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CRESST/University of California, Los Angeles 

 
 

Abstract 

Assessment of complex task performance is crucial to evaluating personnel in critical job 
functions such as Navy damage control operations aboard ships. Games and simulations 
can be instrumental in this process, as they can present a broad range of complex 
scenarios without involving harm to people or property. However, automatic 
performance assessment of complex tasks is challenging, because it involves the 
modeling and understanding of how experts think when presented with a series of 
observed in-game actions. When assessing performance, human expert scoring can be 
limiting, as it depends on subjective observations of in-game player’s performance, 
which in turn is used to interpret their mastery of key associated cognitive constructs. We 
introduce a computational framework that incorporates the automatic performance 
assessment of complex tasks or action sequences as well as the modeling of real-world, 
simulated, or cognitive processes by modeling player actions, simulation states and 
events, conditional simulation state transitions, and cognitive construct dependencies 
using a dynamic Bayesian network. This novel approach combines a state-space model 
along with a probabilistic framework of Bayesian statistics, which allows us to draw 
probabilistic inferences about a player’s decision-making abilities. Through this process, 
a comparison of human expert scoring and dynamic Bayesian network scoring is 
presented. The use of the computational framework using a dynamic Bayesian network 
presented in this report can help reduce or eliminate the need for human raters and 
decrease the time to score. This has the benefit of potentially reducing costs. In addition, 
it can facilitate the efficient aggregation, standardization, and reporting of the scores. 

Introduction 

Previous research used Bayesian networks to model cognitive demands and to score 
performance assessments. In Chung, Delacruz, Dionne, and Bewley (2003), performance 
assessments were tied to instruction using Bayesian networks in the domain of rifle 
marksmanship. Construction of the Bayesian networks was done using expert knowledge 
about the domain structure. In the evidence-centered assessment design (ECD) framework, 
Mislevy, Almond, and Lukas (2004) introduced (naïve) Bayesian networks for probability-
based reasoning to accumulate evidence of task performances in terms of beliefs about 
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unobservable variables that characterize knowledge, skills, and/or abilities of students. Baker, 
Chung, and Delacruz (2008) discussed the design and validation of technology-based 
performance assessments. They listed expert-based scoring and domain-modeling methods as 
possible scoring techniques and mention the use of Bayesian networks to model student 
understanding by linking student task performance to latent knowledge and skill states. 
Almond, Shute, Underwood, and Zapata-Rivera (2009) described the use of static Bayesian 
networks for the assessment of proficiency variables in a classroom. Their Bayesian network 
represents a proficiency model where the nodes are a collection of latent variables and where 
the students’ individual assessment results are entered to yield a total proficiency score for a 
group of students. 

The following publications included dynamic Bayesian networks (DBNs) to model 
simulation or real-world processes. Poropudas and Virtanen (2007) used a DBN to model an 
air combat simulation. They presented a method for analyzing the evolution of discrete 
events and for learning the network structure and probability tables from simulation data. In 
neuroimaging (Rajapakse & Zhou, 2007), the data from a functional magnetic resonance 
imaging (fMRI) scan of brain regions is entered into a DBN to learn the structure of effective 
brain connectivity between brain regions. 

Based on the conceptual framework presented in Koenig, Lee, Iseli, and Wainess 
(2009), this study presents a computational framework for automatic performance 
assessment of complex tasks that allows the combination of models for cognitive, simulation, 
and real-world processes to be united into one DBN. This allows the performance assessment 
of complex tasks or action sequences as well as the modeling and inference-making of real-
world, simulated, or cognitive processes. A description of the computational framework and 
its procedures for automatic scoring of complex task performance in games and simulations 
is provided. 

The Study 

This study presents a proof of concept showing how well expert scoring of complex 
tasks can be modeled by using a novel computational framework that is represented by a 
DBN. 

In Figure 1, an overview of this study is given. Subject matter experts (SMEs) provide 
information about how to score player actions in the simulation. This information is then 
automatically transferred to conditional probability tables of a DBN. In addition, information 
about the processes in the simulation, as well as dependencies of other processes (real-world, 
cognitive), help define the state-space topology of the DBN. Once the DBN is constructed, 
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player actions in the simulation are scored by SMEs and by the DBN, yielding expert scores 
that are compared to DBN scores. 

 

 

Figure 1 Overview of this study. DBN = dynamic Bayesian network. 

Methods 

Our automatic performance assessment system incorporates two parts: (a) a knowledge-
base that stores SMEs’ knowledge, and (b) a state-space model that defines the states of the 
simulation and their transition over time, given player actions, and game events. Compared to 
an expert system that is based on an SME knowledge base, our system is capable of adding 
state-space models of a real-world, simulated, or cognitive processes. It will be shown below 
that both, SME knowledge-base and state-space models, can be integrated into a single DBN. 

The Knowledge-Base 

In expert systems, knowledge can be represented as logical statements with associated 
certainty factors. To use an example from our simulation, the logical statement “If a player 
does action A1 and then action A2 in situation S of the simulation, then the player shows a 
certain knowledge/skill/ability K with a certainty factor of Q%” shows the SME’s reasoning 
when observing a player’s sequence of actions in a given state of simulation and the SME’s 
confidence in the inference of K drawn from the observation. For our purpose of scoring 
decision-making ability, we reformulate the previous example to “If a player does action A1 
and then action A2 in situation S of the simulation, then the player shows a decision making 
ability of Q”, where Q is a value between 0 and 1 using the scoring rubric in Table 1. 

Experts 

DBN 

Expert Scores 

DBN Scores 

Simulation 

? 
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Table 1 

Scoring Rubric 

Score Description Q 

Optimal The best action possible 1.0 

Good A good action, but an obvious better one exists 0.85 

Adequate The action correctly addresses the situation, but many better choices exist 0.65 

Neutral The action is unrelated to the situation 0.5 

Bad The action is a bad choice: potential for doing more harm than good 0.0 

 

In order to reduce inter-rater variability the authors formed a panel of “simulation 
damage control experts”—as opposed to real-life damage control experts—and agreed on the 
basic rules and scoring rubrics of damage control in our simulation, trying to match the 
procedures in accordance with Navy doctrine. Our simulation contained four fire situations 
and four flooding situations: Galley Grease Fire, Storage Room Alpha Fire, Communication 
Room Electrical Fire, Berthing Area Alpha Fire, Bathroom Fire Main Leak, Bathroom Flood, 
AFFF Pump Station Leak, and Jet Fuel Pipe Leak. For each situation in our simulation, 
SMEs created a scoring criteria table that lists all the possible player actions and simulation 
events in that situation and the necessary conditions on the states of the simulation to 
determine a score for decision-making ability. Table 2 lists the scoring criteria for a fire and a 
flooding situation. It can be seen that the scores for attacking a burning fire depend on the 
extinguishing agents used: in this case Aqueous Film-Forming Foam (AFFF), Carbon 
Dioxide (CO2), “Purple-K Powder” (PKP), and the sprinkler system with Aqueous 
Potassium Chlorate (APC). The simulation event “re-flash” always indicates that either fire 
or flood were not correctly overhauled and therefore re-ignited or re-flooded. Scoring criteria 
for a total of 37 player actions and 8 simulation events were entered into the scoring criteria 
table. 
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Table 2 

Excerpt from the scoring criteria table for the two situations Galley Grease Fire and AFFF Leak. 

 Scores 

Actions & Events Optimal Good Adequate Neutral Bad 

Galley grease fire      

 Spray AFFF Fire burning    Fire smoking 

 Spray CO2  Fire burning   Fire smoking 

 Spray PKP   Fire burning  Fire smoking 

 Activate APC Fire burning    Fire not burning 

 De-smoke Fire smoking    Fire burning 

 Event: Re-flash     Always 

AFFF leak      

 Patch leak Always     

 Overhaul leak Always     

 Event: re-flash     Always 

Note. AFFF = Aqueous Film-Forming Foam, CO2 = carbon dioxide, PKP = “Purple-K powder,” APL = 
Aqueous Potassium Chlorate. 

The State-Space Model 

The conditions in the scoring criteria table (e.g. “Fire burning”) can be represented by a 
logical statement that contains references to object states of the same or of any other 
situation. For example, patching a leak in situation one (S1) might be optimal only if the fire 
in situation two (S2) has been extinguished and the valve in situation three (S3) has been 
turned off. Situations can represent any set of physical compartments on the ship, logical 
entities, categories, or simulation states used for scoring. 

The scoring of player action sequences can be done using (simulation) states to keep 
track of previous actions. This approach directly leads to the use of state-space models, 
where the simulation states record previous actions and the performance score of the current 
action is conditioned on previous simulation states. This approach works well with 
observable data, but for missing, noisy, or unobservable (latent) data, a probabilistic 
framework has to be introduced. Dynamic Bayesian networks do exactly this: They represent 
state-space models using a probabilistic framework. 

Dynamic Bayesian Network 

Dynamic Bayesian networks extend Bayesian networks by modeling dynamic systems 
as opposed to static systems. Dynamic Bayesian networks are versatile representations of 
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state-space models (Murphy, 2002) and can graphically model probabilistic time-
dependencies between variables. In the graphical representation as a network, each node 
represents a variable and each directed link (arrow) represents a dependency between nodes 
(i.e. node A → node B means that variable B is dependent on variable A). By being able to 
model discrete-time or continuous-time processes, including inputs (e.g. player actions), 
outputs (observations, simulation events), states (latent and observed), and state transitions of 
the processes, DBNs can learn both parameters and network structure and can infer or predict 
unobserved outcomes. There are three approaches to find the structure and probability tables 
of a DBN: (a) using expert knowledge, (b) using observation data, and (c) a combination of 
both. In this report, we will use expert knowledge to determine DBN structure. 

 

 

Figure 2. Dynamic Bayesian Network representing dependencies of simulation and 
knowledge states given an action or event at time t. KSA = Knowledge, skill, or ability. 

Figure 2 depicts the conceptual overview of the DBN used in our framework. It shows 
two time slices, at time t-1 and time t with corresponding actions and states. Arrows in the 
figure indicate dependencies. Arrows across time slices are dashed, whereas arrows within a 
time slice are solid. Because our simulation deals with discrete actions and events, the index t 
is increased every time a new action or event happens. In this particular DBN, simulation 
states, X, are observable, whereas knowledge states, K, are not (i.e. X is an observable 
variable and K is a latent variable). 
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Knowledge about the model of the simulation program is stored in the conditional 
probability tables (CPTs) of the simulation states, where the current (index t) simulation state 
is dependent on previous states and the current action. An example logical statement that 
represents such a state transition is: if Xt-1 = “Fire burning” and At = “Spray AFFF”, then 
Xt = “Fire smoking.” 

The scoring rules elicited from the SMEs are stored in the CPTs of the KSA score 
states and are logical statements like this: if Kt-1 = “bad” and Xt-1 = “Fire burning” and 
At = “Spray AFFF”, then Kt = “adequate.” This means that the current decision-making 
ability score is dependent on previous scores, previous simulation states, and the current 
action. More dependencies and states can be added. For example, a new state representing 
the overall fire fighting score and having all states containing fire fighting scores as children 
could be added. 

In this report, for simplicity, we did not assume any dependencies between Kt and Kt-1 
nor between states of the same time slice. 

Figure 3 shows an excerpt of our actual DBN designed with GeNIe/SMILE (Version 
2.0). It shows the state transitions of some of the fire states going from “burning” to 
“smoking,” to “out.” The nodes Node3 to Node6 correspond to the Actions/Events (A/E) 
nodes in Figure 2 and provide the relevant actions and events to state and score nodes. 

 
Figure 3. Excerpt from DBN used in this paper. Node3 to Node6 provide actions and events that are relevant 
for each simulation state or score. 
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Data Collection 

Participants were recruited from a university as part of an introductory psychology 
course and participation counted as laboratory credit for their course. The participants were 
informed of the voluntary nature of the study and that they were able to stop at any point, 
especially if the participants experienced any dizziness that may have resulted from 
movement in the 3D game environment. 

Simulation data from 30 (9 male, 21 female) participants was collected and analyzed. 
Of the 30, 56.7% have never played video games, 33.3% play 1–2 hours per week, 6.7% play 
3–6 hours per week, and 3.3% play more than 6 hours per week. Fifty percent of the 
participants said that they were very comfortable using computers, whereas 13.3% stated that 
they were very uncomfortable. 

In order to guarantee well-balanced levels of prior knowledge, participants were 
randomly assigned to receive one out of four groups of instruction: (a) fire fighting and 
flooding instruction, (b) fire fighting instruction only, (c) flooding instruction only, and (d) 
no instruction. Before starting the simulation, they entered a simulation tutorial where they 
were taught the game mechanics like moving around, opening doors, picking up and 
dropping equipment. Playing the simulation, participants were asked to discover as many of 
the eight situations as possible and to address the ones that required some actions. Once done 
with the simulation, participants filled out a demographic/usability questionnaire in an online 
format. 

The simulation environment used in this study was produced with the Unity 3D game 
engine. The simulation consisted of a first person perspective 3D environment in which the 
player could enter different compartments and interact with different objects aboard a Navy 
ship. This environment allowed for the capture of all player actions and simulation events in 
real time, which were then fed into the DBN for automatic scoring. For expert scoring, this 
information was provided in human-readable format to the SMEs for expert scoring. 

Results 

The goal of this study was to validate the use of automated DBN’s in the evaluation of 
complex performances. To do this, scores were calculated for each player with both human 
raters (Human) and using the DBN. The human scoring was based on preexisting Navy 
doctrine that expert human raters use to evaluate human performance. The DBN scoring was 
derived from this same criteria and represented using conditional probability tables. Scores 
ranged from 0 (no player mastery) to 1 (full player mastery; see Figure 4). 
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Figure 4. Overall Decision making ability scores: Human versus DBN scores  
(Pearson correlation coefficient, r = 0.98). 

A total of more than 600 relevant player actions were recorded and scored, resulting in 
action sequences of about 20 actions for each participant. Aggregates of these scores were 
calculated for each player and the results are shown in Figure 4 through 6. Figure 4 shows the 
players’ decision-making ability for damage control overall (combined fire fighting decision 
making and flooding decision making). Figures 5 and 6 disaggregate the scores by fire 
fighting and flooding, respectively. As can be seen in the graphs, the human scoring and 
DBN scoring were very highly correlated with Pearson moment correlation coefficients r = 
0.98, 0.99, and 0.97, respectively). 
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Figure 5. Fire fighting damage control decision-making scores: Human versus DBN (r = 0.99). 

 
Figure 6. Flooding damage control decision-making scores: Human versus DBN (r = 0.97). 
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In flooding damage control situations, the simulation engine used a leak recurrence 
time that was too short and unrealistic. In contrast, the SME scoring panel weighed flood 
recurrences less negatively and thus their scores were generally higher than the DBN scores. 

In essence, the discrepancies between the human and DBN scoring were a result of the 
human scoring being more holistic, tending to focus more on overall performance rather than 
discrete actions. For example, if a player opened and closed a pipe valve multiple times, the 
human scoring was more concerned with whether the valve was ultimately left open or 
closed, whereas the DBN scoring incremented or decremented their score based on each 
individual action in the order it was done. 

Table 3 

Observed counts of inter-rater agreement on overall decision-making ability: Human versus DBN 

 DBN 

Human Bad Neutral Adequate Good Total 

Bad 4 3 0 0 7 

Neutral 1 8 0 0 7 

Adequate 0 0 2 1 3 

Good 0 0 2 9 11 

Total 5 11 4 10 30 

Note. κ = 0.674, agreement is 77%, DBN = dynamic Bayesian network. 

In order to calculate inter-rater agreement between human and DBN scores using 
Cohen’s Kappa, the aggregates overall scores from Figure 4 were rounded to the nearest 
integer. The resulting agreement table is shown in Table 3, where it can be seen that 23 out of 
30 participants were rated the same, yielding a rater agreement of 77% with κ = 0.674. 

Summary and Discussion 

The purpose of this report was to validate DBN’s for use in the automated scoring of 
complex tasks. To that end we chose a bounded domain of damage control operations aboard 
Navy ships consisting of fire fighting and flooding. We worked with Navy SME’s to elicit 
evaluation criteria and used this information to develop our DBN. To validate the DBN, we 
compared the DBN scores with those from expert human raters. 

Overall, there was a high correlation between the two scoring methods. However, the 
human scored approach tended to be more forgiving on individual constituent actions and 
was more concerned about holistic outcomes, whereas the DBN was not making these 
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comparisons due to an incomplete holistic representation of expert knowledge in the DBN. 
The implication of this is that DBNs require a significant level of effort in converting implicit 
expert knowledge into explicit representations in the DBNs. This in turn might translate into 
long DBN development lead times. 

Despite the high correlations observed, this domain was narrowly bounded and the 
tasks were specific and well defined. However, there are many cases where the evaluation of 
human performance involves domains and settings that are much more broad and complex. 
In those cases, having high correlation between expert raters and a DBN may prove more 
difficult. Further research is needed to find ways to more efficiently elicit knowledge from 
experts to be incorporated into DBN’s. This would help to make utilization of automated 
scoring more practical for everyday situations. 

The use of the computational framework using a DBN presented in this report can help 
reduce or eliminate the need for human raters and decrease the time to score. This has the 
benefit of potentially reducing costs. In addition, it can facilitate the efficient aggregation, 
standardization, and reporting of the scores. For these reasons, we encourage continued 
research in the use of DBN’s, especially for military-related evaluations. 

We would like to triangulate our results further by using other data collection methods, 
including non-invasive computer-based eye tracking, after action interviews, and a concept 
mapping technique called the Cognitive Process Mapper (Wainess, 2008), which enables a 
student to demonstrate their knowledge of construct relationships in a domain. 
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