standard errors for the three IRT equating methods. For each 
IRT equating method, the bootstrap standard errors of equating were calculated according to 
Kolen and Brennan (2004). In the low x score range, the three equating methods showed 
large standard error differences. For x scores higher than 15, similar standard errors of 
equating around 0.10 were observed. The largest standard errors for AIRT-OSE, IRT-OSE, 
and IRT-TSE were, respectively, found to be 0.69 at x = 5, 0.41 at x = 7, and 0.45 at x = 11. 
For x = 8 or higher, the standard errors of AIRT-OSE consistently appeared to be the smallest 
in comparison to those of the two other equating methods.  
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Academic Achievement Assessment 

This study used data from two forms of a mathematics achievement assessment with 
each consisting of 60 multiple-choice items. These two forms were, respectively, 
administered to two randomly equivalent groups of examinees. There were about 2,000 
students in each group. The two forms did not share any common items, and each form’s 
item parameters under the 3-PLM were estimated with BILOG (Mislevy & Bock, 1990). 
With the random equivalent group design, the item parameter estimates of the two forms 
were considered to be on common scale upon successful calibrations.  

Table 3 

Academic Achievement Assessment Data: MSD, MAD, and RMSD Calculated with Two Sets of )(ˆ xϕ s.  

MSD MAD RMSD 
Difference indices 
Equating methods IRT-TSE IRT-OSE  IRT-TSE IRT-OSE  IRT-TSE IRT-OSE 

IRT-TSE 0 -0.005 0 0.024 0 0.079 

IRT-OSE 0.005 0 0.024 0 0.079 0 

AIRT-OSE       

PCF: 3rd degree poly. -0.205 -0.210 0.659 0.661 0.742 0.733 

PCF: 5th degree poly. 0.005 0.000 0.074 0.061 0.105 0.071 

PCF: 7th degree poly. 0.006 0.001 0.053 0.036 0.095 0.048 

PCF: 9th degree poly. 0.006 0.001 0.044 0.025 0.091 0.038 

LSI 0.007 0.002 0.043 0.024 0.092 0.038 

CSI: p = 1.00 0.006 0.001 0.043 0.025 0.092 0.039 

CSI: p = 0.75 -0.045 -0.050 0.177 0.165 0.220 0.186 

CSI: p = 0.50 -0.087 -0.092 0.362 0.357 0.416 0.398 

CSI: p = 0.25 -0.122 -0.127 0.582 0.577 0.656 0.643 

Note. MSD = mean signed difference, MAD = mean absolute difference, RMSD = root mean squared 
difference, IRT = item response theory, TSE = true score equating, OSE = observed score equating, AIRT = 
alternative item response theory, PCF = polynomial curve fitting, LSI = linear spline interpolation, CSI = cubic 
spline interpolation. 

Table 3 presents the observed MSD, MAD, and RMSD computed using data from the 
two academic achievement assessment forms for the three IRT equating methods under 
study. The overall pattern of the three loss indices in Table 3 appears to be very similar to 
those for the job skills assessment in Table 2. Most of loss index values in Table 3 are much 
smaller than the corresponding values in Table 2. However, this might be explained by the 
difference in the number of items between the two assessments. In Table 3, AIRT-OSE 
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versus IRT-OSE, the observed magnitudes of the loss index in absolute values were found to 
be smaller than those for AIRT-OSE versus IRT-TSE in most of the cases. It can also be seen 
that the three AIRT-OSE cases including PCF with ninth degree polynomials, LSI, and CSI 
with p = 1.00 had very similar results for RMSD (e.g., 0.038 or 0.039). Also, the values for 
RMSD indicated that AIRT-OSE produced the closest equating results to those of IRT-OSE. 
To be consistent with the analyses of the previous real data set, only the case of AIRT-OSE 
with CSI (p = 1.00) was included in the following analysis.  

 

Figure 4. Academic achievement assessment data: Estimated equating 
patterns for the three IRT equating methods. 

In Figure 4, the conversion relationships between new form scores and their )(ˆ xϕ s on 

the old form scale are plotted for each IRT equating method. For form X scores ranging from 
1 through 12, three methods showed large differences in resulting )(ˆ xϕ s. For the other x 
scores, however, they produced very similar )(ˆ xϕ  values. For the low x score range, IRT-
TSE had )(ˆ xϕ s higher than corresponding x scores; whereas both AIRT-OSE and IRT-OSE 
yielded )(ˆ xϕ  values lower than their corresponding x scores. The largest difference in 

)(ˆ xϕ between IRT-TSE and IRT-OSE occurred at x ≈ 11 which is approximately equal to the 

sum of the guessing parameter estimates. When x = 2, AIRT-OSE appeared to have the 
largest value of x)x(ˆ −ϕ  among the three equating methods. 
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Figure 5. Academic achievement assessment data: Standard errors of equating. 

Figure 5 exhibits the bootstrap standard errors of equating calculated for each IRT 
equating method applied to the academic achievement assessment data. The three IRT 
equating methods showed large standard error differences when the form X scores ranged 
between 0 and 11. For the x scores greater than 11, the standard errors of equating for the 
three methods appeared to be very similar and those for AIRT-OSE are the smallest in most 
cases.  

Discussion 

This report presents an alternative IRT observed score equating method that uses ability 
estimates based on summed scores. Exploiting the one-to-one relationship between EAPSS 
and the observed number-correct score, this new method could perform observed score 
equating that technically resembles the IRT-TSE procedure. Because AIRT-OSE is based on 
observed scores, however, it was reasonable that the AIRT-OSE output was closer to that of 
IRT-OSE than that of IRT-TSE in terms of the three loss indices.  

In this study, the AIRT-OSE method produced conversions and bootstrap standard 
errors for equating similar to those of the traditional IRT-TSE and IRT-OSE methods. In the 
low x score range, however, the three IRT equating methods tended to show very different 
equating performance. According to the range of the score scale that the test users are mostly 
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concerned about, a cautious application of the equating methods needs to be made as warned 
by Kolen and Brennan (2004). For example, if a cut-off score classifying examinees into 
master and non-master groups falls in a problematic score region, different equating methods 
could entail variant results. 

As explained earlier, the implementation of AIRT-OSE method includes a 3-step 
procedure. In the third step, it is necessary to compute )(xϕ  estimates through a curve fitting 

or interpolation strategy. To handle this problem, this study attempted three different 
approaches including PCF, LSI, and CSI. The analysis outcome from the two empirical data 
sets indicated that PCF with the ninth degree polynomial, LSI, and CSI with p = 1.00 
produced similar equating results to those of IRT-OSE. In general, however, the spline 
approach tends to be preferred over the polynomial curve fitting because (a) PCF may be not 
flexible enough to fit various changes in real data points with low degree polynomials, and 
(b) PCF is apt to suffer from the problem of multicollinearity with high degree polynomials 
(Marsh & Cormier, 2001).  

To better understand which method is the most appropriate in a given testing situation, 
however, further studies need to be conducted including a simulation study with different 
relevant factors (e.g., numbers of items, numbers of examinees, kinds of population 
distribution in Equation 2, dichotomous or polytomous IRT models, etc.). Also, it would be 
of interest to investigate the performance of AIRT-OSE under the Rasch model. Because a 
total test score is the sufficient statistic for an examinee’s latent trait in the case, the AIRT-
OSE approach can be applied without resorting to the use of EAPSS.  
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