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THE FEASIBILITY OF USING CLUSTER ANALYSIS TO EXAMINE LOG DATA 
FROM EDUCATIONAL VIDEO GAMES 

Deirdre Kerr, Gregory K. W. K Chung, and Markus R. Iseli 
CRESST/University of California, Los Angeles 

 

Abstract 

Analyzing log data from educational video games has proven to be a challenging 
endeavor. In this paper, we examine the feasibility of using cluster analysis to extract 
information from the log files that is interpretable in both the context of the game and the 
context of the subject area. If cluster analysis can be used to identify patterns of thought 
as students play through the game, this method may be able to provide the information 
necessary to diagnose mathematical misconceptions or to provide targeted remediation or 
tailored instruction. 

Introduction 

One of the key issues for researchers examining the impact of educational video games 

is the analysis of the log data generated by these games. Without the ability to analyze these 

data, we may be able to determine whether or not students learned from a game but not 

precisely how or where this learning occurred. It is sometimes more important to know how a 

student plays a particular level of a game or solves a particular question on a test than it is to 

know the student’s final score (Rahkila & Karjalainen, 1999). Log data can store complete 

student answers including strategies and mistakes (Merceron & Yacef, 2004), thereby letting 

the researcher record the learning behavior of students as they play the game (Romero & 

Ventura, 2007). In addition, the analysis of log data allows for the discovery, based on 

student usage data, of new knowledge about when and how learning occurs and what causes 

misunderstandings to arise within the game (Romero, Gonzalez, Ventura, del Jesus, & 

Herrera, 2009). 

However, there are a number of reasons why educational researchers have not made a 

practice of analyzing log data beyond the extraction of basic summary statistics. Logs 

generate such large quantities of data that they can be very difficult to analyze (Romero et al., 

2009). For instance, approximately 135 subjects playing a simple puzzle game for about half 

an hour can easily generate over 400,000 rows of log data (Chung et al., 2010). On top of the 

amount of information provided, the specific information gained from these usage statistics is 

not always easy to interpret (Romero & Ventura, 2007), as it can be very difficult to picture 

how student knowledge, learning, or misconceptions manifest themselves at the level of a 

specific event taken by the student in the course of the game. In addition, it can be very 

difficult to separate the noise from the substance given that log files are generally designed to 
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capture all student actions that have any chance of being relevant to learning, and it is not 

until after analysis that one would know which of those actions was actually relevant. 

Therefore, log files frequently contain large amounts of irrelevant data and require the use of 

both advanced statistical methods capable of dealing with large data sets and relevant 

background and domain knowledge to focus the analysis (Frawley, Piateski-Shapiro, & 

Matheus, 1992). 

One promising method for analyzing log data is data mining. Data mining is a process 

that identifies frequent patterns in the data, despite the noise surrounding them, through the 

analysis of either general correlations or sequential correlations (Bonchi et al., 2001). Data 

mining summarizes or compresses the data set into a manageable number of variables that 

are nontrivial, implicit, previously unknown, and potentially useful (Frawley et al., 1992; 

Hand, Mannila, & Smyth, 2001). Though it has not yet found its way into the mainstream of 

educational research, data mining has been used regularly in fields such as engineering, 

chemistry, physics, astronomy, law enforcement, and publishing to identify key data in large 

data sets (Frawley et al., 1992). 

There are four distinct families of data mining techniques: association rule mining that 

is used to find events that occur together, subgroup discovery that is used to identify 

interesting properties of subgroups, classification rule discovery that is used to identify 

defining characteristics of groups, and clustering that is used to discover patterns reflecting 

user behaviors (Romero et al., 2009). Clustering is a density estimation technique for 

identifying patterns within user actions that reflect differences in underlying attitudes, 

thought processes, or behaviors (Berkhin, 2006). It is particularly appropriate for the analysis 

of log data, as clustering is driven solely by the data at hand and is therefore ideal in 

instances in which little prior information is known (Jain, Murty, & Flynn, 1999). 

Cluster analysis partitions actions into groups on the basis of a matrix of interobject 

similarities (James & McCulloch, 1990) by minimizing within-group distances compared to 

between-group distances so that actions classified as being in the same group are more 

similar to each other than they are to actions in other groups (Huang, 1998). Two actions will 

be considered similar by the cluster analysis if they are both performed by the same students. 

Actions will be considered different from each other if some students perform one of the 

actions and different students perform the other action. Properly used, cluster analysis 

algorithms can identify the latent dimensionality structure of a set of actions (Roussos, Stout, 

& Marden, 1998) to perform the necessary pattern reduction and simplification so that the 

patterns present in large data sets can be detected (Vogt & Nagel, 1992). In the case of log 

data from educational video games, the identified patterns, or clusters, would reflect the 
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different solution strategies and error patterns manifested by the students as they attempted to 

solve each game level.  

In this report, we seek to determine to what extent cluster analysis can function as a 

valid tool for extracting non-trivial patterns that reflect underlying solution strategies or error 

patterns from educational video game log data. We will accomplish this by answering the 

following questions: 

1. Will cluster analysis be able to pull clusters of actions from all levels, areas, or 
sections of a game, or only from certain specific ones? 

2. Will cluster analysis consistently identify similar clusters in similar situations 
throughout the game? 

3. Will the clusters that are identified be interpretable in the context of the game and 
subject area (i.e., will the actions in each cluster clearly reflect a specific underlying 
solution strategy or error pattern)? 

4. What percentage of the data will be explained by the identified clusters? 

Method 

Study Design 

The data used in this study come from the log files generated by an educational video 

game designed by CRESST and the University of Southern California’s Game Innovation 

Lab to teach the addition of fractions (Chung et al., 2010). It has been our view throughout 

game development and testing that well-designed log files from a well-crafted educational 

video game would hold key information about how students conceptualized the underlying 

subject area. At all stages, we made design decisions reflecting this view. 

Our game was specifically designed from the beginning so that the actions a student 

took would reflect the mathematical decisions being made and so that all key game 

mechanics were linked to mathematical operations (Chung et al., 2010). Similar care was 

taken in the design of the log files to ensure that actions we believed to reflect behaviors 

indicative of students’ underlying mathematical understanding were intentionally logged. 

Additionally, the log files were designed so that the uniqueness of events was preserved and 

so that all key information was captured in detail (e.g., “an addition of coil of size x to coil of 

size y at position z,” rather than “an addition of a coil”). Log data of this structure, created 

from a game utilizing this design strategy, are ideally suited for cluster analysis and will 

provide the best chance of uncovering new knowledge about how students conceptualize the 

problems they are asked to solve. 
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The game, called Save Patch, was designed to teach the addition of fractions. In this 

game, students are required to apply concepts underlying rational number addition to help the 

game character, Patch, bounce over obstacles to reach his home. To correctly solve each 

level, students must place trampolines at various locations along a one- or two-dimensional 

grid (see Figure 1). Students then drag coils onto the trampoline to make it bouncy. The 

distance Patch will bounce is the sum of all coil values added to the trampoline. For instance, 

if a student placed two 1/3 coils on a trampoline, Patch would bounce 2/3 of a unit. 

In Save Patch, one whole unit is always the distance between two lines, and green dots 

indicate the size of the fractional pieces that should be used (see Figure 1). While any size 

coil can be placed on the trampoline initially, subsequent coils can only be added to the 

trampoline if they are the same size (i.e., have the same denominator).  

 

 
Figure 1. Screen shot of Save Patch. 

As game play proceeds, trampolines must be placed at distances along the grid that are 

fractional parts of the whole unit. In early game levels, students are given the fractional unit 

coils. In later levels, students are shown how to break coils into fractional units. Because only 

coils that have identical units can be added together, students must be attentive to what the 

rational number means, what units are being added, what units are already on the trampoline, 

and how they will break coils into different size pieces. So, while students could add a coil 

that is 1/2 a unit to another coil that is 1/2 a unit, they are not allowed to add a coil that is 1/2 

a unit to a coil that is a whole unit until the whole unit is broken into two 1/2-unit coils (i.e., 
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2/2). At the time all three of these coils are added to the trampoline, the trampoline would 

show that it had 3/2 (rather than 1 1/2) units of bounce. This notation is intended to reinforce 

both the meaning of addition and the player’s understanding of the meaning of rational 

numbers. 

The sample of students who played Save Patch in this study includes 155 students (76 

males and 79 females) from an urban school district in southern California. These students 

ranged from sixth to eighth grade and were in sixth grade math, Algebra Readiness, or 

Algebra 1 courses. All students played the game for approximately 40 minutes, and each 

action the students took in the game was logged automatically. 

Cluster Analysis 

To prepare the log data for cluster analysis, the data were separated into different data 

sets for each level, as correct actions in one level could be incorrect actions in another. The 

final data sets were formatted such that each row represented a student’s attempt at 

completing the level, and each column represented an action that at least five students had 

taken when attempting to solve the level. These data sets were then imported into R for 

cluster analysis. 

The clustering algorithm we chose to use in R is a fuzzy clustering algorithm called 

“fanny” (R Development Core Team, 2010). Fuzzy clustering, as opposed to hard clustering, 

allows an action to fall into multiple clusters if the action is part of more than one solution 

strategy or error pattern. We considered the potential overlap in clusters to be a very 

important aspect of the choice of algorithm, as certain actions may have been necessitated by 

game design regardless of which strategy the student was employing. Additionally, we used 

the Manhattan distance (rather than the Euclidean or Squared Euclidean distances commonly 

used) because our data were binary, indicating whether a particular student had performed a 

particular action in a given level. The Manhattan distance between two points (also known as 

the city block distance) is measured along axes at right angles only and is therefore 

appropriate for binary data, whereas the Euclidean distance is measured in a straight line 

between the two points. (See Appendix A for an elaboration on cluster analysis.) 

Cluster analysis performed in this manner is intended to result in the identification of 

specific groups of actions within a level that correspond to underlying solution strategies or 

error patterns guiding student attempts to solve the level. Each action receives a score 

indicating its “percent belonging” to each cluster identified for the level. Scores close to 1 in 

a specific cluster and 0 in all other clusters indicate actions that serve to differentiate that 

cluster from other clusters, whereas actions with lower scores spread across multiple clusters 
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indicate poorly identified actions or actions representing steps used in multiple solution 

strategies or error patterns. 

Solution Strategies 

Cluster analysis of the game levels identified four legitimate solution strategies: the 

standard solution (identified in all levels), a solution using a larger denominator (identified in 

Stage 4 – Level 3 and Stage 5 – Level 1), an alternate legitimate solution (Stage 4 – Level 5; 

Stage 5 – Level 3; and Stage 6 – Levels 2, 3, and 4), or a solution using a shortcut (Stage 6 –

 Levels 2 and 3). In the standard solution, students solved the level in the manner the 

designers intended. The standard solution generally involved using the least common 

denominator of the given fractions and using the order in which the coils were presented to 

determine where to use whole units instead of fractional units. In Stage 6 – Level 2, that 

resulted in students placing 2/6 on Trampoline 1, 3/6 on Trampoline 2, and 1/6 on 

Trampoline 3. In the solution using a larger denominator, students solved the level with a 

denominator that was larger than the least common denominator. In Stage 6 – Level 2, that 

resulted in students placing 4/12 on Trampoline 1, 6/12 on Trampoline 2, and 2/12 on 

Trampoline 3. In the alternate legitimate solution, students either reversed the order of two 

equivalent pieces of the standard solution or simplified a part of the standard solution. In 

Stage 6 – Level 2, that resulted in students placing 1/3 on Trampoline 1, instead of 2/6. In the 

solution using a shortcut, students deliberately skipped one or more trampolines, getting to 

the other side in less than the maximum number of jumps allowed in that level. In Stage 6 – 

Level 2, that resulted in students placing 6/6 on Trampoline 1. Figure 2 shows a screen shot 

of this game level and the standard and alternate solutions. 
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Figure 2. Stage 6 – Level 2 of Save Patch, illustrating different solution strategies. 

Game Strategy Errors 

The error patterns that were identified by the cluster analysis fell into two categories: 

errors involving game strategy and errors involving mathematical misconceptions. The errors 

involving game strategy included using all available resources in the order in which they 

were provided (Stage 3 – Levels 1 and 3; Stage 4 – Levels 3 and 4; Stage 5 – Level 1; and 

Stage 6 – Level 2) and the misuse of resources (Stage 2 – Level 1; Stage 3 – Level 3; 

Stage 4 – Levels 2 and 3; and Stage 6 – Levels 1 and 4). Students who used all resources in 

the order in which they were provided used this order to determine which fractions to place 

on which trampolines, rather than examining the grid to determine mathematically which 

fractions to place on which trampolines. In Stage 4 – Level 3, that resulted in students 

placing 2/1 on Trampoline 1, 3/3 on Trampoline 2, and 4/6 on Trampoline 3 (see Figure 3). 

Students who misused resources used the coils they were given in a manner that was 

technically correct but resulted in them running out of coils of the necessary size further on in 

the level. Generally, this misuse of resources involved using fractional units instead of a 

whole unit on a one-unit jump. In Stage 4 – Level 3, that resulted in students placing 3/3 on 

Trampoline 1 and then not having any 1/3 coils left for the second and third trampolines (see 

Figure 3). A misuse of resources is only clustered as an error if students are unable to solve 

the level this way. Using resources in a way different from what was intended when the level 

was designed but solving the level anyway would result in the identification of an alternate 

legitimate solution cluster. 
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Figure 3. Stage 4 – Level 3 of Save Patch, illustrating errors involving game strategy. 

Mathematical Errors 

The errors involving mathematical misconceptions were largely naming errors, wherein 

the student was unable to correctly identify the denominator of the fraction that was to be 

used, rather than addition errors as we had anticipated. These error patterns identified by the 

cluster analysis indicated that students either made unitizing errors (Stage 2 – Level 1; 

Stage 4 – Levels 1 and 5; Stage 5 – Level 1; and Stage 6 – Levels 1 and 4), made partitioning 

errors involving counting points exclusively (Stage 3 – Level 2; Stage 4 – Level 4; Stage 5 – 

Levels 2 and 3; and Stage 6 – Level 3), made partitioning errors involving counting points 

inclusively (Stage 4 – Level 2; Stage 5 – Levels 2 and 3; and Stage 6 – Levels 3 and 4), or 

saw the solution as a mixed number (Stage 5 – Level 1). Students who made unitizing errors 

failed to pay attention to the red lines that indicated the length of a unit. Instead, such 

students appeared to see the entire grid as one unit. In Stage 5 – Level 1, that resulted in 

students placing 3/3 on Trampoline 1 (see Figure 4). Students who saw the solution as a 

mixed number tried to add a whole unit and a fractional unit without first converting the 

whole unit to the same denominator as the fractional unit. In Stage 5 – Level 1, that resulted 

in students trying to add 1/2 to 1/1 on Trampoline 1 (which the game does not recognize as a 

legitimate move), rather than converting 1/1 to 2/2 before adding 1/2 (see Figure 4). 
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Figure 4. Stage 5 – Level 1 of Save Patch, illustrating unitizing errors and mixed number errors. 

Students who made partitioning errors involving counting points exclusively appeared 

to be counting the points on the grid, rather than the spaces between the points, to determine 

the denominator of the fraction. In Stage 5 – Level 2, that resulted in students placing 2/2 on 

Trampoline 1, 2/2 on Trampoline 2, and 1/2 on Trampoline 3 (rather than solving the level in 

thirds). Students who made partitioning errors involving counting points inclusively 

apparently made the same error that students who counted points exclusively did, except that 

they also counted the points on the corners where the red lines intersected. In Stage 5 – 

Level 2, that resulted in students placing 2/4 on Trampoline 1, 2/4 on Trampoline 2, and 1/4 

on Trampoline 3. See Figure 5 for a screen shot of this level and an illustration of the 

partitioning errors. 
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Figure 5. Stage 5 – Level 2 of Save Patch, illustrating partitioning errors. 

Level Example 

Solution strategies and error patterns were identified in each level by examining the 

actions that constituted each cluster. For example, in Stage 2 – Level 1 (see Figure 6), three 

clusters were identified: the standard solution, the misuse of resources error, and unitizing 

errors. The standard solution was identified because the cluster included the following 

actions: placing 1/1 on Trampoline 1, placing 1/2 on Trampoline 2, and placing 1/2 on 

Trampoline 3. These are the actions that would be expected of a student who knew the 

answer to the problem. The misuse of resources error was identified because the cluster 

included the following actions: placing 1/2 on Trampoline 1, and placing a second 1/2 on 

Trampoline 1. These actions are consistent with what a student would do if they used both 

available 1/2 coils on the wrong trampoline and then didn’t have any 1/2 coils left to use on 

Trampoline 2 or Trampoline 3. These actions are only identified as being an error because 

the student runs out of the necessary resources; if there were additional 1/2 coils available, 

these actions would result in a correct solution. The unitizing errors were identified because 

the cluster included the following actions: placing 1/4 on Trampoline 2 and placing 1/4 on 

Trampoline 3. These actions are consistent with what a student would do if they ignored the 

red lines and thought that the whole screen was one unit. In that case, they would see the unit 

as being broken up into four pieces, with the first jump representing two of those pieces, and 

the second and third jumps each representing one of those pieces. 
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Appendix B lists, for each level, all of the actions identified by the cluster analysis as 

belonging to each cluster, and Appendix C and Appendix D list the SPSS and R codes used 

to run the analysis. 

 

 

Figure 6. Stage 2 – Level 1 of Save Patch, illustrating the identified clusters for the level. 

Results 

Before changing instruction or providing remediation based on the error patterns 

identified in the previous analysis, it is important to examine their validity. Because cluster 

analysis is designed to uncover the latent dimensionality of data sets that are so large that this 

structure is obscured, the interpretation of the validity of the identified clusters is inevitably 

application-dependent and somewhat subjective (Hand et al., 2001). However, some basic 

questions regarding the validity of the analysis can still be answered, namely: 

1. Did cluster analysis pull clusters of actions from all levels of the game? 

2. Did cluster analysis consistently identify similar clusters in similar situations 
throughout the game? 

3. Were the clusters that we identified interpretable in the context of the game and 
subject area (i.e., did the actions in each cluster clearly reflect a specific underlying 
solution strategy or error pattern)? 

4. What percentage of the data was explained by the identified clusters? 

To answer these questions, we tracked each cluster as it was identified, compiling 

information about the frequency of the occurrence of the cluster across the 16 levels as well 

as the average percentage of attempts the students made to solve the levels that fell in that 
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cluster (see Table 1). An attempt at solving a level is defined as a series of actions taken by a 

student in a given level that culminate in a death, a reset, or a successful solution. The 

average percentage of attempts was calculated only for levels in which the cluster was 

identified. The only two levels where no clusters were identified (Stage 1 – Level 1 and 

Stage 2 – Level 2) were close to the beginning of the game and were easy enough (i.e., 

students were given one coil and one trampoline and had to jump one whole space) that there 

was virtually no variance in the way students played them. All other levels contained at least 

one cluster reflecting a legitimate solution strategy, at least one cluster reflecting a specific 

type of error, and an additional cluster of unknown errors (see Appendix E). These results 

indicate that cluster analysis can pull clusters from all game levels, provided there is enough 

variance in student performance that multiple solution strategies or error patterns were 

actually employed in the level. 

Each of the identified clusters is listed in Table 1. The standard solution and 

unexplained errors were found in all levels of the game. While no other cluster appeared in 

all levels, each of the other clusters appeared in a majority of the levels where that particular 

error or solution strategy was allowable by level design, except for the solution using a larger 

denominator, which was identified in only two of the levels and in only 6% of the attempts 

made on those levels. 

The alternate legitimate solution was identified in five of the seven levels in which it 

was possible and accounted for an average of 26% of the attempts on those five levels. The 

solution using a shortcut was identified in only three of the 10 levels in which it was possible 

and accounted for an average of 8% of the attempts on those levels. The error pattern using 

all resources in the order in which they were provided was identified in six out of nine levels 

in which it was possible and accounted for an average of 19% of the attempts on those levels. 

The error pattern involving the misuse of resources was identified in six out of seven levels 

in which it was possible and accounted for an average of 11% of the attempts on those levels. 

The unitizing errors were identified in six out of eight levels in which they were possible and 

accounted for an average of 25% of the attempts on those levels. The errors involving 

partitioning exclusively were identified in five out of nine levels in which they were possible 

and accounted for an average of 39% of the attempts on those levels. The errors involving 

partitioning inclusively were identified in five out of 10 levels in which they were possible 

and accounted for an average of 9% of the attempts on those levels. The error involving 

seeing the solution as a mixed number was identified in one out of two levels in which it was 

possible and accounted for 22% of the attempts in that level. 



 

13 

Table 1 

Solution Strategies and Error Patterns Identified by Cluster Analysis 

Cluster identified Identified frequencya Percentage of attemptsb 

Solution strategies   

Standard solution 16 26.5% 

Solution using a larger denominator 2 6.2% 

Alternate legitimate solution 5 26.0% 

Solution using a shortcut 3 8.4% 

Error patterns involving game strategy   

Using all resources in the order they are provided 6 19.1% 

Misuse of resources 6 10.9% 

Error patterns involving mathematical misconceptions   

Unitizing errors 6 23.6% 

Partitioning errors involving counting points 
exclusively 

5  37.0% 

Partitioning errors involving counting points 
inclusively 

5  9.1% 

Seeing the solution as a mixed number 1  22.4% 

Unexplained errors 16 26.4% 

aIdentified frequency is the number of levels (out of 16) in which the cluster was identified. 
bPercentage of attempts is calculated only for levels in which the cluster was identified. 

The identification of errors across levels indicates that these error patterns are not 

specific to the level in which they were identified, but rather surfaced periodically throughout 

the game when allowed by level design (see Appendix E for a list of which clusters were 

possible in which levels). That only four different types of legitimate solution strategies and 

six different types of error patterns were identified, and that these clusters were extracted 

from a variety of different levels rather than each level having its own unique set of errors, 

show that cluster analysis did consistently identify similar clusters in similar situations. 

The results of the cluster analysis were also easily interpretable. In all cases, the actions 

identified as belonging to a given cluster were interpretable in either the context of the game 

(in the case of error patterns involving game strategy) or in the context of the subject area (in 

the case of errors involving mathematical misconceptions). Additionally, the percentage of 

student attempts to solve a level that remained in the unexplained error cluster, and were 

therefore essentially unidentified by the cluster analysis, averaged 26.4% across all levels and 

ranged from 11.4% to 38.5%. These results indicate that the cluster analysis was able to 

account for an average of 73.6% of the attempts taken by students in each level.  
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Discussion 

The overall performance of cluster analysis in this study indicates its potential for 

researchers interested in analyzing educational video games and simulations. Because the 

cluster analysis was able to pull clusters from nearly all levels of the game, and those clusters 

accounted for 73.6% of attempts made by students on those levels, the analysis clearly 

provides enough data to be worthwhile. Additionally, its ability to consistently identify 

similar clusters in similar situations suggests that cluster analysis may be a reliable way of 

examining log data. Most important, however, is that cluster analysis identified error patterns 

that clarified both the mathematical misconceptions students were employing and the game 

strategies that students utilized to solve the levels. 

The performance of cluster analysis in this study indicates that it could be a valid tool 

for analyzing complex problem solving situations in educational video games or simulations. 

Because it pulls out patterns of actions (and therefore patterns of thought) that are not visible 

through either direct examination or standard summary statistics, cluster analysis provides a 

means of synthesizing log data that is difficult to do otherwise. Once the actions taken in the 

game are distilled into clusters of behaviors that reflect cognition, these clusters hold great 

potential for diagnosing mathematical misconceptions in students and for providing 

remediation and/or tailored instruction through video games or simulations. Provided that 

additional validity evidence can be collected to help determine how well the clusters reflect 

our interpretation of them, cluster analysis may well become a valuable tool for designing 

games, curriculum, or remediation techniques that result in higher learning outcomes due to 

their ability to focus on particular patterns of behavior. 
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Appendix A: 

Cluster Analysis Basics 

Cluster analysis uses a distance metric. The distances between each of the items are 

calculated and plotted in n-dimensional space, where n is the number of items to be clustered 

(see Figure A1 for an example). In only two or three dimensions, the human eye and brain 

can determine clusters easily just by visual examination. Things that are close to each other 

and far from other groups belong to a cluster. Cluster analysis seeks to perform this same 

process mathematically when the number of dimensions exceeds the ability of human visual 

interpretation. 

 

 
Figure A1. Items plotted in n-dimensional space. 

To do this, a cluster analysis algorithm that seeks to partition the items into clusters 

generally begins by choosing p points at random, where p is the number of clusters desired 

(see Figure A2). Then, the algorithm checks the distances from each point to the initial p 

points to determine which of those points it is closest to. As the algorithm iterates, the initial 

points may be abandoned and the p points may shift to points closer to the center of the 

cluster. 
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Figure A2. Initial p points chosen for cluster analysis. 

Membership in a cluster is then determined by minimizing the ratio between the sum of 

the distances between a given point and all other points in the same cluster and the sum of 

distances between that point and all points outside of the cluster. This results in clusters that 

are relatively compact and well separated from each other, such as can be seen in Figure A3. 

 

 
Figure A3. Final clusters identified by cluster analysis. 
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Appendix B: 

Extracted Clusters by Level 

This appendix lists the actions identified through cluster analysis as belonging to each 

cluster in each level. Trampolines are numbered (T1, T2, etc.) in the order in which they are 

bounced on in the level. OTHER refers to actions that were not recorded in the log file as 

taking place on a particular trampoline. The mnemonic codes generated from the log data to 

name the individual actions in the clusters are listed below the short descriptions of these 

actions inside the cells of the table. 
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Table B1 

Stage 2 – Level 1 Clusters 

 Trampoline 

Cluster T1 T2 T3 

S1: Standard Solution 1/1 on T1 
ACRT_POS1.0_COIL1.1_YIELD1.1 

1/2 on T2 
ACRT_POS3.0_COIL1.2_YIELD1.2 

1/2 on T3 
ACRT_POS4.0_COIL1.2_YIELD1.2 

E2: Misusing Resources 1/2 on T1  
2/2 on T1 

ACRT_POS1.0_COIL1.2_YIELD1.2 
ACRT_POS1.0_COIL1.2_YIELD2.2

  

E3: Unitizing Errors  1/4 on T2 
ACRT_POS3.0_COIL1.4_YIELD1.4

1/4 on T3 
ACRT_POS4.0_COIL1.4_YIELD1.4
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Table B2 

Stage 3 – Level 1 Clusters 

 Trampoline 

Cluster T1 OTHER 

S1: Standard Solution 1/2 on T1  
2/2 on T1 

ACRT_POS1.0_COIL1.2_YIELD1.2 
ACRT_POS1.0_COIL1.2_YIELD2.2

 

E1: All in Order 3/2 on T1 
ACRT_POS1.0_COIL1.2_YIELD3.2

ADD 1/3 to 1/2 
ACWR_COIL1.3_TRAMP1.2
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Table B3 

Stage 3 – Level 2 Clusters 

 Trampoline 

Cluster T1 T2 OTHER 

S1: Standard Solution 1/3 on T1  
2/3 on T1 

ACRT_POS1.0_COIL1.3_YIELD1.3 

ACRT_POS1.0_COIL1.3_YIELD2.3 

1/3 on T2 
ACRT_POS3.0_COIL1.3_YIELD1.3 

 

E4: Partitioning Exclusively 1/2 on T1  
2/2 on T1 

ACRT_POS1.0_COIL1.3_YIELD1.3 

ACRT_POS1.0_COIL1.3_YIELD2.3 

1/2 on T2  
1/4 on T21 

ACRT_POS3.0_COIL1.3_YIELD1.3 

ACRT_POS3.0_COIL1.3_YIELD1.3 

Add 1/3 to 1/21 
ACWR_COIL1.3_TRAMP1.2 

 

1These actions were identified as belonging to this cluster by the analysis but do not appear to belong to this error pattern. 
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Table B4 

Stage 3 – Level 3 Clusters 

 Trampoline 

Cluster T1 T2 

S1: Standard Solution 1/1 on T1 
ACRT_POS1.0_COIL1.1_YIELD1.1 

1/3 on T2  
2/3 on T2 

ACRT_POS4.0_COIL1.3_YIELD1.3 

ACRT_POS4.0_COIL1.3_YIELD2.3 

E1: All in Order 2/1 on T1 
ACRT_POS1.0_COIL1.1_YIELD2.1 

1/6 on T2  
2/6 on T2 

ACRT_POS4.0_COIL1.6_YIELD1.6 

ACRT_POS4.0_COIL1.6_YIELD2.6 

E2: Misusing Resources 1/3 on T1  
2/3 on T1  
3/3 on T1 

ACRT_POS1.0_COIL1.3_YIELD1.3 
ACRT_POS1.0_COIL1.3_YIELD2.3 
ACRT_POS1.0_COIL1.3_YIELD3.3
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Table B5 

Stage 4 – Level 1 Clusters 

 Trampoline 

Cluster T1 T2 T3 OTHER 

S1: Standard Solution 1/1 on T1 
ACRT_POS1.2_COIL1.1_YIELD1.1

1/1 on T2 
ACRT_POS1.0_COIL1.1_YIELD1.1 

1/2 on T3 
ACRT_POS3.0_COIL1.2_YIELD1.2  

E3: Unitizing Errors 2/1 on T1 
ACRT_POS1.2_COIL1.1_YIELD2.1 

1/2 on T2  
2/2 on T2  
3/2 on T2  
4/2 on T2 

ACRT_POS1.0_COIL1.2_YIELD1.2 
ACRT_POS1.0_COIL1.2_YIELD2.2 
ACRT_POS1.0_COIL1.2_YIELD3.2 
ACRT_POS1.0_COIL1.2_YIELD4.2 

1/1 on T3 
ACRT_POS3.0_COIL1.1_YIELD1.1 

Add 1/2 to 1/11 
ACWR_COIL1.2_TRAMP1.1 

 

1 These actions were identified as belonging to this cluster by the analysis but do not appear to belong to this error pattern. 
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Table B6 

Stage 4 – Level 2 Clusters 

 Trampoline 

Cluster T1 T2 T3 T4 T5 

S1: Standard 
Solution 

1/1 on T1 
ACRT_POS1.0_COIL1.1_YIELD1.1 

1/1 on T2 
ACRT_POS4.0_COIL1.1_YIELD1.1 

1/3 on T3 
ACRT_POS4.3_COIL1.3_YIELD1.3 

1/3 on T4 
ACRT_POS5.3_ 

COIL1.3_YIELD1.3

1/3 on T5 
ACRT_POS6.3_ 
COIL1.3_YIELD1.3

S4: Shortcut 
Solution 

  2/3 on T3  
3/3 on T3 

ACRT_POS4.3_COIL1.3_YIELD2.3 
ACRT_POS4.3_COIL1.3_YIELD3.3   

E2: Misusing 
Resources 

1/3 on T1  
2/3 on T1  
3/3 on T1 

ACRT_POS1.0_COIL1.3_YIELD1.3 
ACRT_POS1.0_COIL1.3_YIELD2.3 
ACRT_POS1.0_COIL1.3_YIELD3.3

1/3 on T2  
2/3 on T2  
3/3 on T2 

ACRT_POS4.0_COIL1.3_YIELD1.3 
ACRT_POS4.0_COIL1.3_YIELD2.3 
ACRT_POS4.0_COIL1.3_YIELD3.3

 

  

E5: 
Partitioning 
Inclusively 

1/4 on T1  
2/4 on T1  
3/4 on T1 

ACRT_POS1.0_COIL1.4_YIELD1.4 
ACRT_POS1.0_COIL1.4_YIELD2.4 
ACRT_POS1.0_COIL1.4_YIELD3.4

1/4 on T2  
2/4 on T2  
3/4 on T2 

ACRT_POS4.0_COIL1.4_YIELD1.4 
ACRT_POS4.0_COIL1.4_YIELD2.4 
ACRT_POS4.0_COIL1.4_YIELD3.4

1/4 on T3 
ACRT_POS4.3_COIL1.4_YIELD1.4 

1/4 on T4 
ACRT_POS5.3_ 

COIL1.4_YIELD1.4 

1/4 on T4 
ACRT_POS6.3_ 

COIL1.4_YIELD1.4 
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Table B7 

Stage 4 – Level 3 Clusters 

 Trampoline 

Cluster T1 T2 T3 

S1: Standard Solution 1/1 on T1 
ACRT_POS1.2_COIL1.1_YIELD1.1

1/3 on T2 
ACRT_POS4.2_COIL1.3_YIELD1.3 

1/3 on T3 
ACRT_POS4.1_COIL1.3_YIELD1.3

S3: Larger Denominator  1/6 on T2  
2/6 on T2 

ACRT_POS4.2_COIL1.6_YIELD1.6 
ACRT_POS4.2_COIL1.6_YIELD2.6 

 

E1: All in Order 2/1 on T1 
ACRT_POS1.2_COIL1.1_YIELD2.1 

2/3 on T2 
ACRT_POS4.2_COIL1.3_YIELD2.3 

1/6 on T3  
2/6 on T3  
3/6 on T3  
4/6 on T3 

ACRT_POS4.1_COIL1.6_YIELD1.6 
ACRT_POS4.1_COIL1.6_YIELD2.6 
ACRT_POS4.1_COIL1.6_YIELD3.6 
ACRT_POS4.1_COIL1.6_YIELD4.6

E2: Misusing Resources 1/3 on T1  
2/3 on T1  
3/3 on T1 

ACRT_POS1.2_COIL1.1_YIELD1.3 
ACRT_POS1.2_COIL1.1_YIELD2.3 
ACRT_POS1.2_COIL1.1_YIELD3.3
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Table B8 

Stage 4 – Level 4 Clusters 

 Trampoline 

Cluster T1 T2 T3 T4 

S1: Standard 
Solution 

1/3 on T1  
2/3 on T1 

ACRT_POS1.0_COIL1.3_YIELD1.3 
ACRT_POS1.0_COIL1.3_YIELD2.3

1/3 on T2 
ACRT_POS1.2_COIL1.3_YIELD1.3 

1/3 on T3  
2/3 on T3 

ACRT_POS2.2_COIL1.3_YIELD1.3 
ACRT_POS2.2_COIL1.3_YIELD2.3 

1/3 on T4 
ACRT_POS4.2_COIL1.3_YIELD1.3 

E1: All in Order 1/2 on T1 
ACRT_POS1.0_COIL1.2_YIELD1.2 

 1/2 on T3 
ACRT_POS2.2_COIL1.2_YIELD1.2  

E4: Partitioning 
Exclusively 

2/2 on T1  
3/3 on T1 

ACRT_POS1.0_COIL1.2_YIELD2.2 
ACRT_POS1.0_COIL1.3_YIELD3.3 

1/2 on T2  
2/2 on T2  
2/3 on T21 

ACRT_POS1.2_COIL1.2_YIELD1.2 
ACRT_POS1.2_COIL1.2_YIELD2.2 
ACRT_POS1.2_COIL1.3_YIELD2.3 

2/2 on T3  
3/3 on T3 

ACRT_POS2.2_COIL1.2_YIELD2.2 
ACRT_POS2.2_COIL1.3_YIELD3.3 

1/2 on T4  
2/3 on T41 

ACRT_POS4.2_COIL1.2_YIELD1.2 
ACRT_POS4.2_COIL1.3_YIELD2.3 

 
1 These actions were identified as belonging to this cluster by the analysis but do not appear to belong to this error pattern. 
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Table B9 

Stage 4 – Level 5 Clusters 

 Trampoline 

Cluster T1 T2 T3 T4 

S1: Standard Solution 1/1 on T1 
ACRT_POS1.1_COIL1.1_YIELD1.1 

1/1 on T2 
ACRT_POS1.3_COIL1.1_YIELD1.1 

1/2 on T3 
ACRT_POS3.3_COIL1.2_YIELD1.2 

1/2 on T4  
2/2 on T4 

ACRT_POS3.2_COIL1.2_YIELD1.2 
ACRT_POS3.2_COIL1.2_YIELD2.2

S2: Alternate Solution 2/2 on T1 
ACRT_POS1.1_COIL1.2_YIELD2.2

2/2 on T2 
ACRT_POS1.3_COIL1.2_YIELD2.2

 1/1 on T4 
ACRT_POS3.2_COIL1.1_YIELD1.1

E3: Unitizing Errors 1/2 on T1 
ACRT_POS1.1_COIL1.2_YIELD1.2

1/2 on T2 
ACRT_POS1.3_COIL1.2_YIELD1.2

1/4 on T3 
ACRT_POS3.3_COIL1.4_YIELD1.4

 

 

 



 

31 

Table B10 

Stage 5 – Level 1 Clusters 

 Trampoline 

Cluster T1 OTHER 

S1: Standard Solution 1/2 on T1 
2/2 on T1 
3/2 on T1 

ACRT_POS1.0_COIL1.2_YIELD1.2 
ACRT_POS1.0_COIL1.2_YIELD2.2 
ACRT_POS1.0_COIL1.2_YIELD3.2

 

S3: Larger Denominator 1/4 on T1 
2/4 on T1 
3/4 on T1 
4/4 on T1 
5/4 on T1 
6/4 on T1 

ACRT_POS1.0_COIL1.4_YIELD1.4 
ACRT_POS1.0_COIL1.4_YIELD2.4 
ACRT_POS1.0_COIL1.4_YIELD3.4 
ACRT_POS1.0_COIL1.4_YIELD4.4 
ACRT_POS1.0_COIL1.4_YIELD5.4 
ACRT_POS1.0_COIL1.4_YIELD6.4 

 

E1: All in Order 2/1 on T1 
ACRT_POS1.0_COIL1.1_YIELD2.1 

 

E3: Unitizing Errors 1/3 on T1 
2/3 on T1 
3/3 on T1 
4/3 on T1 

ACRT_POS1.0_COIL1.3_YIELD1.3 
ACRT_POS1.0_COIL1.3_YIELD2.3 
ACRT_POS1.0_COIL1.3_YIELD3.3 
ACRT_POS1.0_COIL1.3_YIELD4.3 
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 Trampoline 

Cluster T1 OTHER 

E6: See as Mixed Number 1/1 on T1 
ACRT_POS1.0_COIL1.1_YIELD1.1 

ADD 1/2 to 1/1 
ADD 1/3 to 1/1 
ADD 1/4 to 1/1 
ADD 1/5 to 1/1 

ACWR_COIL1.2_TRAMP1.1 
ACWR_COIL1.3_TRAMP1.1 
ACWR_COIL1.4_TRAMP1.1 
ACWR_COIL1.5_TRAMP1.1
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Table B11 

Stage 5 – Level 2 Clusters 

 Trampoline 

Cluster T1 T2 T3 

S1: Standard Solution 1/3 on T1  
2/3 on T1 

ACRT_POS1.0_COIL1.3_YIELD1.3 
ACRT_POS1.0_COIL1.3_YIELD2.3 

1/3 on T2  
2/3 on T2  

ACRT_POS1.2_COIL1.3_YIELD1.3 

ACRT_POS1.2_COIL1.3_YIELD2.3 

1/3 on T3 
ACRT_POS3.2_COIL1.3_YIELD1.3 

E4: Partitioning Exclusively 1/2 on T1  
2/2 on T1  
1/1 on T1 

ACRT_POS1.0_COIL1.2_YIELD1.2 
ACRT_POS1.0_COIL1.2_YIELD2.2 
ACRT_POS1.0_COIL1.1_YIELD1.1

1/2 on T2  
2/2 on T2  
1/1 on T2 

ACRT_POS1.2_COIL1.2_YIELD1.2 
ACRT_POS1.2_COIL1.2_YIELD2.2 
ACRT_POS1.2_COIL1.1_YIELD1.1 

1/2 on T3 
ACRT_POS3.2_COIL1.2_YIELD1.2 

E5: Partitioning Inclusively 1/4 on T1  
2/4 on T1  
3/4 on T1 

ACRT_POS1.0_COIL1.4_YIELD1.4 
ACRT_POS1.0_COIL1.4_YIELD2.4 
ACRT_POS1.0_COIL1.4_YIELD3.4 

1/4 on T2  
2/4 on T2  
3/4 on T2 

ACRT_POS1.2_COIL1.4_YIELD1.4 
ACRT_POS1.2_COIL1.4_YIELD2.4 
ACRT_POS1.2_COIL1.4_YIELD3.4

1/4 on T3 
ACRT_POS3.2_COIL1.4_YIELD1.4 
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Table B12 

Stage 5 – Level 3 Clusters 

 Trampoline 

Cluster T1 T2 T3 T4 

S1: Standard 
Solution 

1/4 on T1 
ACRT_POS1.4_COIL1.4_YIELD1.4

1/4 on T2  
2/4 on T2 

ACRT_POS1.3_COIL1.4_YIELD1.4 
ACRT_POS1.3_COIL1.4_YIELD2.4 

1/4 on T3  
2/4 on T3  
3/4 on T3 

ACRT_POS3.3_COIL1.4_YIELD1.4 
ACRT_POS3.3_COIL1.4_YIELD2.4 
ACRT_POS3.3_COIL1.4_YIELD3.4

1/4 on T4  
2/4 on T4 

ACRT_POS3.0_COIL1.4_YIELD1.4 
ACRT_POS3.0_COIL1.4_YIELD2.4

S2: Alternate 
Solution 

1/2 on T11 
ACRT_POS1.4_COIL1.2_YIELD1.2

1/2 on T2  
2/2 on T21 

ACRT_POS1.3_COIL1.2_YIELD1.2 
ACRT_POS1.3_COIL1.2_YIELD2.2

 1/2 on T4 
2/2 on T41 

ACRT_POS3.0_COIL1.2_YIELD1.2 
ACRT_POS3.0_COIL1.2_YIELD2.2

E4: Partitioning 
Exclusively 

1/3 on T1 
ACRT_POS1.4_COIL1.3_YIELD1.3

1/3 on T2  
2/3 on T2 

ACRT_POS1.3_COIL1.3_YIELD1.3 
ACRT_POS1.3_COIL1.3_YIELD2.3

1/2 on T3  
2/2 on T3 

ACRT_POS3.3_COIL1.2_YIELD1.2 
ACRT_POS3.3_COIL1.2_YIELD2.2

1/1 on T3 
ACRT_POS3.0_COIL1.1_YIELD1.1

E5: Partitioning 
Inclusively 

1/5 on T1 
ACRT_POS1.4_COIL1.5_YIELD1.5

1/5 on T2  
2/5 on T2 

ACRT_POS1.3_COIL1.5_YIELD1.5 
ACRT_POS1.3_COIL1.5_YIELD2.5 

1/5 on T3  
2/5 on T3  
3/5 on T3  
4/5 on T31 

ACRT_POS3.3_COIL1.5_YIELD1.5 
ACRT_POS3.3_COIL1.5_YIELD2.5 
ACRT_POS3.3_COIL1.5_YIELD3.5 
ACRT_POS3.3_COIL1.5_YIELD4.5

1/5 on T4  
2/5 on T4 

ACRT_POS3.0_COIL1.5_YIELD1.5 
ACRT_POS3.0_COIL1.5_YIELD2.5
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1These actions were identified as belonging to this cluster by the analysis but do not appear to belong to this error pattern. 
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Table B13 

Stage 6 – Level 1 Clusters 

 Trampoline 

Cluster T1 T2 

S1: Standard Solution 4/4 on T1  
5/4 on T1  
6/4 on T1 

ACRT_POS1.0_COIL1.4_YIELD4.4 
ACRT_POS1.0_COIL1.4_YIELD5.4 
ACRT_POS1.0_COIL1.4_YIELD6.4 

2/4 on T2 
ACRT_POS4.0_COIL1.4_YIELD2.4 

E2: Misusing Resources 1/2 on T1  
2/2 on T1 

ACRT_POS1.0_COIL1.2_YIELD1.2 
ACRT_POS1.0_COIL1.2_YIELD2.2 

 

E3: Unitizing Errors 1/4 on T1  
2/4 on T1  
3/4 on T1 

ACRT_POS1.0_COIL1.4_YIELD1.4 
ACRT_POS1.0_COIL1.4_YIELD2.4 
ACRT_POS1.0_COIL1.4_YIELD3.4 

1/4 on T2 
ACRT_POS4.0_COIL1.4_YIELD1.4 
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Table B14 

Stage 6 – Level 2 Clusters 

 Trampoline 

Cluster T1 T2 T3 OTHER 

S1: Standard Solution 1/6 on T1  
2/6 on T1 

ACRT_POS1.0_COIL1.6_YIELD1.6 
ACRT_POS1.0_COIL1.6_YIELD2.6

1/6 on T2  
2/6 on T2  
3/6 on T2 

ACRT_POS3.0_COIL1.6_YIELD1.6 
ACRT_POS3.0_COIL1.6_YIELD2.6 
ACRT_POS3.0_COIL1.6_YIELD3.6

1/6 on T3 
ACRT_POS6.0_COIL1.6_YIELD1.6

 

S2: Alternate Solution 1/3 on T1 
ACRT_POS1.0_COIL1.3_YIELD1.3

4/6 on T2 
ACRT_POS3.0_COIL1.6_YIELD4.6

 REMOVE T11 
RMVTRMP_VAL0.1_POS1.0

S4: Shortcut Solution 3/6 on T1  
4/6 on T1  
5/6 on T1  
6/6 on T1 

ACRT_POS1.0_COIL1.6_YIELD3.6 
ACRT_POS1.0_COIL1.6_YIELD4.6 
ACRT_POS1.0_COIL1.6_YIELD5.6 
ACRT_POS1.0_COIL1.6_YIELD6.6

1/3 on T2  
2/3 on T2 

ACRT_POS3.0_COIL1.3_YIELD1.3 
ACRT_POS3.0_COIL1.3_YIELD2.3

  

E1: All in Order 2/3 on T1 
ACRT_POS1.0_COIL1.3_YIELD2.3

 2/6 on T3 
ACRT_POS6.0_COIL1.6_YIELD2.6

ADD 1/6 to 1/3 
ACWR_COIL1.6_TRAMP1.3
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1These actions were identified as belonging to this cluster by the analysis but do not appear to belong to this error pattern. 
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Table B15 

Stage 6 – Level 3 Clusters 

 Trampoline 

Cluster T1 T2 T3 

S1: Standard Solution 1/3 on T1  
2/3 on T1 

ACRT_POS1.0_COIL1.3_YIELD1.3 
ACRT_POS1.0_COIL1.3_YIELD2.3 

1/6 on T2  
2/6 on T2  
3/6 on T2  
4/6 on T2 

ACRT_POS1.2_COIL1.6_YIELD1.6 
ACRT_POS1.2_COIL1.6_YIELD2.6 
ACRT_POS1.2_COIL1.6_YIELD3.6 
ACRT_POS1.2_COIL1.6_YIELD4.6 

1/6 on T3  
2/6 on T3 

ACRT_POS3.2_COIL1.6_YIELD1.6 
ACRT_POS3.2_COIL1.6_YIELD2.6 

S2: Alternate Solution 1/6 on T1  
2/6 on T1  
3/6 on T1  
4/6 on T1 

ACRT_POS1.0_COIL1.6_YIELD1.6 
ACRT_POS1.0_COIL1.6_YIELD2.6 
ACRT_POS1.0_COIL1.6_YIELD3.6 
ACRT_POS1.0_COIL1.6_YIELD4.6

1/3 on T2  
2/3 on T2 

ACRT_POS1.2_COIL1.3_YIELD1.3 
ACRT_POS1.2_COIL1.3_YIELD2.3 

1/3 on T 
ACRT_POS3.2_COIL1.3_YIELD1.3 

S4: Shortcut Solution  5/6 on T2  
6/6 on T2 

ACRT_POS1.2_COIL1.6_YIELD5.6 
ACRT_POS1.2_COIL1.6_YIELD6.6 

 

E4: Partitioning Exclusively 3/3 on T1 
ACRT_POS1.0_COIL1.3_YIELD3.3 

3/3 on T2  
1/1 on T2 

ACRT_POS1.2_COIL1.3_YIELD3.3 
ACRT_POS1.2_COIL1.1_YIELD1.1 

3/6 on T3 
ACRT_POS3.2_COIL1.6_YIELD3.6 

E5: Partitioning Inclusively 1/4 on T1  
2/4 on T1 

ACRT_POS1.0_COIL1.4_YIELD1.4 
ACRT_POS1.0_COIL1.4_YIELD2.4

1/4 on T2  
2/4 on T2 

ACRT_POS1.2_COIL1.4_YIELD1.4 
ACRT_POS1.2_COIL1.4_YIELD2.4 

1/4 on T3 
ACRT_POS3.2_COIL1.4_YIELD1.4 
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Table B16 

Stage 6 – Level 4 Clusters 

 Trampoline 

Cluster T1 T2 T3 T4 T5 

S1: Standard 
Solution 

1/1 on T1 
ACRT_POS1.0_ 

COIL1.1_YIELD1.1 

1/1 on T2 
ACRT_POS1.2_COIL1.1_YIELD1.1 

1/2 on T3 
ACRT_POS3.2_ 

COIL1.2_YIELD1.2 

1/4 on T4 
2/4 on T4 
3/4 on T4 
4/4 on T4 
5/4 on T4 
6/4 on T4 
7/4 on T4 
8/4 on T4 

ACRT_POS3.3_COIL1.4_YIELD1.4 
ACRT_POS3.3_COIL1.4_YIELD2.4 
ACRT_POS3.3_COIL1.4_YIELD3.4 
ACRT_POS3.3_COIL1.4_YIELD4.4 
ACRT_POS3.3_COIL1.4_YIELD5.4 
ACRT_POS3.3_COIL1.4_YIELD6.4 
ACRT_POS3.3_COIL1.4_YIELD7.4 
ACRT_POS3.3_COIL1.4_YIELD8.4 

1/1 on T5 
ACRT_POS7.3_COIL1.1_YIELD1.1 

S2: Alternate 
Solution 

3/4 on T1 
4/4 on T1 

ACRT_POS1.0_ 
COIL1.4_YIELD3.4 

ACRT_POS1.0_ 
COIL1.4_YIELD4.4 

4/4 on T2 
ACRT_POS1.2_COIL1.4_YIELD4.64 

 1/1 on T4 
2/1 on T4 
1/2 on T4 
2/2 on T4 
3/2 on T4 
4/2 on T4 

ACRT_POS3.3_COIL1.1_YIELD1.1 
ACRT_POS3.3_COIL1.1_YIELD2.1 
ACRT_POS3.3_COIL1.2_YIELD1.2 
ACRT_POS3.3_COIL1.2_YIELD2.2 
ACRT_POS3.3_COIL1.2_YIELD3.2 
ACRT_POS3.3_COIL1.2_YIELD4.2

1/4 on T5 
2/4 on T5 
3/4 on T5 
4/4 on T5 
1/2 on T5 
2/2 on T5 

ACRT_POS7.3_COIL1.4_YIELD1.4 
ACRT_POS7.3_COIL1.4_YIELD2.4 
ACRT_POS7.3_COIL1.4_YIELD3.4 
ACRT_POS7.3_COIL1.4_YIELD4.4 
ACRT_POS7.3_COIL1.2_YIELD1.2 
ACRT_POS7.3_COIL1.2_YIELD2.2
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 Trampoline 

Cluster T1 T2 T3 T4 T5 

E2: Misusing 
Resources 

  1/4 on T3 
2/4 on T3 

ACRT_POS3.2_ 
COIL1.4_YIELD1.4 

ACRT_POS3.2_ 
COIL1.4_YIELD2.4   

E3: Unitizing 
Errors 

1/4 on T1 
2/4 on T1 

ACRT_POS1.0_ 
COIL1.4_YIELD1.4 

ACRT_POS1.0_ 
COIL1.4_YIELD2.4 

1/4 on T2 
2/4 on T2 
3/4 on T21 

ACRT_POS1.2_COIL1.4_YIELD1.4 
ACRT_POS1.2_COIL1.4_YIELD2.4 
ACRT_POS1.2_COIL1.4_YIELD3.4 

   

E5: 
Partitioning 
Inclusively 

 1/6 on T2  
2/6 on T2 

ACRT_POS1.2_COIL1.6_YIELD1.6 
ACRT_POS1.2_COIL1.6_YIELD2.6 

 1/6 on T4 
2/6 on T4 
3/6 on T4 
4/6 on T4 

ACRT_POS3.3_COIL1.6_YIELD1.6 
ACRT_POS3.3_COIL1.6_YIELD2.6 
ACRT_POS3.3_COIL1.6_YIELD3.6 
ACRT_POS3.3_COIL1.6_YIELD4.6
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 Trampoline 

Cluster T1 T2 T3 T4 T5 

 

1These actions were identified as belonging to this cluster by the analysis but do not appear to belong to this error pattern. 
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Appendix C: 

SPSS Syntax 

The following code was used to compute the mnemonic in SPSS. The mnemonic is a 
variable that combines information from a number of different variables in the log data so 
that all relevant information about a student’s actions can be displayed in one column. 

 
 
 
****************************PART 1*************************. 
* compute mnemonic values for data code 2010. 
* ACRT_POSxy_COILnd_YIELDnd. 
string x (a20). 
string y (a20). 
string n1 (a20). 
string n2 (a20). 
string d1 (a20). 
string d2 (a20). 
string mnemonic (a100). 
string strbase1 (a100). 
string strbase2 (a100). 
string strbase3 (a100). 
string separator (a1). 
string ss1 (a20). 
string ss2 (a20). 
string ss3 (a20). 
string s1 (a20). 
string s2 (a20). 
string s3 (a20). 
string s4 (a20). 
exe. 
 
* char position. 
compute strbase1 = 'ACRT_POS'. 
compute strbase2 = '_COIL'. 
compute strbase3 = '_YIELD'. 
compute separator = '.'. 
 
* set up strings to delimit event data. 
compute s1 = 'position'. 
compute s2 = 'added'. 
compute s3 = 'yield'. 
compute s4 = 'to'. 
compute len1 = char.length(s1). 
compute len2 = char.length(s2). 
compute len3 = char.length(s3). 
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exe. 
 
do if event_code = 2010. 
   * at position 1 0 added 1/2 to yield 1/2. 
 
   * find position of 'position', 'added' and 'yield'. Will strip these out 
   * and pull out digits from the substrings. 
   compute p1 = char.index(event_data, rtrim(s1)) + len1 + 1. 
   compute p2 = char.index(event_data, rtrim(s2)). 
   compute p3 = char.index(event_data, rtrim(s3)). 
   compute p4 = char.index(event_data, rtrim(s4)).   
 
   * pull out substrings. 
   compute ss1 = char.substr(event_data, p1, p2 - p1).   
   compute ss2 = char.substr(event_data, p2 + len2 + 1, p4 - (p2 + len2 + 1)).   
   compute ss3 = char.substr(event_data, p3 + len3 + 1).   
 
   * find delimiters within substring for each component. 
   compute ssp1 = char.index(ss1, ' '). /* space separate x and y. 
   compute ssp2 = char.index(ss2, '/'). /* / separates numerator and denom. 
   compute ssp3 = char.index(ss3, '/'). /* / separates numerator and denom. 
 
   * pull out component digits. 
   compute x =   char.substr(ss1, 1, ssp1 - 1). 
   compute y =   char.substr(ss1, ssp1 + 1). 
 
   compute n1  = char.substr(ss2, 1, ssp2 - 1).  
   compute d1  = char.substr(ss2, ssp2 + 1).  
 
   compute n2  = char.substr(ss3, 1, ssp3 - 1).  
   compute d2  = char.substr(ss3, ssp3 + 1).  
 
   * check for numeric values. 
   compute temp_x  = number(x,F2.0). 
   compute temp_y  = number(y,F2.0). 
   compute temp_n1 = number(n1,F2.0). 
   compute temp_n2 = number(n2,F2.0). 
   compute temp_d1 = number(d1,F2.0). 
   compute temp_d2 = number(d2,F2.0). 
 
   if missing(temp_x)   x = '?'. 
   if missing(temp_y)   y = '?'. 
   if missing(temp_n1) n1 = '?'. 
   if missing(temp_n2) n2 = '?'. 
   if missing(temp_d1) d1 = '?'. 
   if missing(temp_d2) d2 = '?'. 
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   compute mnemonic = concat(rtrim(strbase1), rtrim(x),  separator, rtrim(y),  
                             rtrim(strbase2), rtrim(n1), separator, rtrim(d1),  
                             rtrim(strbase3), rtrim(n2), separator, rtrim(d2)). 
end if. 
exe. 
 
* clean up. 
delete var 
x, y, n1, n2, d1, d2, strbase1, strbase2, strbase3, separator 
ss1, ss2, ss3, s1, s2, s3, s4, len1, len2,len3, p1, p2, p3, p4 
ssp1, ssp2, ssp3, temp_x, temp_y, temp_n1, temp_n2, temp_d1, temp_d2 
 
****************************PART 2*************************. 
* compute mnemonic values for data code 2011. 
* ACWR_COILnd_TRAMPnd. 
string n1 (a20). 
string d1 (a20). 
string n2 (a20). 
string d2 (a20). 
string mnemonic (a100). 
string strbase1 (a100). 
string strbase2 (a100). 
string separator (a1). 
string ss1 (a20). 
string ss2 (a20). 
string s1 (a20). 
string s2 (a20). 
exe. 
 
* char position. 
compute strbase1 = 'ACWR_COIL'. 
compute strbase2 = '_TRAMP'. 
compute separator = '.'. 
 
* set up strings to delimit event data. 
compute s1 = 'add'. 
compute s2 = 'to'. 
 
compute len1 = char.length(s1). 
compute len2 = char.length(s2). 
exe. 
 
do if event_code = 2011. 
* did not work because user tried to add 1/2 to 1/4. 
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   * find position of 'value' and 'point'. Will strip these out 
   * and pull out digits from the substrings. 
   * p1 = start of fraction '1/2' 
   * p2 = start of fraction '1/4'. 
    
   compute p1 = char.index(event_data, rtrim(s1)) + len1 + 1. 
   compute p2 = char.rindex(event_data, rtrim(s2)) + len2 + 1. 
 
   * pull out substrings.  
   compute ss1 = char.substr(event_data, p1, p2 - p1 - len2 - 1).   
   compute ss2 = char.substr(event_data, p2).   
 
   * find delimiters within substring for each component. 
   compute ssp1 = char.index(ss1, '/'). /* / separates numerator and denom. 
 
   * pull out component digits. 
   compute n1  = char.substr(ss1, 1, ssp1 - 1).  
   compute d1  = char.substr(ss1, ssp1 + 1).  
   compute n2  = char.substr(ss2, 1, ssp1 - 1).  
   compute d2  = char.substr(ss2, ssp1 + 1).  
 
   * check for numeric values. 
   compute temp_n1  = number(n1,F2.0). 
   compute temp_d1  = number(d1,F2.0). 
   compute temp_n2 = number(n2,F2.0). 
   compute temp_d2 = number(d2,F2.0). 
 
   if missing(temp_n1)   n1 = '?'. 
   if missing(temp_d1)   d1 = '?'. 
   if missing(temp_n2)   n2 = '?'. 
   if missing(temp_d2)   d2 = '?'. 
 
   compute mnemonic = concat(rtrim(strbase1), rtrim(n1),  separator, rtrim(d1),  
                             rtrim(strbase2), rtrim(n2), separator, rtrim(d2)). 
end if. 
exe. 
 
* clean up. 
delete var 
n1, d1, n2, d2, strbase1, strbase2, separator 
ss1, ss2, s1, s2, len1, len2, p1, p2, ssp1 
temp_n1, temp_d1, temp_n2, temp_d2 
 
****************************PART 3*************************. 
* compute mnemonic values for data code 2120. 
* PLCTRMP_VALnd_POSxy. 
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string n (a20). 
string d (a20). 
string x (a20). 
string y (a20). 
string mnemonic (a100). 
string strbase1 (a100). 
string strbase2 (a100). 
string separator (a1). 
string ss1 (a20). 
string ss2 (a20). 
string s1 (a20). 
string s2 (a20). 
string s3 (a20). 
exe. 
 
* char position. 
compute strbase1 = 'PLCTRMP_VAL'. 
compute strbase2 = '_POS'. 
compute separator = '.'. 
 
* set up strings to delimit event data. 
compute s1 = 'value'. 
compute s2 = 'point'. 
compute s3 = 'to'. 
 
compute len1 = char.length(s1). 
compute len2 = char.length(s2). 
compute len3 = char.length(s3). 
exe. 
 
do if event_code = 2120. 
   * placed a trampoline of value 2/2 to point 1 0. 
 
   * find position of 'value' and 'point'. Will strip these out 
   * and pull out digits from the substrings. 
   * p1 = start of fraction '2/2' 
   * p2 = start of 'point' 
   * p3 = start of 'to'. 
    
   compute p1 = char.index(event_data, rtrim(s1)) + len1 + 1. 
   compute p2 = char.index(event_data, rtrim(s2)). 
   compute p3 = char.index(event_data, rtrim(s3)). 
 
   * pull out substrings.  
   compute ss1 = char.substr(event_data, p1, p3 - p1).   
   compute ss2 = char.substr(event_data, p2 + len2 + 1).   
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   * find delimiters within substring for each component. 
   compute ssp1 = char.index(ss1, '/'). /* / separates numerator and denom. 
   compute ssp2 = char.index(ss2, ' '). /* space separate x and y. 
 
   * pull out component digits. 
   compute n  = char.substr(ss1, 1, ssp1 - 1).  
   compute d  = char.substr(ss1, ssp1 + 1).  
   compute x  = char.substr(ss2, 1, ssp2 - 1).  
   compute y  = char.substr(ss2, ssp2 + 1).  
 
   * check for numeric values. 
   compute temp_n  = number(n,F2.0). 
   compute temp_d  = number(d,F2.0). 
   compute temp_x = number(x,F2.0). 
   compute temp_y = number(y,F2.0). 
 
   if missing(temp_x)   x = '?'. 
   if missing(temp_y)   y = '?'. 
   if missing(temp_n)   n = '?'. 
   if missing(temp_d)   d = '?'. 
 
   compute mnemonic = concat(rtrim(strbase1), rtrim(n),  separator, rtrim(d),  
                             rtrim(strbase2), rtrim(x), separator, rtrim(y)). 
end if. 
exe. 
 
* clean up. 
delete var 
x, y, n, d, strbase1, strbase2, separator 
ss1, ss2, s1, s2, s3, len1, len2,len3, p1, p2, p3 
ssp1, ssp2, temp_x, temp_y, temp_n, temp_d 
 
****************************PART 4*************************. 
* compute mnemonic values for data code 2020. 
* RMVTRMP_VALnd_POSxy. 
string n (a20). 
string d (a20). 
string x (a20). 
string y (a20). 
string mnemonic (a100). 
string strbase1 (a100). 
string strbase2 (a100). 
string separator (a1). 
string ss1 (a20). 
string ss2 (a20). 
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string s1 (a20). 
string s2 (a20). 
string s3 (a20). 
exe. 
 
* char position. 
compute strbase1 = 'RMVTRMP_VAL'. 
compute strbase2 = '_POS'. 
compute separator = '.'. 
 
* set up strings to delimit event data. 
compute s1 = 'value'. 
compute s2 = 'point'. 
compute s3 = 'from'. 
 
compute len1 = char.length(s1). 
compute len2 = char.length(s2). 
compute len3 = char.length(s3). 
exe. 
 
do if event_code = 2020. 
   * removed a trampoline of value 0/1 from point 1 0. 
 
   * find position of 'value' and 'point'. Will strip these out 
   * and pull out digits from the substrings. 
   * p1 = start of fraction '0/1' 
   * p2 = start of 'point' 
   * p3 = start of 'from'. 
    
   compute p1 = char.index(event_data, rtrim(s1)) + len1 + 1. 
   compute p2 = char.index(event_data, rtrim(s2)). 
   compute p3 = char.index(event_data, rtrim(s3)). 
 
   * pull out substrings.  
   compute ss1 = char.substr(event_data, p1, p3 - p1).   
   compute ss2 = char.substr(event_data, p2 + len2 + 1).   
 
   * find delimiters within substring for each component. 
   compute ssp1 = char.index(ss1, '/'). /* / separates numerator and denom. 
   compute ssp2 = char.index(ss2, ' '). /* space separate x and y. 
 
   * pull out component digits. 
   compute n  = char.substr(ss1, 1, ssp1 - 1).  
   compute d  = char.substr(ss1, ssp1 + 1).  
   compute x  = char.substr(ss2, 1, ssp2 - 1).  
   compute y  = char.substr(ss2, ssp2 + 1).  
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   * check for numeric values. 
   compute temp_n  = number(n,F2.0). 
   compute temp_d  = number(d,F2.0). 
   compute temp_x = number(x,F2.0). 
   compute temp_y = number(y,F2.0). 
 
   if missing(temp_x)   x = '?'. 
   if missing(temp_y)   y = '?'. 
   if missing(temp_n)   n = '?'. 
   if missing(temp_d)   d = '?'. 
 
   compute mnemonic = concat(rtrim(strbase1), rtrim(n),  separator, rtrim(d),  
                             rtrim(strbase2), rtrim(x), separator, rtrim(y)). 
end if. 
exe. 
 
* clean up. 
delete var 
x, y, n, d, strbase1, strbase2, separator 
ss1, ss2, s1, s2, s3, len1, len2,len3, p1, p2, p3 
ssp1, ssp2, temp_x, temp_y, temp_n, temp_d 
 
****************************PART 5*************************. 
* add remaining variables of interest not captured in event_data. 
if event_code = 2062 mnemonic = "RET_TUT". 
if event_code = 2030 mnemonic = "TOG_TRMP". 
exe. 
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Appendix D: 

R Code 

The following code was used to run fuzzy cluster analysis in R. 
 
 
 
# run the following to import level data from a text file into R 
twentyfour <- read.table("file_address", header = TRUE) 
express <- twentyfour[, c( "ACRT_POS3.2_COIL1.4_YIELD1.4", etc.)] 
 
# run the following to call the necessary libraries 
# cluster loads the fanny function 
# vegan loads the ord, ordiplot, stars, and ordihull functions 
library(cluster) 
library(vegan) 
 
# run the following to transpose the matrix so that the actions are analyzed 
# otherwise the students will be clustered instead of the actions 
expresst <- t(express) 
 
# run the following to create the distance matrix 
dexpt <- dist(expresst,"manhattan") 
 
# run the following to determine how the clusters are composed 
# run numerous times, with the value after dexpt ranging from 2 to (n/2)-1 
f <- fanny(dexpt,2,TRUE,2,"manhattan",TRUE,NULL,FALSE,TRUE,TRUE, 
550,1e-15,0) 
summary(f) 
 
# once the correct number of clusters has been determined 
# run the following to plot the clusters 
ord <- cmdscale(dexpt) 
ordiplot(ord, dis = "si") 
ordihull(ord, f$clustering, col = "blue") 
stars(f$membership, locatio = ord, draw.segm = TRUE, add = TRUE, scale = FALSE,  
len = 0.1, xpd = TRUE) 
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Appendix E: 

Percentage of Attempts in Each Cluster 

Four solution strategies were identified: a standard solution (Solution 1), an alternate 

solution (Solution 2), a solution using a larger denominator (Solution 3), and a solution using 

a shortcut (Solution 4). Six error patterns were identified: using all resources in the order in 

which they were provided (Error 1), misusing resources (Error 2), unitizing errors (Error 3), 

partitioning exclusively (Error 4), partitioning inclusively (Error 5), and seeing the solution 

as a mixed number (Error 6). Table E1 displays the detected strategies and errors for each 

level. Asterisks indicate levels in which a given cluster was possible but was not identified by 

cluster analysis. Solution 3 was technically possible in all levels since students could always 

scroll to a larger denominator if they wanted, though it was rarely used. Stage 1 – Level 1 

and Stage 2 – Level 2 were not analyzed, as cluster analysis did not identify any clusters 

besides the standard solution. 
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Table E1 

Percentage of Attempts in Each Cluster 

 Solutions  Error patterns 

Stage - Level S1 S2 S3 S4  E1 E2 E3 E4 E5 E6 

1-1 87% -- -- -- -- -- -- -- -- -- 

2-1 64% * -- * -- 4% 3% -- -- -- 

2-2 82% -- -- -- -- -- -- -- -- -- 

3-1 51% -- -- -- 37% -- -- -- -- -- 

3-2 6% -- -- * -- --  68% * -- 

3-3 45% -- -- -- 17% 9% * * * -- 

4-1 57% * -- -- * * 29% -- -- -- 

4-2 33% -- -- 5% -- 14% * * 20% -- 

4-3 40% -- 8% * 32% 2% -- * * -- 

4-4 15% -- -- * 7% -- -- 46% * -- 

4-5 20% 19% -- -- -- -- 50% -- -- -- 

5-1 19% -- 4% -- 11% -- 9% -- -- 22% 

5-2 18% -- -- * -- -- -- 39% 13% -- 

5-3 12% 23% -- -- -- -- -- 24% 6% -- 

6-1 13% * -- * * 18% 30% -- -- * 

6-2 23% 31% -- 18% 11% -- -- * * -- 

6-3 7% 42% -- 2% * -- -- 18% 5% -- 

6-4 3% 15% -- -- -- 19% 27% -- 3% -- 

 


