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VALIDITY FROM THE PERSPECTIVE OF MODEL-BASED REASONING1 

 
Robert J. Mislevy 

CRESST/University of Maryland 
 

Abstract 

From a contemporary perspective on cognition, the between-persons variables in trait-
based arguments in educational assessment are absurd over-simplifications. Yet, for a 
wide range of applications, they work. Rather than seeing such variables as 
independently-existing characteristics of people, we can view them as summaries of 
patterns in situated behaviors that could be understood at the finer grainsize of 
sociocognitive analyses. When done well, inference through coarser educational and 
psychological measurement models suits decisions and actions routinely encountered in 
school and work, yet is consistent with what we are learning about how people learn, act, 
and interact. An essential element of test validity is whether, in a given application, using 
a given model provides a sound basis for organizing observations and guiding actions in 
the situations for which it is intended. This presentation discusses the use of educational 
measurement models such as those of item response theory and cognitive diagnosis from 
the perspective of model-based reasoning, with a focus on validity.  

INTRODUCTION 

A test is valid for measuring an attribute if and only if (a) the attribute exists and (b) 
variations in the attribute causally produce variations in the outcomes of the measurement 
procedure. (Denny Borsboom, Gideon Mellenbergh, & Jaap van Heerden, 2004, page 1). 

Validity is an integrated evaluative judgment of the degree to which empirical evidence and 
theoretical rationales support the adequacy and appropriateness of inferences and actions 
based on test scores or other modes of assessment. (Samuel Messick, 1989, page 13). 

All models are wrong; the practical question is how wrong do they have to be to not be 
useful. (George Box & Norman Draper, 1987, page 74). 

The concept of validity in educational assessment extends back more than a century 
(Sireci, 2008). The term was initially associated with the accuracy of predictions based on 
test scores. Concern with test content and with the meaning of scores gained attention in the 
middle of the century, with Cronbach and Meehl’s (1955) “Construct validity in 
psychological tests” a watershed publication. More recent developments are the argument-
based perspective noted in Messick’s (1989) chapter in the third edition of Educational 
                                                
1 Keywords: Cognitive psychology, educational measurement, model-based reasoning, validity. 
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Measurement (Linn, 1989) and developed more fully by Kane (1992), and the use of 
cognitive theory to guide task design (Embretson, 1983). The present report contributes to 
these latter two lines of work, drawing on recent developments in cognitive psychology. In 
particular: 

• A sociocognitive perspective on the nature of human knowledge provides insight into 
just what we are trying to assess. 

• Research on the role of metaphors in cognition helps us understand the psychological, 
in conjunction with the formal, foundations of tools in the psychometric 
armamentarium. 

• Studies of model-based reasoning in science provide a basis for understanding the 
activity of psychometric modeling. 

Together, these lines of research are seen to support a constructivist-realist view of 
validity. 

PRELIMINARIES 

Snow and Lohman’s Assertion 

In the third edition of Educational Measurement (Linn, 1989), Messick (1989) defines 
a trait as “a relatively stable characteristic of a person—an attribute, enduring process, or 
disposition—which is consistently manifested to some degree when relevant, despite 
considerable variation in the range of settings and circumstances” (p. 15). This is a common 
interpretation of the variables in the models of educational and psychological measurement. 
Snow and Lohman’s chapter on cognitive psychology in the same volume proposes an 
alternative:  

Summary test scores, and factors based on them, have often been though of as “signs” 
indicating the presence of underlying, latent traits.… An alternative interpretation of test 
scores as samples of cognitive processes and contents, and of correlations as indicating 
the similarity or overlap of this sampling, is equally justifiable and could be theoretically 
more useful. The evidence from cognitive psychology suggests that test performances are 
comprised of complex assemblies of component information-processing actions that are 
adapted to task requirements during performance. 

The implication is that sign-trait interpretations of test scores and their intercorrelations 
are superficial summaries at best. At worst, they have misled scientists, and the public, 
into thinking of fundamental, fixed entities, measured in amounts. (Snow & Lohman, 
1989, p. 317) 
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This assertation would seem to call into question the validity of inferences made 
through a conventional interpretation of test scores through educational and psychological 
measurement models.  

Mixed-Number Subtraction 

To illustrate ideas throughout the discussion, we will use an example drawn from the 
work of Kikumi Tatsuoka (e.g., Tatsuoka, 1983) on mixed number subtraction. Mixed-
number subtraction problems require students to solve tasks such as 
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test of, say, 20 such tasks in open-ended format. The probability that Student i will respond 
correctly to Item j, or Pij, is given as follows: 
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where Xij is the response of Student i to Item j, 1 if right and 0 if wrong; θi is a parameter for 
the proficiency of Student i; and βj is a parameter for the difficulty of Item j. The less 
common multiplicative form of the model, an analogue of Newton’s second law we will 
discuss in a later section, is for the odds of a correct response:  
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where ξi = exp(θi) and δi = exp(βi) from Equation 1. IRT characterizations of students and 
items such as this are clearly simplifications, and they say nothing about the processes by 
which students answer items. They prove useful, nevertheless, for such purposes as tracking 
or comparing students’ proficiency in this domain of tasks and quality-checking items. 

In a series of publications in the 1980s, Tatsuoka and her colleagues developed a 
methodology for analyzing test item responses according to the rules—some correct, some 
incorrect—that students appeared to use to solve them (Birenbaum & K. Tatsuoka, 1983; 
Klein, Birenbaum, Standiford, & K. Tatsuoka, 1981; K. Tatsuoka, 1983, 1987, 1990; K. 
Tatsuoka & M. Tatsuoka, 1987). Extending earlier work by Brown & Burton (1978) to a 
statistical classification technique she called Rule Space, Tatsuoka characterized students in 
terms of the subset of rules that best seemed to explain their responses. Similarly, a binary 
skills latent class model (Haertel, 1989; Maris, 1999) provides an expression for the 
probability that Student i will answer Item j correctly, now in terms of which of K skills Item 
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requires and which of these skills Student i can apply. Let qj = (qj1, …, qjK) be a vector of 0’s 
and 1’s for the skills Item j requires and ηi = (ηi1, …, ηiK) be a vector of 0’s and 1’s for the 
skills Student i can apply. Then the expression 
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says that if Student i has all the skills Item j requires, the probability of getting it right is πj, 
the true positive probability parameter for Item j, and if she lacks one or more of these skills, 
the probability is cj, the false positive probability parameter for Item j. This is an example of 
what are now commonly called cognitively diagnostic models (CDMs; Leighton & Gierl, 
2007; Nichols, Chipman, & Brennan, 1995). 

While based on cognitive analyses of actual solutions, these models are also over-
simplifications of students and solution processes. However, as Tatsuoka and her colleagues 
showed (also see VanLehn, 1990), they are useful for determining which concepts or 
procedures are useful for students to work on to improve their performance in the domain. 

QUESTIONS 

Snow and Lohman’s (1989) assertion and the gainful use of different models for the 
same data raise philosophical questions about the nature of the parameters and probabilities 
in educational/psychological measurement models, the probabilities they entail, and of 
validity itself. 

What is the nature of person parameters such as θ and η  in latent variables models? 
Where do they reside? 

What is the interpretation of the probabilities that arise from IRT and CDM models, 
and latent variable models in education and psychology more generally?  

What are the implications of these observations for validity of models, assessments, and 
uses of them? 

SOME RELEVANT RESULTS FROM COGNITIVE SCIENCE 

Norman (1993) distinguishes between experiential and reflective cognition: “The 
experiential mode leads to a state in which we perceive and react to the events around us, 
efficiently and effortlessly....The reflective mode is that of comparison and contrast, of 
thought, of decision making. Both modes are essential to human performance” (Norman, 
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1993, pp. 15, 20). Both modes of cognition are involved in assessment. The first of three 
subsections that follow focuses on experiential cognition, from a sociocognitive perspective. 
It sheds light on the processes that Snow and Lohman suggested we consider to underlie test 
performances. The second discusses the roles of metaphor in cognition, and pertains to both 
experiential and reflective aspects. We see how metaphors ground the use of models in 
science, including in particular models such as those of IRT and CDM. The third describes 
model-based reasoning in greater detail, to set the stage for the discussion of IRT and CDMs 
from this perspective. 

The Sociocognitive Perspective 

Snow and Lohman’s (1989) chapter is grounded in the cognitive revolution of the 
1960s and 1970s, in which researchers such as Newell and Simon (1972) studied the nature 
of knowledge and how people might acquire, store, and retrieve it. The so-called first 
generation cognitive science drew on the metaphor of analytic computation, in the form of 
rules, production systems, task decompositions, and means–ends analyses. Contemporary 
work employs a connectionist metaphor to bring together results from psychology on 
learning, perception, and memory within individuals (e.g., Hawkins & Blakeslee, 2004) and 
fields such as linguistics and anthropology on the shared patterns of meaning and interaction 
between people (e.g., Gee, 1992; Strauss & Quinn, 1998). Linguist Dwight Atkinson (2002) 
calls this a sociocognitive perspective, to emphasize the interplay between the external 
patterns in the physical and the social world to which we become attuned, and the patterns 
we develop and employ internally to understand and act accordingly.  

One particular area in which these processes have been studied is reading 
comprehension. We can summarize the key ideas of Kintsch’s (1998) construction-
integration (CI) model for comprehension, and like Kintsch, take it as paradigmatic of 
comprehension more generally. Kintsch distinguish three levels involved in text 
comprehension, namely (a) the surface structure of a text, (b) the text model, and (c) the 
situation model. The surface structure of a text concerns the specific words, sentences, 
paragraphs, and so on, that constitute the text. The text model is the collection of 
interconnected propositions that the surface structures convey, and corresponds roughly to 
what might be called the literal meaning of a text. The situation model is a synthesized 
understanding that integrates the text model with the knowledge a reader brings to the 
encounter (also shaped by goals, affect, context, etc.), and constitutes that reader’s 
comprehension of the text. Readers with different knowledge, affect, or purposes produce 
situation models that differ to varying degrees, and are unique due to each reader’s history of 
experiences.  
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The construction (C) phase is initiated by features of stimuli in the environment and 
activates associations from long-term memory (LTM), whether they are relevant to the 
current circumstances or not. The associations include patterns of many kinds, from the 
forms of letters and grammatical constructions, to word meanings and discourse structures, to 
experiences with the subject matter at issue, such as the patterns and procedures in schemas 
for mixed number subtraction. The probability of activation of an element from LTM 
depends in large part on the strength of similarity of stimulus features and aspects of the 
elements of the schema. In the integration (I) phase, only the aspects of activated 
knowledge—both from contextual input and LTM—that are mutually associated are carried 
forward. The result, the situation model, is the reader’s understanding of the text.  

In assessment, the surface structure corresponds to the stimulus materials and 
conditions a task presents to the student. The text model is the intended meaning of that 
situation, within which the student is presumed to act. Situation models vary, often markedly, 
among students. A student may activate elements that are irrelevant from an expert’s point of 
view, and in unsystematic ways from one task to another, depending on idiosyncratic features 
of tasks and how they match up with the student’s prior experiences (Redish, 2003). Kintsch 
and Greeno (1985), for example, studied how students solved, or failed to solve, arithmetic 
word problems using schemas from arithmetic, structures of the English language, and 
conventions for task design. This is the level of analysis that Snow and Lohman call attention 
to, and there are no θs or ηs in these processes within persons.  

Despite the uniqueness of the processes within individuals, patterns of similarities do 
emerge. Individuals build up experiences that share similar features when they participate in 
instruction that uses common representational forms and terminology, when they work on 
similar problems using similar procedures, and when they talk with one another or read 
books based on the same concepts. As people acquire expertise in a domain, their knowledge 
becomes increasingly organized around key principles, and their perceptions and actions 
embody these shared ways of thinking. Although their experiences are unique, shared 
patterns in learning make for similarities in what students do in assessment situations. In the 
domain of mixed number subtraction, some students tend to solve more problems than 
others, and some items are harder than others as a result of the number and types of 
procedures they typically require. This observation motivates the idea of using of an IRT 
model to capture, express, and use these patterns for educative purposes. Patterns in what 
makes tasks hard and where students succeed and fail appear in relation to procedures and 
strategies. This motivates the use of a cognitive diagnosis model to guide instruction. Both 
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models are wrong, to paraphrase the statisticians Box and Draper (1987) , but either might be 
useful in the right circumstances. 

METAPHORS IN HUMAN COGNITION 

Individual cognition is a unique blend of particular circumstances and more general 
patterns that are partly personal, due to our unique experiences, but partly shared with others, 
because they tap shared cultural models and because they build up as extensions of universal 
human experiences. With regard to the last point, one line of research in “embodied 
cognition” studies the roles of metaphor in cognition (Lakoff & Johnson, 1980, 1999). Lakoff 
asserts that our conceptual system, in terms of which we both think and act, is fundamentally 
metaphorical in nature, building up from universal experiences such as putting things into 
containers and making objects move by bodily action. Our cognitive machinery builds from 
capabilities for interacting with the real physical and social world. We extend and creatively 
recombine basic patterns and relationships to think about everything from everyday things (a 
close examination of language shows it is rife with metaphor, much of which we do not even 
recognize as such) to extremely complicated and abstract social, technical, conceptual, and 
philosophical realms. The following sections consider four examples of metaphorical frames 
that are central to the use of models of educational and psychological measurement: 
containers, measurement, cause and effect, and probability. The section that follows this 
overview will show how these metaphors work together in measurement models in 
assessment.  

Containers 

The most fundamental metaphors are based on physical and spatial relationships in the 
world as humans, from birth, experience it. Examples are front and back (“We’ve fallen 
behind schedule”), moving along a path (“I’ll start with a joke, move to my main points, and 
end with a moral”), up and down (with “up” as “good”), and the cause-and-effect metaphor 
discussed below. Containership is a basic physical and spatial relationship, where a container 
has an inside and an outside and is capable of holding something else. Dogs, apes, and 
parrots reason literally about containers, and employ them to achieve their ends. People 
reason metaphorically through the same structural relationships, continually and implicitly 
through the forms and the concepts based on containership relationships that are ubiquitous 
in all human languages, and formally and explicitly as the foundation of set theory and the 
classical definition of categories in philosophy (Lakoff & Johnson, 1999). As we noted 
earlier and will return to in a following section, latent class models build on the container 
metaphor. 
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Measurement 

Measurement builds up from the physical experience of comparing objects in terms of 
their length or height. We experience “longer,” “shorter,” or “the same.” Formalization from 
these simple foundations leads to more abstract concepts of catenation and measuring devices 
for physical properties, then derived properties such as acceleration, axiomatization of 
measurement relationships, and the even more abstract relationships in the extension to 
conjoint measurement in social sciences (Michell, 1999). In abstract applications, the 
measurement metaphor posits variables that can be used to characterize all objects in a 
collection, each object is represented by a number, and the numbers can be used in further 
quantitative structures to characterize other events or relationships that involve the objects. 
The following paragraphs illustrate the role of measurement in quantitative structures within 
the cause-and-effect metaphor, specifically physical measurement in Newtonian mechanics 
and social-science measurement with the Rasch IRT model. 

Cause and effect 

Cause-and-effect reasoning is central to human reasoning in everyday life as well as in the 
disciplines. A dictionary definition is straightforward: One event, the cause, brings about another 
event, the effect, through some mechanism. Lakoff (1987, pp. 54ff) proposes that reasoning 
about causation extends from a direct-manipulation prototype that is basic to human experience; 
pushing a ball, for example, as shown in Figure 1a. He characterizes an idealized cognitive model 
for causation in terms of the following cluster of interactional properties:  

1. There is an agent that does something.  
2. There is a patient that undergoes a change to a new state.  

3. Properties 1 and 2 constitute a single event; they overlap in time and space; the 
agent comes in contact with the patient.  

4. Part of what the agent does (either the motion or the exercise of will) precedes the 
change in the patient.  

5. The agent is the energy source; the patient is the energy goal; there is a transfer of 
energy from the agent to patient.  

6. There is a single definite agent and a single definite patient.  
7. The agent is human.  

8. (a) The agent wills the action. (b) The agent is in control of his action. (c) The agent 
bears primary responsibility for both his actions and the change.  

9. The agent uses his hands, body, or some instrument.  
10. The agent is looking at the patient, the change in the patient is perceptible, and the 

agent perceives the change. (pp. 54–55).  



 9 

 

 

Figure 1. Situations in which the cause-and-effect metaphor is employed 

Lakoff claims that the most representative examples of causation have all of these 
properties (e.g., Max broke the window). Less prototypical instances that we still consider 
causation lack some of the properties: indirect causation lacks Property 3, and billiard-ball 
interactions that characterize much reasoning in the physical sciences just have properties  
1–6 (Figure 1b). Newtonian mechanics extends the cause-and-effect frame with sophisticated 
concepts such as mass, acceleration, and decomposition of forces, and adds a layer of 
quantitative relationships. Given a collection of springs and a collection of balls, for example, 

θ xj 

a) Foundational experience 

b) Newtonian mechanics 

c) IRT model 
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Newton’s Second Law tells us how much acceleration results when each spring is used to 
propel each ball in terms of the spring’s force, Fi and the ball’s mass, Mj: 

 ij i jA F M= . (4) 

Latent variable models in educational and psychological measurement abstract the 
cause-and-effect metaphor even further (Figure 1c). It is no coincidence that the 
multiplicative form of the Rasch model in Equation 2 mirrors Newton’s Second Law in 
Equation 4. In his 1960 book Probabilistic models for some intelligence and attainment tests, 
Rasch explicitly lays out the analogy between “force, mass, acceleration” and “ability, item 
difficulty, probability of correct response.” The measurement metaphor is intentional; it is to 
be determined just how accurately and broadly it describes observations in given arenas of 
people and situations in a given application. The latent class CDM model also draws on the 
causation metaphor, but with a different metaphor for the relationship between people and 
tasks, namely the container metaphor, and a correspondingly different quantitative layer. 

Probability 

Formal development of probability models began with systematic observations of 
games of chance. Shafer (1976) argues that these tangible, replicable situations ground 
reasoning about probability more generally. Kolmogorov’s set theoretic basis of probability 
uses both the container metaphor and the measurement metaphor to describe what we see in 
repeated trials, and is an abstract foundation for a frequentist view of probability. This 
interpretation of the metaphor considers probabilities to be a property of the world, induced 
by distributions of entities, mechanisms, or procedures. The same axioms ground reasoning 
using the same formal structure in further abstracted situations, as embodied in the 
personalistic or subjectivist Bayesian framework for probability (de Finetti, 1974; Savage, 
1954). In this interpretation, probabilities are tools of the user, for reasoning about situations 
through a model, that is, an aspect of the formal, abstracted, specified, and situated 
applications of metaphors we discuss below as model-based reasoning. Either way, the use of 
the formal structures of probability models allow for reasoning about evidence and 
uncertainty in far more subtle and complex situations than unaided intuition can reckon with 
(Pearl, 1988; Schum, 1994).  

The practical question in any application is whether the quantitative structure afforded 
by the probability framework, as particularized in terms of particular variables, models, and 
relationships, proves suitable for structuring reasoning in situations of interest. As we will 
see, the probability framework comes with some techniques that help one make this 
determination. 
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Model-Based Reasoning 

A model is a simplified representation focused on certain aspects of a system (Ingham 
& Gilbert, 1991; cited in Gobert & Buckley, 2000). The entities, relationships, and processes 
of a model constitute its fundamental structure. They provide a framework for reasoning 
about patterns across any number of unique real-world situations, in each case abstracting 
salient aspects of those situations and going beyond them in terms of mechanisms, causal 
relationships, or implications at different scales or time points that are not apparent on the 
surface. To think about a particular situation for a particular purpose, scientists reason from 
principles in the domain to formulate a model that represents salient aspects of the situation, 
elaborate its implications, apprehend both anomalies and points of correspondence, and as 
necessary revise the model, the situation, or their theories in cycles of inquiry (Clement, 
1989). Table 1 is based on Stewart and Hafner’s (1994) and Gobert and Buckley’s (2000) 
parsing of aspects of model-based reasoning.  

Table 1.  

Aspects of Model-Based Reasoning in Science 

Model formation Establishing a correspondence between some real-world phenomenon and a 
model, or abstracted structure, in terms of entities, relationships, processes, 
behaviors, etc. Includes scope and grain-size to model, and determining which 
aspects of the situation(s) to address and which to leave out. 

Model elaboration Combining, extending, adding detail to a model, establishing correspondences 
across overlapping models. Often done by assembling smaller models into larger 
assemblages, or fleshing out more general models with more detailed models.  

Model use Reasoning through the structure of a model to make explanations, predictions, 
conjectures, etc. 

Model evaluation Assessing the correspondence between the model components and their real-
world counterparts, with emphasis on anomalies and important features not 
accounted for in the model.  

Model revision Modifying or elaborating a model for a phenomenon in order to establish a 
better correspondence. Often initiated by model evaluation procedures. 

Model-based inquiry Working interactively between phenomena and models, using all of the aspects 
above. Emphasis on monitoring and taking actions with regard to model-based 
inferences vis a vis real-world feedback. 

 

Figure 2, based on Greeno (1983), suggests central properties of a model. The lower 
left plane shows phenomena in a particular real-world situation. A mapping is established 
between this situation and, in the center, structures expressed in terms of the entities, 
relationships, and properties of the model. Reasoning is carried out in these terms. This 
process constitutes an understanding of the situation, which can lead, through the machinery 
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of the representation, to explanations, predictions, or plans for action. Above the plane of 
entities and relationships in the models are two symbol systems that further support 
reasoning in the model space, such as the matrix algebra and path diagram representations 
used in structural equation modeling. Note that they are connected to the real-world situation 
through the model.  

The real-world situation is depicted in Figure 2 as fuzzy, whereas the model is crisp and 
well defined. This suggests that the correspondence between the real-world entities and the 
idealizations in the model are never exact. Not all aspects of the real-world situation are 
represented in the model. The model conveys concepts and relationships that the real-world 
situation does not. The reconceived situation shows a less-than-perfect match to the model, 
but is overlaid with a framework for reasoning that the situation itself does not possess in and 
of itself. These “surrogative inferences” (Swoyer, 1991) are precisely the cognitive value of a 
model (Suarez, 2004). A given model may, for example, support reasoning about missing 
data elements or future states of a situation. 

 

 

Figure 2. Reconceiving a real-world situation through a model 
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It is particularly important that not everything in a real-world situation is represented in 
a model for that situation. Models address different aspects of phenomena, and can be cast at 
different levels. Different models address to different aspects of phenomena, and as such are 
tuned to reasoning about different problems. This observation underscores the user’s active 
role in model choice and construction, and the purpose for which the model is thought to be 
instrumental. One can examine aspects of transmission genetics with models at the level of 
species, individuals, cells, or molecules. One might use model water as molecular to study 
Brownian motion but as continuous to study flow through pipes (Giere, 2004). Newtonian 
mechanics has been superseded by relativity and quantum theory, but it works fine for 
designing bridges. The constructivist-realist view holds that models are human constructions, 
but successful ones discern and embody patterns that characterize aspects of more complex 
real-world phenomena. Model-based reasoning is not just a dyadic relationship between a 
model and system, but a four-way relationship among a model, a situation, a user, and a 
purpose (Giere, 2004). In applied work, the issue is not a simple question of truth or falsity of 
a model, but of aptness for a given purpose.  

The middle layer in Figure 2 is semantic, the narrative space of entities and 
relationships that are particularized to build stories to understand particular real-world 
situations. Metaphors play their roles here, as when we reason through the measurement 
metaphor when we use IRT and through the container metaphor when we use CDMs.  
In models that include quantitative layers, mathematical structures indicate forms of 
relationships, associates, and properties, and values of parameters in those models indicates 
the extent, strength, or variation within those forms as they might be used to approximate a 
given situation. These layers vary in the prominence across modeling enterprises and 
domains. Some models are strictly qualitative, and gain their power from the structures of 
entities, relationships, and processes they provide to reason through. Others, such as those in 
advanced physics, gain their power mainly through the mathematical relationships, and their 
users consider the narrative representations seriously inadequate on their own. Galileo 
famously said “Mathematics is the language with which God has written the universe.”  

Models can additionally include probability components in two ways. The first is as 
substantive component of the model, when some of the relationships within a quantitative or 
qualitative layer are expressed in terms of probabilistic relationships. Item and person 
parameters in IRT models imply probabilities of responses, and variance components 
indicate among and ranges of data values or parameter values; these are inherently 
probabilistic relationships that obtain even if all data and parameters were known with 
certainty. The second is an overlay of the substantive model with a probabilistic layer that 
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models the user’s knowledge and uncertainty about parameters and the structures within the 
substantive model, and the degree to which real-world observations accord with the patterns 
the model can express. Modern psychometric models are probabilistic in both senses (Lewis, 
1986).  

The expression of a model’s fit to data gives rise to an armamentarium of tools for 
exploring not only how well, but in what areas and in what ways the reconceived situation 
departs from the actual situation. A user can examine both the immediate model-data 
relationship and the quality of predications outside the immediate data such as predictions 
and appropriateness for new data. When the model is meant to serve a given purpose, it is of 
interest especially to see how well that purpose is subsequently served. This is the basis of 
predictive and consequential lines of validity argumentation in educational and psychological 
measurement. 

PSYCHOMETRICS AS MODEL-BASED REASONING 

A currently active and productive line of research in educational assessment is 
developing a view of assessment as evidentiary argument (e.g., Bachman, 2003; Kane, 1992, 
2006; Mislevy, 2003, 2006). This work adapts tools and concepts from evidentiary reasoning 
(e.g., Schum, 1994; Toulmin, 1958; Wigmore, 1937) to help construct, critique, and validate 
assessments as instruments for reasoning from limited observations of students in particular 
situations to what they know or can do more broadly. The metaphorical and quantitative 
components of measurement models such as IRT and CDM serve as warrants in such 
applications.  

An evidentiary argument is a series of logically connected claims or propositions that 
are supported by data by means of warrants (Toulmin, 1958). The claims in assessment 
arguments concern aspects of students’ proficiency (Figure 3). Data consist of aspects of 
their performances in task situations and the salient features of those tasks. Warrants posit 
how responses in situations with the noted features depend on proficiency. Some conception 
of knowledge is the source of warrants, and shapes the nature of the claims a particular 
assessment is meant to support and the tasks and data needed to ground them (Mislevy, 2003, 
2006). Alternative explanations weaken inference, and in arguments that rely on models this 
includes ways that the model ignores or misrepresents aspects of the situation that would in 
fact be relevant to the targeted inferences.  

An assessment based on the Rasch IRT model, for example, takes its IRT framework as 
its warrant. This includes both the metaphorical frame that characterizes persons and items 
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by ability and difficulty parameters and the mathematical frame that gives probabilities of 
item response conditional on parameter values. Inferring the ability θ of a given student 
conditional on her observed responses (and good estimates of item parameters) requires 
reasoning back through the IRT model by means by Bayes theorem. An assessment based on 
the CDM takes the container metaphor as its narrative frame (you are in the container 
determined by your unobservable ηs) and conditional probabilities for item response given 
ηs; inferring a student’s mastery of skills again required reasoning back through the model 
via Bayes theorem to obtain posterior probabilities for ηs, (i.e., container membership).  

 

 
 

Figure 3. Assessment argument 

Note again the metaphor drives not only the nature of the claim, but the aspects of the 
students’ performances and the task situations that are deemed relevant. Figure 3 represents 
these determinations as embedded arguments, supported by warrants that justify the use of 
the IRT model in the context at hand. In mixed number subtraction, we might attend to 
different aspects of solutions in accordance with different psychological perspectives: 
correctness only from a trait perspective; specific answer, right or wrong, from an 
information-processing perspective in order to infer production rules; or adaptation of 
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solution given hints when needed under a sociocultural perspective. Anticipation of what is 
important to observe similarly drives task construction, so the performance situation will be 
able to evoke the observations that are needed under the form of the warrant (Messick, 1994). 

Alternative explanations in Toulmin’s scheme condition an argument; they address 
ways that the data could be observed as was, yet the claim not be correct. Exception 
conditions to the warrant, for example, or misfit of the model in important respects. But how 
can one know what respects are important? This is where the purpose, or intended use, of the 
assessment comes into play. Bachman’s (2003) calls the extension of the scheme to 
prediction, selection, instructional intervention, or program evaluation assessment the 
argument use argument (Figure 4). The claim emanating from the assessment argument is 
data for the assessment use argument. An inference about the student in the form of an IRT θ 
estimate or the most likely η vector in a CDM, is a summary of selected aspects of 
performance as it can be expressed through the model—both as to its semantic content, in 
terms of the metaphorical frame, and its quantitative content, in terms of the mathematical 
structure associated with the model. This is the encoding of the information about the student 
as it will be employed in the use argument, which may, but need not, share the same view of 
the proficiency. Alternative explanations in the assessment use argument thus concern ways 
that the model-based inference from the assessment argument proper may be inadequate or 
misleading for the purpose at hand. In particular, neither the IRT nor the CDM model are 
faithful representations of the processes that produced responses, as viewed from the 
perspective of sociocognitive research. 
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Figure 4. Assessment argument concatenated with assessment use argument 
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IMPLICATIONS FOR VALIDITY 

We are now in a position to consider validity in educational assessment from the 
perspective of model-based reasoning. The discussion does so in relation to the quotations 
from Borsboom and Messick that appear at the beginning of this presentation.  

Borsboom’s Definition 

Borsboom’s definition of validity requires that the attribute an assessment is meant to 
measure exists, and that it causes variation in observations. We consider these points in turn. 

Existence  

As to existence, psychological research reinforces Snow and Lohman’s doubts that trait 
interpretations are faithful representations of the cognition that produces test performances. 
Both research and experience in the learning sciences call attention to the situativity of 
cognition, as predictable from work like Kintsch’s on reading comprehension. Examples 
include the context-dependent nature of reasoning in physics (e.g., Redish, 2003), language 
use (e.g., Chalhoub-Deville, 2003), and mathematics (Saxe, 1988). As a result, differences in 
contexts, formats, and degrees of familiarity affect the performance and consequent meaning 
of test scores both within and across examinees. This phenomenon is well known to 
practitioners of educational and psychological measurement, in terms of method factors. 
What it suggests, however, is that attributes such as mixed-number subtraction ability are, as 
Snow and Lohman (1989) suggest, higher-level manifestations of more variegated processes 
rather than well-defined independently-existing properties of students.  

Nevertheless, given specifications of conditions, task domains, and targeted testing 
populations, it may indeed be the case that students’ propensities for actions in those tasks 
situations can be said to exist, and lead to exhibit patterns that can be approximated to some 
degree by models such as IRT and CDM. This is the constructivist realist position as it 
applies to practical educational and psychological measurement. Despite its inadequacy as a 
foundational explanation, the degree to which a given modeled representation suffices can be 
quite suitable for a given application. Snow and Lohman properly warn us against over-
interpreting the model. An awareness of the finer-grained sociocognitive genesis of test 
performances continually suggests alternative explanations. Design principles and attention 
to context and use help us avoid inferential errors, and techniques such as model-fit analyses 
such as manifest and latent differential item functioning (Cohen & Bolt, 2005) and richer 
data such as talk-aloud solutions help us investigate them after the fact.  

The first implication of a model-based reasoning perspective for Borsboom’s definition 
of validity, then, is a softened view of an attribute’s existence—one that brings in the four-
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way relationship among the model, the system, the user, and the purpose, and the adequacy 
of what the model does capture and the extent to which it does so, for the purpose at hand. 
Person parameters such as θ and η in psychometric models reside in the mind of the analyst 
rather than the mind of the subject, although their value depends on a resonance with 
discernable patterns in the real world associated with the subject. 

Wiley (1991), like Borsboom, objected to Messick’s inference-bound definition of 
validity. He argued that a test designer cannot be held responsible for validating all possible 
uses of a test, even though prior research and experience could ground the construction of a 
test that could be said to measure some attribute. I would hold that such circumstances do 
occur, but they hide assumptions about conditions, target populations, and purposes. As 
experience with certain kinds of tasks and accompanying models accumulates and exhibits 
broader usefulness (they are said to be “fecund”), we gain confidence that the patterns they 
capture do reflect robustness that could be modeled in sociocognitive terms. However, I 
would hold also that we would be better served by viewing them as contingent outcomes of 
dissimilar processes at a finer grainsize, with uses therefore best confined to circumstances 
and purposes we should investigate and make ever more explicit. As discussed in the next 
section, the activities needed to do so comport nicely with the evolving tradition of test 
validation (Kane, 2006). 

Causation 

If θ and η in psychometric models reside in the mind of the analyst rather than the mind 
of the subject, how can they possibly be said to cause item responses x? The answer is 
straightforward from the perspective of model-based reasoning: when we have ascertained 
that the rationale and the evidence is sufficient to justify the use of an IRT or CDM model in 
a given application, the cause-and-effect metaphor is an appropriate structure to guide 
reasoning from observed responses to the targeted predictions, decisions, instructional 
feedback, and so on. This is so even though the IRT or CDM model is not a satisfactory 
explanation of responses, and even though the same structure applied to the same data could 
be misleading for different inferences.  

Messick’s Definition 

Messick (1989) defines validity as “an integrated evaluative judgment of the degree to 
which empirical evidence and theoretical rationales support the adequacy and 
appropriateness of inferences and actions based on test scores or other modes of assessment” 
(p. 20). From the perspective of model-based reasoning, the attention to “adequacy and 
appropriateness of inferences and uses” is spot on. So is the criterion of “the degree to which 
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empirical evidence and theoretical rationales” support this reasoning. I would disagree with 
Messick, however, and in so doing agree with Borsboom, Mellenbergh, and van Heerden 
(2004), that “Validity is not a judgment at all. It is the property being judged.” From a model-
based reasoning perspective, however, the property being judged must address the four-way 
relationship rather than the model-system dyad. Either way, though, assessing it does indeed 
require an integrated evaluated judgment.2  

And this is just what test validation has evolved to become in the special case of 
educational psychological measurement (Kane, 2006). Figure 5 shows that well-established 
lines of validation argumentation can be parsed in terms of model-based reasoning: 

(1) Theory and experience supporting the narrative/scientific layer of the model. 
Although all models are wrong, we are more likely to have sound inference with models that 
are consistent with cognitive research and have proven practically useful in applications 
similar to the one at hand. As in physics, it is not that a model must be a faithful 
representation of a system, but that it capture the important patterns in ways that suit the 
intended inferences. Indeed, our uses of models like IRT and CDM are more likely to be 
successful if we don’t believe the model is correct; we are more apt to be aware of alternative 
explanations, be diligent in model criticism, and stay within justifiable ranges of contexts, 
inferences, and testing populations. 

(2) Theoretical and empirical grounding of task design. Not only is model formation 
a matter of construction and choice, so too is the design of the situations in which 
performance will be observed. What do the theory of knowledge and performance in a 
domain tell us about the features of tasks that are needed to prompt the targeted cognition? 
How do the features of the task situations align with features of future situations about which 
inference is intended? Embretson (1983) calls this the construct representation line of validity 
argumentation. Consistent with the spirit of model-based reasoning, design efforts can be 
based on finer-grained, higher-fidelity, or more encompassing psychological models than the 
simplified model that is used to synthesize data. Examples that use IRT or classical test 
theory include Embretson’s (1998) cognitive-processing model for an analytic reasoning test, 
Bachman and Palmer’s (1996) framework for tests that encompasses sociocultural aspects of 
language use, and Katz’s (1994) use of information-processing theory to ground task design 
in assessing proficiency in architectural design.  

                                                
2 Knowing the care with which Messick wrote, I have to believe he called validity the “judgment” rather than 
“the degree” intentionally. Was this a step from a constructivist-realist position toward a more radical 
constructivist position? 
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(3) Theoretical and empirical grounding of task-scoring procedures. We saw that 
an assessment argument also embeds an argument from students’ performances to values of 
the observable variables that enter psychometric models. Another active line of research in 
educational and psychological measurement is increased attention to exactly what to identify 
and evaluate in performances, as motivated by more cognitively detailed understandings of 
the nature of proficiency and performance. The economically-motivated move to automated 
scoring of complex performances has spurred this development, because doing a practically 
better job has been found to require doing a scientifically better job (Williamson, Mislevy, & 
Bejar, 2006).  

(4) Empirical evaluation of internal fit, predictions, and outcomes. A model’s 
structure supports reasoning both about and beyond the data at hand. In models such as IRT 
and CDM with a quantitative, probabilistic layer as well as a semantic, metaphorical layer, 
we can ask how well the model’s representation accords with the observed data. How good is 
the correspondence, where does it fail, and does it fail in ways that might be predicted by 
alternative explanations (e.g., differential item functioning)? These internal investigations 
must be supplemented by external investigations, such as correlations with other data and 
predictions of criterion performance that more directly address the quality of inferences 
obtained through the model. 

 
Figure 5. Lines of validity argumentation 
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ANSWERS 

We conclude with answers from the perspective of model-based reasoning to the 
questions posed earlier in the presentation about the nature of parameters, models, inferences, 
and validity.  

What is the nature of person parameters such as θ  and η in latent variables 
models? Where do they reside? 

Person parameters in latent variables models are characterizations of patterns we 
observe in real-world situations (situations that we in part design for target uses), through the 
structure of a simplified model we are (provisionally) using to think about those situations 
and the use situations. They are in the heads of us, the users, but they aren’t worth much 
unless they reflect patterns in examinees’ propensities to action in the world. They are more 
likely to do so as (a) they accord with research and experience about the underlying nature of 
those propensities and actions, and (b) we design task situations and conditions of use in light 
of this emerging knowledge in such ways that will likely be robust with respect to the 
inevitable simplifications in the models. This view can be described as constructivist-realist. 

What is the interpretation of the probabilities that arise from IRT and CDM 
models, and latent variable models in education and psychology more generally?  

Probabilities are characterizations of patterns we observe in situations and our degree of 
knowledge about them, again through the structure of a simplified model we are 
(provisionally) using to think about those situations. The facts that (a) probabilities address 
the model space directly and only directly the real world though surrogative inference, and 
(b) different users and different purposes entail different models means that different 
probabilities can arise from different models. In addition to guiding inference through the 
model, the probabilistic layer of a quantitative model tools for seeing where the model may 
be misleading or inadequate.  

What are the implications of these observations for validity of models, 
assessments, and uses of them? 

A model-based reasoning perspective on the use of educational and psychological 
measurement is consistent with the currently dominant view of validity, which addresses “the 
degree to which empirical evidence and theoretical rationales support the adequacy and 
appropriateness of inferences and actions based on test scores or other modes of assessment” 
(Messick, 1989, p.13). This is because model-based reasoning is concerned with the four-



 23 

way relationship among a model, a system, a user, and a purpose (Giere, 2004). Sources of 
validity evidence and lines of validity argumentation that have developed in the educational 
and psychological literature are nicely, more generally compatible with justifications of 
model-based reasoning in the scientific literature.  
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