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Abstract 

The military’s need for high-fidelity games and simulations is substantial, as these 
environments can be valuable for demonstration of essential knowledge, skills, and 
abilities required in complex tasks. However assessing performance in these settings can 
be difficult—particularly in non-linear simulations where more than one pathway to 
success or failure may exist. The challenge lies not in capturing the raw data arising from 
game-play, but in interpreting what a player’s actions and decisions mean in the broader 
context of cognitive readiness for a particular job function or task. 

The aim of our current research is to develop a conceptual framework for assessing 
complex behaviors in non-linear, 3-D computer-based simulation environments. Central 
to this framework is the incorporation of both a domain ontology (which depicts the key 
constructs and relationships that comprise the domain being simulated), and one or more 
Bayesian networks (which catalog the probabilities of various sequences of actions 
related to the constructs in the ontology). For the current research, the domain is damage 
control related to fire-fighting onboard naval ships, and the two key constructs being 
assessed are situation awareness and decision-making. 

A 3-D, computer-based simulation depicting the interior of a naval ship has been 
developed. Assuming the role of a damage control investigator, the player is tasked with 
identifying, addressing, and reporting on a variety of potential, imminent, and existing 
fires and fire hazards. Using a dynamic Bayesian network, all actions and decisions 
related to situation awareness, communications, and decision-making are evaluated and 
recorded in real time, and are used for both formative and summative assessments of 
performance. Using this conceptual framework, our goal is to provide a generic model of 
assessment that can be incorporated into both new and pre-existing computer-based 
simulations that depict cognitively complex scenarios. 
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Introduction 

Endsley (1988; 2000) defines situation awareness as “the perception of the elements in 
the environment within a volume of time and space, the comprehension of their meaning and 
the projection of their status in the near future.” Her definition delineates the three levels of 
situation awareness, Level 1: Perception of elements in the environment; Level 2: 
Comprehension of the current situation; and Level 3: Projection of future status. They are 
listed in increasing degree of cognitive demand. However, cognitive errors in perception can 
lead to poor decisions, even though the decision itself could well be the correct action for the 
perception; it is the perception that was incorrect. 

To take a query-driven format, the different levels relate to the following questions: 
1. Level 1: What is going on? What elements in the environment should you attend 

to? What elements are relevant (critical cues) for the given situation? 

2. Level 2: Do you know why the relevant cues are important? Which are not and 
why? What patterns do you see?  

3. Level 3: What are you expecting to happen?  

Sailors must also be able to think on their feet especially if they are to take initiative 
when normal standard operating procedures (SOPs) cannot be followed and/or when 
communications break down or are not possible. Based on Pascual and Henderson (1997), 
we define decision-making in relation to command and control reducing the number of 
working practices from 22 to the following 6: 

1. Adherence to Standard Operating Procedures (SOPs) 

2. Gather additional information 
3. Priority/ Risk assessment 

4. Task plan/Courses of Action (COAs) 
5. Delegation of tasks 

6. Monitoring outcome(s) of the COAs 

However, both situation awareness and decision-making—as we have defined them 
here—are difficult constructs to measure directly in a game or simulation. Indeed, the actual 
data collected from a game typically involves responses to simple triggers that arise in the 
game in which the player selects objects, allocates resources, interacts with non-player 
characters, etc. In order to link these basal actions to the higher order constructs of situation 
awareness and decision-making, we need to devise a conceptual structure that relates all the 
possible observable, lower level player actions to these more abstract constructs. To do this, 
we have devised a multi-step process for assessing complex performance in games and 
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simulations. This process is foundationally built off the evidence-centered approach to 
assessment design (Mislevy, Steinberg, & Almond, 2003), and involves the development of a 
domain ontology, the construction of a Bayesian network, and the incorporation of various 
analytic and reporting tools. Outlined below is an overview of the process, along with a 
description of an initial validation study that was conducted to evaluate the process using the 
damage control fire-fighting domain.  

 

 
Figure 1. Conceptual Framework for Assessing Performance in Games & Simulations 

FRAMEWORK OVERVIEW 

Figure 1 depicts both the developmental and real-time process steps that comprise the 
conceptual framework that was used in our assessment process. The process flow begins with 
a pre-existing game or simulation that endeavors to instruct and evaluate one or more player 
competencies. Based on the game’s design and intended use, various specification editors are 
used by the assessment team (in conjunction with subject-matter experts) to determine the 
domain (or sub-domain) that the game represents, along with the relevant tasks available in 
the game that are germane to the assessment.  

Ontology Creation 

Bounded by these specifications, an ontology is then constructed to capture the 
interrelationships that exist among the key concepts. Our ontology creation process draws 
upon pre-existing research in the field (Baker, 1998; 2007; Chung et al., 2006; Vendlinski, 
Baker & Niemi, 2008) and is comprised of five primary steps, as follows: 
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1. Define the domain. This is done in conjunction with subject matter experts to not 
only identify the broad domain being assessed (i.e. damage control onboard Navy 
ships), but also to tease out the relevant sub-domain that bound the players’ 
interactions in the game (i.e. reporting and combating fire-fighting casualties onboard 
Navy ships). 

2. Define the ontology elements. This step involves defining and categorizing the 
various elements of the ontology into one of three levels: 

a. Top Level – consisting of standards, big ideas, broad cognitive concepts (i.e. 
situation awareness, decision making, etc.). 

b. Middle Level – consisting of mostly unobservable (latent) variables and 
concepts (i.e. enemy intentions, etc.) 

c. Bottom Level – consisting of directly observable variables, actions, and events 
(i.e. using a CO2 extinguisher, closing a valve, etc.) 

3. Create element equivalence classes. At this step, for each element (a.k.a. object) in 
the ontology, we define any properties, operations, or operation rules that are relevant 
to that object. For example, a fire (object) can be classified as a type alpha, bravo, 
charlie, or delta (properties) based on the type of fuel it burns. In addition, a fire can 
spread, be attacked, or be extinguished (operations) based on the type of 
extinguishing agent used (operation rule). 

4. Define relationships within categories of objects. Here, for each broad object 
represented (i.e. Fire), we define the relationships that exist between subordinate 
constituent objects (i.e. Fire Type, Extinguishing Methods, etc.). In the ontology, 
these relationships are expressed using phrases such as “type-of,” “part-of,” etc. 

5. Define relationships between categories of objects. Finally, at this step we define 
relationships that exist between each of the broad objects represented (i.e. between 
Fire and Reporting a Fire Casualty). In the ontology, these relationships are 
expressed using phrases such as “property-of,” “operates-on,” etc. 

 
Bayesian Network Development 

The next step in our process builds upon the ontology with the aim of providing an 
infrastructure necessary for assessment that can effectively interpret evidence from game-
play that connects to the knowledge, skills, and abilities being assessed (Shute, Ventura, 
Bauer, & Zapata-Rivera, 2009). It involves the construction of a Bayesian network, which is 
a graphical model for representing (causal) probabilistic relationships between variables. 
Bayesian networks have many advantages. Due to their graphical nature, they can be used to 
gain an understanding about a domain. They can also model such things as prior knowledge; 
incomplete or missing data; clean or noisy observed data; and latent, uncertain, or 
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unobserved variables. Bayesian networks can learn both parameters and network structure 
from observed data, infer or predict unobserved outcomes, and they can be expanded to 
Dynamic Bayesian Networks (DBNs) to model time sequences of events. 

The Bayesian network that gets created at this step in the process is an 
“operationalized” representation of the ontology. While its structure represents the same 
underlying relationships depicted in the ontology, its purpose is to represent the probabilities 
that reflect the strength of the relationship between one construct to the next. In this way, 
bottom level elements of the ontology (which are comprised of easily observable events) can 
be related through the network to top-level elements in the ontology. By constructing a 
Bayesian network in this fashion, we acquire the ability to assess higher order player abilities 
(such as situation awareness or decision making) directly by the capturing of lower level, 
observables arising out of game-play.  

This process is highly iterative, and relies on working closely with subject matter 
experts to develop conditional probability tables (CPTs) that appropriately and accurately 
reflect the meaning and importance of player actions in the game. The goal is to represent in 
the Bayesian network the rules that govern an expert human rater’s thought process if they 
were to assess a player’s performance in this domain.   

Analysis Tools and Reporting 

The final two steps of the process involve the analyzing and reporting of data that 
emerges from the Bayesian network. As stated above, each observable and meaningful player 
action from the game can be fed into the Bayesian network to determine the probability that 
that action relates to one or more key constructs being assessed. In some cases, this might be 
a single event; in others it might be a collection of actions, the aggregate of which relates to a 
broader concept.  

Either way, this data is then fed into an analysis tool that parses it into meaningful 
chunks of information, which then either get distributed back to the game, or out to a 
reporting engine (or both).  

The idea is that this analysis tool serves as a real-time interface with the game for 
purposes of providing formative assessment based on player actions. For example, if a player 
attempts to put out a fire using an inappropriate extinguishing agent, the analysis tool can not 
only feedback to the game (and record) that this was an incorrect action, but can also trigger 
subsequent events in the game that would be contextually appropriate to remediate the player 
on this skill (such as providing additional fires to practice on, having a non-player character 
provide verbal instruction, etc.). 
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In addition, the analysis tool can be used to perform summative assessments of 
performance in which the game-play data is processed post-game to see how well particular 
knowledge, skills, or abilities were demonstrated. This information can then be fed directly 
into a reporting tool that can visually summarize the player’s performance. 

THE VALIDATION STUDY 

In order to validate our process, we conducted a pilot study using a preexisting damage 
control simulation built by the UCLA’s National Center for Research on Evaluation 
Standards and Student Testing (CRESST). The simulation is designed to assess a player’s 
knowledge of fire-fighting skills onboard a naval ship. The study was conducted at the 
Center for Naval Engineering (CNE) in Norfolk, VA., and was intended to see if a Bayesian 
network developed with subject matter expertise from a fire-fighting ontology could assess 
performance in a way that characteristically matched that of expert human raters.  

Participants 

Forty-five participants played through the simulation individually (35 Male, 10 female). 
The range of fire-fighting knowledge represented in the group was diverse, ranging from 
expert damage control instructors, to novice Naval Academy midshipmen with no prior fire-
fighting experience or knowledge. Participants were randomly selected from various damage 
control classes being held at CNE. 

Computer-Based Environment 

The instrument used was a 3-D, first-person perspective simulation built using the 
Truevision3D game engine in concert with VB.Net. It was a PC-based environment that 
depicted the interior of a naval ship, inside of which 10 separate fires casualties existed. The 
player’s task was to locate all 10 incidents, appropriately report them to damage control 
central, and if possible, attack and contain the fire using the available resources on the ship. 
For each incident, a reporting interface was used for the player to communicate their 
assessment/perception of the situation. A screenshot of the report interface is shown in  
Figure 2. 
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Figure 2. Screenshot of Report Interface 

After submitting the report, the player had the option to either take no action, or use a 
variety of extinguishing agents to combat the fire. All player actions relating to reporting and 
fire containment were captured in a Microsoft (MS) Excel file, and subsequently sent to the 
Bayesian network for analysis. 

PROCEDURE 

The study was conducted in a classroom at CNE that could accommodate up to 10 
students at a time. Each student was provided with a PC laptop computer on which the 
simulation was played. Upon entry into the classroom, the participants as a group were told 
of the purpose of the study, and that their participation was voluntary. They were each given 
ID numbers so that the data collected from their performance would remain anonymous. 
Each person played the same version of the simulator, and was allowed to complete it at their 
own pace (time was not a factor in the analysis). Assistance was only provided to address any 
technical difficulties that arose—all other matters were left for the student to work on 
unassisted. 

At the conclusion of the simulation, all participants were released, and their data was 
automatically collected by the computer system and exported into an automatically generated 
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MS Excel file. Four expert fire-fighting instructors from the Damage Control School at CNE 
reviewed the individual MS Excel files and scored each element of each players report for all 
10 incidents based on the following rubric: 

• Optimal – best answer possible 

• Adequate – a good answer, but an obvious better one exists 

• Poor – correctly addresses the situation, but many better choices exist 

• Neutral – response is unrelated to the situation 

• Bad – response is a bad choice, and has the potential for doing more harm than good. 

RESULTS 

Using the Bayesian network created to analyze the responses made by the players for 
the report dialogs for each scenario, a scoring tool was developed to compare the player’s 
perceptions with the known aspects of each of the ten scenarios. This was done to elicit 
evidence of the student’s situation awareness. The conditional probability tables were 
populated based on expert knowledge. We analyzed a subset of the data that the experts 
scored using a rubric.  

The observable simulation data from eight experts and seven students were recorded 
with a total of 40 player ratings. One rating was removed from the analysis because there was 
too much missing data. One expert (#1) graded all of the seven students and overall provided 
14 player ratings. Another expert (#6) graded all the other experts plus one of the students, 
and overall provided 11 player ratings. Experts also evaluated other experts, but those 
numbers were small, one or five player ratings. 

Demographic Data 

The average age of the experts was 34 (SD = 6.4) and ranged from 25 to 44. All were 
male. Five of them were damage controlman and one was a machinist mate. The number of 
years in the Navy ranged from 5 to 19 years, with an average of 12.5 years (SD = 5.6).  Seven 
of the experts had over 500 hours of instruction in fire fighting, flooding and casualty. Seven 
of the eight experts listed that they were Damage Control Leader, Fire Team Leader, Team 
Leader, On Scene Leader. Six of the eight listed Fire Marshal, and all eight listed that they 
had been an Investigator. None had been the DCA (Damage Control Assistant). On a scale of 
1 (no interest) to 5 (high interest), the experts liked Action-type games the most (M = 3.4,  
SD = .87), then Arcade-type (M = 2.6, SD = .69) and last Real Time Strategy type games  
(M = 2.21, SD = .91). 
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The average age of the students (all from group B) was 19.4 (SD = 0.5) and ranged 
from 19 to 20. Five were male and two were female. There were all midshipman (3/c). The 
number of years in the Navy ranged from .83 to 2 years, with an average of 1.2 years  
(SD = 0.56). All seven students had less than 19 hours of instruction in fire fighting, flooding 
and casualty. One student had been an investigator on a ship, and another a fire-team leader. 
On a scale of 1 (no interest) to 5 (high interest), the students, like the experts, liked Action-
type games the most (M = 3.26, SD = .76), then Arcade-type (M = 2.6, SD = .73) and last 
Real Time Strategy type games (M = 2.19, SD =1.1).  

The report dialog variables (see Figure 2) for each scenario included seven elements:  

• location (bulls eye),  

• status (active or potential),  

• fire type (e.g., small class A),  

• scope (can be contained by me or requires help from others),  

• description (e.g., fire caused and sustained by electricity),  

• optimal agent (e.g., CO2 extinguisher), and  

• request power off (whether a request to shut off the power was needed or not). 

Response Data 

Responses were saved to MS Excel files and read into the scoring tool. The tool first 
sets the evidence for the scenario to true (see node under the letter A on the right side of the 
Bayesian network diagram in Figure 3). The Bayesian Network then updates to show what is 
known for the scenario (see nodes under the letter B in Figure 3). The program then sets the 
evidence nodes (under letter C in Figure 3) to the options that the player chose and then the 
network is updated. The updated probabilities for the hypotheses nodes (see nodes under the 
letter D in the center of Figure 3) are then mapped to performance levels using a lookup 
table.  

Finally, in MS Excel, we compared the Bayesian Network rating to the expert ratings. 
The exact agreement percentage can be found in Table 1. The table also includes the exact 
agreement percentage among the Bayesian Network determination of the overall reporting 
performance with the expert’s overall rating. The Bayesian Network determination is a 
formula that has a weighting based on the following formula (1): 

   (64*Location_RepVsReal+32*FireType_RepVsReal+16*OptimalAgent_RepVsReal+8*SecurePower_   (1) 

           RepVsReal+4*Scope_RepVsReal+4*Status_RepVsReal+4*Description_RepVsReal)/132 
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The numbers in this formula that precede each of the report elements represent the 
relative weighting of importance of the item compared to the other items of the report. In the 
formula, the “RepVsReal” are the updated probabilities from the Bayesian Network that 
compare the reported (Rep) versus reality (Real). The relative importance of the report 
elements was elicited through expert consensus. 

 
Figure 3. Bayesian Network for Report Dialogs 
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Table 1.  

Percentage of Agreement between Bayesian Network Scoring and Expert Scoring 

Scenario Location Status Firetype Scope Description OptAgent PowerOff 
Report 
Overall 

Bathroom 
Heater 100 100 92.3 97.4 79.5 48.7 7.7 67.6 

Engineering 100 100 97.4 56.4 71.8 74.4 94.9 78.4 

Galley 100 100 82.1 100 50 55.6 21.1 18.9 

Lower 
Berthing 100 100 21.1 87.2 17.9 63.2 71.8 43.2 

Passage Way 
Wires 100 100 66.7 38.5 87.2 69.2 82.1 44.1 

Sick Bay 
Trash Can 100 100 94.9 100 64.1 71.8 79.5 80.6 

Sparking 
Passage 
Way Panel 

100 66.7 97.4 
 

7.7 48.7 100 100 78.9 

Storage Heater 100 100 76.9 100 82.1 51.3 74.4 31.6 

Storage 
TrashCan 100 100 97.4 100 82.1 64.1 82.1 73 

UpperBerthing 100 100 97.4 87.2 89.7 31.6 5.1 60 

Average 100 96.67 82.36 77.44 67.31 62.99 61.87 57.63 

Note. OptAgent = optimal extinguishing agent. 

The match was highest for the location, then status, firetype, scope, description, optimal 
extingusihing agent, power off, and overall reporting. These results suggest that the model 
needs refinement and/or that some scenarios may have been ambiguous. 

SUMMARY AND DISCUSSION 

Approximately 8 hours were spent working with 10 different subject matter experts 
from the CNE fire-fighting school to facilitate the creation of the Bayesian network. This 
activity involved one-on-one interactions as well as group discussions, the result of which 
yielded consensus among all experts on how to score each of the 10 scenarios depicted in the 
game. Despite this, however, as Table 1 shows, significant disagreement exists between the 
Bayesian network and the expert scoring. 

There are several reasons why this may have occurred. The first has to do with 
differences in how humans access and retrieve knowledge compared to computers. When 
people encounter a situation to evaluate, they attempt to comprehend it in terms of existing 
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scripts (or schemas) they already posses about similar past experiences (Schank, 1999; 
Ratcliff & McKoon, 1988; Wattenmaker, 1992). These scripts are recalled and understood 
not based solely on the factual content that comprises the situation, but on the storied context 
that integrates these facts with particular experiences (Ferguson, Bareiss, Birnbaum, & 
Osgood, 1992). As such, experts often possess a lot of implicit knowledge that colors their 
understanding of a situation, and which can be difficult to articulate in words. 

When working with the subject matter experts to encapsulate their knowledge into the 
relationships and conditional probability tables of Bayesian network, it is likely that nuances 
of how they would evaluate a player’s performance were excluded because this information 
was difficult to ascertain in the absence of a specific case to analyze. As a result, the 
Bayesian network was not robust enough to appropriately score a player’s performance under 
certain circumstances. 

Another possible reason for the discrepancy in scoring has to do with the consistency 
with which the experts adhered to the agreed-upon scoring rubric. Despite reaching 
consensus on how each scenario should be scored, the scoring took place over several days, 
and therefore the experts might not have remembered all the conventions agreed upon when 
they actually performed the player evaluations. Furthermore, the experts were often 
interrupted with other job-related tasks they needed to perform, resulting in distracting lapses 
in time when scoring even a single player. 

All of these reasons underscore the notion that although the conceptual process of 
creating and training a Bayesian network to assess performance is fairly straightforward, 
successfully implementing it where it reliably replicates human scoring can be very difficult. 
Indeed, this small-scale validation study exemplifies the fact that this process is highly 
iterative, and that even for relatively simple scenarios, the wide variety of player responses 
poses a daunting challenge for devising a robust Bayesian network. 

Next Steps 

The next steps to this project include further refining the Bayesian network with expert 
input, and then to score player actions undertaken to combat the fires they encountered in the 
game. This poses an order of magnitude increase in complexity over the current phase of just 
evaluating reports of fire casualties, as both situation awareness (arising largely from what 
the player reports) and decision making (arising from the specific fire containment actions 
taken) will collectively be considered in the final scoring.  

Once this work is completed, the network will be capable of moving beyond its current 
state (in which formative and summative assessments can be provided for the reporting of 
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fire casualties only) to being able to fully assess situation awareness and decision making as 
it pertains to the entire fire-fighting process. We anticipate achieving this capability by 
December 2009. 
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