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Abstract

A magjor issue in the study of learning progressions (LPs) is linking student performance
on assessment tasks to the progressions. This report describes the challenges faced in
making this linkage using Bayesian networks to model LPs in the field of computer
networking. The ideas are illustrated with exemplar Bayesian networks built on Cisco
Networking Academy LPs and tasks designed to obtain evidence in their terms. We
briefly discuss challenges in the development of LPs, and then move to challenges with
the implementation of Bayesian networks, including selection of the method, issues of
model fit and confirmation, and grainsize. We conclude with a discussion of the
challenges we face in ongoing work.

Introduction

The overarchingchallengeof learningprogressiongLPs)is to determinewhether then
how, applying them can provide a unifying cognitive/substantivéoundationfor practical
work in curriculum, assessmengnd instruction.We believethat LPs havethe potentialto
addresshis foundationalchallenge ard to help with specificchallengeof task design,test
dataanalysis simulationdesign reportingto studentsandinstructors,jmproving curriculum,
andmodelingcomplexperformancesHowever,in orderto realizethis potential,databased
modelsof LPs are required.It is necessaryo developa suitableframework of statistical
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modelingtools to link studentperformanceon assessmeriasksto learningprogressionsin
order to first validate the learning progressionsand to subsequentlyinform decisionsof
students, instructors, and curriculum designers.

In order to facilitate inferencesfrom an assessmensystem, the statistical or
psychometricmodel of the systemshould be aligned with a substantivetheory regarding
cognition and the developmentbf expetise in the learning progression(Borsboom,2006;
Mislevy, Steinberg,& Almond, 2003). Bayesiannetworks (Jensen,1996; Pearl, 1988)
representa flexible approachto latent variable modeling of familiar and complex
assessmentAlmond, DiBello, Moulder, & ZapataRivera, 2007;Levy & Mislevy, 2004).
As suchthey canbe appliedto the problemof modelingperformancealignedwith learning
progressions in a given content area.

This reportdetailsthe challengesve haveexperiencedn constructingcalibrating, and
applyingBayesiametworkmodelsof assessmentsastin termsof learningprogressionsiWe
will provide a brief backgroundon the developmentof the learning progressionsn the
curriculumandthe task designframeworkthat enableghis analysis, including a discussion
of the challengesof combiningexpertanalysis,curriculum, and assessmernnhformation to
createpreliminary LPs. We will then discussthe challengesfaced in modeling LPs with
Bayesiametworks,includingissuesof grainsizeard fit. We concludewith a brief comment
regardingchallengesn our ongoingwork, including modelingperformanceon simulatior
basedassessments workedexampleof our BayesiarNetwork modelingof LPsis threaded
throughoutthe report to illustrate some of the issueswe faced in conceptualizingand
implementing the approach.

This work takesplacein the contextof the CiscoNetworking Academy,andaddresses
component®f the 4-semesteCisco Certified Network Associatel CCNA) coursesequence.
The Cisco Networking Academyis a global programin which information technologyis
taught through a blended program of faceto-face classroom instruction, an online
curriculum, and online assessmentCoursesdelivered at high schools, 2- and 3-year
community college and technicalschools,and 4-year collegesand universities.Since its
inceptionin 1997, the Networking Academy has grown to reacha diverse population of
approximately600,000studentseachyear in more than 160 countries.Murnane,Shakey,
and Levy (2002) discussthe motivations and origins of the program, while Levy and
Murnane (2004) describeissuesrelatedto technologicalapplicationof the curriculum and
assessmenBehrens,Collison, and DeMark (2005) discussthe assessmerftameworkthat
drives the ongoing assessment activity in the program and provides the data for this work.



Challenges with Development of Learning Progressions

Relating curricular structure to LPs. Before modelingan LP, a preliminary
structureof the LP mustbe developedOne of our first challengesnvolved understanding
whether,and to what extent, the substantivestructuresof the current curricula and tasks
couldinform usaboutLPs. Giventhatthe CiscoNetworkingAcademyhasbeenevolvingfor
more than a decade a wealth of researchsubjectmatterexpertiseand instructorexpertise,
anddatafrom formative,chapterandfinal assessmenigereavailableto us. We pursuedan
iterativestrategyof identifying evidenceof LPsthatmight underliethe practicesastheyhave
evolved, sharpeningtheir focus, modeling them explicitly, and feeding the insights into
improved curriculum and assessment design through the lens of the emerging LPs.

In 2007, the Cisco Networking Academyupdatedand redesignedhe curriculum
for their primary networkingcourseofferings.Previously the Academyoffereda singlefour
course series that focused on specific individual networking technologies,each course
focusing on a specific technology: Physical networking and protocols, Routing, LAN
switching, and Wide-areanetworking (WAN). Takenas a whole, the curriculum prepared
studentdor entrylevel networkingjobsandCCNA certification.As partof theredesignfwo
separatecurriculum strategieswere adopted.One strategy (usedto createthe Discovery
coursesequencekvolved from a whole task practice (van Merri‘nboer, 1997) designin
which studentswere presentedwith the opportunity to build functional networks of
increasinglylarger and more complexdesignsas they progressedhrougheachof the four
courses.The other strategy(usedto createthe Exploration coursesequencelupdatedthe
previouscourseofferings while maintainingthe focus within eachtechnologysilo. In their
own ways, both curriculawere built on beliefsaboutlearningin the domainasreflectedby
design choices about instructional sequences, learning activities, and assessment practices.

Informing the designof both curricula were the resultsof statisticalanalysesof
millions of stucentexamstakenover thelife of the previous4-coursecurriculum.From this
analysis(employingclassicalanditem responsdheoreticmethodsat the chapterexamlevel
andat the summativdinal examlevel), patterneemergedhatindicatedthatthe placemenbf
certain assessmentasks targeted specific Knowledge, Skills, and Abilities (KSAs) at
different pointswithin the curriculumaffectedthe performancegdifficulty) of thetask.These
patterns,in combinationwith subjectmatterexpertinput, helped createthe initial learning
progressiongramework. The Cisco Networking Academyparticipatedin ongoingresearch
into methods to identify the features that differentiated between novice and expert
performancewithin the curriculum domain (DeMark & Behrens, 2004; Behrens,Frezzo,
Mislevy, Kroopnick, & Wise, 2007). In additionto the Cisco Networking Academyinput,



externalresearchighlighting the realworld skill and knowledgenecessaryor variousjob
levelswas usedto validate subjectmatter expertopinion andanalysisresults.Curriculum
mapsfor the new coursesusedthis initial learning progressiongramework as a basisfor
developingchapterandcourseobjectives Within eachchapterthelearningmaterial,practice
activity and formative assesmentopportunitieswere designedto build on eachother to
presentandreinforceKSAs within a sectionof the overall LP framework.As aresult,it was
determinedhatthe curriculacanin fact be viewedasbeingbuilt aroundimplicit notionsof
learningprogressions.

To maketheseimplicit notionsexplicit, a learningprogressiorfor the skill of Internet
Protocol(IP) addressingvasdevelopedy anexpertin thefield. This progressionpresented
in AppendixA, containsfive levels,from 1 (Novicg to 5 (Exper). Within eachlevelis a set
of KSAs that individuals at that level would be expectedo possesss their understanding
develops.Tasksreflect thesebeliefs,and,aswe will seenext, we continueto gettestdata
and student instructor feedback about what works within these progressionsto foster
learning.

Relating Assessment Data Back to Learning Progressions

Our next challengewasto understanchow existing datafrom multiple-choiceitems
(tasks)on assessmenisould inform us aboutLPs. Undersaindingthis relationshipbetween
tasksandLPsrequiredexaminatiorof responselata,discussionsvith subjectmatterexperts,
andunderstandingf curriculum maps.Tasksin chaptertestfocuson the KSAs within the
chapter.Eachtask on a chaptertestis generallyaimedat one level of one LP. Theseare
generally built to evoke evidenceabout one targetedlevel of one LP by meansof task
featuresthat are keyed to the targetedlevel in the LP (although knowledge and skills
presumedo be masteredearlierin instructionmay be requiredas well). Analysesof data
from examsthat accompanythe new curricula enabledus to refine both the learning
progressionsand the assessmendesign.We found that some unexpectediydifficult tasks
incorporatedideasfrom KSAs outsidethe targetedLP and requiredskills either not yet
studied,currentlybeingstudied,or previouslystudiedbut interactingwith the targetedskills
in novelways.Thesesituationsincreasedhedifficulty relativeto tasksthatassessednly the
intended LP. Subject matter expert review of similarly designedtasks that performed
differently isolated the featuresof tasks that affected the difficulty in the originally
unanticipatedvays.Theprocesdelpedusto definethe LPsandto createtheassesmentask
designpatternsto targetthe KSAs at eachLP level. It alertedus as well to the eventual
necessity of modeling performance on tasks that require skills from multiple LPs.



Evidencecentereddesign(ECD; Mislevy et al., 2003)is a frameworkfor designing
assessment® supportdesiredinferencesabout studentssimilar to other approacheghat
explicitly incorporatetheoriesof cognitioninto the designprocesge.g., Embretson,1998).
ECD guides the assessment design process via addressiigg @kquestions:

» OWhat claims or inferences do we want to make about students?
« OWhat evidence is necessary to support such infer@ares?
« OWhat features of observable behavior facilitate the collection of that evidence?

ECD is appliedto devdop tasksand scoringrules for measuringa studentOproficiencies
through the perspective of learning progressions.

Of particularassistancén this procesds an ECD tool calleddesignpatterngMislevy
et al., 2003), which were usedto developtasksand scoring rules for various types of
assessmenia the CiscoNetworking Academy(Mislevy et al., 2003; Wise-Rutstein,2005).
Designpatterngrovidea structurednodelof the knowledgeandskills requiredasneededn
a particular task. A design pattern outlines the knowledge, skills, and abilities to be
measured,the type of evidenceneededto measurethese skills, and the methodsfor
determininghow this evidencereflectson the skills. While a designpatternmay specifythe
requirement®f a particularassessmentit providessupportfor developingmultiple tasksin
the skill areain question.While thesetasksmay be similar, they canbe variedin difficulty
and other aspects in order to reflect the purpose of the assessment.

One feature of tasks that could be varied is the amount of previous knowledge
required,asseenthroughthe lensof LPs. Careful attentionto task featuresshowshow two
seeminglysimilar itemsactuallyassesslifferentlevelsof alearningprogressionBelowis an
example of two sth items:



Variant A Variant B

It is necessary to block al traffic from an entire It is necessary to block al traffic from an entire
subnet with a standard access control list. What |P subnet with a standard access control list. What |P
address and wildcard mask should be used in the address and wildcard mask should be used in the
access control list to block only hosts from the access control list to block only hosts from the

subnet on which the host 192.168.16.43/24 resides? subnet on which the host 192.168.16.43/28 resides?

A.192.168.16.0 0.0.0.15 A.192.168.16.0 0.0.0.15
B. 192.168.16.0 0.0.0.31 B. 192.168.16.0 0.0.0.31
C. 192.168.16.16 0.0.0.31 C. 192.168.16.16 0.0.0.31
D. 192.168.16.32 0.0.0.15 **D. 192.168.16.32 0.0.0.15
E. 192.168.16.32 0.0.0.16 E. 192.168.16.32 0.0.0.16
**F, 192.168.16.0 0.0.0.255 F. 192.168.16.0 0.0.0.255

Thechangen the stemfrom /24 to /28 requiresstudentgo performa moreadvanced
IP addressingkill, namely,subdividingoneof the octets.This movesthe questionfrom one
that distinguishesnovices at a lower level who know nothing to one that distinguishes
individualswho areat a higherlevel (Level 3 in termsof the learningprogressiordescribed
on Appendix A). Even changessuch as this that seemminor on the surface must be
accounted for in task design when they affect demands related to the learning progression.

Overall, designpatternsand othertoolsin ECD canaid in developingan assessment
that will supportinferenceaboutwherea studentis locatedon scalesdefinedin terms of
learning progressionsThis information can be usedin turn to draw inferencesaboutthe
skills a studenthas,andby implicationwhatlearningactivitiesmay be appropriatdor further
learning.

To returnto our example,the contentexpertwho specifiedthe IP addressing.P
examinedhe endof our chapterexamsfor thefirst coursein the Discoverycoursesequence
in orderto identify tasksthatmapto the levelsin the IP Addressingprogression.Theseend
of-chapterexamsaretraditionalmultiple-choiceexamsthat averagearound20 questiongoer
exam. The first Discovery course containsnine chapterexams.The analysisled to the
identification of 4 items at the novice level, 9 items at the basic level, 12 items at the
intermediatdevel, and 11 itemsat the advancedevel. The itemsat eachlevel arethosethat
shoulddifferentiatebestbetweernhatlevel andthe onebelowit. This intentionis affectedby
the choiceof featuredn thetaskandthe expectationgor performancebothsuggestedby the
descriptionof the targetedlevel in the LP (although,as notedabove,this intention can be
thwarted by demands for additional knowledge at higher levels in the targetad LP



requirenents from other LPs). An individual at the basic level should have a lower
probability of masteringhe intermediatatemsthananindividual at theintermediatdevel. It

is not surprisingthat no itemswereidentified at the expertlevel, giventhatthe coursebeing
examineds thefirst in a seriesof four. The itemscamefrom five different chapterexams,
and in most cases a given chapter exam yielded items at multiple levels.

We next soughtto use the endof-chapterexam datato validate the number of
expertidentified skill levelsandidentify the examitemsthatbestdiscriminatebetweerthese
levels. As such, a crosssectionalsampleof datawas taken,as opposedto a longitudinal
sample.In the future, in which a goal might be to modelindividual students@rogressions
throughthe LP, a longitudinalsamplemight be taken.However,in this case datafrom all of
the endof-chapterexamstakenin November2007wereincludedin the analysis.This month
wasselecteddueto the high volumeof examstaken. In casesvherea studentook examson
multiple daysin the month, only the exams(s)takenon the first day were includedin the
data. This resulted in a sample of 3827 student records.

The numberof datapointsfor eachchapteris shownin Table 1. In any given chapter
datafrom at least198 studentswere taken.In addition 86 studentstook all of the chapter
examson the sameday. Sinceit is assumedhat no learningoccurredduring that day, all
items taken in one day should reflect the studentsGppropriatelevel of the learning
progression, so all data for these students were used.

Tablel
Number of Examinees for Each Chapter and Each Chapter Grouping

Chapter
Chapter 3 4 5 6 9
3 1992
4 374 1621
5 217 331 745
6 140 154 247 336
9 86 89 99 113 198

Note. The number in any cell corresponds to the number of people who took the column chapter
through the row chapter (e.g., 140 people took Chapters 3 through 6).

Initial analysiswas performedto provideinsightinto the natue of the itemsandtheir
relationships.Classicaldifficulty values,or percentscorrect, were calculatedin order to
identify items that might not be appropriatefor further analysis(seeTable 2). Onelevel 1



item (from Chapter6) wasfoundto havea difficulty valueof 1 (everyoneobtaineda correct
answerfor thatitem) andwasthereforenot usedin the analysis.On averagehe itemswere
seento increasdan difficulty astheyincreasedn levels.While thisis to be expectedcaution
shouldbe takenin the interpretationof this finding, because¢he sampleson which the item
difficulties are based may differ and therefore comparisonsacrossitems may reflect
differences in the population as well as differences in the items.

Polychoriccorrelationswvere calculatedo studypatternsof relationshipsaamongitems.
It wasexpectedhatitemsthatmeasuredhe samelevelswould havehighercorrelationghan
itemsthat measuredlifferentlevels.While a few itemsfollowed this expectedoattern,there
was a hifp level of correlation among across items from all levels.



Table 2.
Item Difficulty Value

Chapter Level Item Difficulty
4 1 1 0.924
6 1 2 1.000
6 1 3 0.833
6 1 4 0.818
6 2 5 0.732
5 2 6 0.651
3 2 7 0.619
3 2 8 0.630
9 2 9 0.692
5 2 10 0.894
3 2 13 0.699
3 3 14 0.738
3 3 15 0.354
3 3 16 0.611
3 3 17 0.467
3 3 18 0.841
5 3 19 0.741
5 3 20 0.734
5 3 21 0.850
5 3 22 0.643
5 3 23 0.710
5 3 24 0.711
9 3 25 0.833
9 4 27 0.778
3 4 28 0.654
5 4 29 0.631
5 4 30 0.773
5 4 31 0.647
5 4 32 0.387
5 4 33 0.532
5 4 34 0.790
5 4 35 0.556
5 4 36 0.514




On averagethe correlationsbetweenany two groupsof items were between.35 and
44, and it was not alwaysthe casethat items of the samelevel had the highestaverage
correlationwith otheritemsof the samelevel. In generalthere were, however,relatively
higher correlationsbetweenadjacentevels thanremotelevels. For example Level 3 items
on averagehavehighercorrelationwith Level 2 andLevel 4 itemsthanwith Level 1 items
(seeFigurel). Thesimilaritiesacrosdevelsof correlationamayin partbe dueto thefactthat
all of theitemsshouldbe measuringhe sameunderlyingskill. temswerealsoexaminedo
determineif itemsfrom the samechapterhad higher correlationsthanitems from differing
chapters. Again no strong patterns of correlations were found (see Figure 2).

0.46 -
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0.32 1
0.3 . . . .

X

—o—level 1

»
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Figure 1. Average correlations of items across levels. Each point is the average correlation of
items from the level specified on the x axis with the items from the level of the line the point is on.
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Figure 2. Average correlations across chapters. Each point is the average correlation of items
from the chapter specified on the x axis with the items from the chapter of the line the point is
on. Chapter 4 does not appear to as there was only one item from that chapter. Other chapters
did not have items for that skill.

A factor analysis of the polychoric correlationsyielded strong evidencefor one
dominantfactor (seeFigure 3). This finding was also not unexpected,as all of the items
should be measuring the same underlying skill.
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Figure 3. A Scree plot for factor analysis. Thereisalineat 1 onthey axis.

In generalwhile the exploratorydataanalysisprovidedevidencethat the itemswere
relatedto eachotherandthattheywereall measuringhe samegenerakkill set,therestill did
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not seemto be evidenceone way or anotherregardingwhetherthe items themselvesvere
labeledat the appropriatdevel. For this, further analysisusing BayesNetworks (BNs) was
conducted.

Challenges in Implementing Bayes Networks

Selection of BN method. The proposedlearning progressionsand the ECD-based
assessmentdead naturally to the question of drawing inferences from assessment
performancesboutthe students@atusin learningprogressionsThe challengewasto select
amodelingtool thatwould allow for theseprobabilisticinferencesn the LP framework.BNs
hadbeenusedin the pastto modelassessmerdatain this domain(Levy & Mislevy, 2004),
andit wassurmisedhatthey might alsobe usefulin this context.However,folding together
the curriculum and assessmennformation requiredin this LP modeling task was a new
challenge in our work with BNs.

BNs leverage connectionsbetween probaility theory and graphical models to
representthe probabilistic relationshipsamong a large number of variables.As flexible
modelingtools, they have beenemployedacrossa wide variety of applications,including
educationandrelatedsettingssuchas diagnosticand expertsystemg SpiegelhalterDawid,
Lauritzen, & Cowell, 1993). In education,BNs have beenusedin complex assessment
systemgAlmond etal., 2007;Levy & Mislevy, 2004;Reye,2004)andfrequentlyhavebeen
usedin the contextof intelligent tutorsto createmodelsof anindividual studentOeowledge
andprovideinformationbasedon thatmodel(Conati,Gertner,& VanLehn,2002;Murray &
VanLehn,2000).Importantfor this applicationis thatthey allow for a representatiomnf the
theory of the relationshipsin a domain and use probability theory to characterizeand
examinethe strengthof thoserelationshipsAs shownin the following examplesBNs used
in educationabhssessmertypically includeunobservabler latentvariablesthat characerize
aspectf students@®owledgeandskill, and observablevariablesthat characterizdeatures
of studentsO task performances.

At the core,BNs are a setof conditionalprobabilitiesin which the probability of one
event,for examplesucces®n a given assessmernask,is conditionalon the probability of a
previousevent,for examplesucces®n a previoustask.However,insteadof focusingonly on
the relationship between two variables, BNs and related graphical models structure
relationshipsacrossmultivariate systems.A BN (Jensen,1996; Pearl, 1988) modelsthe
relationshipsamonga set of variablesby specifying recursiveconditional distributionsin
orderto structurethejoint distribution. The networksare so namedbecausehey supportthe
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appication of the Bayes@heoremacrosscomplex networksby structuringthe appropriate
computations (Lauritzen & Spiegelhalter, 1988; Pearl, 1988).

A BN may also be representeds a graphicalmodel (seeFigure 4), consistingof the
following elements (Jenseh996):

e A setof discretevariablesrepresentedby ellipsesor boxesandreferredto asnodes.
Each variable has a set of exhaustive and mutually exclusive states.

e A set of directed edges (representedby arrows) betweennodes indicating the
probabilisticdependencéetweenvariables.Nodesat the sourceof a directededge
are referredto as parentsof nodesat the destinationof the directed edge, their
children.

e For eachexogenousvariable (i.e., a variable without parentssuch as the student
proficiency variables Connectivity and IP Addressingin Figure 4), there is an
associatedunconditional probability distribution where the probabilities over the
states sum to one.

e For eachendogenouwariable (i.e., a variable with parentssuchas ConTask1 in
Figure4, anobservabldaskresponsgositedto dependon students@roficiencywith
regardto network connectivity),thereis an associatesgetof conditionalprobability
distributionscorrespondingo eachpossiblecombinationof the valuesof the parent
variables,wherethe probabilitiesof the statesn eachconditionaldistributionsumto
one (see Figures 5 and 6).
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Figure 4. A sample Bayes net with two student model variables (SMVs: Connectivity and |P Addressing), each
embodying a 4-level learning progression, and eight observable variables (OV's). By construction around salient

task features and requirements, the OV's depend on one or both SMV s and are targeted to discriminate at
specified values. Figure obtained using the Netica Bayes net program.
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Connectivity Scorel Scorel Score2
Leveld 85.000 10.000 5.000 |
Levell 60. 000 30.000 10.000
Level2 30.000 50.000 20.000
Level3 10.000 60.000 30.000

Figure 5. Sample Netica OutputN conditional probabilities of the observable variable
ConTaskl. Its possible values are 0, 1, and 2 from a partial credit scoring scheme.
Connectivity isthe SMV parent of this OV. Each row is the conditional probability
distribution for the OV given avalue of the SMV Connectivity. Thisis atask meant to
discriminate best at Level 2, the level at which there isa 70% probability of scoring at

least al.
Connectivity IP_Addressing Scorel Scorel
LevelD LevelO 90.000 10.000
LevelD Levell 90.000 10.000
LevelD Level2 90.000 10.000
LevelD Level3 90.000 10.000
Levell LevelD 90.000 10.000
Levell Levell 90.000 10.000
Levell Level2 20.000 80.000
Levell Level3 20.000 80.000
Level2 LevelD 90.000 10.000
Level2 Levell 90.000 10.000
Level2 Level2 20.000 80.000
Level2 Level3 20.000 80.000
Level3 LevelD 90.000 10.000
Level3 Levell 90.000 10.000
Level3 Level2 20.000 80.000
Level3 Level3 20.000 80.000

Figure 6. Conditional probabilities of the observable variable ConAddTask1. Its possible values
are 0 and 1 (unsuccessful and successful solution). Both Connectivity and IP Addressing are the
SMV parents of this OV. Each row is the conditional probability distribution for the OV given a
combination of value of the two parents. By construction, thistask has features for which
understanding and carrying out a solution uses concepts at Level 1 of the Connectivity learning
progression and Level 2 of IP Addressing. The conditional probability distributions thus show
only 10% probability of a successful solution for all SMV combinationsin which these levels are
not reached, and 80% probability at all combinations with at least these levels.
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The variables and the directed edges together form an agyclic directed graph
(frequentlyreferredto asa directedacyclicgraph;Brooks,1998;Jensen1996; Pearl,1988).
Thesegraphsare directedin the sensethat the edgesfollow a OflowCof dependencén a
single direction; in contrastto other graphicalmodeling traditions (e.g., Bollen, 1989) the
arrows are always unidirectionalrather than bi-directional. The graphsare acyclic in that
following the directionalflow of directededgesfrom any nodeit is impossibleto returnto
the node of origin. The structure of the graph conveysthe patternsof dependencend
(conditional)independencamongthe variablesin the joint distribution and correspondso
the computationsnvolvedin constructinghe joint distributionof the variablesin the system
and subsegently conducting Bayesianinferenceto yield posterior distributions for the
unknownvariablesonce datahave beenobserved(Lauritzen& Spiegelhalter1988; Pearl,
1988).In connectiorwith this lastpoint, BNs properlyandefficiently quantifyandpropajate
the evidentiaryimport of observeddataon unknownentities,therebyfacilitating evidentiary
reasoningunder uncertainty as is warrantedin psychometricand related applications
(Almond & Mislevy, 1999; Aimond et al., 2007; Levy & Mislevy, 2004; Mislevy, 1994;
Mislevy & Levy, 2007; Spiegelhalter et al., 1993).

BNs may be employedto model the hypothesizedstructure if multiple learning
progressionsywhere discretelatent variablescorrespondo the skills and the categoriesof
latentvariablescorrespndto the differentlevelsof the skills. The patternof dependencef
the observable®n the latent variablesreflectsthe hypothesizedstructureof the mannerin
which performancedependsn the students@tatuswith respecto the progressionPossible
sourceshy which to modelthe relationshipsamongthe latentvariablesinclude exploratory
path analysef scoreson the examsand subjectmatterexperts®eliefs aboutthe domain
and students@earning progressions Such models also support modeling of observable
variables(OVs) as dependenton multiple latent variables.Figure 6 displays conditional
probabilitiesfor an OV in a multidimensionaBN. This item hastwo studentmodelvariable
(SMV) parents(IP Addressingand Connectivity), which combineto form the probability
distributionfor the OV. Building out networksof combinationf OVs andSMVs allows us
to map out complex and interrelated learning progressions.

One challengein working with Bayesiannetworksis that, althoughthey are very
flexible in terms of inputs and modeling, they rely on an already coordinatedsystemof
Learning Progressionand assessment®8Ns by themselvesfor example,cannotmake up
for an assessmergystemthat doesnot matchto a learningprogressionAside from cortent
mismatch, assessments, and LiPsan also fail to match on the level of grain size.
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Theissueof level of specificityanddetailat which to modellearningprogressionss an
importantone,andonethatis forcedin our projectby the existenceof two distinctcurricula
for the sametargetsetof knowledgeandskills. As discussegbreviously,someitemsdiffered
in difficulty becausethey tapped increasingly complex knowledge and skill along a
progressiorof conceptsThe learningprogressiorshownin AppendixA illustratesthis idea.
But we also saw that the relative difficulties of two items could be reversedin the two
curriculaat a givenpointin time simply becausef the orderin which theywereintroduced.
We could eithertry to definetwo different coarselygrainedLPs for the two curricula,or to
definefine grainedLPs that would maintaintheir integritiesin both curricula. We optedfor
the latter, reasoninghat learningprogressionsglefinedby increasingconceptuacomplexity
were preferableto onesdefinedby both complexity and the coincidenceof topic order.In
other words, we decidedthat LPs should not be so specific that they apply to only one
curriculum;the notion of anLP is to specifythe progressiorof big ideasto be masteredn a
content area, not merely in a given curriculum. Fortunately,the ECD approachforces
assessmerdesignto specifythe waysin which evidencefrom OVs dependon higherlevel
variables like SMVs. Importantly, the choice of grain size is more an issue for the
coordinationbetween(a) desiredinferencesand (b) evidencethatwill be available.BNs can
handle a variety of different forms of evidentiary inputs and structuresfor facilitating
inference but, like any other statisticalor psychometrianodelingtoadl, unlikely to be useful
if (a) and(b) arenot coordinatedLPs suchasthe examplein this reportcanbe combined
with other LPs to createlarger LPs, as we will discussin the Condusion and Future
Challenges section. This may allow for variation in the griai@ shodeled.

Implementation of Bayes Nets

Oncegrainsizeis determineda preliminary LP structurehasbeendevelopedasedon
expert input and assessmentlata, and initial statistical analysesare complete,the BN
modelingprocesscanbegin. The BN modelng approachs a relatively new one,andall the
detailsof implementatiorhavenot yet beenworked out. Therefore,in implementationwe
wereon occasionfacedwith challengef determiningthe bestway to proceedwith modet
building decisions.
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Figure 7. Little Johnny Bayes Net. Bayes net for Student 320 with data on the first four items only. One
SMV: IP Addressing, which embodies a 4-level learning progression, and 35 OV's. The posterior distribution
indicates that this student is more likely to be a member of Class 1 than any one of the other classes. Figure
obtained using Netica Bayes net program.

In our examplethe BN containsa singlediscretelatentvariablemodeledasthe parent
for the discreteOVs (i.e., scoreditem responses)the children, as graphically depictedin
Figure 7. The BN model describedhereis equivalentto a latent classmodel (Dayton &
Macready2007;Lazarsfeld& Henry,1968).A latentclassanalysisvasconductedusingthe
polka package(Linzer & Lewis, 2007) in R (R DevelopmentCore Team, 2008) using
multiple startvaluesto determinethe optimal solution. Given that the item pool contained
items correspondingo four levels of the expertbasedlearning progressionpool, it was
anticipatedthat ideally a 5-classmodelwould be supportedwhere,in additionto the four
levelsdefinedby the expertrepresenteth the items,afifth classwould emergerepresenting
a knowledgestatebelowthefirst (novice)level. Theimplicationfor the dataanalysisis that,
by defining the levelsin termsof what studentsknow or cando (AppendixA), thereis an
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additional,implicit baselindevel (Level0) representingssentiallypbelownoviceknowledge.
Thatis, the novice level itemswould discriminatebetweenstuderts at the novice level (or

beyond)and studentswho had not yet learnedthe novice material(i.e., level 0). Similarly,

itemsat the advancedevel would discriminatebetweerthe studentsat the intermediatdevel

and studentswho were at the advancedevd (or beyond).The lack of items at the expert
levelin this sampleprecludedusfrom expectingthe 6-classmodelthat might otherwisehave
been suggested theoretically.

To allow for the possibility that the data provided better supportfor a model with a
differentnumberof levels,we compared®-class,3-class 4-class,5-class,and6-classmodels.
The 4-classmodeldemonstratethe bestfit to the data,basedon statisticalfit in termsof the
BIC (Schwarz,1978) and the bootstrappedikelihood ratio test(McLachlan& Peel,2000;
Nylund, Aspparouhoy & MuthZn,2007) conductedin Mplus (MuthZn& MuthZn, 1998
2006).In addition,this modelofferedthe bestinterpretabilityof the classesn termsof class
membershigproportionsandconsistentlyorderedpattens of classperformanceacrosstems.
That is, the four classesidentified in the analysis correspondto increasinglevels of
performanceon the items and are interpretedasincreasinglevels of knowledge skills, and
proficiency. A BN representatiorof the 4-class model was then constructedin Netica
(Norsys Software Corp., 2007).

The lack of supportfor a 5-classmodel was apparentlydue to the small numberof
itemsat the novicelevel (Level 1), aswell asan absencef studentbelow the novicelevel.
This is unsurprising given that the items usedin this analysisare drawn from assessments
administeredafter instruction has occurred.In other words, to discriminatewell between
studentswho are essentiallyignorantof the materialand thosewho have achievednovice
understandingf the material,studentswould needto be measureckarlier, perhapswith a
pretestthatincludedmorenoviceitems. As discussedelow, manyof the itemsfunctioned
in ways consistenwith the expertbasedexpectation®f the learningprogressionThus,the
four classesreinterpretedasthefirst four levelsof the learningprogressionsyherethefirst
class is perhaps a mixture of students at and below the first level of the progression.

Inferences regarding assessment items. One goal of the analysis included the
modelingof the itemsQocationsalong the learning progression Specifically, an item was
classified as being Oatthe levelOof a certain classif it supportedan interpretationthat
studentgeachingthatlevel would be ableto solve or completethe taskwhereasstudentsat
lower levelswould be unlikely to be successfulTo classifyitems,the conditionalprobability
tableswere examined.For eachitem, the oddsof answeringthe item completelycorrectly
were calaulatedin eachclassand oddsratios were calculatedto compareadjacentclasses.
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These odds ratios capturethe power of the items to discriminate betweenclasses.To
constructanoddsratio for thefirst class the probabilitythata completenovicewould getthe
item right wasdefinedasthe probability of gettingtheitem right by guessingEachitem was
assignedto a level basedon considerationsof (a) the size of theseodds ratio between
successiveclasses,(b) the criterion that the probability the respondingcorrectly at the
assignedlevel exceeded50 for dichotomouslyscoreditems, and (c) the distribution of
probability across the response categories for polytomously scored items.

The resultsindicatethat many of the itemsdiscriminatestrongly betweenclassesFor
example,Figure 8 containsthe conditional probability table for an item whereit is clearly
seenthat only studentsin the fourth (highest) class are likely to successfullysolve it.
Statistically,thisitem aidsin distinguishingstudentsin the fourth latentclass(level) from the
remainingclasseglevels).Substantivelythe item captureoneaspecbf whatit meando be
at the fourth level of the learningprogressionStudentsat the fourth level havelearnedthe
knowledgeadskills necessaryo correctlyanswetthis item; studentsat the lower levelshave
not.

IP_Addressing Proficiency Score0  Scorel
Class1 g4.200 15.800
Class2 74.420 25.580
Class3 62.440 37.560
Classd 1Z.480 87.520

Figure 8. Conditional probabilities of a clearly discriminationg item (Item 31). Its possible
values are 0 and 1 from a dichotomous scoring scheme. IP Addressing Skill isthe SMV
parent of this Observable Variable. Each row isthe conditional probability distribution for
the Observable Variable given avalue of the SMV IP Addressing Skill. Thisis atask that
discriminates best at Level 4, the level at which there is a 87.5% probability of scoring 1.

IP_Addressing_Proficiency Scorel Scorel Score?2
Class1 40,300 49,000 10.700
Class2 11.870 36.280 51.850
Class3 2.350 12.050 85.600
Classd 0.000 5.110 94,890

Figure 9. Conditional probabilities of a more ambiguous item (Item 33). Its possible values
are(, 1, and 2 from a partial credit scoring scheme. IP Addressing Skill isthe SMV parent
of this Observable Variable. Each row is the conditional probability distribution for the
Observable Variable given avalue of the SMV IP Addressing Skill.
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Still otheritemswere more ambiguousn termsof their levels. For example Figure9
containsthe conditional probability table for an item whereit is seenthat studentsin the
secondclass have a probability of .88 for earning partial or full credit, but only a .52
probability of earningfull credit. A simple classificationof this item in termsof onelevel is
insufficient to fully capure its connectionto the classesA richer characterizatiorof the
item, recognizingthatit discriminatesvell betweemmultiple adjacentlassesstateshatonce
a studentreache<Class2, sheis very likely to earnat leastpartial credit but needsto reach
Class3 (or 4) in order to be as likely to earn full credit.

The resultswere largely consistentwith the expertbasedexpectationgegardingthe
items. Ten items exhibited clear and distinct patternsin which they distinguishedbetween
clasesexactly as predictedby experts.That is, theseitems were Olocated@t the level as
expectedFigure 8 is an exampleof one suchitem; the expertpredictionof this item asa
Level 4 is strongly supported by the results. Five items distinguishedyaugihat the level
predictedby expertsand at one other level; that is, they appearedio be located at the
expectedevel andoneotherlevel. Eighteenof the itemswerelocatedat a level adjacentto
wherethey were predictedto be located(e.g., an item expectedat Level 4 was locatedat
Class3). Oneitem waslocatedat one classadjacentto the predictedclassandanotherclass
not adjacent.The resultsfor this item aregivenin Figure9. This item wasexpectedo be a
Level 4 item. As discussedbove,the polytomousscoringof this item makesit possibleto
view it asbeinglocatedat Class2 or Class3. Only oneitem was clearly locatedat a class
that was not equalto or adjacentto the predictedlevel. As notedearlier,inspectionof any
itemsfoundto haveempiricaloddsratiosthatdiffered from their intendedevelscanprovide
insightsaboutfeaturesthat makethem spuriouslyhard or easyfor reasonaunrelatedto the
LP they are meant to assess.

Inferences regarding students. The conditiond probability tablesalso reveal how
inferencesregardingstudentsare conductedin the BN. For example,observinga correct
responsdor the item in Figure 8 is strongevidencethatthe students in Class4; observing
anincorrectresponsdor the itemin Figure8 is relatively strongevidencethatthe students
notin Class4. Theuseof aBN approactsupportanferencesegardingstudentsy collecting
andsynthesizinghe evidencen the form of observedvaluesof variables.Thatinformation
is thenpropagatedhroughthe networkvia Bayes@heoremto yield posteriordistributionsfor
the remaining unknown variables (Pearl, 1988), including the latent class variable
correspondingo the skill level. For example Figure7 containsthe BN for a studentwho has
completedfour of the items. The student corrected answeredthe first two items and
incorrectly answeredthe latter two items. On the basis of this evidence,the posterior
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distributionfor their latentskill variableindicatesthatthis studenthasa probability of being
in Classesl of .476,.332,.172,and.021, respectively From this, we may infer that the
students mostlikely in oneof thefirst two classegi.e., is atoneof thefirst two levelsof the
skill progression)ut that there still remainsconsiderableuncertainty.The collection and
inclusion of more datawould leadto a more refined inference,asillustratedin Figure 10,

which containsthe BN for anotherstudentwho hascompletedall of the items.The posterior
distribution for this studentis quite clearin supportingan inferencethat the studentis in

Class 3 (posteriorprobability equals.997); that is, the studentis in the third level of the
learning progression.
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Figure 10. Little Sally Bayes Net. Bayes net for Student 67 with data on all 35 of the items. One SMV: IP
Addressing, which embodies a 4-level learning progression, and 35 observable variables (OV's). The posterior
distribution indicates that this student is almost certainly a member of Class 3. Figure obtained using Netica
Bayes net program.
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Conclusions and Future Challenges

This study describesthe applicationsof a variety of techniquescenteredaround
Bayesiannetwork modelingof a reatworld exampleof learning progressionsLPs defined
by expertsmachedwith ECD-basedassessmertaskscompletedby thousandsf students
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provide the basisfor this analysis.The exampledemonstratefiow assessmerdatacan be
usedto validate a learning progressionusing statistical modeling in the form of a BN.

Assesment items that discriminated between various levels in the progressionwere
identified. In addition,it wasdemonstratetiow studentscould be classifiedinto levelsbased
on their assessment results.

The resultsof the modeling offer a databasedinterpretation of the developmeniof
skills that constitutethe learning progressionln most casesthe resultsfor items serveto
confirm the expertbasedexpectation For otheritems, the resultswere more ambiguousor
offer analternativeexplanatiorto thatfrom the experts.Takinga comprehensiveerspective
on assessmentf learning progressionsthe resultsof the statisticalanalyseswill be taken
backto the subjectmatterexpertsfor consultationand possiblerefinementsn termsof the
definition of the learningprogressionAppendixA), the itemsthat assesshe aspectf the
learning progression,and the utility of the additional items for modeling studentsO
progression.

The BN modeling approachfacilitates probability-basedreasoningabout studentsin
termsof their learningprogressionAssessmentiata(e.g., scoreditem responsesgnterthe
networkin the form of OVs. Synthesizingthe evidentiaryimport of the data,the posterior
distributionof classmembershipinterpretedasthelevel of thelearring progressiongoverns
the inferences regarding the student.

It is arguedthat BNs are well positionedto supportinferencesat fine-grainedlevels
alignedwith rich substantiveheories,andassucharepowerful statisticaltools for modeling
and strucuring substantiveinferencesand feedbackto students,nstructors,and curricular
designersHowever,we alsoexpectchallengesaswe proceedwith usingBNs in increasingly
complex ways.

Growing The Progression

The worked exampleshownin this repat focusedon OVs relatedto one SMV (IP
Addressing) The resultsfrom this analysis,however,canbe OpluggednOto a muchlarger
model that displaysthe relationshipsbetweenSMVs (seeFigure 11). This allows for the
modelingof theinfluenceof masteryof oneareaon the masteryof anotherarea.However,it
presentghe challengeof modelingvariableswith multiple parentsandthe determinatiornof
conditionaldependence/independeraferariablesfrom a giventask.Largerinvestigationf
the progressia(s)will alsoentaillongitudinalmodelingof studentperformanceandlearning
over time using BNs (Reye, 2004).
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Figure 11. Large map of the Discovery curriculum. This model displays the relationship between different

networking skills of which IP Addressing Skill isasmall part.

Scaling from Small Success

There are a numberof directionsin which we could proceedfollowing our small
successewith BNs andLPs. Onechallengewill lie in knowing whento apply this method
and when it may not be necessaryWe needto determinewhetherto use thesemethods
primarily in researchto inform curriculum and assessmentiesign or move them into
operations,where they would provide feedbackinto the systemof more than 17,000
instructorsand700,000studentsa year.Sucha moveinto anoperationsettingwould require
the automatedconstruction of Bayesian networks in the four-processdelivery system
(Frezzo, Behrens,Mislevy, West, & DiCerbo, 2009. It would also entail constructing
Bayesiannetworksin nearred time. Although this has been done before in intelligent
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tutoring applicationsjt is a challengingassignmentThe benefitsto instructorsand students
would needto be weighedagainstthe resourcesieededo makethis a reality. Overall, the
challengelies in knowing when to use thesetools and when somethingsimpler might be
nearly as effective.

Additional Assessment Types

This reportfocusedon analysisusingtraditionalmultiple-choiceexams.In the future,
we will be using the same processin the analysisof assessmentffom a Networking
Academytool called PacketTracer(PT). PT is a comprehensivesimulation, visualization,
collaboration,and micro-world authoringtool for teachingnetworking concepts(Frezzo,
Behrens,Mislevy, West & DiCerbo, 2009). PT assessmentare being constructedusing
design patternsand task templatesto createcomplex tasks at appropriatelevels (Wise-
Rutstein, 2005; Frezzo, et al., 2009. These design patternsand templatesadditionally
provide structurefor condtional probabilitiesin the Bayesiannetworksand thus castthe
interpretationof performancan termsof the LPs throughthe SMVs. Datafrom a field trial
of an earlier prototypeof PacketTracercalled NetPASSwere successfullynodeledusing
Bayesiannetworks (Levy & Mislevy, 2004), althoughnot in the framework of learning
progressions.

In the next phases,we will be seeingthe largerscale deploymentof PT as an
assessmentool, providing automatedscoring of performanceassessment3Ve will be
applying the methodsdescribedin this report and others as needed,to the assessment
informationresultingfrom studentscompletingthosetasks.We anticipatethat the inclusion
of this rich information will provide new insight into students@earning progressions.
However, it will also presentchallengesin trying to model this more complex data. For
example,we will be attemptingto use Natural LanguageProcessingNLP) extraction of
featuresfrom studentcommandlogs to build observablesin addition, we will attemptto
model the PT tasks using the same LP SMVs as their parents.

Closing the Feedback Loop

In this project, teacherand subject matter expertshave servedas inputs into the
modelingprocessin the future, we needto continueto closethe loop to that information
resulting from the modeling then feedsback to inform future instruction and curriculum
design.As such,methodsof communicatiorof both studentlevel andaggregateesultsneed
to continue to be refined. With these and other improvaments, the Bayesiannetwork
modeling of learning progressionswill play an important role in understandingand
improving student outcomes.
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Appendix A
IP Addressing Skills Progression

Level 1: Novice—Knowledge/SKill (possible pre-course knowledge and skills)

Student can navigate the operating system to get to the appropriate screen to configure the
address.

Student knows that four things need to be configured: |P address, subnet mask, default gateway
and DNS server.

Student can enter and save information.

Student can use aweb browser to test whether or not network is working.

Student can verify that the correct information was entered and correct any errors.
Student knows that DNS translates names to | P addresses.

Student understands why a DNS server |P address must be configured.

Level 2: Basic—Knows Fundamental Concepts

Student understands that an IP address corresponds to a source or destination host on the
network.

Student understands that an |P address has two parts, one indicating the individual unique host
and one indicating the network that the host resides on.

Student understands how the subnet mask indicates the network and the host portions of the
address.

Student understands the concept of local-vs.-remote networks.
Student understands the purpose of a default gateway and why it must be specified.
Student knows that |P address information can be assigned dynamically.

Student can explain the difference between a broadcast traffic pattern and a unicast traffic
pattern.

Level 3: Intermediate—Knows More Advanced Concepts

Student understands the difference between physical and logical connectivity.
Student can explain the process of encapsulation.
Student understands the difference between Layer 2 and Layer 3 networks and addressing.

Student understands that a local |P network corresponds to a local |P broadcast domain (both
the terms and the functionality).

Student knows how a device uses the subnet mask to determine which addresses are on the local
Layer 3 broadcast domain and which addresses are not.

Student understands the concept of subnets and how the subnet mask determines the network
address.

Student understands why the default gateway |IP address must be on the same local broadcast
domain as the host.

Student understands ARP and how Layer 3 to Layer 2 address trandlation is accomplished.
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Student knows how to interpret a network diagram in order to determine the local and remote
networks.

Student understands how DHCP dynamically assigns | P addresses.3

Level 4: Advanced—Can Apply Knowledge and SKkills in Context

Student can use the subnet mask to determine what other devices are on the same local network
as the configured host.

Student can use a network diagram to find the local network where the configured host is
located.

Student can use a network diagram to find the other networks attached to the local default
gateway.

Student can use the PING utility to test connectivity to the gateway and to remote devices.
Student can recognize the symptoms that occur when the | P address or subnet mask isincorrect.
Student can recognize the symptoms that a default gateway is configured incorrectly.

Student can recognize the symptoms that occur if an incorrect DNS server (or no DNS server) is
specified.

Student knows why DNS affects the operation of other applications and protocols, like email or
file sharing.

Student can use NSlookup output to determine if DNS is functioning correctly.

Student can configure a DHCP pool to give out arange of |1P addresses.

Student knows the purpose of private and public IP address spaces and when to use either one.
Student understands what NAT is and why it is needed.

Level 5: Expert—Can Readily Apply Advanced Skills

Student can recognize a non-functional configuration by just looking at the configuration
information, to testing of functionality required.

Student can interpret a network diagram to determine an appropriate 1P address/subnet
mask/default gateway for a host device.

Student can recognize the symptoms that occur if an incorrect subnet mask is configured on the
intermediate routers or destination host.

Student can interpret a network diagram in order to determine the best router to use as a default
gateway when more than one router is on the local network.

Student can evaluate a connectivity problem to determine if it could possibly be caused by an
incorrect setting configured on the host.

Student can propose changes to a host configuration to solve a connectivity problem.

Student can make and test proposed changes to a host configuration to solve an identified
connectivity problem.

Student can implement NAT to translate private to public addresses.
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