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Gregory K.W.K. Chung, & Eva L. Baker 

CRESST/University of California, Los Angeles 
 

Abstract 

The evaluation of educational interventions requires assessments that consistently 
(reliably) produce data from which accurate (valid) inferences about the test subjects 
can be made for some stated purpose. Despite codified definitions of all these terms, 
there remains vibrant debate about the assessment design process and how measures 
of technical quality should be determined and reported. More importantly, there 
seems to be little consistency in the process of developing assessment items that 
demonstrate consistently high technical quality and that are conceptually aligned with 
instruction. We present a process, rooted in the work of Baker (1974), in which a 
theory of learning drives the development of knowledge specifications that then drive 
the integrated development of assessment items and forms and instructional 
materials. In this case, the instruction is in the form of an educational video game 
about adding rational numbers. We discuss the development of the knowledge and 
item specifications, an initial version of the instructional game based on these 
specifications, and report the consistently high technical quality (internal consistency 
and test-retest reliability—Cronbach’s alpha of 0.9 to 0.94). We discuss as well the 
ability of pretest measures to predict subsequent student performance (inferential 
validity—Spearman’s rho of 0.69) in the game and on similarly developed 
assessment measures. Alignment between the instructional game and assessment 
items is also discussed. 

Background 

In most human pursuits, those involved in the endeavor want to know if and when their 

goal has been attained. This is especially true when the pursuit involves high-stakes outcomes 

and where large investments of time, money, and energy have supported the effort. In many 

cases, determining attainment of the goal is simple because it is clear if and when the goal has 

been reached. However, in some instances, the goal may be less clear and and determining 

whether or not it has been attained may prove difficult. Educational assessment seems often to 

fall in the latter category. The causes of the lack of clarity in this particular field seem numerous, 

including disagreement about what the goal(s) should be, misunderstandings about what a stated 

goal means, and difficulty measuring attainment of a goal that is only indirectly observable. 
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While these difficulties are real, and probably long enduring, they need not become an 

insurmountable barrier in fields like education. Rather, they suggest the need to very clearly 

define a goal and to be clear about the evidence that will be collected and about how it will be 

assembled so that observers can accurately and consistently infer whether the stated goal has 

been achieved. Although this seemingly stresses the summative or accreditation role for testing, 

we need not limit the enterprise of educational assessment merely to summations of student 

achievement. 

In 1994, Samuel Messick wrote that “the essence of authentic assessment must be sought 

… in the quest for complete construct representation” (p. 13), and he went on to cogently argue 

the need to avoid underrepresentation of the construct of interest and to protect against construct-

irrelevant variance when designing assessments for any purpose. In particular, he suggests: 

There should be a guiding rationale akin to test specifications that ties the assessment 
of particular products or performances to the purposes of the testing, to the nature of 
the substantive domain at issue and to the construct theories of pertinent skills and 
knowledge (p. 14). 

Even prior to Messick, Eva Baker and colleagues (Baker, O’Neil, & Linn, 1993; Linn, 

Baker, & Dunbar, 1991) suggested that the technical quality of assessments must be integral to a 

set of learning objectives and instructional design. More recently, she and her colleagues (Baker, 

Chung, & Delacruz, 2008) have continued to emphasize that high-quality assessments need to 

 adequately represent a targeted domain (rather than just a arbitrary subset of items); 

 appropriately represent the cognitive demand required for success in the targeted 
domain; 

 be tied to performance categories (or criteria) by empirical evidence; 

 provide some evidence that the results are generalizable or transferable;  

 demonstrate consistency (between raters or across occasions, etc.); and 

 exhibit fair results. 

It is essential that, in the words of Baker and colleagues (2008), evidence show “how the 

measures relate to other measures of the construct and how the measures discriminate between 

high and low performers” (p. 600). In fact, for over 35 years, Baker (1974) has consistently 

argued the need for designing assessments around small subsets of essential content that students 

are expected to learn and then describing how students will demonstrate they have acquired that 

knowledge. 

Others have tried to instantiate these ideas, for various purposes and with varying degrees 

of success. One of the most notable and successful of these efforts is Mislevy and colleagues’ 
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Evidence-Centered Design (ECD). ECD provides a framework for designing assessments for 

various purposes from a technical quality perspective. As such, it attempts to model assessment 

events in terms of the student (knowledge, skills, and abilities of interest), evidence (how what is 

observed informs inferences about student variables), tasks (the kinds of things that will elicit the 

evidence required), and assembly (how the student, evidence, and task work together to form the 

assessment). See Almond, Steinberg, and Mislevy (2002) for additional detail. The key objective 

of ECD, as stated by these developers is “to bring probability-based reasoning to bear on the 

problems of modeling and uncertainty that arise naturally in all assessments” (Mislevy, Almond, 

& Lukas, 2003, p. 1).  

Influenced by the development of ECD and firmly rooted in the work of Baker (1997), 

researchers at the National Center for Research on Evaluation, Standards, and Student Testing 

(CRESST) have approached test design using a similar approach. In particular, during the last 

decade, CRESST projects have used ontologies as the foundation for a number of educational 

interventions. These interventions involve not only summative and formative test and test item 

designs, but also integrated professional development and instructional materials that align and 

integrate with such test and test items (Phelan, Choi, Vendlinski, Baker, & Herman, in press; 

Vendlinski, 2009). Ontologies define key conceptual ideas in a specific domain and describe the 

relationships between these concepts. While ontologies can be expansive, in many cases, the 

actual breadth and depth of the ontologies can be narrowed for practical reasons such as focusing 

on particular learning goals. It should be noted, however, that these more narrow ontologies are 

designed to fit within the more overarching ontologies. 

While CRESST researchers have used, and continue to use, ontologies as the foundation 

for the development of Bayesian networks (in a manner similar to that advocated in ECD), these 

ontologies have also been used to determine how instruction and assessment might be aligned 

around key principles that organize understanding in domains as diverse as history (Baker, 

Freeman, & Clayton, 1991), science (Vendlinski, Niemi, & Wang, 2005), electrical engineering 

(Chung, Dionne, & Kaiser, 2006), and mathematics (Vendlinski et al., 2009). In this way, 

ontologies help identify and drive the selection of key big ideas on which instruction, 

assessment, and even professional development will focus. These efforts align with recent 

findings in cognitive science, especially the literature describing how experts and novices differ 

in their attentiveness to problem features, how experts organize knowledge, and how they access 

knowledge. Consequently, the focus at CRESST has attended to identifying the key ideas that 

seem to form the essential kernels necessary for novices to organize understanding and develop 

expertise within a larger domain (e.g., mathematical operations on rational numbers) rather than 

identifying all atomistic concepts that may be important to performing various tasks.  
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More recently, CRESST researchers have started applying these same principles to the 

development and integration of assessments with digital instructional materials like educational 

games. This paper first describes this process in some detail, tracing the development of key 

foundational ideas and how these ideas are connected to other ideas. Next, it describes how these 

ideas are used both as the underpinnings for the development of educational games and for the 

development of item specifications that are used to assess what students have learned from the 

game. Finally, the paper addresses the technical quality of the assessments that result from using 

the integrated process described. It is argued that integrating the identification of key knowledge 

ideas with such a materials-development process not only focuses the product but also provides 

an opportunity to quantitatively and qualitatively justify many of the technical quality claims 

made about the assessment items and forms. 

The current project was conducted under the auspices of the Center for Advanced 

Technology in Schools (CATS). CATS was staffed, in part, by researchers from CRESST, and 

both centers are located on the UCLA campus. 

Methods 

Developing Key Foundational Ideas and Knowledge Specifications 

The game and assessment development process began with developing the key 

foundational ideas that would form the learning objectives of instruction, assessment, and game 

play. Given that the first of the CATS games was intended to address the addition of rational 

numbers, as specified in the grant proposal, researchers looked at how students should 

understand rational numbers, how rational number addition should be connected to previous 

student knowledge of numbers and of addition, and at common student misconceptions that 

highlight important and common shortcomings in student understanding of both rational 

numbers and the addition of rational numbers. For example, students will often add both the 

numerators and denominators of rational numbers (Brown & Quinn, 2006; Driscoll, 1982) or 

students will often try to add dissimilar units such as miles and miles per hour. The key questions 

to be answered when defining the knowledge specifications are “What do we want students to 

learn about a topic,” “How is this knowledge connected to both prior and future learning,” and 

“Why is this knowledge important to the students’ future success in life and academia?” As ideas 

for knowledge specifications surfaced, each idea was decomposed into its more atomistic 

components so that key concepts related to understanding that particular idea were identified and 

so that these key components could be linked to other concepts that had been previously 

identified. In this way, recurring themes became clear and connections between the concepts 

became evident. 
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The result of this process was the identification of nine key foundational ideas and the 

ontological connections between these ideas and other ideas in mathematics, especially in the 

gateway course of algebra (Atanda, 1999; Berkner & Chavez, 1997). Given that the scope of the 

current study was rational number addition, two of the nine key ideas that emerged from the 

literature (Lamon, 1999; Wu, 2001) and in discussions between math educators and researchers 

were selected as particularly important for us to focus on: 

 Only identical units can be added to create a single numerical sum. 

And 

 The size of a rational number is relative to how one whole unit is defined. 

We began with these particular specifications for two reasons. First, we wish to connect the 

concepts we are asking students to (re)learn to their prior knowledge. In this sense, we wish to 

highlight the similarities between addition of rational numbers and addition of integers. The fact 

that such similarities are often left implicit for students, or that the tasks are explicitly labeled as 

being conceptually different, seems to be at least part of the problem students have with rational 

number addition (Kilpatrick, Swafford, & Findell, 2001; Wu, 2001). Leaving students to make 

such connections within the set of real numbers on their own seems to engender a number of 

student misconceptions such as adding numerators and adding denominators of two rational 

number addends (Brown & Quinn, 2006; Gelman, 1991). Alternatively, explicitly teaching 

students that fractions are different from integers can cause problems when students are 

subsequently required to write integers in fractional form or when students try to add integer 

quantities together that don’t share the same units (e.g., 60 miles per hour and 120 miles). 

Second, we wanted to make the need for non-integer rational numbers clear and to help clarify 

how identical units are defined when dealing with rational numbers. 

The two foundational key ideas serve both of these purposes. When young students learn to 

add small positive integers, it is clear that there is a general learning progression (Fuson, 2003; 

Carpenter, Fennema, Franke, Empson, & Levi, 1999). Children generally begin to add integers 

by decomposing each number into units of one (i.e., expressing the number’s cardinality) and 

then adding those units. For example, the number 2 is seen as two units of something (1 + 1). 

Adding five more is then seen as continuing the count by adding five more of those identical 

units. Later, students discover that they do not need to decompose both numbers but can just 

“count on” to the larger quantity. Although the process eventually becomes one of recall, even 

adults often unconsciously decompose into units and add. For example, adults would intuitively 

say that adding a two-dollar bill to a five-dollar bill produces seven dollars rather than saying the 

addition produces two bills. It seems, however, that as integer addition becomes easier to recall, 
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students do not attend to an important restriction on addition, namely that we only add similar 

things together. Many teachers apparently do not reinforce this restriction on addition, especially 

right before rational number addition. Instead, the addition of rational numbers is often seen as 

unique from what was previously learned, and students struggle to learn a new set of disparate 

rules about adding these “new” numbers. 

The first key idea highlights the connection between integer and rational number addition. 

In both cases, the goal is that students realize that addition produces a meaningful sum only when 

identical units are added. One can add a goat and a horse, for example, but such an addition only 

makes sense if each is first “converted” into a common unit such as animal or mammal. Trying 

to add units such as 70 degrees Fahrenheit and 12:05 p.m. is nonsensical, however, because they 

are not the same unit, and we have no apparent way to convert them into a unit that is common to 

both. Unfortunately, the importance of such an understanding is often only made explicit when 

students are confronted with the need to add fractions (i.e., the need for a common denominator), 

and the similarity with integer addition is seemingly seldom addressed or is addressed in a 

perfunctory way (Mack, 1990). While such examples may seem obvious to students at face-

value, experience suggests that algebra students will often try to add dissimilar quantities like the 

number of nickels and the value of dimes or miles and miles per hour when trying to solve 

problems (De Corte & Verschaffel, 1987). 

When students do try to make connections between integer and rational number addition on 

their own, they often attempt to perform operations they already know, like adding the integer 

parts of a rational number just as they would add integers. This suggests that there may be a 

larger problem, namely that students do not really understand what rational numbers mean 

(Kilpatrick et al., 2001). In this case, even if they know what addition means, they cannot apply 

such understanding correctly because it is unclear how to decode the “unit” of a rational number. 

The work of Susan Lamon (1999) and others (Fuson, 2003, and Behr, Harel, Post, & Lesh, 2003, 

for example) supports such a notion. Other research suggests that student concepts of rational 

numbers are almost entirely centered on representations of circles, and subtleties like the 

comparability of the wholes are lost (Mack, 1990; Saxe, Gearhart, & Seltzer, 1999). Clearly, one 

half of a small unit is not the same size as one half of a larger unit. But if students are asked to 

place the number one half on a number line that spans the range zero to four, they may place the 

number ½ to coincide with 2 (half of the number line represented) rather than half the distance 

between zero and one. Consequently, the second key idea specifies the importance of the 

relationship of a rational number to the unit when defining a rational number. Like the notion of 

addition, the importance of connecting the meaning of a rational number to its corresponding 



 

7 

unit seems to be left implicit for many students and seems to result in a number of student 

misconceptions (Saxe et al., 2007; Wu, 2001).  

In order to fully address the notion of rational number addition, both of these knowledge 

specifications must be addressed. Other key ideas, which flow from these two overarching ideas, 

were also developed to accommodate the scope of instruction, assessment, and game design 

envisioned in this phase of the project. The full set of the two knowledge specifications is 

detailed in Appendix A. A much larger ontology of concepts related to algebra, including those 

outlined in the full set of knowledge specifications was also developed and served to situate 

these knowledge specifications within a broader math education context. 

From Knowledge to Item Specifications 

Each knowledge specification was then used to generate one or more item specifications 

for each of two categories of cognitive demand. The first cognitive demand addressed procedural 

fluency with a particular concept, and the second was intended to ascertain how well a student 

could demonstrate conceptual understanding of the concept. These categorizations are based on 

the work of numerous researchers (Brown & Quinn, 2006; Carpenter et al., 1999; Fuson, 2003; 

Lamon, 1999; Mack, 1990; Saxe et al., 1999; Usiskin, 1988; Wu, 2001) and are aligned with the 

recommendations of the National Math Advisory Panel (U.S. Department of Education, 2008), 

the National Council of Teachers of Mathematics (NCTM, 2000), and with findings condensed 

in How People Learn Mathematics (Donovan & Bransford, 2005). While we originally intended 

to include problem solving as a separate category, this proved difficult since problems can easily 

become procedural tasks for students who have seen them before; therefore, they are difficult to 

classify unless the prior experience of a particular student is known. Furthermore, problem 

solving items can take extended periods of time to administer, and the time we had for testing 

students was strictly constrained. Consequently, we decided to limit our specifications to two 

types of items. 

For each category of cognitive demand, we detailed what type of stimulus we would 

present to the students and then specified what the students should be able to do given such a 

stimulus. Essentially, the stimulus details the kind of prompt a student would receive, and the 

expected response gives some detail about what the student should be expected to do. Often, 

prompts for the procedural and the conceptual cognitive demands were similar or even identical; 

however, the expected responses were quite different for each type of cognitive demand. For 

procedural items, students were often asked to determine, show, identify, or label something, 

whereas items intended to assess conceptual understanding nearly always asked students to 

explain why something was the case. 
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Once we developed the item specifications, we used them to identify or develop specific 

items addressing each of the specifications and for each cognitive demand. Multiple items were 

generated for each specification, and these were edited for clarity and then reviewed by the 

research team for fidelity to the particular item specification and level of cognitive demand. 

Although such a process is a first step to assure the technical quality of an item and of the test it 

will be part of, it is arguably a very weak measure. Consequently, more empirically based 

methods were used to assure the technical quality of each item and the test forms. 

Technical Quality of Assessment Items 

As part of our validation effort, we assumed that student performance on items designed 

around interrelated key ideas should correlate (i.e. convergent validity). As suggested by 

researchers as far back as Cronbach and Meehl (1955), this should be true whenever a trait or 

construct is being measured, regardless of the probe being used to test that trait or construct, as 

long as each probe is intended to measure that particular trait or construct. In fact, the writings of 

Cronbach and others suggest that inferences from various measures which are designed to 

measure the same things should converge and all support the same inference (Campbell & Fiske, 

1959). A cautionary note is important: The above should not be interpreted to mean that 

whenever assessment outcomes correlate, both assessments measure the same thing (Serci, 2009, 

in Lissitz). While such a phrase can be cited from the early testing literature (Guilford, 1946) and 

even in recent articles (Borsboom, Cramer, Kievit, Zand Scholten, & Franic, 2009), we feel such 

a belief is problematic for two reasons. First, there is always a chance that two outcomes will 

correlate by happenstance even though the two are not truly related. Second, and more important, 

two outcomes could be mediated by another variable and not be directly related at all (e.g., 

everyone who ate tomatoes in 1800 is dead so there must be a connection between eating 

tomatoes and human mortality). Consequently, it is important that the theoretical relationships 

between variables such as items and the construct of interest be specified before the items are 

empirically tested. We believe that the knowledge and item specifications help structure and 

detail such a relationship. 

This notion leads to two similar but distinct ideas concerning item and assessment quality. 

First, the inferences about the existence of a particular construct or trait in a student made from 

data generated by the assessment items should be accurate (valid). If a particular trait is present, 

inferences about the construct based on responses to that item should support a conclusion that a 

student possesses that trait or construct. If the trait is not present, it should support the opposite 

inference. Second, the inferences made about whether or not the construct is present in a student 

should be consistent across items that supposedly measure the same construct, and that construct 

should be apparent across measurement occasions. In other words, if a test-taker responds to an 
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item multiple times within the same test or on different testing occasions, the inference about the 

presence of the construct should not change, given that the construct itself has not changed. The 

same should be true about multiple items that supposedly assess the same construct. Each item 

should provide the same evidence about whether the construct is present or not. In other words, 

the test should provide consistent (reliable) results. 

Here again, it is important to caveat the preceding paragraph. Over 50 years ago, Campbell 

and Fiske (1959) demonstrated the importance that the items used to measure the trait or 

construct of interest not all be the same or even very similar. This point was emphasized again 

by Messick (1989). Once again, the process of developing various item specifications to measure 

similar concepts using various prompts and at varying levels of cognitive demand helps ensure 

that this type of item quality inheres in the process of item development. We test student 

understanding using a number of different pencil-and-paper items. In addition, we test students’ 

ability to successfully complete the levels of a math video game that requires them to understand 

rational numbers and add rational numbers together. This video game was also developed from 

the same knowledge specifications used to develop the item specifications.  

For the present study, we investigated a number of lines of evidence to determine that the 

developed assessments had sufficient technical quality to allow us to accurately and consistently 

infer that students understood the meaning of rational numbers and could add them. To that end, 

we investigated the validity (accuracy) of the inferences we wished to make about the students’ 

understanding of rational numbers and rational number addition based on the assessment items 

we developed. In addition, we determined the consistency (reliability) of the items and forms that 

resulted from our development process.  

We investigated two sources of evidence to evaluate the validity of the inferences we were 

making: 

 Evidence about the content of the assessments. Specifically, did the assessment 
cover the breadth of the construct (understanding of rational number addition) and at 
sufficient depth to support our claim that it adequately measures this construct? Was 
the construct adequately represented? 

 Evidence from other activities requiring the same construct. Specifically, did 
performance on the pretest (ostensibly a measure of student understanding of rational 
number addition) adequately predict performance on the game (a different measure of 
student understanding of the construct of rational number addition)? 

We also calculated three different measures of reliability of the items and forms: 

 Interitem reliability. This comparison answered the question of whether items on a 
form were consistently measuring the same construct, namely student understanding of 
rational number addition, in relationship to other items and to the test as a whole. 
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 Item test-retest reliability. This comparison determined whether students performed 
the same on identical items from pretest to the posttest, given that they had no 
intentional, intervening instruction on the assessed content. 

 Form test-retest reliability. This comparison looked at overall score correlations for 
individual students on the pretest and the posttest to determine if both provided the 
same (i.e., a consistent) evaluation of student ability given that no intentional 
instruction was provided during the interim. 

Evaluating the Evidence of Technical Quality 

To ensure that the evidence we collected assessed the content at the depth and breadth 

necessary to draw valid conclusions, we generated key foundational (“big”) ideas as previously 

described and developed or found items for each of the item specifications associated with one of 

the foundational ideas. These ideas were then used to create various levels in the game. This 

assured that the game and the assessments would be aligned. Consequently, it was hypothesized 

that a percent correct score on pretest items would predict the quality of game performance (as 

measured by the maximum level a student reached in game play). Since percentage correct on 

the pretest is a scale variable and success at game levels requiring these components of 

understanding is an ordinal variable, we used Spearman’s rho to determine the degree and 

significance of the correlation between these measures. 

Interitem reliability, item consistency from pretest to posttest, and form consistency 

between pretest and posttest, as a whole, were calculated using Cronbach’s alpha. The 

correlation between the pretest (before game play) score and the posttest (after game play) score 

served as a measure of test-retest reliability since the students in this study played a version of 

the game with minimal math instruction (as described in the following subsection). We also 

computed the point-biserial correlation to determine the correlation between a dichotomous item 

score (a nominal variable) and total test score without the item (a scale variable).  

Description of the Rational Number Video Game (PuppetMan) Task 

In the rational number addition video game (called PuppetMan), students are presented 

with the challenge of bouncing a small sack-like doll over various hazards in order to get it 

safely to the other side. To do so, students place small trampolines at various fixed locations 

along a one- or two-dimensional grid. Each trampoline is made “bouncy” by dragging coils onto 

the trampoline. The distance each coil will cause PuppetMan to bounce is commensurate with its 

length. Therefore, if you add a coil of 1 unit to a trampoline, that trampoline will cause 

PuppetMan to bounce exactly one unit. In PuppetMan, one whole unit is always the distance 

between two lines. It is this unit that becomes the referent for coils of fractional bounce later on. 

Coils can be added to a trampoline to increase the distance PuppetMan will bounce; however, 
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only identical coils can be added together. While any size coil can be placed on the trampoline 

initially, subsequent coils can only be added to the trampoline if they are the same size. Initially, 

whole unit (integer) coils can be added one at a time, reinforcing the meaning of addition even 

with integers.  

The game exploits the fact that real numbers can be broken into smaller, identical parts 

(decomposed), if necessary, to facilitate addition and to demonstrate that this process is similar in 

both integer and fractional addition. The intent is to make explicit connections between integer 

addition (with which many students have confidence) and fractional addition (with which many 

students struggle). Moreover, the game play requires that players (students) be attentive to the 

size of a unit they are adding. Unlike many previous games designed to teach mathematics, 

however, fluency with the basic ideas (the learning goals as specified in the knowledge 

specifications) in PuppetMan is integral, not ancillary, to game play. 

As game play proceeds, the trampolines must be placed at distances along the grid that are 

fractional parts of the whole unit. Consequently, students are given a set of coils, then shown 

how to break coils into fractional units. Since only identical units can be added together (in 

agreement with the foundational idea of addition), students must be attentive to what the rational 

number means, to what units are being added, to what units are already on the trampoline, and to 

how they will break coils into different size pieces. So while students can add a coil that is a 1/2 

unit to another coil that is also a 1/2 unit, they are not allowed to add a coil that is a 1/2 unit to a 

coil that is a whole unit until the whole unit is broken into two 1/2-unit coils. At the time all three 

of these coils are added to the trampoline, the trampoline will show that it has 3/2 (rather than 1 

1/2) units of bounce (see Knowledge Specification 2.3.0 in Appendix A for further explanation). 

As noted previously, this is intended to reinforce both the meaning of addition and to reinforce 

the player’s understanding of the meaning of rational numbers. 

In the first two versions of PuppetMan, the procedure for converting fractions of different 

sizes (i.e., fractions with different denominators) is not accomplished through multiplication 

since that was beyond the specified learning goals (knowledge specifications) around which the 

game was designed. Rather, students were shown how they could use the mouse to click on a 

coil and then scroll up or down to break the coil into more pieces (each smaller in size) or fewer 

pieces (each larger in size), respectively. The fractional representation of the coil was shown 

alongside each coil as the student scrolled on the coil. For example, if a student clicked on a coil 

that was one whole unit in length and scrolled up, the coil broke into two halves, then three 

thirds, etc. If the student used the same procedure with a 1/2 coil, then the coil broke into two 

fourths, three sixths, etc. As long as students did not click somewhere else on the game, they 

could also scroll down on these same coils to make fewer pieces that were larger in size. 
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As shown in Appendix B, the grid representation was also used to convey the meaning and 

use of rational numbers. As mentioned previously, one whole unit was always the space between 

two red lines. In the one-dimensional game, the red lines denoting unit were vertical, and in the 

two-dimensional game these unit lines were both vertical and horizontal. Fractional parts of that 

distance were represented as the distance between green dots placed equidistantly between red 

lines along the grid. 

Two versions of the game were developed to test the impact of design variations in type of 

instruction on math and game outcomes. The control condition was a game that provided 

instruction about the mechanics of playing the game. For example, this game condition taught 

students how to drag coils onto the trampolines and how to move the trampolines onto the grid. 

The control condition did provide small amounts of conceptual instruction because the math was 

so strongly integrated into the actual game play. In some cases, such as scrolling the coils, 

explaining game mechanics was synonymous with representing a basic math concept. This 

instruction was minimized in the control condition as much as possible and was intended to teach 

students how to play the game rather than to increase understanding of how a unit is defined, of 

rational numbers and their relationship to that unit, or of addition. The second version of the 

game—the treatment—contained a great deal more instruction and help for the students. It 

helped students, for example, understand the meaning of the denominator and its importance in 

choosing the correct size pieces to add, the numerator’s importance for choosing the number of 

those pieces to combine, and the meaning of addition as related to both integer and non-integer 

rational numbers. In this way, the treatment and control conditions were very different. 

The two versions of the game allow us the opportunity to test various hypotheses. For 

example, by comparing the treatment and control conditions, we can determine if students 

learned better with feedback designed to improve understanding of rational number addition than 

without such feedback. More important to this paper, however, is that we can use the control (no 

significant math instruction) condition to empirically test the quality of the measures (pretest, 

game, and posttest) of each student’s understanding of rational number addition.  

The Sample 

In the present study, four samples of students were drawn from a high school summer 

school population. Our purpose was to measure student understanding of rational number 

addition. The students were a convenience sample based on subject availability at the time the 

first prototype of the game was completed. They were drawn from groups of students enrolled in 

summer school at two large, public high schools in a southern California school district. The 



 

13 

total sample consisted of 186 students. Each of these students took a pretest, played one of the 

two versions of the game, and took the posttest.  

The students were enrolled in summer school for various reasons, which contributed to the 

diversity of the sample. The first group in the sample consisted of students trying to pass a high-

stakes state test to prove proficiency in Introductory Algebra (n = 49). The second group of 

students were studying to retake a different high-stakes test—the California High School Exit 

Exam (CAHSEE)—on which a passing score is necessary to earn a high school diploma 

(n = 27). Another group of students were taking a keyboard class so that they could take more 

desirable elective classes the following year (n = 49). The final group was composed of students 

(n = 61) who were taking a course to make up for less-than-proficient performance in their 

English and Language Arts class the previous school year. Consequently, the sample contained 

students likely to have varying math abilities and, more importantly, likely to have disparate 

understandings of rational numbers. 

After the pretest, the students were randomly assigned to one of the two versions of the 

game. Students in both groups were then given 30 to 50 minutes to play the game (depending on 

the class schedule at the local school). Unfortunately, we encountered technical problems with 

the student log files in the Introductory Algebra group that prevented us from determining the 

game level they had achieved. Consequently, the sample size for this aspect of the study 

(comparing pretest results to game level achieved) was reduced to 137 students. 

All students then took the posttest. While all items on the posttest were developed using the 

procedure for developing knowledge and item specs (as described in the methods section), not all 

items exactly duplicated items that were on the pretest. Several new items were introduced on the 

posttest for various reasons. First, we added items to the posttest that directly related to the game 

environment so that we could determine if the format of these items made them easier or harder 

to answer than items that were presented using a more typical math symbology. In part, this was 

an effort to ensure that the posttest would consist of at least some items that were sensitive to the 

game environment and to see if those items detected learning that more traditional items did not. 

These items also allowed us to assess knowledge of rational number addition using a different 

format as Campbell and Fiske (1959) suggest.  

For various parts of the present study, we narrowed the sample size even further. Since our 

goal in much of the present study was to assure that inferences from the pretest are highly 

correlated with inferences from the game and with inferences from the posttest, we excluded 

students who received instruction that was intended to improve their mathematical understanding 

and performance on the game (i.e., students in the treatment condition). While the students in the 
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remaining (control) condition sample did receive instruction on how to play the game, providing 

such instruction to this group was necessary in order to control for mediating factors unrelated to 

the construct of interest (e.g., understanding the interface in order to play the game versus how to 

use rational number addition to play the game). Furthermore, providing instruction minimized 

criterion-irrelevant variance (e.g., students who could determine how to use the mouse scroll 

wheel to produce parts of coils on their own from those who could not) in game play. Of the 

original sample, then, 68 students remained—14 students in the CAHSEE class, 23 students in 

the Keyboarding class, and 31 students in the English class. 

Finally, we limited our analysis (where applicable) to students who answered all items on 

both the pretest and the posttest. Several students either made no attempt to complete any items 

on a test, or they left parts of the test completely blank. In many cases, it was difficult to 

determine if the student did not know an answer or if they just decided not to write an answer to 

a particular question even though they were asked to write “don’t know” on items that they did 

not know the answer to. Consequently, we made the decision to analyze only those students who 

attempted every answer. Combined with the previous restrictions, this left 58 students in our 

sample of control students who had complete pre-tests and data on their level in the game after 

30 minutes of playing the game. Of these students, 7 in the CAHSEE class, 17 in the 

Keyboarding class, and 22 in the English class (a total of 46) had complete posttests.  

Determining the Technical Quality of the Game and Other Measures 

The first step in determining the technical quality of the pre- and posttest items was to 

evaluate the accuracy of the inferences made from the test questions. We hypothesized that a 

student’s pretest score should predict game performance as determined by how far in the game a 

student could get. Obviously, such an analysis presupposes that the students of interest are not 

exposed to actual math instruction during the game. We contend that since both of these 

measures were designed to assess the construct described by the knowledge specifications, a 

strong correlation between the pretest and game level would be evidence that inferences from 

each are valid (accurate) indicators of student understanding of rational number addition. The 

breadth of such a claim would be determined by an analysis of the content actually assessed and 

used in the game. This would be determined by a content analysis and alignment study. 

Based on previous literature indicating that female students in secondary school are less 

likely to demonstrate proficiency in math and are less likely to play video games, we also tested 

the inferences made from the pretest, the posttest, and the game for gender bias. Moreover, since 

it seems logical that prior experience playing video games could have a significant effect on 

student performance in subsequent game play (including PuppetMan), we expected this variable 
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to also be correlated with game performance. Consequently, the correlation between video game 

experience and performance in PuppetMan (and the interaction with gender) was also evaluated 

to ascertain their effects as mediators or moderators of game achievement. 

Next, we analyzed how well the items together measure the same construct (the interitem 

reliability of the pre- and the posttest forms) and how well each item predicts its respective 

overall test score (the point-biserial correlation). A high interitem reliability coefficient suggests 

that the items, as a whole, are measuring the same construct. This would be expected if the items 

are measuring the knowledge specified and if the knowledge specifications adhere together as 

expected. A high point-biserial correlation, on the other hand, suggests that items are functioning 

as expected— students that score higher on the overall test are more likely to answer a question 

correctly than students who score lower on the test. If students with higher overall test scores are 

answering individual items incorrectly with greater frequency than students with lower test 

scores, this could be an indicator that something in the item itself (e.g., a diagram or something 

else in the item’s presentation), rather than the construct being measured, could be causing 

students to miss the item. Alternatively, when students who perform lower on the test overall get 

an item correct more often than would be expected based on overall test score, this could be an 

indication that something in the item (e.g., wording, etc.) rather than understanding the intended 

construct might be the source of student success. 

Although Scott (1960) suggested that interitem and point-biserial correlation are 

mathematically synonymous, we used both to measure how each item contributes to the overall 

score and to ensure that each individual item is behaving as anticipated (SPSS, 2000). Moreover, 

since we and others have seen high interitem reliability on tests that contain items with low, or 

even negative, point-biserial correlations (Sturmey, Matson, and Sevin, 1992; Vendlinski and 

Phelan, 2009), we analyze both of these statistics. Finally, we evaluate the interitem correlation 

coefficient if each item were removed from the test. This analysis provides us a measure of 

which item(s) might be removed if either reliability needed to be improved or the test needed to 

be shortened and reliability maintained. Such a statistic can identify items that might be removed 

even if each of the item’s other parameters described above are acceptable.  

To complete our analysis of item consistency, we also investigated the correlation between 

how an item functions on the pretest and how the same item functions on the posttest, that is 

after the student has a reasonable time to forget their initial response to the item. The correlation 

between these items should be high if the items are consistently measuring the same construct. A 

pitfall with such a procedure, however, is that students might learn from the pretest itself and, as 

a result, answer items on the posttest more correctly than they did previously. Consequently, we 

evaluated our data to isolate such learning effects.  
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Results 

Content Coverage 

Table 1 shows the coverage of the first two knowledge specifications after the items were 

drafted, reviewed, selected, and edited for test use. Additional items (approximately twice as 

many items as needed) were developed from the test and item specifications (shown in 

Appendix A) but were not initially used. 

Three things are immediately evident in Table 1. First, the vast majority of items on both 

the pretest (80%) and on the posttest (69%) assess more than one, single knowledge 

specification, even though the knowledge specification process focused on writing or finding 

items that addressed a particular knowledge specification. For example, Test Item 10 addressed 

Knowledge Specifications 1.3.2, 1.3.3, 1.3.4, and 2.1.3. Nevertheless, unlike Item 10, most items 

do seem to address only one of the two key ideas. On the pretest, 75% of the items address only 

the first or only the second key idea (out of 20 items, 6 address the first key idea, 9 address the 

second key concept, and 5 address both); on the posttest, approximately 86% of the items draw 

on knowledge from a single key idea (out of 36 items, 14 address the first key concept, 17 

address the second key idea, and 5 address both). So while most items may be assessing the key 

ideas broadly, most are doing so within a defined conceptual area rather than across the two key 

conceptual areas.  

A second point to note from Table 1 is that the items broadly test most content across all 

game levels. In other words, while the game was built to use progressively more challenging 

concepts—integer addition, rational number addition with common denominators, and rational 

number addition with dissimilar denominators—in one and then in two dimensions, the test 

seems to measure the concepts necessary for success on these concepts broadly and across levels. 

Consequently, specific knowledge specifications are not associated with specific levels of the 

game, and specific items do not test specific game levels. In fact, with the exception of levels 

designed largely to teach game mechanics (Levels 1, 2, 3, 10, 11, and 12), each level uses both 

key conceptual ideas. 

A final point to note from Table 1 is that some specific concepts are not being addressed by 

the assessments. In particular, the following Knowledge Specifications are addressed by the 

game, but are not assessed by any of the assessment items: 

 1.2.0—In mathematics, one unit is understood to be one of some quantity (intervals, 
areas, volumes, etc.). 
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 2.1.2—Positive integers can be broken (decomposed) into parts that are each one unit 
in quantity. These single (identical) units can be added to create a single numerical 
sum). 

 2.3.0—Dissimilar quantities can be represented as an expression or using some other 
characterization, but are not typically expressed as a single sum.1  

Moreover, the Knowledge Specification that addresses additive identity (Specification 

2.4.0) and the Knowledge Specification that addresses the concepts of positive numbers, 

negative numbers, and the additive inverse (Specifications 2.5.0 through 2.7.0) are not addressed 

at all (either by the assessments or in the game).  

Table 1 

Comparison of Knowledge Specifications to Game Level, Pretest Items, and Posttest Items 

Game Level Knowledge 
Specs. 

Items on Pretest  
(Form 1) 

Items on Pretest  
(Form 2) 

Items on Posttest 

1 – One jump of 
one whole unit 
with one whole-
unit coil 

1.1.0 2, 8, 16, 17, 19, 20, 
21  

2, 9, 16, 17, 19, 20, 21  2, 8, 9, 16, 17, 19, 20, 
21, 22 

1.2.0 Not assessed Not assessed Not assessed 

1.3.0 20 20 20, 22 

2 – One jump of 
two whole units 
with two 
whole-unit coils 

1.1.0 2, 8, 16, 17, 19, 20, 
21 

2, 9, 16, 17, 19, 20, 21  2, 8, 9, 16, 17, 19, 20, 
21, 22  

1.2.0 Not assessed Not assessed Not assessed 

1.3.0 20 20 20, 22 

1.3.1 19 19 19 

1.3.2 10 10 10, 22 

1.3.4 10 10 10, 22, 26, 28 

2.1.0 11 12 11, 12, 23 

2.1.1 11 12 11, 12, 23 

2.1.2 Not assessed Not assessed Not assessed 

2.2.0 11, 14, 15, 19 12, 13, 15, 19 11, 12, 13, 14, 15, 19, 
23, 24 

3 – Two jumps of 
one whole unit 
with one whole-
unit coil each 

1.1.0 2, 8, 16, 17, 19, 20, 
21  

2, 9, 16, 17, 19, 20, 21  2, 8, 9, 16, 17, 19, 20, 
21, 22  

1.2.0 Not assessed Not assessed Not assessed 

1.3.0 20 20 20, 22 

4 – Two jumps of 
two whole units 

1.1.0 2, 8, 16, 17, 19, 20, 
21  

2, 9, 16, 17, 19, 20, 21  2, 8, 9, 16, 17, 19, 20, 
21, 22  

                                                 
1 We are considering numbers like 2¾ to have an implied addition. In other words, 2¾ = 2 + ¾, whereas 11/4 is a 
single sum. 
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Game Level Knowledge 
Specs. 

Items on Pretest  
(Form 1) 

Items on Pretest  
(Form 2) 

Items on Posttest 

with two whole-
unit coils each 

1.2.0 Not assessed Not assessed Not assessed 

1.3.0 20 20 20, 22 

1.3.1 19 19 19 

1.3.2 10 10 10, 22 

1.3.4 10 10 10, 22, 26, 28 

2.1.0 11 12 11, 12, 23 

2.1.1 11 12 11, 12, 23 

2.1.2 Not assessed Not assessed Not assessed 

2.2.0 11, 14, 15, 19 12, 13, 15, 19 11, 12, 13, 14, 15, 19, 
23, 24 

5 – One jump of 
one whole unit 
jumps with two 
1/2 unit coils 

1.1.0 2, 8, 16, 17, 19, 20, 
21 

2, 9, 16, 17, 19, 20, 21 2, 8, 9, 16, 17, 19, 20, 
21, 22 

1.2.0 Not assessed Not assessed Not assessed 

1.3.0 20 20 20, 22 

1.3.3 10, 21 10, 21 10, 21, 22, 25, 27, 29, 
30 

1.3.4 10 10 10, 22, 26, 28 

2.1.0 11 12 11, 12, 23 

2.1.1 11 12 11, 12, 23 

2.2.0 11, 14, 15, 19 12, 13, 15, 19 11, 12, 13, 14, 15, 19, 
23, 24 

6 – One jump of 
1 1/2 units with 
one whole-unit 
coil and one 1/2 
unit coil 

1.1.0 2, 8, 16, 17, 19, 20, 
21 

2, 9, 16, 17, 19, 20, 21  2, 8, 9, 16, 17, 19, 20, 
21, 22  

1.2.0 Not assessed Not assessed Not assessed 

1.3.0 20 20 20, 22 

1.3.3 10, 21 10, 21 10, 21, 22, 25, 27, 29, 
30 

1.3.4 10 10 10, 22, 26, 28 

2.1.0 11 12 11, 12, 23 

2.1.1 11 12 11, 12, 23 

2.2.0 11, 14, 15, 19 12, 13, 15, 19 11, 12, 13, 14, 15, 19, 
23, 24 

2.3.0 Not assessed Not assessed Not assessed 

7 – Two jumps 
(one of 1 1/2 units 
and one of 1/2 
unit) with two 
whole coils 

1.1.0 2, 8, 16, 17, 19, 20, 
21  

2, 9, 16, 17, 19, 20, 21 2, 8, 9, 16, 17, 19, 20, 
21, 22 

1.2.0 Not assessed Not assessed Not assessed 

1.3.0 20 20 20, 22 
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Game Level Knowledge 
Specs. 

Items on Pretest  
(Form 1) 

Items on Pretest  
(Form 2) 

Items on Posttest 

1.3.1 19 19 19 

1.3.2 10 10 10, 22 

1.3.3 10, 21 10, 21 10, 21, 22, 25, 27, 29, 
30 

1.3.4 10 10 10, 22, 26, 28 

2.1.0 11 12 11, 12, 23 

2.1.1 11 12 11, 12, 23 

2.1.2 Not assessed Not assessed Not assessed 

2.1.3 10, 14, 15 10, 13, 15 10, 13, 14, 15, 24 

2.2.0 11, 14, 15, 19 12, 13, 15, 19 11, 12, 13, 14, 15, 19, 
23, 24 

2.3.0 Not assessed Not assessed Not assessed 
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Game Level Knowledge 
Specs. 

Items on Pretest  
(Form 1) 

Items on Pretest  
(Form 2) 

Items on Posttest 

8 – Two jumps 
(one of one whole 
unit and one of 
2/3 unit) with 1 
whole and three 
1/3 coils 

1.1.0 2, 8, 16, 17, 19, 20, 
21 

2, 9, 16, 17, 19, 20, 21 2, 8, 9, 16, 17, 19, 20, 
21, 22 

1.2.0 Not assessed Not assessed Not assessed 

1.3.0 20 20 20, 22 

1.3.3 10, 21 10, 21 10, 21, 22, 25, 27, 29, 
30 

1.3.4 10 10 10, 22, 26, 28 

2.1.0 11 12 11, 12, 23 

2.1.1 11 12 11, 12, 23 

2.2.0 11, 14, 15, 19 12, 13, 15, 19 11, 12, 13, 14, 15, 19, 
23, 24 

9 – Two jumps 
(one of 4/6 unit 
and one of 2/6 
units) with one 
1/2 and three 1/3 
coils 

1.1.0 2, 8, 16, 17, 19, 20, 
21 

2, 9, 16, 17, 19, 20, 21 2, 8, 9, 16, 17, 19, 20, 
21, 22 

1.2.0 Not assessed Not assessed Not assessed 

1.3.0 20 20 20, 22 

1.3.1 19 19 19 

1.3.2 10 10 10, 22 

1.3.3 10, 21 10, 21 10, 21, 22, 25, 27, 29, 
30 

1.3.4 10 10 10, 22, 26, 28 

2.1.0 11 12 11, 12, 23 

2.1.1 11 12 11, 12, 23 

2.1.2 Not assessed Not assessed Not assessed 

2.1.3 10, 14, 15 10, 13, 15 10, 13, 14, 15, 24 

2.2.0 11, 14, 15, 19 12, 13, 15, 19 11, 12, 13, 14, 15, 19, 
23, 24 

2.3.0 Not assessed Not assessed Not assessed 

10 – Two-
dimensional grid. 
Whole units and 
whole coils 

1.1.0 2, 8, 16, 17, 19, 20, 
21  

2, 9, 16, 17, 19, 20, 21 2, 8, 9, 16, 17, 19, 20, 
21, 22 

1.2.0 Not assessed Not assessed Not assessed 

1.3.0 20 20 20, 22 

11 – Two-
dimensional grid. 
Whole units and 
whole coils 

1.1.0 2, 8, 16, 17, 19, 20, 
21 

2, 9, 16, 17, 19, 20, 21  2, 8, 9, 16, 17, 19, 20, 
21, 22 

1.2.0 Not assessed Not assessed Not assessed 

1.3.0 20 20 20, 22 

12 – Two-
dimensional grid. 

1.1.0 2, 8, 16, 17, 19, 20, 
21  

2, 9, 16, 17, 19, 20, 21 2, 8, 9, 16, 17, 19, 20, 
21, 22 
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Game Level Knowledge 
Specs. 

Items on Pretest  
(Form 1) 

Items on Pretest  
(Form 2) 

Items on Posttest 

1/2 units and 
whole coils 

1.2.0 Not assessed Not assessed Not assessed 

1.3.0 20 20 20, 22 

1.3.2 10 10 10 

1.3.3 10, 21 10, 21 10, 21, 22, 25, 27, 29, 
30 

13 – Two-
dimensional grid. 
1/2 units and 
whole and 1/3 
coils 

1.1.0 2, 8, 16, 17, 19, 20, 
21 

2, 9, 16, 17, 19, 20, 21  2, 8, 9, 16, 17, 19, 20, 
21, 22  

1.2.0 Not assessed Not assessed Not assessed 

1.3.0 20 20 20, 22 

1.3.1 19 19 19 

1.3.2 10 10 10, 22 

1.3.3 10, 21 10, 21 10, 21, 22, 25, 27, 29, 
30 

1.3.4 10 10 10, 22, 26, 28 

2.1.0 11 12 11, 12, 23 

2.1.1 11 12 11, 12, 23 

2.1.2 Not assessed Not assessed Not assessed 

2.1.3 10, 14, 15 10, 13, 15 10, 13, 14, 15, 24 

2.2.0 11, 14, 15, 19 12, 13, 15, 19 11, 12, 13, 14, 15, 19, 
23, 24 

2.3.0 Not assessed Not assessed Not assessed 

14 – Two-
dimensional grid. 
1/3 units and 
whole and 1/3 
coils 

1.1.0 2, 8, 16, 17, 19, 20, 
21 

2, 9, 16, 17, 19, 20, 21 2, 8, 9, 16, 17, 19, 20, 
21, 22  

1.2.0 Not assessed Not assessed Not assessed 

1.3.0 20 20 20, 22 

1.3.1 19 19 19 

1.3.2 10 10 10, 22 

1.3.3 10, 21 10, 21 10, 21, 22, 25, 27, 29, 
30 

1.3.4 10 10 10, 22, 26, 28 

2.1.0 11 12 11, 12, 23 

2.1.1 11 12 11, 12, 23 

2.1.2 Not assessed Not assessed Not assessed 

2.1.3 10, 14, 15 10, 13, 15 10, 13, 14, 15, 24 

2.2.0 11, 14, 15, 19 12, 13, 15, 19 11, 12, 13, 14, 15, 19, 
23, 24 

2.3.0 Not assessed Not assessed Not assessed 
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Game Level Knowledge 
Specs. 

Items on Pretest  
(Form 1) 

Items on Pretest  
(Form 2) 

Items on Posttest 

15 – Two-
dimensional grid. 
1/3 units and 
whole, 1/2, 1/3, 
1/4 and 1/5 coils 

1.1.0 2, 8, 16, 17, 19, 20, 
21 

2, 9, 16, 17, 19, 20, 21  2, 8, 9, 16, 17, 19, 20, 
21, 22  

1.2.0 Not assessed Not assessed Not assessed 

1.3.0 20 20 20, 22 

1.3.1 19 19 19 

1.3.2 10 10 10, 22 

1.3.3 10, 21 10, 21 10, 21, 22, 25, 27, 29, 
30 

1.3.4 10 10 10, 22, 26, 28 

2.1.0 11 12 11, 12, 23 

2.1.1 11 12 11, 12, 23 

2.1.2 Not assessed Not assessed Not assessed 

2.1.3 10, 14, 15 10, 13, 15 10, 13, 14, 15, 24 

2.2.0 11, 14, 15, 19 12, 13, 15, 19 11, 12, 13, 14, 15, 19, 
23, 24 

2.3.0 Not assessed Not assessed Not assessed 

Note. Missing numbers are for items developed but not used on the tests. 

Relationship between Tasks Requiring the Same Content Knowledge 

To ensure that the pretest is accurately reflecting student knowledge, we confirmed that 

students scored similarly on tasks requiring the same content knowledge. As was seen in Table 1, 

although most levels required the integration of the two key conceptual ideas, the levels became 

increasingly more difficult in one dimension and then increasingly more difficult in two 

dimensions. In particular, after being asked to add integers, students were asked to add fractions 

of the same size, and then fractions and integers. Ultimately, students had to add dissimilar 

fractions. As expected, scores on the pretest correlated with the level a student completed in the 

non-instructional version of the game. In particular, we noted a significant correlation between 

pretest score and game level achieved after 30 minutes of play (rho = .691, p < .001). Similar 

significant correlations were noted between a sum score of the items that just measured concepts 

from the first knowledge specification (Items 2, 8, 9, 16, 17, 20, and 21) and game level achieved 

at 30 minutes of play (rho = 0.580, p < 0.001) and a sum score of the pretest items that just 

measured concepts from the second knowledge specification (Items 11, 12, 13, 14, and 15) and 

game level achieved at 30 minutes of play (rho = 0.583, p < 0.001). The strongest correlation 

was between the sum score of the two items that were expected to measure both knowledge 

specification (Items 10 and 19) and game level achieved after 30 minutes of play (rho = 0.608, 
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p < 0.001). As might be expected from previous discussions and from the correlations just 

reported, the sum score of the items that just measure concepts from the first knowledge 

specification and the sum score of the items that just measure the second knowledge 

specification are also significantly correlated as (rho = 0.570, p < 0.001). 

We recorded the maximum level each student had attained in the game at ten-minute 

intervals ranging from 10 minutes to 90 minutes. Because of school schedules, however, most 

students only had approximately 40 minutes to play the game. While all the students were given 

about the same time to play the game, slight variations (up to 10 minutes) in play time occurred 

because of variations in school site class periods. Consequently, not every student had the full 40 

minutes to play. Students were also told that both the game and assessments were no-stakes. 

Consequently, most students played at the speed with which they felt comfortable or that allowed 

them to accomplish each level. With few exceptions, the maximum level the student achieved at 

the end of 30 minutes was predictive of (if not identical to) the maximum level the student had at 

40 minutes, at 50 minutes, etc., if they were allowed to play that long. The correlation between 

game level reached at 10 minutes and each subsequent 10-minute interval is shown in Table 2. 

Table 2 

Correlation Between Levels Reached after 10 Minutes and Subsequent 10-Minute 
Intervals 

 10 minutes 20 minutes 30 minutes 40 minutes 

20 minutes 0.786    

30 minutes 0.771 0.917   

40 minutes 0.771 0.898 0.954  

50 minutes 0.773 0.895 0.948 0.995 

Note. All correlations are significant at the p < 0.001 level 

The correlations in Table 2 suggest that using the game level achieved at 30 minutes rather 

than at 40 or 50 minutes is unlikely to dramatically alter the results reported above since the 

correlation between game levels achieved at 30 minutes and at a later time is very high.  

As noted above, we also decided to use only data from students in the control condition 

that completed all items on the pretest. Fifty-eight (58) students randomly assigned to the control 

condition completed the pretest. Nine (9) students in the control condition left one or more items 

blank on the pretest. We analyzed game performance for both of these groups to see if game 

level was significantly different for students included (i.e., those who completed all items) versus 

students excluded from the sample (i.e., those who left one or more test items blank). As shown 
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in Table 3, these two groups did not differ significantly in their game performance (t[11] = -1.51, 

p = 0.159). Consequently, the decision to exclude participants who did not fully complete the 

pre-test from our analysis is not expected to influence the results reported below. 

Table 3 

Mean Game Level Achieved after 30 Minutes by Students Who Did and Who Did 
Not Complete All Pre- and Posttest Items 

 N Mean SD 

Students who DID NOT complete all 
items on the pre- test 

9 12.11 2.98 

Students who DID complete all items 
on the pre-test 

58 13.74 3.29 

 

Given that percent score on the pretest was a scale variable and game level was ordinal in 

nature, we used Spearman’s rho to determine the degree and significance of the correlation 

between these measures. 

While the correlation between pretest and game level achieved after 30 minutes of play 

explains roughly half (48%) of the variance in the game level a student achieved2, we expect that 

other variables could be moderating this result, as previously hypothesized. In particular, since 

the task in which a student must demonstrate knowledge of rational number addition was playing 

a video game, we hypothesized that the amount of experience a student had with video games in 

general, how much they actually played video games, and the student’s self-reported ability in 

playing video games, in addition to math ability, might all account for variability in success in 

our video game task. In essence, such variables would account for the variability in game success 

that was attributable to video game play and not precisely to math ability. As expected, these 

variables all show a significant correlation with the highest game level a student achieved after 

30 minutes of play. The amount of time a student played video games each week had the greatest 

correlation with the game level a student achieved (rho = 0.521, p < 0.001); student self-

perceived game play ability (rho = 0.404, p = 0.002) was also strongly correlated with getting 

farther in PuppetMan. While still significant, the correlation between the number of years a 

student reported playing video games and level achieved after 30 minutes (rho = 0.345, 

p = 0.008) was not as strong as the two other measures of video game experience. 

Given the foundational nature of both addition and rational numbers (i.e., the Knowledge 

Specifications), we also expected results on the pretest to be correlated with general math 
                                                 
2 This relationship describes students playing the game version with no significant embedded math instruction. 
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performance and student self-perception of general math ability. While human subjects 

restrictions prevented us from obtaining actual student math grades, we did ask students in the 

control condition to report their overall grades in math since sixth grade (using the scale “Mostly 

A’s,” “Mostly B’s,” etc.) as well as their perception of their own mathematical ability. Once 

again, as expected, student scores on the pretest correlated with both self-reported overall math 

grades (rho = 0.489, p < 0.001) and student perception of math ability (rho = 0.477, p < .001). 

Each of these measures was also correlated with the highest level a student reached in the game 

after playing for 30 minutes (rho = 0.343, p = 0.009 for self reported math grades and 

rho = 0.394, p = 0.002 for perceived math ability).  

Since the literature suggests significant differences in the amount of video game play 

between girls and boys and knowing that such differences, rather than differences in conceptual 

knowledge, might affect the level a particular student achieved in the game, we wanted to test 

this source of construct irrelevant variance. As expected, gender (male = 0 and female = 1) is 

correlated with self-reported game play ability (rho = 0.427, p = 0.001), with self-reported total 

years of game play (rho = 0.297, p = 0.025), and with self-reported weekly amount of game play 

(rho = 0.363, p = 0.006). Given that each of these game play variables is also significantly 

correlated with the level a student reached in the game, it seems that gender might be a mediating 

factor in predicting game level outcome. In fact, the highest game level achieved is significantly 

correlated with gender (rho = 0.308, p = 0.021). Neither pretest score nor self-reported math 

grades, however, are significantly correlated with gender.  

Based on these results, we constructed a linear regression model to determine which of the 

variables (percent score on the pretest, weekly game play, or gender) best accounted for the 

differences in the game level a student ultimately achieved in PuppetMan. We began with a base 

model that included only pretest score and added in the other components in terms of their 

significance in predicting level in game after 30 minutes. Interaction terms were added after 

component terms in each case. As can be seen in Table 4, after the effects of pretest and weekly 

game play are included in the model, the effects of gender are no longer significant. The 

interaction term between pretest percentage score and amount of weekly game play were 

insignificant, and so they were dropped from the model before the gender term was added. In this 

model, pretest and weekly game play together explain over 64% of the variance in game 

performance as measured by level achieved after 30 minutes of play3.  

                                                 
3 This relationship describes students playing the game version with no significant embedded math instruction. 
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Table 4 

Regression Model of Pretest and Weekly Game Play to Predict Level of Performance in Game (Control Group) 

Model R R Square 
Adjusted R 

Square 
Std. Error of 
the Estimate

Change Statistics 

R Square 
Change F Change df1 df2 

Sig. F 
Change 

1 0.709a 0.503 0.493 2.35369 0.503 54.564 1 54 0.000 

2 0.801b 0.641 0.628 2.01701 0.139 20.532 1 53 0.000 

3 0.811c 0.658 0.638 1.98828 0.017 2.543 1 52 0.117 

Note. aPredictors: (Constant), Pretest Percent (Complete). bPredictors: (Constant), Pretest Percent (Complete), 
GAMEPLAY_WEEKLY/Amount of weekly video game play. cPredictors: (Constant), Pretest Percent (Complete), 
GAMEPLAY_WEEKLY/Amount of weekly video game play, BKGD_GENDER/Gender. 

Relationship between Items on a Particular Test Form (Interitem Reliability) 

A high degree of interitem reliability is some assurance that all the items on a test are 

measuring the same construct (Cronbach & Meehl, 1955). While the Knowledge Specifications 

detail two key concepts underlying student performance on this test, the analysis in Table 1 

suggests that these concepts are related in the present task. In particular, it suggests both are 

central to the concept of adding rational numbers.  

Various forms of the pretest and the posttest were used during the initial study. We report 

on each of these in order. All 27 CAHSEE students, 24 of the Keyboarding students, and 31 of 

the English students took Form 1 of the pretest. The interitem reliability was very high for this 

form (α = 0.918). Furthermore, as can be seen in Table 5, the point-biserial correlations were 

generally high (mean point-biserial is 0.541). A high point-biserial correlation suggests that 

performing well on an item is strongly correlated with scoring well on the overall test without 

that item included and is an indication of individual item quality within a test. Note that some 

items in Table 5 required students to supply a numerator and a denominator. Each of these items 

has three entries in the table: an overall, dichotomous item score; a dichotomous numerator score 

(item number with “N” suffix); and a dichotomous denominator score (item number with “D” 

suffix). In addition, Item 10 required students to properly order four fractions on the number line. 

The suffixes of these items represent their order from lowest (A) to highest (D) value. 
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Table 5 

Item Statistics by Item for Items Appearing on Pretest Form 1 

Item Point-biserial correlation Cronbach’s alpha if item deleted 

2 0.433 0.915 

8 -0.167 0.921 

10A 0.724 0.908 

10B 0.656 0.909 

10C 0.637 0.910 

10D 0.696 0.908 

11 0.478 0.914 

11N 0.140 0.918 

11D 0.478 0.914 

14 0.729 0.908 

14N 0.748 0.907 

14D 0.808 0.906 

15 0.737 0.908 

15N 0.780 0.907 

15D 0.748 0.907 

16 0.139 0.918 

17 0.681 0.909 

19 0.403 0.916 

20 0.429 0.915 

21 0.548 0.912 

 

Only one item displayed poor quality. The point-biserial for Item 8 suggests that students 

who do poorly on the overall test are more likely to get this item correct than students who do 

well on the test. In addition, the alpha statistic suggests that deleting Item 8 would result in a 

better correlation among the items. A further analysis suggests that this item was very easy for 

students. Approximately 95% of the students who attempted this item on the pretest answered 

the item correctly. Two other items (11N and 16) had marginal point-biserial correlation 

coefficients, but the overall form reliability was not estimated to change appreciably if these 

items were removed.  

Form 2 of the pretest was only used on the second day of testing and was taken by 25 of the 

Keyboarding students and 30 of the students in the English and Language Arts review class. 

Once again, the form displayed very high interitem reliability (α = 0.909). In addition, as can be 
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seen in Table 6, the point-biserial correlations were again generally high (mean point-biserial is 

0.532). Note that the same item coding scheme was used in this table as was done in Table 5. 

Table 6 

Item Statistics by Item for Items Appearing on Pretest Form 2 

Item Point-biserial correlation Cronbach’s alpha if item deleted 

2 0.523 0.905 

9 0.484 0.906 

10A 0.591 0.903 

10B 0.531 0.905 

10C 0.741 0.899 

10D 0.785 0.898 

12 0.170 0.911 

12N 0.123 0.912 

12D 0.250 0.910 

13 0.800 0.898 

13N 0.800 0.898 

13D 0.650 0.902 

15 0.740 0.899 

15N 0.740 0.899 

15D 0.685 0.901 

16 0.215 0.910 

17 0.530 0.905 

19 0.400 0.908 

20 0.425 0.907 

21 0.464 0.907 

 

Every item in this test displayed acceptable item quality. Four items (12, 12N, 12D, and 

16) had marginal point-biserial correlations, and the alpha coefficients suggest that the interitem 

correlation for the test as a whole would marginally improve if these items were dropped. As an 

aside, it should also be noted that Item 12 was the only rational number addition item that 

resulted in an improper fraction (i.e., the numerator is larger than the denominator). 

The posttest was given to each participant on the same day after each completed the pretest 

and then had a period of dedicated game play. The same posttest was used for each of the three 

groups and was composed largely of items on the pretest. As can be seen in Table 7, and as 
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previously discussed, the posttest included all the items from both pretests, as well as nine items 

(Questions 22–30) that asked questions in the context of the game. As with the pretests, the form 

displayed very high interitem reliability (α = 0.940). In addition, as can be seen in Table 7, the 

point-biserial correlations were again generally high (mean point-biserial is 0.515). Note that the 

same item coding scheme was used in this table as was done in Table 5 and Table 6. 
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Table 7 

Item Statistics by Item for Items Appearing on Posttest 

Item Point-biserial correlation Cronbach’s alpha if item deleted 

2 0.509 0.939 

8 0.017 0.942 

9 0.505 0.939 

10A 0.557 0.938 

10B 0.558 0.938 

10C 0.649 0.937 

10D 0.643 0.937 

11 0.544 0.938 

11N 0.130 0.941 

11D 0.544 0.938 

12 0.476 0.939 

12N 0.060 0.942 

12D 0.571 0.938 

13 0.782 0.936 

13N 0.741 0.936 

13D 0.728 0.937 

14 0.822 0.936 

14N 0.760 0.936 

14D 0.759 0.936 

15 0.749 0.936 

15N 0.802 0.936 

15D 0.731 0.937 

16 0.252 0.940 

17 0.534 0.938 

19 0.405 0.940 

20 0.479 0.939 

21 0.502 0.939 

22 0.555 0.938 

23 0.491 0.939 

24 0.687 0.937 

25 0.521 0.939 

26 0.501 0.939 

27 0.164 0.941 

28 0.174 0.941 

29 0.208 0.941 

30 0.435 0.939 
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As might be suspected from the pretest results, item quality was overwhelmingly good on 

the posttest. Only one item displayed poor quality. Once again, the point-biserial for Item 8 

suggests that students who do poorly on the overall test are more likely to get this item correct 

than students who do well on the test. In addition, the alpha statistic suggests that deleting Item 8 

would result in a better correlation among the items. Once again, however, these statistics are 

undoubtedly affected by the fact that over 91% of the students who attempted this item answered 

it correctly. Three other items (11N, 12N, 16) had marginal point-biserial correlation coefficients 

both on their respective pretests and on the posttest and the Cronbach’s alpha calculations 

suggest that the interitem reliability coefficient would improve if these items were dropped. 

Finally, three of the nine posttest items that included the game context had marginal point-

biserial coefficients. Here again, the Cronbach’s alpha calculations suggest the overall interitem 

correlation would be improved slightly if these items were deleted from the posttest. Given the 

high overall interitem reliability, these items could be dropped from the test without 

compromising reliability; however, new items to test Concepts 2.1.0 and 2.1.1 would need to be 

substituted for these items since, at present, these concepts are only tested by those items. 

Item Test-Retest Reliability 

Determining whether students perform the same on identical items from one test to the 

next, given that they had no intentional, intervening instruction on the assessed content is a 

further assurance that the items are measuring one or more constructs consistently (reliably). 

Students were given identical items on the pretest and the posttest. In some cases, all students 

had items on both the pre- and posttest (Items 2, 10, 15, 16, 17, 19, 20, and 21). In other cases, 

some students saw items on both the pre- and the posttest, while other students only saw the 

items on the posttest. For example, students taking Form 1 of the pre-test saw Items 8, 11, and 14 

on the pre- and posttest while students taking Form 2 of the pre-test only saw these items on the 

posttest. Students taking Form 2, on the other hand, saw Items 9, 12, and 13 on both tests, while 

students taking Form 1 only saw these items on the posttest.  

A chi-square analysis was completed for each of the pretest/posttest question pairs for the 

students who received the non-instructional version of the game. In every case, this analysis 

indicated that a student’s outcome on the pretest version of an item was a significant predictor of 

the student’s outcome on the identical posttest measure. Taken as a whole, the correlation 

between items that appear on both the pretest and the posttest for this entire group of students 

was significant (α = 0.940, p < 0.001). The correlation for items that appeared only on Form 1 of 

the pretest and the posttest and the items that appeared only on Form 2 of the pretest and the 

posttest were also significant (α = 0.867, p < 0.001 and α = 0.827, p < 0.001, respectively). 
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Item Test-Retest Effects 

Our study design also allowed us to measure the effect of students seeing an item for the 

first time on the pretest and then seeing an item again (on the posttest) versus just seeing an item 

for the first time on the posttest. We investigated whether students learn from and perform better 

on an item just because they have been asked to answer it before. To ascertain these differences, 

we explored how students taking Form 1 of the pretest differed in their posttest responses to 

Items 8, 11, and 14 from their peers who took Form 2 of the pretest and who, therefore, had not 

seen these items before. Similarly we explored how students taking Form 2 of the pretest differed 

in their posttest responses to Items 9, 12, and 13 from their peers who took Form 1 of the pretest 

and who, therefore, had not seen these items before. Finally, we explored how all the students 

scored on items that appeared both on the pretest and on the posttest (Items 2, 10, 15, 16, 17, 19, 

20, and 21) by comparing mean total score on these pretest items to mean total score on the same 

posttest items.  

In both cases, there were no significant differences between scores on the pretest and 

identical posttest items4. The 52 students who took Form 1 of the pretest (containing Items 8, 11, 

and 14) had a mean score of 4.808 for these items on the pretest and a mean score of 4.79 for 

these items on the posttest. The 53 students who took Form 2 of the pretest (containing Items 9, 

12, and 13) had a mean score of 5.13 for these items on the pretest and a mean score of 5.02 for 

these items on the posttest. Note that since two of the items had three parts each, the maximum 

score for the three items is 7 in each case. Neither of these differences is significant, however. As 

might be expected, student outcomes on these items on both tests are significantly correlated. 

Student performance on Items 8, 11, and 13 (Form 1 of the pretest) strongly predicts 

performance on those identical items on the posttest (α = 0.816, p < 0.001), while student 

performance on Items 9, 12, and 13 (Form 2 of the pretest) strongly predicts performance on 

those identical items on the posttest (α = 0.874, p < 0.001). There were also no significant 

differences between mean total scores on items that students saw on both the pre- and on the 

posttest (Items 2, 10, 15, 16, 17, 19, 20, and 21). On average, students scored 6.9 on these items 

on the pretest and 7.1 on these items on the posttest. The slight increase in average score was not 

enough to be significant (t[66] = 1.117, p = 0.268) 

Form Test-Retest Reliability 

Our final analysis looked at the consistency of the pretest and posttest measures of student 

ability to master these knowledge specifications. In this comparison, we looked at overall 

                                                 
4 This relationship describes students playing the game version with no significant embedded math instruction 
between pre- and post-test. 



 

33 

percentage scores on the pretest and on the posttest for individual students playing the non-

instructional game to determine if both tests provided similar evaluations of student ability. As 

expected, the correlation between a student’s percentage correct score on the pretest and that 

student’s percentage correct score on the posttest was very strong and significant (α = 0.903, 

p < .001).5 

Conclusions 

We set out to determine if an integrated method of building assessment and instruction (in 

this case, an instructional video game) would produce assessments and instruction of high 

technical quality. This paper documents that process and reports on the technical quality of the 

assessments ultimately used to evaluate student learning. 

The broad conclusion is that the process worked well to structure the process and generate 

assessments of outstanding technical quality. Arguably, the assessments demonstrated both 

weaknesses and strengths. In particular, the two weaknesses we identified concerned content 

coverage and an item with low discrimination. It was evident that, while certain items measured 

one of the two key ideas, a subset of items could not be used to assess the presence of a 

particular construct within either of those ideas. This was somewhat surprising as particular items 

were generated to test each particular construct. In addition, there were three cases (regarding 

Knowledge Specifications 1.2.0, 2.1.2, and 2.3.0) where a student’s grasp of a concept was only 

addressed in the game. There were four cases (regarding Knowledge Specifications 2.4.0–2.7.0) 

where the knowledge specification was not tested at all. This suggests that it is not possible to 

make statements about student ability regarding these concepts. Finally, one item (Item 8) 

demonstrated low point-biserial correlations with the larger test score. Although these appear to 

slightly weaken the test reliability, they should not be considered a flaw in the process. In fact, 

the process suggested these concerns might arise during item development. 

The knowledge specifications researchers actually tested were limited for two reasons. 

First, the initial version of the game was not designed to address certain knowledge 

specifications (2.4.0–2.7.0) because the game was developed in an incremental nature. For 

example, while negative numbers were addressed in the knowledge specifications, the initial 

version of the game did not allow for the use of negative numbers. Subsequent versions of the 

game were designed to include this topic. In this way, complete knowledge specifications 

provided an overview of the full featured game and provided a road map for game development 

even though the initial version of the game did not allow for the use of such knowledge. 

Consequently, the assessments were limited so that they would align to the game by assessing 

                                                 
5 This relationship describes students playing the game version with no significant embedded math instruction. 
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only the knowledge a player had the opportunity to use and demonstrate in the game. The 

procedure described allows both for subsequent game development (i.e., provides a road map for 

future development of the game and assessments) and ensures alignment between the tasks 

students are asked to perform in both the game and on the assessments. In this way, the 

specifications performed their role exactly as intended. 

The second reason that not all knowledge specifications were covered by the assessments 

involved classroom time constraints. Because the time available for testing and game play was 

limited to a single class period, researchers had to allow adequate time for each activity. 

Furthermore, researchers did not want either the pre- or posttest to become a timed (speeded) 

event, and researchers made every attempt not to fatigue students with pretesting prior to game 

play so as not to adversely affect game performance. This decision mandated a similar restriction 

on items tested on the posttest so that the pre- and posttests would be largely parallel. 

Consequently, while the game used the decomposition and addition of integers to teach students 

the mechanics of the game, items assessing these concepts were not used on either test. For this 

reason, it could be argued that the assessments and game were not completely aligned and that 

the assessments did not completely sample the conceptual areas of interest. Nevertheless, it 

should be noted that our process for creating and selecting items identified these shortcomings 

prior to testing and that researchers made an informed decision to drop those items prior to field 

testing. As such, the exclusion of the items testing these concepts was intentional rather than an 

oversight. Moreover, given that items were designed to measure these concepts as part of the 

development process, the assessments could easily be modified to include such items if field 

testing warranted. By linking the specifications with the game, it became easy to both prioritize 

items for elimination and to eliminate them in a logical manner. Here again, the process 

performed exactly as intended. 

With one exception, the process also generated items that had outstanding technical quality. 

Not only did performance on the pretest predict subsequent performance on a dissimilar task 

designed from the same specifications, it also accounted for the largest part of variability in that 

performance. Moreover, the process of item development yielded test forms (both pre- and post-) 

that demonstrated high interitem reliability (both above 0.9) and, overwhelmingly, items that 

were strongly correlated with overall game (task) performance. The items and forms also 

demonstrated strong test-retest reliability, while showing little evidence that students learned the 

concepts being assessed merely by being exposed to the items tested on the pre-test. 

A limitation of this research is that the only items actually researched with students were 

items that tested understanding of the two key ideas at a procedural level. While items were 

developed to test student conceptual understanding, they were not used with the student 
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population identified in this paper. In part, this was because such items require more time to take 

and more time to score. 

Further research continues on expanding the use of items testing conceptual understanding, 

as well as expanding the concepts tested. Currently, the PuppetMan game and assessments have 

been expanded to test the knowledge specifications not included in this first field trial. In 

addition, this development process has been applied to the domain of solving equations. New 

knowledge specifications have again driven game and assessment development in that domain. 

Together, these experiences and the research cited here suggest that developing knowledge 

specifications that drive the development of item specifications and assessment items, as well as 

instruction (in this case, an instructional game), can produce tasks and assessments that 

demonstrate outstanding technical quality. 
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APPENDIX A 

KNOWLEDGE SPECIFICATIONS 

Knowledge Specs 

Computational Fluency: Students can execute 
procedures in the domain without the need to create or 
derive the procedure. Fluid performance is based on 
recall of patterns or other well established procedures 
and is fast, automatic, and error-free.  
How is something done?

Conceptual Understanding: Captures demonstration of 
understanding of the mathematical concepts.  
Why is something done? 

When presented with… 
(Assessment Stimulus) 

Students should be 
able to… 

When presented with… 
(Assessment Stimulus) 

Students should be able 
to… 

1.0.0. Does the student understand the importance of the 
unit whole or amount? 

    

 1.1.0. The size of a rational number is relative to 
how one Whole Unit is defined. 

Any rational number… Place it on a number line 
relative to the whole 
interval explicitly (0 and 
1 labeled) or implicitly 
(0 and an integer other 
than 1 labeled) defined. 

Apparent contradictions 
involving rational number 
such as ¾ < ½ or ½ does 
not equal ½. 

Explain that the 
contradiction can be 
resolved if their relative 
wholes must be equal when 
comparing. 

Given a unit whole 
(interval, volume, area, 
etc.)… 

Show how much of the 
whole must be shaded to 
represent a fractional 
amount. 

  

 1.2.0. In mathematics, one unit is understood to 
be one of some quantity (intervals, areas, 
volumes, etc.). 

A histogram of a certain 
quantity represented by 
discrete objects… 

Identity the unit that 
each single discrete 
object represents (e.g., 
each rose represents 
thousands of flowers 
sold on Valentine’s 
Day).  

Given a relationship 
between a real world 
measure and a scale 
model… 

Explain how what size of 
unit to use on the model to 
accurately represent the real 
world quantity (e.g., 1 inch 
equals 25 feet since the real-
world measure is 100 feet 
and the model can be up to 4 
inches in length). 

 1.3.0. In our number system, the unit can be 
represented as one whole interval on a number 
line. 

Given a number line 
labeled with consecutive 
integers that may or may 
not include zero… 

Show the unit interval 
that fits with the given 
number line or 
accurately place another 
non-consecutive integer 
on the number line. 

A number line that is 
labeled by skip units (2, 4, 
6, etc.) or a line labeled by 
½ units that may or may 
not include zero  

Explain how to determine 
where other integer and 
rational values should be 
placed. 
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Knowledge Specs 

Computational Fluency: Students can execute 
procedures in the domain without the need to create or 
derive the procedure. Fluid performance is based on 
recall of patterns or other well established procedures 
and is fast, automatic, and error-free.  
How is something done?

Conceptual Understanding: Captures demonstration of 
understanding of the mathematical concepts.  
Why is something done? 

When presented with… 
(Assessment Stimulus) 

Students should be 
able to… 

When presented with… 
(Assessment Stimulus) 

Students should be able 
to… 

  1.3.1. Positive integers are represented 
by successive whole intervals on the 
positive side of zero. 

An integer number line 
labeled with 0 and 1… 

Label other integer 
values. 

An integer number line 
labeled with 0 and some 
integer other than 1… 

Explain how to identify the 
whole interval and then use 
it to accurately place the 
integers between 0 and the 
given integer on the number 
line. 

  1.3.2. The interval between each 
integer is constant once it is 
established. 

Given a number line with 
marks between integers 
(e.g., every x mark equals 
1 interval)… 

Label other integer 
values. 

Given a number line with 
at least zero and one other 
integer labeled… 

Explain how to accurately 
place other larger or smaller 
integers on the number line. 

  1.3.3. Positive non-integers are 
represented by fractional parts of the 
interval between whole numbers. 

Given a number line with 
marks between integers 
(e.g., every x mark equals 
1 interval)… 

Label rational values 
including rational 
numbers greater than 1. 

Given a number line with 
at least zero and one other 
integer labeled… 

Explain how to label or 
place other rational values 
on the number line. 

  1.3.4. All Rational Numbers can be 
represented as additions of integers or 
fractions. 

Given any non-unitary 
integer or rational 
number… 

Show the addition of 
ones (in the case of an 
integer) or unitary 
fractions (in the case of 
the rational) that would 
produce the given 
number. 
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Knowledge Specs 

Computational Fluency: Students can execute 
procedures in the domain without the need to create or 
derive the procedure. Fluid performance is based on 
recall of patterns or other well established procedures, 
and is fast, automatic, and error-free.  
How is something done?

Conceptual Understanding: Captures demonstration of 
understanding of the mathematical concepts.  
Why is something done? 

When presented with… 
(Assessment Stimulus) 

Students should be able 
to… 

When presented with… 
(Assessment Stimulus) 

Students should be able 
to… 

2.0.0. Does the student understand the meaning of 
addition? 

    

 2.1.0. To add quantities, the units (or parts of 
units) must be identical. 

Given a fraction and a 
sum with a similar or 
dissimilar denominator… 

Determine fraction that 
must be added to 
produce the indicated 
sum. 

  

  2.1.1. Identical (or common) units can 
be descriptive (e.g., apples, oranges, and 
fruit) or they can be quantitative (e.g., 
identical lengths, identical areas, etc.). 

Given quantities with 
similar units… 

Determine the common 
unit that will “allow” 
addition. 

  

  2.1.2. Positive integers can be broken 
(decomposed) into parts that are each 
one unit in quantity. These single 
(identical) units can be added to create a 
single numerical sum. 

Given objects that 
represent a collection of 
ones (e.g., a $5 bill and a 
$2 bill or a 3-gallon bottle 
of anti-freeze and a 2-
quart bottle of anti-
freeze)… 

Determine the number of 
a given unit in each 
quantity by decomposing 
into equal numbers of 
unitary units (e.g., five 
$1 and two $1). 

  

  2.1.3. Each Whole Unit or part of a 
Whole Unit (fractions) can be further 
broken into smaller, identical parts, if 
necessary. 

Given integers or 
fractions with dissimilar 
units (denominators)… 

Break integers or 
fractions into an 
equivalent number of 
common units that will 
allow the numbers to be 
added. 

  

2.2.0. Identical (common) units can be added to 
create a single numerical sum. 

Given a certain number of 
integer or fractions with 
the same denominator… 

Determine the sum of 
those integers or 
fractions. 

Given a certain number of 
integers or fractions with 
the same denominator… 

Explain what common unit 
would be used to add (e.g., 
3 + 5 would be three ones 
plus 5 ones, or ¾ + ¼ would 
be three fourths + one 
fourth). 



 

42 

Knowledge Specs 

Computational Fluency: Students can execute 
procedures in the domain without the need to create or 
derive the procedure. Fluid performance is based on 
recall of patterns or other well established procedures, 
and is fast, automatic, and error-free.  
How is something done?

Conceptual Understanding: Captures demonstration of 
understanding of the mathematical concepts.  
Why is something done? 

When presented with… 
(Assessment Stimulus) 

Students should be able 
to… 

When presented with… 
(Assessment Stimulus) 

Students should be able 
to… 

 2.3.0. Dissimilar quantities can be represented as 
an expression or using some other 
characterization but are not typically expressed as 
a single sum (Note: We are considering numbers 
like 2¾ to have an implied addition. In other 
words, 2¾ = 2 + ¾, whereas 11/4 is a single sum. 

Given at least two 
dissimilar integers (such 
as 2 ¼ or 60 miles per 
hour and 3 miles) or 
fractions… 

Determine if they can be 
added ( 2¼ can be 
expressed as 2 + ¼; 
miles per hour and miles 
cannot be added). 

Given at least two 
dissimilar integers or 
fractions 

Explain why they cannot be 
added or, in the case of 
complex fractions like 3½, 
that there is an implied 
addition. 

 2.4.0. Zero can be added to any quantity. When 
zero is added to any quantity, the value of the 
quantity remains unchanged (Additive Identity). 

Given any integer or 
fraction… 

Determine the sum when 
adding zero or some 
form of zero (e.g., 
3 + -3) to the original 
integer or fraction. 

Given any integer or 
fraction… 

Explain why adding zero 
will leave the number 
unchanged. Explanation can 
be given in a variety of ways 
(e.g., logic, diagrammatic, 
etc.). 

2.5.0. Adding two positive numbers will always 
produce a sum that is greater (more positive) than 
either number. 

Given any combination of 
positive integers and 
positive fractions 
(including variables that 
must be positive)… 

Determine that the sum 
must be positive. 

Given any combination of 
positive integers and 
positive fractions 
(including variables that 
must be positive)… 

Explain why the sum must 
always be positive. 
Explanation can be shown in 
a variety of ways (e.g., 
written, diagrammatic, etc.). 

2.6.0. Adding two negative numbers will always 
produce a sum that is less than (more negative) 
either number. 

Given any combination of 
negative integers and 
negative fractions 
(including variables that 
must be negative)… 

Determine that the sum 
must be negative. 

Given any combination of 
negative integers and 
negative fractions 
(including variables that 
must be negative)… 

Explain why the sum must 
always be negative. 
Explanation can be shown in 
a variety of ways (e.g., 
written, diagrammatic, etc.). 
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Knowledge Specs 

Computational Fluency: Students can execute 
procedures in the domain without the need to create or 
derive the procedure. Fluid performance is based on 
recall of patterns or other well established procedures, 
and is fast, automatic, and error-free.  
How is something done?

Conceptual Understanding: Captures demonstration of 
understanding of the mathematical concepts.  
Why is something done? 

When presented with… 
(Assessment Stimulus) 

Students should be able 
to… 

When presented with… 
(Assessment Stimulus) 

Students should be able 
to… 

2.7.0. Since they are opposites, adding a number 
and its opposite (two numbers of the same 
absolute value but opposite in sign) will result in 
a sum of zero (the additive inverse). 

Given any number 
(integer or fraction) and 
its opposite… 

Determine that the sum 
will be zero. 

Given any number 
(integer or fraction) and 
its opposite or a number 
that is the sum of the 
opposite of the original 
number and another 
number of the same sign 
(e.g., 3 + -5 can be seen as 
3 + -3 + -2)… 

Explain how this is a case of 
adding a number and its 
opposite (e.g., 3 + -5 = 3 +  
-3 + -2 and is the same as 0 
+ -2). 
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APPENDIX B 

PUPPETMAN SCREEN SHOTS FROM THE FIRST VERSION TESTED WITH 

STUDENTS 
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