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Abstract 

Textual information mining is a challenging problem that has resulted in the creation of many different 
rule-based linguistic query languages. However, these languages generally are not optimized for the 
purpose of text mining. In other words, they usually consider queries as individuals and only return raw 
results for each query. Moreover they cannot effectively express ambiguities, cannot adapt to different 
domains, require a large number of rules in order to accurately extract information, and are not very user-
friendly. This paper introduces a new text mining framework using a tree-based Linguistic Query 
Language, called LQL. The framework generates more than one parse tree for each sentence using a 
probabilistic parser, and annotates each node of these parse trees with main-parts information which is set 
of key terms from  branch based on the linguistic structure of the branch. The main- parts can be 
specialized for different domains based on a user- generated list of concepts. Using main-parts-annotated 
parse trees for a given textual dataset, the system can efficiently answer individual queries as well as mine 
the text for a given set of queries. The framework also has the ability to support grammatical ambiguity 
through probabilistic rules and linguistic exceptions in order to increase the quality of the extracted 
information. 

Introduction 

Using rich grammatical structures to extract information from unstructured text has recently 
attracted more attention in several applications such as content-based search engines, automatic reviewing 
systems, biomedical text mining systems, text summarization and topic extraction systems, and spam 
detection systems. In such techniques, the text is converted by linguistic parsers to a tree-based 
structure, called parse tree. Then, a query language is used to define pattern-like queries and a query 
engine searches the parse trees to find matches for the queries and to extract meaningful connections among 
the words in the text. The results can be used directly or indirectly through statistical techniques in each 
application. We will refer to this type of technique as pure NLP-based techniques as opposed to statistical 
NLP techniques. The pure NLP-based techniques promise more accurate results than the statistical NLP 
techniques, which are essentially based on the co-occurrence of words in the same piece of text. 

Although a lot of research has been done on NLP-based techniques (see Section VII for more 
details), several challenges still need to be addressed before text mining applications can efficiently utilize 
pure NLP-based techniques. First, to mine information from texts (such as the features of a specific 
electronic device, or the protein-gene relationship in biomedical contexts), many queries have to be created 
since there are i) many ways to express the same thing in a natural language and ii) existing query 
languages are not usually designed specifically for the purpose of text mining. Automatic generation of 
queries are not much better, because it usually generates a lot of queries and needs a huge textual 
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dataset for its learning phase. Second, query engines in many existing works are slow due to not only the 
high number of queries but also the structure of the queries, which requires search in depth of parse trees to 
extract information. Many techniques try to address this issue by limiting the expressiveness of their query 
language. Third, to the best of  knowledge, all existing works consider each query on a stand-alone 
basis. In other words, they are not best optimized for combining the results of different queries for 
information mining inside their system. Fourth, most of proposed frameworks can not efficiently adapt to 
different domains, that is they are either best optimized for a fix domain or they do not consider a 
specific domain. Moreover, several of these languages are not user-friendly and need complex coding which 
may be a hindrance when asking linguists to design rules (queries) for linguistic systems. In these 
languages, it is also hard to handle issues such linguistic exceptions, Anaphora resolution, co-reference 
resolution, etc.. In this paper, we propose an text mining framework and a new Linguistic Query 
Language (LQL) to address the aforementioned issues. The framework is specifically designed for efficiently 
querying and mining parse trees generated from probabilistic parsers. It enriches the nodes in the parse trees 
with main-parts during pre-processing. Main-parts extract key terms for each node from its branch based on 
the linguistic structure of the branch. These main-parts can be specialized for a specific domain through a 
user-generated list of concepts. This way, the query language can be designed with simpler, yet sufficient 
features. Consequently, the query engine can run faster while finding more results (See Section VI). 

In a glance, the proposed framework and language let users specify sets of tree-like patterns, called 
pattern trees and formatting results parts to extract tuples from the matched trees. The combination of 
pattern trees and formatting results parts is referred to as a linguistic rule or simply a rule. As we will 
show in this paper, generating these rules does not require a broad knowledge of programming. It can also 
be easily supported by a user friendly graphical user interface. In addition, LQL supports probabilistic rules 
in order to handle ambiguities in a more efficient way. Being developed in the process of designing the 
NLP-based text mining framework, LQL includes only necessary and practical utilities which improve 
computational efficiency and user-friendliness. More specifically, our paper makes the following 
contributions: 

 We introduce a new NLP-based text mining framework, which utilizes more than one parse tree for 
each sentence. The framework provides each node in the parse trees with appropriate information, 
called main-parts in preprocessing. This enables the system to answer queries in real time and 
mine more information from less text compared to existing approaches (See Section V). 

 We provide a new tree-based Linguistic Query Language (LQL) capable of specifying tree-based 
patterns called pattern trees and capturing results as sets of tuples (with any number of items in 
them). This helps in converting parse trees into more meaningful and machine understandable 
structures such as labeled directed hypergraphs. The language can also be fed with a list of 
concepts to adapt to a specific domain (See Section III). 

 We support probabilistic rules and relationships using more than one parse tree, which to our 
knowledge has not been done at the linguistic query language level. This is essential to deal with 
the inherent ambiguities in natural language and provide more accurate results. 
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LQL also provides several other features: each query in LQL can return one or more tuples each with 
their own probabilities, queries for the extraction of multi-word terms are supported, and a   
feature is included to reduce the total number of rules. 

In order to evaluate our framework, we have generated a set of 38 LQL rules to extract relationships 
between mathematical concepts in textual datasets. Our evaluations (Section VI) shows that the system can 
provide results with both higher precision and recall than PTQL, which is one of the best existing systems 
known to the authors. The time performance of our systems is also comparable with that of PTQL. 

Preliminaries and Background 

A collection of texts prepared for the purpose of linguistic computations is usually called a corpus. A 
common practice in Natural Language Processing techniques is to parse/annotate the corpus and generate 
tree-based structures containing the grammatical connection of the text. The resulting structures are called 
Parsed corpora or TreeBanks. Since the term treebank often implies that the text is manually annotated 
with the help of linguists, in this study, we use the term Parse Tree to indicate that the text does not 
need to be manually parsed. To understand the parse tree structure and provide a motivating example for our 
paper, we provide the following example. 

Motivating Example 

Figure 1 shows two possible parse trees for the sentence  elderly lady and gentleman held hands 
and were safely escorted to their , both taken from a probabilistic parser1. As you can see, each parse 
tree has an associated correctness probability. We labeled words with numbers to identify the position of 
words in the sentence and to differentiate among words used more than once (e.g. and  and and ). Figure 
2 graphically depicts Parse Tree 1 from Figure 1. In the parse trees, words are placed at the leaf nodes and 
are annotated with part-of-speech tags (POS-tags). A set of annotated nodes can additionally be annotated 
with phrase/clause/sentence tags to indicate that they belong to a phrase, clause, or sentence. 

                                                 
1 Charniak Parser: www.cfilt.iitb.ac.in/~anupama/charniak.php 
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Figure 1. Two parse trees for the sentence  elderly lady 
and gentleman held hands and were safely escorted to their 
car.  in parenthesized format. 

Addressing Schema 

LQL uses a simple addressing schema to identify each node in a parse tree. In this schema, the nodes 
of the tree are numbered as follows; the root is -1, and then, for each node in the resulting tree, its 
children nodes are consecutively numbered such that the first child is 0, the second child is 1, and so forth. 
To address a node in the tree, say ni , we can list the number of all the nodes in the path from the root to ni . 
We skip the root s number since it is always the same, unless we need to address the root itself. For 
example, all the addresses for Parse Tree 1 are shown on the left side of Figure 2, where addresses [1, 2, 0] 

and [1, 2, 2, 0] specify the nodes (AU X were 9) and (V BN escor ted 11), respectively. To address multiple nodes that 
are attached to each other, we can use the addition operation (+). For example, the value of the multi-
node address [1, 2, 0] + [1, 2, 2, 0] will be <were 9 escor ted 11>. This form of addressing is called multi-node 
addressing. Note that instead of addressing a node, we can simply use any string. 

The L inguistic Query Language (L Q L) 

In this section, we explain the general structure of the Linguistic Query Language, LQL. The central 
element of LQL is called a Rule. Although all the rules in LQL have the same format, different sets of rules 
are used for different purposes which will be discussed in this section. 
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Figure 2. The graphical representation of Parse Tree 1 in Figure 1. 

Extraction Rules 

Each rule in LQL is composed of two main parts; Pattern Tree and Resulting Format. Let us start with 
a simple example: Consider Parse Tree 1 in our running example in Figure 1. Assume that the aim is to find 
all the adjectives in the sentence and connect them to their appropriate noun through a link labeled prop 
of  meaning   To do so, one should look for noun phrase (N P) nodes in which there is an 
adjective (J J ) node directly followed by a noun (N N) node. The following rule can represent such a 
query. The set of such rules for extracting user-specified pieces of information is referred to as Extraction 
Rules. 

Rule 1. 
RULE adjectiveToNoun {  

PATTERN: (NP 
* 
(JJ ) (NN|NP )) 

RESULT (prob=.90): <[0], prop of  [1]> } 

Given such pattern trees, the query engine finds matches for this pattern over the parse tree(s). In the 
above example it looks for nodes tagged as N P that contain two consecutive children nodes one tagged as J J 

and the other tagged as either N N or N P . The latter is done by means of the disjunction operation (¦). The 
asterisk notation (∗) in the pattern means that there can be any number of branches (including zero) before 
the J J node in the graph. 

After searching for the above pattern tree, the query engine will find the matched tree (N P (J J elderly 2) (N N 

lady 3)). Note that the query engine does not care about other branches (e.g. (DT the 1)), since the user has not 
specified them explicitly in the pattern tree. 

Now that the query engine has found the matched tree(s), to extract information we can address 
nodes (or multi-nodes) in the matched tree in the manner described in Section II. In order to do so, we 
define the Resulting Formats as sequences of one or more multi-node addresses over the matched trees. 
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These resulting formats will be applied over all the matched trees. Getting back to our example, <[0], prop of 

 [1]> will return the triple we were looking for from Rule 1 (< elder ly 2, prop of , lady 3>). The resulting format 
also has some optional parameters. As it is shown in Rule 1, each resulting format can have a probability 
indicating the certainty of the results. We will discuss these parameters in more detail later in this paper. 

Whether or not. For some cases, the existence of a branch in the pattern tree may be optional. For 
example, there may be an adverb before a verb or there may not be one. In such situations, to reduce 
the number of total rules and capture more tuples with less rules, we introduce the concept of whether or 
not (?) in LQL. To understand this concept let s continue with an example. Consider Parse Tree 1 in 
Figure 1 and assume that the goal is to capture the relationships between auxiliary verbs and their main verbs 
in the sentence. As you can see, there is an adverb between the only auxiliary verb (AU X were 9) in the sentence 
and its main verb (V BN escorted 11). This adverb may not appear in many other similarly structured texts. Rule 2 
captures this relationship considering an optional adverb. Note that if no matches are found for an 
optional node, all the formatting results using that optional node will be ignored (the second formatting 
result in our example). 

Rule 2. 
RULE auxiliaryToVerb { 

PATTERN: (VP 
(AUX ) (?|RB|ADVP ) (VP 

(VBN ))) 
 

 
 

<  

Main-Parts G eneration Rules 

Assume that you want to find the subject-to-verb relation- ships in Parse Tree 1 in Figure 1. The 
subject(s) and verb(s) of the sentence are respectively inside the noun phrase at address [0] and verb phrase at 
address [1]. However, it is not easy to pull them out using the simple form of the rules that we explained in 
the previous section. First, the actual subjects (or verbs) may be deep inside the branches. Second, there 
are so many possible combinations that each may need a separate rule. Note the number of rules 
exponentially increases considering the combinations of possible cases for each branch. To alleviate this 
issue, we introduce the concepts of Noun, Active-Verb, Passive Verb, and Prepositions Main-Parts for each 
node in the parse tree. 

Noun Main-Part is defined for nodes related to nouns (S, N P , N N , N N S, C D , J J , ADJ P , ...), and it indicates the 
actual noun(s) of that node. For example, the noun main-part of the node at address [0, 0] is  and of the 
node at address [0, 2] is . This leads us to noun main-parts  for our main noun 
phrase ([0]). 

A similar concept is used for the verbs; however, since verbs have two forms, passive and active, we 
have to have two types of main-parts for verb-related nodes (S, V P , V B, V BZ , V B D, V BN , ...). As an 
example, the active verb main-part and passive verb main-part of the verb phrase at address [0] are 
respectively < held > and < escor ted 11 >. The fourth main- part set is for prepositions. Unlike the other types 
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of main- parts, preposition main-parts can be for both noun-related nodes and verb-related nodes. This is 
because prepositions can fall inside either noun phrases or verb phrases. 

We will explain the process of extracting the main-parts information later in this subsection, but now 
we go back to our running example to show how Rule 3 can extract some of the subject-to-verb 
relationships. As you can see, this rule is very similar to the basic rule introduced earlier, with two slight 
changes; the use of Formatting Options (FOs) for some of the addressed multi-nodes, and the ability to 
have more than one resulting format. Note that the numbers next to FO indicate the item in the resulting 
format to which the option should be applied. Formatting options for each multi-node address indicate 
what information related to the addressed node(s) should be inserted into the resulting tuples. Currently, we 
have considered seven formatting options:  for Noun Main-Parts, A  for Active Verb Main-Parts, 

for Passive Verb Main-Parts,  for Verb Main-Parts (including all active and passive verbs), for 
Preposition Main- Parts,  for Node s Tag in the parse tree, and  for the Whole Parts (The entire 
section of the sentence underneath the selected node). 

Rule 3. 
RULE subjectToVerb {  

PATTERN: (S 
(NP ) (VP )) 

RESULT  A  prob=.95): 
<[0], subj of  [1]>  

RESULT   prob=.95): 
<[0], obj of  [1]> }  

The results of this simple query are the following triples all with 95% probability: < lady 3, subj of , held 6> , 

<gentleman 5, subj of , held 6> , < lady 3, obj of , escorted 11> , <gentleman 5, obj of , escorted 11> . This simple preprocessing technique to 
compute main-parts information of the nodes significantly reduces the total number of rules to capture a 
particular piece of information from differently structured texts. For instance, for the above query, without 
the help of main-parts, we would have had to write four different rules to extract those four tuples. Note that 
although this rule may catch a large portion of the subject-to- verb relationships for different parse trees, it 
does not cover them all. In other words, to capture all such relationships for any given text several rules may 
be needed. The concept of main-parts also plays a very important role in the performance of the matching 
engine since it makes the feature of searching in depth of the parse tree unneeded. This matter is discussed 
in further detail in Section V. 

G enerating the main-parts information. To extract main-parts information from the parse trees of the 
given texts, LQL uses the rules introduced in the previous subsection. The whole idea is to find the 
dependencies among nodes in the parse trees in a bottom-up technique. An example of such rules is 
depicted in Rule 4, which says that the noun main- parts of any noun phrase in the parse tree contains 
(depends on) the noun main-parts of its last child node if the child is a noun-related node, namely N P , N 

N , N N S, or N N P . Note that !∗ indicates that after the last matched node there should be no other node in 
the matched trees. This is necessary to exclude N P nodes with more than one noun-related child from the 
matched trees for our particular example. Note that in the resulting format parts of all the dependency rules, 
there should be exactly two items, and the first item must address a single node. Usually the second item 
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also addresses a single node; however, as the last portion of this subsection explains, this is not always the 
case. 

 
Figure 3. Main-Parts information for Parse Tree 1 in Figure 1. 

Rule 4. 
RULE nounDepRules  {  

PATTERN: (NP 
* 
(JJ|ADJP ) (NP|NN|NNS|NNP ) 
!*) 

RESULT: < [ 1], [1] >  
RESULT: < [ 1], [0] + [1] > }  

We may refer to this type of rules as dependency rules as well; however, the dependency concept in 
this paper should not be confused with those in dependency graphs in Marneffe et al. (2006). The former 
indicates dependencies between nodes of parse trees, while the latter indicates dependencies between words 
of the sentences (that is, only leaves in parse trees.) For each type of main-parts, LQL has a separate set of 
dependency rules. That is, LQL has four sets of dependency rules which are specified by rule types in front 
of the rule s name:  for noun Dependency Rule, A  for Active Verb Dependency Rule,  for 
Passive Verb Dependency Rule, and  for Preposition Dependency Rule. Through our studies, by 
examining a lot of sentences and trying to extract different tuples out of them, we realized that these four 
types of main-parts are enough in most types of linguistic information extracting processes. 

Rules 5 and 6 respectively show example of active verb and passive verb dependency rules. Note that 
these two rules can pull out most of the existing verb dependencies in both Parse Trees 1 and 2. 

Rule 5. 
RULE activeDepRules A  {  

PATTERN: (VP 
(VP|VB|VBD|VBN|VBP|VBZ ) (??|CC ) (??|VP|VB|VBD|VBN|VBP|VBZ )) 

RESULT: < [ 1], [0] >  
RESULT: < [ 1], [2] > }  
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We should mention that the query engine treats the resulting formats of these two types of dependency 
rules slightly different than those for noun and preposition main-parts. For active verb main-parts, the query 
engine adds the passive verb main-parts and active verb main-parts of the referenced node (second addressed 
item in the resulting format) respectively to the passive verb main-parts and active verb main-parts of the 
dependent nodes (first addressed item in the resulting format). On the other hand, for passive verb main-
parts, the query engine only copies the active verb main-parts of the referenced node to the passive verb 
main-parts of the dependent node. This will make more sense if we take a closer look at Rule 6. In this 
rule, the type of the verb at address [2, 0] changes from active to passive when we pull it up to the the verb 
phrase at address [-1] because of the to be auxiliary verb before it. 

Rule 6. 
RULE passiveDepRules  {  

PATTERN: (VP 
(AUX am|is|are|was|were|be|been|being) (??|ADVP|RB ) 
(VP 

(VBN ))) 
RESULT: < [ 1], [2, 0] > }  

After specification of these sets of dependency rules by linguists, the query engine extracts all the 
dependency links other hand, in most applications users need to specify several rules in order to extract the 
information they need. That is, the same piece of information may be extracted more than once either from 
the same parse tree or from different parse trees with different probabilities. 

Considering Rule 1 for Parse Tree 2 in our example sentence in Figure 1, two triples < elder ly 2, prop of 

, lady 3> and < elder ly 2, prop of , gentleman 5> will be extracted with the probability of 90%. Note that < lady 3, 

gentleman 5> are the noun main-parts of the node at address [0, 0, 2] in this parse tree. As you remember, Rule 1 
already found the first triple from Parse Tree 1, but the second one is a new one which had not been 
extracted from Parse Tree 1. This shows the ambiguity and uncertainty for this piece of information, as it is 
not clear whether the adjective word elder ly goes only to the lady  as indicated in Parse Tree 1 or it goes 
to both the lady  and gentleman  as indicated in Parse Tree 2. 

To show such ambiguities, we try to combine the probability of the identical results generated from 
different parse trees. We assume the results are independent random variables. Considering N parse trees 

each with probabilities w1 , w2 ,..., wN such that  wi = 1 and w1 is the largest weight, between the 
nodes in the parse tree and then propagates the main-parts in a bottom-up fashion. For each leaf, the PMP 
and PVMP parts are set to nil. If a leaf node has a verb-related POS tag (which are AU X , M D, V B, V 
BD , V BG, V BN , V BP , and the probability of a resulting tuple t can be computed in the following 
ways: 

Weighted Union: p = 1  i (1       pi (t)) V BZ) the AVMP of the node is set to the nodes value 

and its NMP is set to nil. Otherwise, if the node does not have a verb- related POS tag, its NMP is set to the 
nodes value and its AVMP is set to nil. Also, the PMP part of those nodes tagged with P P (preposition 
tags) that do not have any descendent node tagged with P P are set to that part of the sentences under 
their branch. After this initialization phase, the query engine repeatedly picks a node whose main-parts of 
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all its children are already extracted, and propagates the main-parts based on the found dependencies for the 
node. The main-parts-annotated parse tree for Parse Tree 1 is shown in Figure 3. To create this kind of 
annotated parse trees, we have generated around 100 dependency rules so far. 

Feeding LQL the Concepts List: Since many NLP-based applications may be specialized for a 
particular domain, LQL allows the users to import the list of terms and concepts that they are interested in. 
Having a concepts list allows the users to restrict the results to concepts in the domain. However in some 
cases, the terms in the concepts list can consist of multi-word combinations (e.g.   
which should appear as an atomic entity or concept (not three separate nodes). To capture these concepts, 
the second item of the resulting formats in main-parts rules should use a multi-node address. For instance, 
the second resulting format of Rule 4 adds  to the noun main-parts of the N P node with 
address [-1], only if   is in the user specified concepts list. 

Supporting Ambiguity 

As already discussed, each resulting format is associated with a probability. These probabilities show 

the confidence of the users about the correctness of the generated results. On the Weighted Mean: p =  

wi pi (t) 

Where pi (t) is the probability of finding t in parse tree i. The idea behind the union-based technique is 
to boost up probabilities when more evidence is observed. In other words, the probabilities are interpreted as 
chances for these cases. For instance, the probability of having < elderly 2, prop of , lady 3> as a result in our running 
example would be 1-(1-.9)(1-(.4/.6).9)=.96. However, the probability of <elderly 2, prop of, gentleman 5> will be 1-(1-0)(1-

(.4/.6).9)=.6. On the other hand, in the mean-based method, we try to report the average probabilities, meaning 
that we care about the negative part of probabilities as much as the positive part. The choice between these 
aggregation techniques completely depends on the way the rules are set up and the interpretation of the 
probabilities. 

Supporting exceptions. Another important feature of LQL is the support for linguistic exceptions. As 
already mentioned, in most applications several rules must be defined in order to extract any particular type 
of information. However, due to the nature of natural languages, finding rules without exceptions may be 
very hard. To address such an issue in LQL, we simply define the resulting formats of the exception rules 
with negative probabilities. This way, the same probability combinations can be used without any changes. 
The only point to consider is that exception rules are superior to regular rules in the same parse tree. 

Application: G enerating T extG raphs 

In text mining applications such as reviewing systems, text summarization techniques, text 
categorization systems, content-based search engines, and automated essay scoring systems, it is easier 
and more efficient to work on a graph showing various types of relationships between words and 
concepts of the given text. This way, more accurate results can be provided, since more relationships are 
explicitly presented in the graph than in the text. Moreover, concepts such as Anaphora resolution and co-
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referencing resolution can be addressed more easily in graph-based structures than in texts. In the context 
of these applications and with the use of the rules explained so far, one can extract relationships in a 
given text as triples and connect them to make a graph. The graph generated in this way is referred to as 
a textGraph. At the time of writing this paper, we have already created more than 150 rules for 
generating textGraphs. Thus, for each given textual data item, we extract the set of triples using these rules. 
Each triple is interpreted as an edge in which the first and the third items are the two ends of the edge 
and the second item is the edge s label. By connecting these triples, we can construct the final textGraph 
for each textual data item. Although we believe that these rules do not extract all the possible relationships 
in texts, they still provide an acceptable number of relationships. 

 
F igure 4. A possible textGraph for the example sentence in Figure 1 generated using LQL rules. 

Figure 4 shows the textGraph generated for our running example s sentence. Although this graph is 
similar to the dependency graph in Marneffe et al. and linkage graph in Sleator and Temperley (1995), there 
are a few essential differences: i) While those two are plane graphs, textGraph is a hyper-graph meaning 
that the links can connect sets of nodes as well as single nodes, ii) TextGraphs contain the probability of the 
links to be correct, which is essential to support ambiguity and more accurate results, and iii) Despite 
dependency and linkage graphs, nodes in textGraphs can be multi-word concepts. This way, textGraphs can 
be specialized for different domains. 

L Q L F ramework and Its Query Engine 

Figure 5 depicts the high-level architecture of our frame- work. As the figure indicates, the framework 
separates tasks into two main phases: preprocessing, and information ex- traction. This way, time-
consuming and one-time tasks such as generating parse trees and main-parts information can be performed 
in the preprocessing phase, so that  queries and mining tasks can run more quickly. Next, we explain 
the main components of the framework. 
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Text2Sntc: As the name indicates, this component breaks the raw input text into paragraphs and 
sentences. This is done by ignoring periods .  for the abbreviated nouns and some special cases, and 
mainly looking at the remaining periods (and other end of sentence indicators). 

 
F igure 5. The high level architecture of LQL system. 

 
F igure 6. The main structure of LQL s query engine. 

Parser 

For each found sentence, we use a probabilistic parser (Charniak) to generate its parse tree(s). Users 
can specify how many parse trees should be used. 

Query Engine 

Query engine has two main jobs; generating the main-parts and information extraction from a given set 
of rules. These two tasks are explained in next few paragraphs. Due to the importance of this component, we 
have provided more details about the modules in this component in Figure 6. The most important module in 
this component is the Pattern Matcher. Given an LQL pattern and a parse tree (with main- parts), Pattern 
Matcher finds the matches for the pattern in the parse tree. Current implementation of the Pattern Matcher 
naively searches for all possible matches with some heuristics. 

 Generating main-parts: To annotate parse trees with main-parts information, each parse tree is sent 
to the MainPart Generator. Using the Concepts List and the set of MainPart Rules, this 
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component generates all the possible dependencies by using the Pattern Matcher. The resulted 
dependencies are sent to the Inter-sentence Result Combiner which combines duplicates and 
removes exceptions. Finally, MainPart Generator populates the dependencies to generate the 
main-parts for each node in the parse tree. The main-part-annotated parse tree is then stored in 
the database. 

 Information Extraction from Set of Rules: Using the results of the previous process, (which is 
usually done in the pre-processing phase), LQL is capable of extracting information using a set of 
rules. That is, given a set of LQL rules, it finds matches for each rule in all (or part of) the main-
part-annotated parse trees using the Pattern Matcher. The generated results for each parse tree is 
then sent to the Inter-sentence Result Combiner which combines duplicates and removes 
exceptions. Once the results are generated for all the parse trees, they are sent to the Final Result 
Generator. This module then combines the duplicate results based on their weights, filters them 
using the concepts list 2, and generates the final results in the form of a set of individual tuples or 
a hyper-graph. 

 
Fig. 7. The grammar of LQL rules. 

User Interface 

The access point of users to the system. It basically provides utilities for the users to configure the 
system and its components, to generate new rules (of any type), to specify the domain(s) and its related 
concepts list, to add more text to the system, and to control the query engine. 

It is important to mention that a predefined set of more than 150 rules are already in the system for 
generating the textGraph of the input text as described in Section IV. 

Evaluation 

In this section, we evaluate the performance of our system by implementing a relation extractor 
utility. To this end, we manually generated a set of 38 LQL rules to extract two types of relations ( type-of  
                                                 
2 Users can specify if they want the results containing only concepts, or results with at least one concept is in them, or all the 
results. 
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and -of  between math concepts. We have compared our results with those from PTQL (Tari et al., 
2010) which is one of the best existing parse tree mining systems. The framework is partially implemented 
using the Python language with a web-based user interface. We are also storing the sets of rules, concepts 
list, and the parse trees with main- parts in MySQL. All the experiments are run on a 32bit, Intel Core 2 Due 
2.53GHz CPU machine running Linux with 2GB of main memory (RAM) and 4MB of cache. 

To create these rules, we used a Math ontology manually created by CRESST over last few years. 
We should mention that this ontology is not a complete math ontology. It is mainly intended to contain all the 
concepts used in the Common Core State Standards and hierarchical links between those concepts. Thus, 
several concepts and many aliases and links are missing in this ontology; However, it was a valuable 
resource for generating the LQL rules. This ontology contains 877 entities (concepts) with 251 aliases, 586 
original links/relations, and 869 links after population (we added <X , L, Z > to the set of links if <X , L, Y > 

and <Y , L, Z > are already in the set of links.). The average number of words per concept is 2.18. Each 
individual concept in this ontology is also associated with a short definition in one or two sentences. These 
concepts are fed to the system as the concepts list. 

Table I 

The Results of Searching for Math Relations 

Query Language Links No. After population Precision Recall 

LQL-CRESST 1903 5473 87.8% 72.8% 

LQL-Wiki 1187 4101 76.6% 32.3% 

PTQL - - 83.6% 58.6% 

 

 
Figure. 8. The average running time per sentence for 10 selected queries. (Q1 
and Q38 are the queries which generate respectively the maximum and the 
minimum number of results). 

Considering two parse trees for each sentence, we ran our rules over two different textual datasets; the 
definitions in CRESST ontology, and the the definitions for the same set of concepts from Wikipedia s 
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latest repository (Available at: http://dumps.wikimedia.org/). The average number of words per definition in 
CRESST and Wiki are respectively around 34 and 91. Note that we have only used the definitions and links 
in the CRESST ontology to generate the LQL rules, and did not make any rule specifically for the texts taken 
from Wiki. 

Table I summarizes the results of this experiment. As you can see, the number of generated links for 
each dataset before and after population is shown in the first two columns. To compute the precision 
(shown in third column of Table I), we asked a mathematics expert to go over all the originally generated 
links and count the number correct ones. However, to estimate the recall (fourth column), we computed the 
ratio of links that each approach covers from the set of manually generated links by CRESST. Both 
precision and and recall for CRESST definitions is better than those for Wiki. This is mainly because the 
LQL rules are specifically generated for the former one and more importantly for almost half of the 
concepts in CRESST, Wiki uses different terms which greatly affects the recall value for Wiki. We have also 
included the precision and recall values for PTQL in Table I, which shows that LQL outperforms PTQL with 
respect to both factors for the CRESST s dataset. 

Time performance 

To evaluate the time performance of our query engine, we have selected 10 queries and included the 
average time needed to answer each query for a given parse tree in Figure 8. To select these 10 queries, we 
ordered them based on the frequency of their matched results and uniformly picked 10. As the figure 
indicates, queries have similar running times for each dataset; However, pattern matching takes more for 
Wiki s sentences, since they are almost twice longer than those for CRESST. In total, the aggregate pattern 
matching time for 38 queries over 2 parse trees for every sentence in CRESST and Wiki datasets 
respectively takes about 12.2 and 33.0 seconds. These are comparable with query answering times reported 
in PTQL which may take more than 50 seconds to report only 10 results for a single query. Note that 
similar to PTQL, we have not incorporated parsing, main-parts anno- tation, and other mining  time to 
our timings. 

Related Work 

In the last few years, many querying languages and information extraction techniques for parse tree 
structures have been proposed, a few of which include: Emu, the Annotation Graph query language, 
TGrep2, TIGERSearch, DIAL, NXT Search, Emdros, KnowItNow, LPath, MEDIE, XQuery based querying 
language, AQL, and PTQL. 

Several of these systems attempt to extract information from textual data, without considering the full 
grammatical structure provided by parse trees. Robinson provided a context-free grammar, called 
DIAGRAM, that works only for part of the English grammar. Unlike LQL, these approaches can not 
efficiently handle issues such as ambiguity, exceptions, and grammatically incorrect texts. 

http://dumps.wikimedia.org/
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Several of the other works have tried to use or extend existing query languages for linguistic queries. 
Bird et al. proposed a new query language for XML documents, called LPath, by extending XPath. 
Although they showed that LPath is more expressive than XPath in terms of linguistic queries, XPath-
based techniques are not designed for extraction. Following a similar approach, Bouma et al. used 
XQuery to mine information from parse trees. As they also mentioned, the linguistic queries expressed by 
XQuery may be very complex and generating them may go beyond general knowledge of XML. 
Additionally in their techniques, dealing with the order of the items in patterns is not very common 
sense. Miyao et al. proposed an XML-like query language for parse trees stored in a database. However, 
their language is limited to subject-verb-object links, can not express link types, and is best optimized for 
biomedical texts. Only a few of these works designed their own query languages to operate over the whole 
parse tree structure. Using rules similar to the head-driven rules defined in Collins (2003), Marneffe et al. 
proposed an approach to extract information about a set of predefined dependent relations between words 
in texts. However, in their approach, the mined dependencies can not be used in other extraction rules. 
Recently, Tari et al. presented a new linguistic query language called PTQL. PTQL is designed for 
information extraction from parse trees stored in a relational database called PTDB. PTQL is similar to LQL 
in many aspects; However, it needs far more text or a many more rules to extract the same amount of 
information. Moreover, neither Marneffe et al. or Tari et al. support probabilistic results, exceptions, and 
ambiguities. 

Conclusion 

We introduced a new text mining framework which is based on a tree-based Linguistic Query 
Language, called LQL. The framework enriches the parse tree(s) generated for each sentence in a given 
text with main-parts information which is set of key terms from the node s branch based on the linguistic 
structure of the branch. The presence of main-parts has made the LQL s design simpler, and as a result query 
answering and text mining can be performed more quickly. The framework also supports grammatical 
ambiguity and linguistic exceptions utilizing probabilistic rules. It can also adapt to different domains using 
a pre-defined list of concepts. Our evaluation shows that the matching time for the query engine is 
comparable with one of the best existing systems (PTQL; Tari et al.), while being able to extract more 
information form smaller set of dataset. In the future, we mainly plan to complete the main-parts and 
textGraph rules set and optimize the current implementation of the framework. 
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