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Abstract 

Understanding the meaning of rational numbers and how to perform mathematical 

operations with those numbers seems to be a perennial problem in the United States for 

both adults and children. Based on previous work, we hypothesized that giving students 

more time to practice using rational numbers in an environment that enticed them to 

apply their understanding might prove educationally beneficial. We developed a video 

game, based on two key ideas about addition and rational numbers, to investigate this 

hypothesis. We also analyzed the effects of different types of feedback provided to 

students during the videogame. Our findings in this initial study suggest that designing 

such a video game is not only possible, but also that students using a game designed in 

this manner can increase their ability to add rational numbers even when playing the 

game for a relatively short period of time. Since the effect size of a single 40-minute 

intervention is moderate, we discuss the need for future studies designed to spread game 

play over several class periods and to include instructional resources external to the 

game. We discuss implications for the larger efficacy study to follow. 

Introduction 

Students (and many adults) in the United States continue to have difficulty 

understanding the meaning of rational numbers and how to perform mathematical operations 

with those numbers despite numerous attempts to address such shortcomings (Misquitta, 

2011; NCTM, 2000; Siebert & Gaskin, 2006; U.S. Department of Education, 2008). While 

many efforts to remediate these deficits have been made, few have succeeded (see for 

example, Beesley, Apthorp, Clark, Wang, Cicchinelli, & Williams, 2011; Garet et al., 2011). 

Programs that have been successful have often focused on getting students and teachers to 

understand how key foundational ideas in a domain like rational numbers relate to one 

another and how these ideas are applied to solve seemingly dissimilar problems (e.g., 

Carpenter, Fennema, Franke, Levi, & Empson, 2000; Phelan, Choi, Vendlinski, Baker, & 

Herman, in press). We recently completed the study of such a program, designed in part, to 

help teachers understand how to teach rational number concepts to middle school students 

(Vendlinski & Phelan, 2011; Phelan et al., 2011). Based on those successes and on other 

experiences, we hypothesized that giving students more opportunities to actually apply those 
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key foundational ideas would improve their understanding of and ability to apply rational 

number concepts in problem solving. 

Given the popularity of video games (Flew & Humphreys, 2005) and the large amount 

of time young Americans spend playing them (Kaiser Family Foundation, 2002), many have 

wondered whether designing instruction into video games might help students learn better or 

learn more (Gee, 2003). The results of past educational interventions using video games 

seem mixed (Kebritchi, Hirumi, & Bai, 2010). In fact, recent research has suggested that the 

belief that video games will intrinsically motivate students to learn may be erroneous 

(Charsky & Ressler, 2011; Hamlen, 2011); however, we speculated that designing video 

games around a limited number of key foundational concepts and inviting students to play 

the game by applying those concepts would prove beneficial to learning. Our prior research 

suggested that such an approach should be studied. We also wanted to study the effects of 

different types and formats of feedback during in-game instruction. Our research questions 

were as follows: 

1) Can a video game be designed that helps students learn important 

mathematical concepts using minimal classroom time? 

2) Do different treatments of video game instruction or feedback produce 

different effects on student learning? 

3) Is a one class period interaction with the game adequate to produce average 

student outcomes on the posttest that are commonly viewed as acceptable (i.e., 

greater than 70% correct)? 

4) Do different treatments of video game instruction or feedback produce 

differential effects for different types of students? 

5) What other research questions should be answered prior to the full efficacy 

study? 

In this report, we describe a study that was designed to inform a future efficacy study. 

We tested the effects of several video game interventions to estimate the effect sizes 

associated with these interventions and to determine which, if any, might be most promising 

for the subsequent efficacy study. Consequently, we skewed the size of various treatments in 

favor of the interventions that had previously shown promise or that the literature suggested 

might produce larger effects than interventions we had previously tested. A small number of 

students in each class were also assigned to a control condition in which they played a math 

video game unrelated to rational number addition. We describe the most promising and 
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statistically significant of these effects, the version of the game that seems most generally 

useful, as well as when alternative game instantiations might be warranted. 

Methods 

The Sample 

Two California school districts agreed to participate in the field study described in this 

paper. In the first district, the participants were all suburban 6
th

, 7
th

, and 8
th

 grade middle 

school students in Southern California. These students were either enrolled in sixth-grade 

math, in an Introduction to Algebra course, or in Algebra 1. The second district was a rural 

district in California’s San Joaquin Valley. Ninth graders in this district were enrolled in 

either pre-algebra or first year algebra. The tenth, eleventh, and twelfth graders from this 

district who were involved in this study were all enrolled in first year algebra. In addition, 

this district also enrolled some of their algebra students in a two-period math course where 

students studied algebra in the first period and prepared to take the California High School 

Exit Exam (CAHSEE) or participated in a period of extended algebra study during the 

second period. These courses were termed Algebra Success/CAHSEE or Algebra 

Success/Algebra, respectively. The 365 subjects involved in this study represent a sample of 

convenience drawn from in situ math classrooms. Table 1 shows the number of students in 

each course, by grade. 

Each district established their own policies for assigning students to classes. Aside from 

students in the sixth grade, who were all in sixth grade math, scores on a student’s previous 

California Standards Test (CST) and previous math teacher recommendation were the 

primary basis for class assignment in both districts. In the middle school district, most eighth-

grade students took first year algebra unless their seventh grade teacher felt they were not 

ready for that course. Those eighth graders not assigned to an algebra class, in this district, 

were assigned to the Introduction to Algebra course. Most seventh graders in our sample 

were enrolled in Algebra 1. 
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Table 1 

Sample Size by Grade Level Within Each Math Class Type 

Grade level Number of subjects 

Algebra 1  

7
th

 16 

8
th

 29 

9
th

 87 

10
th
 54 

11
th
 10 

12
th
 1 

Unknown 9 

Pre-algebra  

9
th

 47 

Unknown 1 

Sixth grade math  

6
th

 25 

Introduction to Algebra  

7
th

 2 

8
th

 17 

Unknown 1 

Algebra Success/CAHSEE  

9
th

 24 

Unknown 1 

Algebra Success/Algebra  

9
th

 38 

Unknown 3 

 

In the high school district, many of the incoming ninth graders also took first-year 

algebra. Students in ninth grade who were not determined to have the necessary prerequisite 

knowledge or math skills were assigned pre-algebra. To matriculate from high school in this 

district, every student was required to pass two years of high school math—one year of 

which had to include algebra. Students enrolled in either of the Algebra Success classes were 

only counted as part of that class, and not the Algebra 1 class, in this study. 

With the exception of the Algebra 1 class, the grade level of students in each of the 

other classes was largely homogenous. The heterogeneity of grade level in Algebra 1 is, in 
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part, attributable to districts moving toward California’s stated goal for all eighth grade 

students to take algebra (California State Board of Education, 1997) and to a 2007 decision to 

allow seventh graders to take Algebra 1. Although that goal has now been modified with the 

adoption of the Common Core Mathematics Content Standards (California State Board of 

Education, 2010), approximately half of California’s eighth graders take Algebra 1, and a 

substantial number of high school students still take Algebra 1 either because they must 

repeat the class or because they were not offered the class as eighth graders. In addition to 

taking Algebra 1 later, these high school students differ from the middle school algebra 

students in that the likelihood of passing the CST for Algebra 1, as either a repeat or as a 

first-time test taker, decreases substantially after eighth grade (Vendlinski, 2011). 

The Save Patch Rational Number Addition Game 

The students in this study were divided into six groups. Five of the six groups played 

some version of a video game that involved rational number addition and one group (the 

control) played a video game that focused on using mathematical operations to rewrite 

mathematical expressions. 

In the rational number addition video game (called Save Patch), students were 

presented with the challenge of bouncing a small sack-like doll (Patch) over various hazards 

in order to get it safely to the other side of the hazard. To do so, students were asked to place 

trampolines at various fixed locations along a one- or two-dimensional grid. Students made 

each trampoline ―bouncy‖ by dragging coils onto the trampoline. The distance each coil 

caused Patch to bounce was commensurate with its length and the grid. Therefore, if a 

student added a coil of one unit to a trampoline, that trampoline caused Patch to bounce 

exactly one unit on the grid. A screen shot of the game in shown in Appendix A. 

Students in all treatment conditions learned that in Save Patch, one whole unit was 

always the distance between two red lines. It was this unit that became the referent for coils 

of fractional bounce later on. Coils could be added to a trampoline to increase the distance 

Patch would bounce; however, only identical coils could be added together (whole coils to 

whole coils, thirds to thirds, fourths to fourths, etc.). While students could place any size coil 

on the trampoline initially, subsequent coils could only be added to the trampoline if they 

were the same size. Initially, students were asked to add whole unit (integer) coils to a 

trampoline one at a time, to reinforce the meaning of addition with integers. While the game 

had an option to include negative coils, this feature was not used in this study. 

The Save Patch game exploits the fact that real numbers can be broken into smaller, 

identical parts (decomposed), if necessary, to facilitate addition and that this process is 
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similar in both integer and rational number (fractional) addition. The intent is to make 

explicit connections between integer addition (with which many students have confidence) 

and fractional addition (with which many students struggle). Moreover, the game play 

requires that players (students) be attentive to the size of a unit they are adding. Fluency with 

these basic ideas is integral, not ancillary, to game play (i.e., the game mechanic) in Save 

Patch. 

As game play proceeded, students were required to place trampolines at distances along 

the grid that were fractional parts of the whole unit. Consequently, students were first given 

and then shown how to break coils into proper fractional units. Since only identical units 

could be added together, students had to be attentive to what the rational number meant, to 

what units were being added, to what units were already on the trampoline, and to how they 

would break the given coils into different sized pieces. This game feature was intended to 

reinforce both the meaning of addition and to reinforce the player’s understanding of the 

meaning of rational numbers. 

Since Save Patch was focused on the addition of rational numbers, the conversion of 

fractions of different sizes (i.e., fractions with different denominators) was not accomplished 

through multiplication. In fact, the understanding of that process was beyond the specified 

learning goals (knowledge specifications) around which the Save Patch game was designed. 

Rather, students were shown how they could use the mouse to click on a coil and then scroll 

up or down to break the coil into more pieces (each smaller in size) or fewer pieces (each 

larger in size), respectively. 

The standard symbolic representation of a fraction (
#

#
) was shown alongside each coil 

as the student scrolled on the coil. For example, if a student clicked on a coil that was one 

whole unit in length and scrolled up, the coil broke first into two halves, then three thirds as 

the student scrolled up again, etc. If the student used the same procedure after clicking on a 

1/2 coil, then the coil broke into two fourths, and scrolling again would produce three sixths, 

etc. As long as students did not click somewhere else on the game, they could also scroll 

down on these same coils to make fewer pieces that were larger in size (for example, the 

student could scroll three sixths to make two fourths or one half). 

As shown in the Appendix A, the grid representation was also used to convey the 

meaning and use of rational numbers. As mentioned previously, one whole unit was always 

the space between two red lines. In the one-dimensional game, the red lines denoting unit 

were vertical, and in the two-dimensional game these unit lines were both vertical (counting 
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units across the screen) and horizontal (counting units up the screen). Fractional parts of that 

unit distance were represented as the distance between green dots placed equidistant between 

red lines along the grid. At times, trampoline blocks were placed over the green dots, so 

students quickly learned or, in some versions of the game, were told that trampolines or 

blocks between solid red lines also meant that the whole had been divided into smaller 

pieces. 

Prior to the present study, we had tested the game with various amounts and forms of 

onscreen textual instruction and feedback (Chung et al., 2011; Delacruz, 2011), but based on 

the work of Mayer and others (Baddeley, 1999; Mayer, 2005; Sweller, 1999), we suspected 

that video-based instruction and feedback might be more effective than text-based instruction 

and feedback for both English language learners as well as for those proficient in English. In 

this study, therefore, we included these types of feedback as additional conditions. 

In all, five treatment versions of Save Patch were developed to test the impact of 

tutorial and feedback variations on math and game outcomes. We called the game with 

mechanics only instruction the baseline condition. By way of a graphics-based primer on the 

game mechanic, this condition only informed players of the goal of the game and the tools 

available to the player so they could achieve the goal. For example, this game condition 

taught students how to drag coils onto the trampolines, how to move the trampolines onto the 

grid, and how to scroll. Mathematical references in the baseline condition were minimized as 

much as possible—as the instruction was intended to teach students how to play the game 

rather than to increase understanding of how a unit was defined, rational numbers and their 

relationship to that unit, or addition. Graphics included both text and images of the game 

screens. 

The second version of the game (graphics-based mechanics instruction and video 

feedback) also gave students a graphics-based primer on the game mechanic, but this version 

of the game also monitored an individual student’s game play and provided video-based 

feedback to the student when it detected that a student had made incorrect moves. The game 

was programmed to intervene with feedback after a selected number of errors. In this case, 

the game ignored the first error, but if the error continued, the game alerted the player to a 

specific error after two errors, and suggested that the player focus on a certain misconception 

(e.g., counting breaks rather than spaces to determine the denominator, etc.). If the student 

continued making the same error, the game would deliver video-based feedback showing the 

student what specific actions to take to resolve the error. 
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A third treatment condition (graphics-based math instruction and feedback) provided 

students graphics-based instruction on how to play the game. In addition to the basic game 

mechanics instruction that students in the first two conditions received, this treatment 

incorporated specific math instruction. In particular, the instruction focused on how the unit 

was used to define a fraction, how to use the number of pieces a unit was broken into to 

define the denominator of a fraction, how to determine the value of the numerator to 

determine the number of equal size pieces needed to jump a particular distance, and how 

addition of equally sized pieces might be used in the game. In addition, this condition also 

provided graphics-based feedback to the student after a selected number of errors. As in the 

condition above, the first error was ignored, but if the error was made again, the game alerted 

the player to the error. If the error persisted, the player was alerted to their specific mistake 

and, eventually, shown how to resolve the error. In this condition, however, both instruction 

and feedback were graphics based. 

The fourth and fifth treatment conditions were variants of the third treatment condition. 

In both cases, students received instruction before playing certain levels of the game, and 

students were also provided feedback in the game when they made mistakes. Unlike the 

instruction in the previous condition, however, the instruction provided to students in the 

fourth and fifth treatment groups was all video-based instruction. As before, the instruction 

focused on how the unit was used to define a fraction, how to use the number of pieces a unit 

was broken into to define the denominator of a fraction, how to determine the value of the 

numerator to determine the number of equally sized pieces needed to jump a particular 

distance, and how addition of equally sized pieces might be used in the game. The only 

difference between each of these two conditions was in how the game delivered the 

feedback. In the fourth condition (video-based math instruction with graphic-based 

feedback), the initial instruction was delivered using video, but feedback was provided using 

graphics. In the fifth condition (video-based math instruction and feedback), the student 

player received all the instruction and feedback in a video-based format. 

In the control condition, the students played a video game designed to teach the 

meaning of the operations of addition, subtraction, multiplication, and division and the 

effects of these operations on expressions. No fractions were involved in this game. The 

students in this condition played their game for the same amount of time and completed the 

same pretest as did the students who played Save Patch. With one exception, these students 

also received the same posttest as their peers in the treatment groups. The exception was that 

students in the control group were not asked questions on the posttest that referred to the 

Save Patch game. For example, the control students were not asked how far Patch would 
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jump if 
4

3
 of a coil were on the trampoline. Consequently, the findings in this study only 

involve the pretest and posttest items that were presented to both groups. 

As indicated previously, this study was intended to be a precursor to a larger efficacy 

trial. Consequently, our purpose was to test a number of interventions in order to estimate the 

effect sizes of various interventions and to determine which, if any, interventions might be 

most promising for the subsequent efficacy study. Given that the samples reported in this 

study were small samples of convenience, we did not design a fully crossed, factorial study at 

this time. Rather, based on our prior experience (Vendlinski, Delacruz, Buschang, Chung, & 

Baker, 2010), we assigned more students to those interventions that we thought likely to 

produce (or reproduce) significant pre- to posttest gains after 40 minutes of game play. As a 

consequence, not all groups had significant statistical power to reject various hypotheses for 

every intervention. 

To this end, more students were given the video or video and graphics-based 

interventions than were given the graphics only or minimal instruction interventions that we 

had previously evaluated. For comparison purposes, a small number of students in each class 

were also assigned to the control condition that played a math video game unrelated to 

rational number addition between the pretest and posttest. 

Pretest and Posttest 

Regardless of treatment condition, each student was given the same pretest prior to 

game play. The items on the pretest were based on a small number of knowledge 

specifications (learning objectives) that are given in Appendix B. The pretest was designed to 

test both conceptual and procedural understanding of this knowledge and had undergone 

extensive analysis to assure high technical quality prior to this study. The procedure used to 

determine the technical quality of the tests is described in detail elsewhere (Vendlinski et al., 

2010). 

The posttest consisted of all items that appeared on the pretest. Students who had 

played the Save Patch game were also asked several additional questions about rational 

number addition using the Save Patch game representation. Each student in the control group 

received an identical pretest and posttest. As stated above, the comparisons made between 

the treatment and control conditions in this study only involve the pretest and posttest items 

that were presented to both groups. 

We determined the reliability of the pretest and posttest by calculating inter-item 

reliability on both the pretest and the posttest, and the pretest–posttest correlation between 
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percent correct on the pretest and percent correct on the posttest for the control group. As the 

control group received no instruction on rational numbers, we expected significant 

correlations between the percent correct scores on both tests. As has been our practice when 

using identical items on the pretest and posttest, we also tested for significant pretest to 

posttest gains in the control group to ensure that students had not improved merely because 

they learned about rational number addition from taking the pretest. 

Surveys 

Each student was also given two surveys. The first survey asked students several 

questions about their background, including grade level, gender, and previous math grade. 

This survey was given in conjunction with the pretest. The second survey was given in 

conjunction with the posttest. This second survey asked students about their attitudes toward 

math, their video game play behaviors, and their thoughts about the specific game they 

played during the study. While the primary purpose of the second survey was to inform the 

full efficacy study, we did use game play behaviors (e.g., each student’s self-reported amount 

of weekly video game play) in the various analyses reported in this study. The surveys were 

given in two parts so as to minimize student ―test‖ fatigue. 

Choosing an Appropriate Data Set for Analysis 

Students in the study were asked to complete all items on the pretest and the posttest or 

to write ―I don’t know‖ (IDK) by those items they could not finish. A number of students in 

the study, however, left items blank on the pretest and on the posttest. We became concerned 

that recoding these blanks as incorrect answers might adversely affect the accuracy of our 

analysis. Merely recoding a missing pretest response as incorrect could underestimate the 

preexisting knowledge of students, while recoding such responses on the posttest could 

underestimate the effects of the game. On the other hand, merely dropping a student who had 

any missing data would seem likely to produce inaccurate estimates of the game’s 

effectiveness since the remaining data would likely have fewer incorrect responses. Rejecting 

these two extreme courses of action—recoding all missing as incorrect or dropping cases 

with any missing data—required that some other objective method be employed to address 

missing data before the data set could be analyzed. 

We explored two methods to determine whether a student was included or excluded 

from further analysis. First, we looked for natural breaks in the data that might indicate 

which students to exclude from the sample. Second, we looked at the randomness of the 

missing data for each student to decide if the student should or should not be included in 

further analysis. In both cases, if a student was selected for inclusion in the data set for 
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further analysis (the reduced sample), we recoded missing responses as incorrect answers, 

and we then ran descriptive and crosstab analyses on key demographic characteristics to 

determine if the reduced student sample differed significantly from the complete sample. 

Previous studies suggested that certain characteristics were either highly correlated with the 

pretest, with the posttest or with game success (see Vendlinski et al., 2010) so we were 

interested in demonstrating that the complete and reduced samples were statistically similar 

in this regard. In particular, gender and previous year’s math grade had shown high 

correlations with both tests and game play success, while amount of weekly game play 

showed high correlation with game success alone. In addition, we hypothesized that test 

effort, perception of test difficulty, and perception of the importance of the test might 

contribute to completion rates and, therefore, we wanted to assure ourselves that the samples 

were not dissimilar on these important characteristics. 

Our first effort to cull missing responses from the data was to eliminate cases where 

students had not responded to more than six items on either test. We chose six items as the 

cut-point because we had observed that there seemed to be a substantial decrease in the 

number of students leaving more than six items blank compared to the number leaving fewer 

than six items blank on the pretest and the posttest. While a number of students left six or 

fewer items blank on the pretest or the posttest, substantially fewer students left more than 

that number of items blank on either test. 

Using the natural breaks in the data, we eliminated 39 students. Unfortunately, this 

culling of students did result in the complete data set and the reduced data set being 

significantly different on key variables (as seen in the crosstab analyses shown in Table 2), 

namely on the variables of perceived test difficulty and effort to do well on the tests. 
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Table 2 

Comparison of Key Variables in the Complete and Reduced Data Sets After Using a Cut-Score 

Culling Procedure 

Variable χ
2 

df p 

Gender 0.295 1 .587 

Weekly amount of video game play 7.876 4 .096 

Ethnicity 3.074 6 .799 

Previous year’s math grade 7.191 4 .126 

Difficulty of pretest 16.277 3 .001*** 

Effort made to do well on pretest 7.910 3 .048* 

Student’s perception that pretest was important 3.253 4 .516 

Difficulty of posttest 34.244 3 < .001*** 

Effort made to do well on the posttest 7.090 3 .069 

Student’s perception that posttest was important 0.609 4 .962 

*p ≤ .05. **p ≤ .01. ***p ≤ .001. 

Given these results, we created another reduced sample data set based on the nature of 

the items students left unanswered. In these efforts, we tried to discern random versus non-

random patterns in student responses that would account for the large number of blank items. 

For example, when students left large numbers of items at the end of the test blank and also 

left the last items on the test blank, we concluded that these students may have run out of 

time to complete the test or had become fatigued and just chose not to complete the test. 

Therefore, we were hesitant to infer the student did not know these items and then further 

infer a missing response was an incorrect answer. Instead, we proposed to drop these students 

from further analysis. We also proposed to eliminate students who had skipped random 

sections of the test. We argue that these students were different from students who skipped 

sections of the test which asked about a specific concept such as adding fractions or 

representing fractions on a number line. On the other hand, students who showed a 

systematic avoidance of certain problem types, such as students who skipped all problems 

that involved addition of fractions with unlike denominators or who skipped all items asking 

them to represent fractions on a number line, seemed to avoid such problems because they 

were unable to answer them. We proposed to keep this latter group of students in our reduced 

data set and to recode their missing responses as incorrect answers. 

By analyzing the response patterns of students with missing data in this way, we 

identified a total of 16 students who we judged should be dropped from further analysis. 

After dropping these students and recoding any remaining missing responses as incorrect 
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answers, we again used a chi-square analysis to compare the complete data set to this reduced 

data set on the variables of interest described above. The results of this analysis are provided 

in Table 3 below. 

Table 3 

Comparison of Key Variables in the Complete and Reduced Data Sets Using a Response 

Pattern Culling Procedure 

Variable χ
2 

df p 

Gender < 0.001 1 .991 

Weekly amount of video game play 0.066 4 .999 

Ethnicity 0.093 6 1.000 

Previous year’s math grade 0.100 4 .999 

Difficulty of pretest 0.184 3 .980 

Effort made to do well on pretest 0.011 3 1.000 

Difficulty of posttest 0.084 3 .994 

Effort made to do well on the posttest 0.050 3 .997 

Student’s perception that pretest was important 0.036 4 1.000 

Student’s perception that posttest was important 0.105 4 .999 

 

The reduced sample that resulted was statistically identical to the complete sample on 

the key demographic variables thought to be associated with game play, with effort to 

perform well on the test, and with perceived test difficulty. Moreover, the reduction allowed 

us to remove students who chose not to or did not have time to finish both tests, which could 

arguably cause inaccurate estimates of treatment effects. 

Normality Assumptions of Classroom Populations 

Given our intent to investigate differences in mean scores and estimate treatment effect 

sizes, we next tested the assumption that the pretest and posttest scores were approximately 

normally distributed using a one sample Kolmogorov-Smirnov (K-S) test. Neither the pretest 

scores (Z = 1.935, p = .001) nor the posttest scores (Z = 2. 321, p < .001) of our reduced 

sample proved to be statistically normal in their distributions. We suspected that this might 

be an artifact of the sample of convenience and the fact that two disparate districts were 

being combined. 

Consequently, we next evaluated the normality of the pretest and posttest distributions 

by class type since every class except algebra was composed of students from just one 
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district and largely from one grade level. In every case, but one, our analysis suggested that 

pretest and posttest scores were normally distributed within a particular type of class. The 

results of our analysis of both pretest and posttest distributions by class type for the full as 

well as the reduced sample are provided in Table 4 below. In addition, the Mann-Whitney 

statistic was calculated to test the hypothesis that the mean of the reduced sample was 

statistically equivalent to the mean of the complete sample on the pretest and on the posttest 

for each class type. 



 

15 

Table 4 

Normality and Mean Equivalency Tests, by Class Type, for the Complete and the Reduced Data Sets on Both the Pretest and the Posttest 

 Pretest K-S statistic  Posttest K-S statistic  Mann-Whitney test 

 Complete sample Reduced sample  Complete sample Reduced sample  Pretest Posttest 

Class type Z n p  Z n p  Z n p  Z n p  U n1 n2 p  U n1 n2 p 

Algebra 1 1.427 206 .034
a
 1.405 202 .039

a
 1.681 205 .007

a
 1.657 202 .008

a
 20700.0 206 202 0.929 20585.0 205 202 0.919 

Pre-algebra 1.303 48 .067 1.264 45 .082 1.285 48 .073 1.215 45 .104 1051.0 48 45 0.823 1070.5 48 45 0.942 

Sixth grade 

math 
0.505 25 .960 0.505 25 .960 0.644 25 .801 0.644 25 .801 312.5 25 25 1.000 312.5 25 25 1.000 

Intro to 

Algebra 
0.903 20 .389 0.796 18 .551 0.481 20 .975 0.548 18 .925 167.0 20 18 0.718 174.0 20 18 0.874 

Algebra 

Success/ 

CAHSEE 

0.986 25 .285 0.940 23 .341 0.747 25 .632 0.719 23 .679 278.5 25 23 0.852 285.0 25 23 0.959 

Algebra 

Success/ 

Algebra 

1.195 41 .115 1.072 36 .201 1.056 40 .214 0.818 36 .516 715.5 41 36 0.818 693.5 40 36 0.783 

a
The K-S statistic is significant indicating that the sample distribution is significantly different from the normal distribution. 
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As can be seen in Table 4, neither the pretest scores nor the posttest scores for students 

in the Algebra 1 class were normally distributed in either the complete or reduced sample 

data set. In fact, both tests generated results that were bimodal in their distribution. This was 

not surprising given that the students came from two disparate districts and that the students 

in the suburban district took algebra at or before the grade level mandated by the state of 

California, whereas students in the rural district (re)took algebra after that grade. 

Although the bimodal distribution of the data might suggest dividing the sample into 

two subsamples at the mean, such a division could be problematic. Specifically, dividing the 

groups in this way could, by definition, create an interaction between the pretest or posttest 

score and the resulting class group for students scoring above the mean and students scoring 

below the mean. Such a grouping would also be artificial rather than reflecting the fact that 

the students were actually sampled from two distinct groups. With this in mind, we also 

investigated whether students above and students below the mean on the pretest were 

equivalently distributed across grade levels. A chi-square analysis χ
2
 (5, n = 194) = 69.69, 

p < .001 suggests that the reclassification of students into the high and low algebra sub-

groups, based on mean pretest score, is not independent of grade. The dependency of grade 

level and mean-based subgroups is evident in Table 5. 

Table 5 

Cross-Tabulation of Students Above or Below the Overall Mean 

Score on the Pretest by Grade Level 

Performance on pretest 

Grade 

7 8 9 10 11 12 

Below mean 0 0 52 41 9 1 

Above mean 15 29 33 13 1 0 

 

In fact, students in lower grades (seventh and eighth) all score above the mean on the 

pretest, whereas students in higher grades (9th–12th) are more likely to score below the 

mean. This suggests that grade level is an important (and natural) predictor of how students 

are likely to perform on the pretest. 

Based on this analysis, we divided the algebra groups into two subgroups based on their 

grade level (middle school algebra or high school algebra). This was equivalent to dividing 

by district since middle school students were in one district and high school students were in 

the other. Once again, we checked for normality in the reduced data set and statistical 
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similarity between the reduced and the complete data sets in both the middle and high school 

algebra data sets. As seen in Table 6, the distributions of pretest are statistically normal for 

the middle school and for the high school algebra groups. Posttest scores are also statistically 

normal for the middle school posttest. Unfortunately, posttest scores for students taking 

algebra in high school do not appear to be normally distributed. As a result, statistical 

procedures that require data be normally distributed cannot be used to analyze results 

involving posttest scores for the high school algebra group. 
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Table 6 

Normality and Mean Equivalency Tests, by Algebra Class, for the Complete and the Reduced Data Sets on Both the Pretest and the Posttest 

 Pretest K-S statistic  Posttest K-S statistic  Mann-Whitney test 

 Complete sample Reduced sample  Complete sample Reduced sample  Pretest Posttest 

Class type Z n p  Z n p  Z n p  Z n p  U n1 n2 p  U n1 n2 p 

Middle 

school 

algebra 

1.331 45 .058 1.266 44 .081 0.690 45 .727 0.744 44 .638 986 45 44 .974 981.5 45 44 .944 

High 

school 

algebra 

1.210 161 .107 1.184 158 .121 1.531 160 .018
a
 1.511 158 .021

a
 12555 160 158 .917 12490.0 159 158 .931 

a
The K-S statistic is significant indicating that the sample distribution is significantly different from the normal distribution. 
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Finally, we analyzed the reduced sample data set of both the middle school and the high 

school algebra groups for statistical similarity to the complete data set on the demographic 

variables of interest. As shown in Table 7 (middle school algebra) and Table 8 (high school 

algebra), a chi-square analysis suggests that the complete and reduced samples are 

statistically identical for both groups. 

Table 7 

Comparison of Key Demographic Variables in the Complete and Reduced Data Sets for Middle School Algebra 

Students 

Variable of interest 

Value of chi-square 

statistic Degrees of freedom 

2-sided 

significance 

Gender 0.010 1 .921 

Weekly amount of video game play 0.079 4 .999 

Ethnicity 0.026 5 1.000 

Previous year’s math grade 0.000 3 1.000 

Difficulty of pretest N/A
a
   

Effort made to do well on pretest 0.023 1 .879 

Difficulty of posttest 0.001 2 1.000 

Effort made to do well on the posttest 0.032 1 .857 

Student’s perception that pretest was 

important 
0.041 3 .998 

Student’s perception that posttest was 

important 
0.055 3 .997 

a
All students indicated the pretest was ―easier than other tests.‖ 



 

20 

Table 8 

Comparison of Key Demographic Variables in the Complete and Reduced Data Sets for High School Algebra 

Students 

Variable of interest 

Value of chi-square 

statistic
 

Degrees of 

freedom 

2-sided 

significance 

Gender 0.011 1 .917 

Weekly amount of video game play 0.025 4 1.000 

Ethnicity 0.068 6 1.000 

Previous year’s math grade 0.018 4 1.000 

Difficulty of pretest 0.192 3 .975 

Effort made to do well on pretest 0.053 3 .997 

Difficulty of posttest 0.074 3 .995 

Effort made to do well on the posttest 0.003 3 1.000 

Student’s perception that pretest was 

important 
0.048 4 1.000 

Student’s perception that posttest was 

important 
0.004 4 1.000 

 

Each of the other classes involved in the study was also analyzed for similarity on these 

same parameters of interest. Once again, a chi-square analysis suggests that the complete and 

reduced samples were statistically identical. 

Based on this analysis, we used the reduced sample formed using our second culling 

procedure. We have included the high school students in the Algebra 1 class when an 

analysis does not involve posttest results. Due to the deviation from normality of this 

population’s posttest results, however, we have excluded this subsample when analyzing the 

quality of the posttest, learning gains between pretest and posttest, and to estimate the effect 

sizes associated with a single 40-minute exposure to various instantiations of Save Patch. 

Posttest results for the remaining six different class types are used for all analyses in this 

study. From our analysis, we identified how the game might best be used in our efficacy 

study and in future classroom interventions. The next section of this paper presents those 

results. 

Results 

Given the exploratory nature of our investigation and the fact that we will use these 

results to inform a future efficacy study, we have set the level of significance at α = .1 for the 

results we reported in this study. 
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Pretest and Posttest Technical Quality 

As was the case on previous occasions (Vendlinski et al., 2010), the pretest and posttest 

used in this study demonstrated high levels of technical quality. The inter-item correlation 

was high for the pretest (α = .948, n = 349) as well as for the posttest (α = .959, n = 191). 

Percent correct scores on the pretest were also significantly correlated with percent correct 

scores on the posttest for the control group (r = .974, n = 22). These measures suggest the test 

is highly reliable. Finally, the significant correlation (r = .471, n = 42, p = .002) between the 

pretest scores of those students who received only instruction on the game mechanic (the 

baseline condition) and the level those students ultimately reached in the game as well as 

with self-reported math grades the previous year (r = -0.390, n = 303, p < .001) and with self-

reported math grades on the previous report card (r = -0.457, n = 300, p < .001) of the entire 

sample suggest that the pretest is a good measure of math knowledge in general and the 

knowledge it takes to be successful in the game. The negative correlations with grade are 

expected since ―A‖ = 1, ―B‖ = 2, etc. In this case, almost a quarter of the variability in the 

game level a student ultimately reached was explained by their performance on the pretest. 

One possible criticism of using an identical pretest and posttest is that students will 

learn from the pretest and that such learning would be incorrectly attributed to the treatment. 

The study design allowed us to measure such gains since the control condition played a math 

video game that was unrelated to rational number addition for the same amount of time as 

students in the treatment groups. Arguably, then, any pretest to posttest gains in the control 

group would be the result of learning from the pretest items. In fact, the percent correct 

actually fell from pretest (M = .5297, SD = .2945) to posttest (M = .5213, SD = .2977) for the 

control group. This change, however, is not statistically different t (21) = -0.581, p = .567) 

and allows us to conclude that gains from pretest to posttest are unlikely attributable to 

merely taking the pretest. 

Pretest Scores by Class Type 

Before game play, each student took the pretest. Descriptive statistics for the pretest, by 

class type, are given for the reduced sample in Table 9 below. 
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Table 9 

Mean Score on the Pretest by the Type of Class a Student Was Taking 

Class type n M SD 

Algebra 1 middle school 44 .8649 .08109 

Algebra 1 high school 158 .4787 .21953 

Pre-algebra 45  .3564 .1887 

Sixth grade math 25  .5623 .2133 

Intro to Algebra 18  .5551 .2230 

Algebra Success/CAHSEE
a
 23  .4151 .2133 

Algebra Success/Algebra
a
 36  .4470 .2133 

a
Students taking either of the Algebra Success classes were counted 

only as part of their respective Algebra Success class and were not 

counted as part of the Algebra 1 high school class. 

After taking the pretest, students were randomly assigned to play either one of the 

treatment versions of Save Patch or the control video game. While there were slight 

variations in the amount of game play in each class due to school schedules, students 

generally played for approximately 40 to 45 minutes in each class. Students were then asked 

to take a posttest. 

Learning Gains Associated With Playing Any Version of Save Patch 

To determine the learning gains associated with approximately 40 minutes of playing 

Save Patch, we compared the pretest and posttest means for the students in any of the 

treatment conditions. Student scores increased by approximately 1 percentage point from the 

pretest (M = .5451, SD =.2605) to the posttest (M = .5533, SD = .2690), but a paired samples 

t test suggests that these gains were not significant, t(168) = 1.458, p = .147. 

Learning Gains Associated With Playing Particular Versions of Save Patch 

Given these gains from pretest to posttest, we investigated whether the type of 

instruction within any of the various treatments was associated with significant pretest to 

posttest learning gains. Each of the interventions, the number of students assigned to that 

intervention (degrees of freedom), and the significance of pretest to posttest changes are 

given in Table 10 below. 
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Table 10 

Pretest to Posttest Differences Between Individuals in Various Instruction and Feedback Conditions 

 Pretest Posttest     

Instruction/Feedback 

condition M SD M SD df t p dz
a 

Graphics-based game 

mechanic instruction 

(baseline) 

.5922 .2744 .6199 .2715 27 3.491 .002*** 0.65 

Graphics-based game 

mechanic instruction with 

video-based feedback 

.5320 .2694 .5259 .2727 40 -0.490 .627 -0.08 

Graphics-based math 

instruction with graphics-

based feedback 

.5219 .2566 .5243 .2693 38 0.176 .861 0.03 

Video-based math instruction 

with graphics-based feedback 
.5622 .2676 .5816 .2782 31 1.736 .093* 0.31 

Video-based math instruction 

with video-based feedback 
.5305 .2417 .5352 .2551 28 0.345 .733 0.06 

Control (game played did not 

involve rational numbers) 
.5297 .2945 .5213 .2977 21 -0.581 .567 -0.12 

a
Effect size is corrected for correlation between measures (G* Power). 

*p ≤ .1. **p ≤ .05. ***p ≤ .01. 

While the pretest to posttest gains associated with playing the Save Patch game, in 

general, did not appear to be significant, even at the α = .1 level, the results in Table 10 

suggest that two of the instructional interventions are significantly associated with strong 

pretest to posttest learning gains at or below this level. In fact, the strongest results suggest 

that limiting instruction to how to play the game (i.e., just the game mechanics) produced a 

very significant pretest to posttest change that was either not evident, or was only marginally 

significant in the interventions that involved overt math instruction and feedback. 

Learning Gains Associated With Playing Save Patch in Different Classes 

We also analyzed the pretest to posttest differences associated with playing any version 

of Save Patch based on the math class each student was enrolled in. Surprisingly, given their 

high pretest scores, only the middle school algebra students who played the game made 

significant pretest (M = .8600, SD = .0825) to posttest (M = .8790, SD = .0822) gains, t(38) = 

2.512, p = .016. These gains represent an effect size (corrected for pretest–posttest 

correlation) of 0.40 for this population. 
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Class Type and Instructional Interventions Interactions 

In order to investigate the interactions between the type of class in which a student was 

enrolled and the various instructional methods used in the game, we conducted paired sample 

student t tests on each of these groups. As shown in Table 11, the gains made from pretest to 

posttest were significant for three of the groups and all the effect sizes were very large. 

Table 11 

Significance of Pretest to Posttest Gains (Paired Samples) for Students in Various Treatment Conditions by 

Class Type 

 Pretest Posttest     

Instruction/feedback 

condition and class type M SD M SD df t p dz
a 

Graphics-based game 

mechanic instruction 

(baseline) in middle school 

algebra 

.8527 .0985 .8807 .0901 8 3.404 .009*** 1.14 

Graphics-based game 

mechanic instruction 

(baseline) in sixth grade math 

.5507 .2411 .5852 .2309 3 5.672 .011** 3.39 

Video-based math instruction 

with graphics-based feedback 

in high school pre-algebra 

.5147 .2563 .5803 .2592 7 4.146 .004*** 1.47 

a
Effect size is corrected for correlation between measures (G* Power). 

*p ≤ .1. **p ≤ .05. ***p ≤ .01. 

Pretest to Posttest Learning Differences 

A key goal in this study was to prepare for a future efficacy study by: (a) determining 

which intervention(s) might produce the greatest differences in student learning; and (b) 

approximating the effect size of each identified intervention (see Research Question 2). Since 

different interventions seemed to be more or less effective depending on the math class a 

student was taking and, aside from sixth grade, that math class seemed strongly correlated 

with pretest score, we analyzed the effects of each different intervention, by class type, after 

controlling for pretest score. 

As might be suspected from the fact that students only played the game for 

approximately 40 minutes between taking the pretest and the posttest, we expected the two 

tests to be highly correlated for each of the groups. This was indeed the case; however there 

was no significant pretest by treatment group interaction, F(5, 179) = .138, p = .983, and 
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pretest scores were statistically similar across grades. Consequently, we used an Analysis of 

Covariance (ANCOVA) to control for pretest and to estimate the significance of differences 

between interventions within a particular class type. 

The ANCOVA analysis suggests that none of the differences between treatment groups, 

after controlling for the pretest, were significant, F(5, 184) = 1.190, p = .316. Only one class 

exhibited significant between-group treatment effects, F (5, 38) = 2.305, p = .063. As shown 

in Table 12 and Table 13 below, an ANCOVA analysis does suggest that there were 

significant effects by instructional intervention for the high school pre-algebra students and 

that the most effective intervention for these students is video-based math instruction with 

graphics-based feedback. 

Table 12 

Pretest and Posttest Mean Scores and Standard Deviations for High School Pre-Algebra Students as a Function 

of Instructional Intervention 

 Pretest  Posttest 

Instructional intervention M SD  M SD 

Graphics-based game mechanic instruction (baseline) .2561 .0572  .2835 .0460 

Graphics-based game mechanic instruction with video-based 

feedback 

.3719 .1835  .3651 .1971 

Graphics-based math instruction with graphics-based 

feedback 

.3408 .1770  .3463 .1697 

Video-based math instruction with graphics-based feedback .5147 .2563  .5803 .2592 

Video-based math instruction with video-based feedback .3269 .1673  .2971 .1215 

Control (game played did not involve rational numbers) .2391 .0298  .2063 .0753 

 

Table 13 

Analysis of Covariance of High School Pre-algebra Students’ Posttest Knowledge as 

Function of Game Instructional Format With Pretest Knowledge as Covariate 

Source df SS MS F
 

p η
2 

Pretest (covariate) 1 1.056 1.056 218.978 < .001 .852 

Condition 5 0.056 0.011 2.305 .063 .233 

 

In fact, an analysis of the data suggests that students in the video-based math 

instruction with graphics-based feedback group perform significantly better, t(7) = 2.883, p = 
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.006, than students in any other group. These results, however, must be considered in light of 

the fact that the mean of pre-algebra students in the video-based math instruction and 

graphics-based feedback differed significantly from their peers in the other treatment 

conditions on pretest scores, F(5, 39) = 2.111, p = .085. While students in the video-based 

math instruction with graphics-based feedback condition gained significantly more from 

pretest to posttest than did their peers, as suggested above, they also displayed significantly 

greater understanding of the topic before playing the game. 

This might suggest that, in general, students who have better pretest scores benefit 

more from Save Patch than students with lower pretest scores. We did not, however, find 

evidence of such an interaction in our data. We also investigated whether some basic level of 

understanding, as evidenced by pretest score, is necessary in order to show learning gains 

after playing the Save Patch game. Here again, a further analysis of the data does not support 

the notion that students who score above the mean (or various other thresholds) on the pretest 

benefit more from the game than students who score below such a threshold score. In fact, 

there does not seem to be a minimum pretest score that predicts learning gains in any of the 

treatment groups. 

Correlation Between Game Level Achieved and Posttest Score 

We next considered the relationship between how far a student progressed in the game 

and that student’s score on the posttest to see if there was a correlation. Given the large 

number of game levels (50+) and the fact that students, on average, complete about 20 levels, 

we treated the maximum level achieved as a scale measure and computed Pearson’s product-

moment correlation coefficient to gauge the correlation between these variables. As 

expected, the correlation between how far a student progressed in the game and the student’s 

posttest score is strongly correlated (r = .433, p < .001), and these correlations seem 

consistent across game instruction/feedback treatments as seen in Table 14 below. 
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Table 14 

Pearson’s Product Moment Correlation Coefficient (r) Between the Maximum Level a 

Student Reached in Save Patch and Posttest Score by instruction / feedback condition 

Condition n r 

Graphics-based game mechanic instruction (baseline) 28 .390* 

Graphics-based game mechanic instruction with video-based 

feedback 

41 .438** 

Graphics-based math instruction with graphics-based feedback 38 .437** 

Video-based math instruction with graphics-based feedback 31 .579*** 

Video-based math instruction with video-based feedback 29 .351* 

*p < .05. **p < .01. ***p < .001. 

When controlling for pretest using linear regression analysis, however, the maximum 

level a student achieved in the game is no longer a significant predictor of how the student 

will do on the posttest as shown in Table 15. 

Table 15 

Linear Regression Models Predicting Posttest Score Based on Maximum Level Reached in Save Patch 

and With Both Maximum Level Reached and Pretest Score 

 Percentage correct on posttest 

  Model 2 

Variable Model 1 B B  95% CI 

Maximum level reached .013*** .001  [.000, .002] 

Pretest percent correct  .979***  [.932, 1.027] 

R
2
 .188*** .927***   

F 38.143*** 1046.406***   

Δ R
2
  .740   

Δ F  1669.06***   

*** p < .001. 

Relationship Between Deaths Per Level and Intervention 

As might be expected, there are significant correlations between how far a student was 

able to get in the game and the average number of failed attempts (deaths) the student made 

per level (r = -.458, n = 309, p < .001). Not surprising, given the lack of instruction, the 

intervention with the highest number of deaths per level, on average, is the graphics-based 

game mechanic (baseline) version (M = 1.381, SD = 1.028). What is surprising, however, is 
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that this lack of instruction did not seem to result in significant differences in the average 

number of deaths per level, t(307) = 1.585, p = .114, between these students and their 

counterparts who played one of the other more instructionally rich versions of Save Patch 

(M = 1.168, SD = 0.7682). Even with minimal instruction we found no significant differences 

in the maximum level attained between the Save Patch intervention groups, F(4, 304) = 

0.325, p = .861, after 40 minutes of game play. 

Conclusions 

Research Question 1: Can a video game be designed that helps students learn important 

mathematical concepts using minimal classroom time? 

This study suggests that designing a video game with the goal of teaching important 

mathematical concepts is possible, even if the concepts have proven to be difficult for 

students to master in the past. In this initial study, we analyzed a video game designed, from 

its inception, to teach students how to add rational numbers. The design focused on two key 

foundational concepts, namely: (1) that the size of a rational number is relative to how one 

whole unit is defined; and (2) that addition allows us to combine identical units (or identical 

pieces of units) into a single sum. Rather than being added on as an afterthought after the 

game was designed, these foundational concepts were designed into the game mechanic at 

the outset, so that the game itself focused on these very specific learning objectives. 

Our findings suggest that students using a game designed in this manner can increase 

their ability to add rational numbers even when playing the game for a relatively short period 

of time. In this study, the students played for only about 40 minutes, which is a little less than 

one class period. Given that understanding rational numbers and how to apply mathematical 

operations to such numbers is a longstanding, national shortcoming in American education, 

this is an important finding that seems most applicable to students in middle school or who 

are preparing to take algebra in middle school or high school. 

Research Question 2: Do different treatments of video game instruction or feedback 

produce different effects on student learning? 

First, in our control condition (i.e., a video game intentionally designed to meet other 

learning objectives), students did not show significant learning improvement on the desired 

math content. 

Second we generally did not find any significant learning gains for the game treatments 

when the game included mathematics instruction or feedback. However, we found significant 

learning gains between pretest and posttest when the game provided instruction only on how 
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to play the game, that is, the version of the game that provided no overt math instruction or 

feedback. Other treatments of the game that included graphics-based and video-based 

instruction or feedback were generally not associated with significant student learning gains. 

This raises an important question. 

Intuitively, it would seem that because all treatments included basic instruction on how 

to play the game that each treatment would produce a significant, positive learning effect. 

They did not. We hypothesize that while students in the minimal instruction condition 

seemed, on average, to fail at levels more often before passing them, such failure may have 

actually helped their learning. Why? 

Unlike students in the feedback versions of the game who were eventually directed to 

complete the level in a certain way after a certain number of failures, students in the no math 

instruction version of the game had to solve each level on their own or give up on the game. 

Because there were no significant differences between the various treatment groups in how 

far students made it in the game, we believe that not only did students in the non-instruction 

and non-feedback group learn on their own, but also that it did not take any longer for them 

to do so. This would seem to support Charsky and Ressler’s (2011) admonition that 

educators, ―not dilute the potential effectiveness of games by taking away the one distinct 

attribute that gives them their advantage: play‖ (p. 614). We will analyze the preceding 

hypothesis in our full efficacy study. 

Research Question 3: Is a one class period interaction with the game adequate to 

produce average student outcomes on the posttest that are commonly viewed as 

acceptable (i.e., greater than 70% correct)? 

Even though students exposed to the treatment in this study played for a relatively short 

amount of time, only about 40 minutes, the learning gains in the version of the game that 

provided no math instruction were significant, and the effect size of the intervention proved 

moderate (d = .65). We believe this change is impressive given that the addition of positive 

rational numbers is generally taught in the fourth grade in California and, based on pretest 

scores, many of the students in this study seemed to be struggling with concepts that they 

were expected to have mastered two to eight years prior to this study. Nevertheless, given 

that students in the intervention that reported the largest gains still only averaged 62% correct 

on the posttest, additional treatments may be required in order to see larger, more acceptable, 

effects. This belief is supported by the strong correlation between the game level a student 

achieved and the student’s posttest score, which suggests that it might be very important that 

a student play until achieving a certain stage in the game rather than merely playing until a 
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set amount of time has expired. Because our experience suggests that the maximum time 

dosage a student can tolerate is about 40 minutes, it may also be important to spread this play 

to criterion over the course of several days. We plan to conduct studies that test such multiple 

treatments between the pretest and the posttest prior to our efficacy study. 

Research Question 4: Do different treatments of videogame instruction or feedback 

produce differential effects for different types of students? 

In addition to considering the length of time students play the game, our initial study 

suggests that a certain group of students might benefit more from playing a version of the 

game with more instruction and feedback than was beneficial for middle-school students who 

were studying math at grade level. Middle school algebra and sixth grade students—students 

at grade level in math—seemed to benefit more if they played the game without instructional 

priming or feedback. On the other hand, high-school pre-algebra students—students 

approximately two years below grade level in math—seemed to benefit most from a 

combination of video instruction designed to help them incorporate math concepts into game 

play and then text-based feedback if they struggled to correctly apply those math concepts in 

the actual game. 

We noted, however, that the pre-algebra students in this instructional group scored 

considerably higher on the pretest than their peers who played other versions of the game. 

Consequently, we suspected that there may be some minimal level of understanding of 

rational number addition required before game play to benefit from playing the game. While 

pretest score was correlated to maximum game level achieved, we could find no minimal 

pretest score that seemed to serve as such a threshold. We also noted that the Introduction to 

Algebra class had a pretest mean that was statistically the same as the high-school pre-

algebra students (and the sixth graders), and yet did not seem to benefit from this or any other 

version of the game in the same way. 

Research Question 5: What other research questions should be answered prior to the 

full efficacy study? 

We believe that this initial study suggests other research that might help improve our 

larger efficacy study. For example, it would be helpful to compare our ―how to play the game 

only instruction‖ treatment to more standard ―business as usual‖ conditions, such as 

textbook-based homework assignments or worksheets (Lee, Luchini, Michael, Norris, & 

Soloway, 2004). By design, creating or adapting game levels in Save Patch is straightforward 

and requires little time. Consequently, giving a random group of students game levels that are 
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identical in content to what other students are receiving in paper-based homework or 

classwork exercises seems a logical comparison. 

A number of students have expressed their preference for ―playing the game rather than 

doing homework.‖ As such, requiring students to ―play‖ a preset number of levels for 

―homework‖ may be a beneficial function that games can serve. A second, and more 

important line of research concerns the students who become stuck in a game like Save 

Patch, and who are unable to resolve the impasse on their own. Given that a ―no instruction, 

no feedback‖ version of the game produces significant learning gains, what happens to 

students who become frustrated or paralyzed in such a condition? How might they be helped 

or their learning scaffolded to overcome such hurdles and achieve like their peers? Here 

again, we plan to address this question in a study prior to our larger efficacy study. 
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Appendix A: 

Save Patch Game Board 
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Appendix B: 

Knowledge Specifications (Learning Objectives) in Save Patch 

1.0.0 Does the student understand the importance of the unit whole or amount? 

1.1.0. The size of a rational number is relative to how one Whole Unit is defined.  

1.2.0. In mathematics, one unit is understood to be one of some quantity (intervals, 

areas, volumes, etc.). 

1.3.0. In our number system, the unit can be represented as one whole interval on a 

number line. 

1.3.1. Positive integers are represented by successive whole intervals on the 

positive side of zero 

1.3.2. The interval between each integer is constant once it is established. 

1.3.3. Positive, non-integers are represented by fractional parts of the 

interval between whole numbers. 

1.3.4. All Rational Numbers can be represented as additions of integers or 

fractions. 

2.0.0 Does the student understand the meaning of addition? 

2.1.0. To add quantities, the units (or parts of units) must be identical. 

2.1.1. Identical (or common) units can be descriptive (e.g. apples, oranges, 

and fruit) or they can be quantitative (e.g. identical lengths, identical 

areas, etc.). 

2.1.2. Positive integers can be broken (decomposed) into parts that are each 

one unit in quantity. These single (identical) units can be added to 

create a single numerical sum. 

2.1.3. Each Whole Unit or part of a Whole Unit (fractions) can be further 

broken into smaller, identical parts, if necessary. 

2.2.0. Identical (common) units can be added to create a single numerical sum. 

2.3.0. Dissimilar quantities can be represented as an expression or using some other 

characterization, but are not typically expressed as a single sum [NB: we are 

considering numbers like 2 ¾ to have an implied addition – so 2 + ¾ – 

whereas 11/4 is a single sum]. 

2.4.0. Zero can be added to any quantity. When zero is added to any quantity, the 

value of the quantity remains unchanged (Additive Identity). 

2.5.0. Adding two positive numbers will always produce a sum that is greater (more 

positive) than either number. 

2.6.0. Adding two negative numbers will always produce a sum that is less than 

(more negative) either number. 

2.7.0. Since they are opposites, adding a number and its opposite (two numbers of 

the same absolute value but opposite in sign) will result in a sum of zero (the 

additive inverse). 

3.0.0 Does the student understand the meaning of the denominator in a fraction? 

3.1.0. The denominator of a fraction represents the number of identical parts in One 

Whole Unit. That is, if we break the One Whole unit into ―x‖ pieces, each 

piece will be ―1/x‖ of the One Whole Unit. 

3.2.0. As the denominator gets larger, the size of each fractional part (relative to the 

whole) gets smaller. 
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3.3.0. As the size of each fractional part gets smaller, the number of pieces in the 

whole gets larger. 

4.0.0 Does the student understand the meaning of the numerator in a fraction? 

4.1.0. The numerator of a fraction represents the number of identical parts that have 

been combined? For example, ¾ means three pieces that are each ¼ of One 

Whole Unit. 

4.1.1. If the numerator is smaller than the denominator, the fraction 

represents a number less than one whole unit. 

4.2.0. If the numerator is equal to the denominator, the fraction represents one whole 

unit. 

4.3.0. If the numerator is greater than the denominator, the fraction represents more 

than one whole unit. 

5.0.0 Does the student understand any rational number can be written using fractions? 

5.1.0. The numerator is the top number in a fraction 

5.2.0. The denominator is the bottom number in a fraction. 

5.3.0. Any rational number can be written as a fraction that relates one integer—the 

number of parts there are (numerator)—to another integer—the number of 

parts in one whole (denominator). 

5.4.0. Proper fractions have numerators less than the denominator. 

5.5.0. Improper fractions have numerators greater than or equal to the denominator. 

5.6.0. Fractions where the numerator and denominator are equal represent One 

Whole Unit. 
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Appendix C: 

Pretest to Posttest Effect Sizes (Uncorrected for Correlation) by Intervention and Class Type 

 

Class type Instruction condition M N SD 

Mean 

difference df SD pooled Cohen’s d 

Pre-algebra Gamey instruction, video FB 0.3719 11 0.18347 -0.01 20 0.19 -0.04 

Pre-algebra Math text instruction and FB  0.3408 10 0.17701 0.01 18 0.17 0.03 

Pre-algebra Video instruction and text FB 0.5147 8 0.25634 0.07 14 0.26 0.25 

Pre-algebra Video instruction and FB  0.3269 6 0.16732 -0.03 10 0.15 -0.2 

Pre-algebra Baseline (gamey)  0.2561 4 0.0572 0.03 6 0.05 0.53 

Pre-algebra Control (Mathemagic)  0.2391 6 0.02981 -0.03 10 0.06 -0.57 

6th grade math Gamey instruction, video FB 0.4593 4 0.14551 -0.07 6 0.15 -0.48 

6th grade math Math text instruction and FB  0.6057 5 0.25199 0 8 0.27 0.01 

6th grade math Video instruction and text FB 0.561 5 0.22651 0 8 0.22 0.01 

6th grade math Video instruction and FB  0.5366 4 0.14187 0 6 0.18 -0.02 

6th grade math Baseline (gamey)  0.5507 4 0.24112 0.03 6 0.24 0.15 

6th grade math Control (Mathemagic)  0.6789 3 0.34522 0.05 4 0.3 0.18 

Introduction to Algebra Gamey instruction, video FB 0.6889 2 0.11779 -0.07 2 0.1 -0.68 

Introduction to Algebra Math text instruction and FB  0.5345 4 0.23154 0.03 6 0.26 0.13 

Introduction to Algebra Video instruction and text FB 0.5122 3 0.27567 -0.01 4 0.3 -0.04 

Introduction to Algebra Video instruction and FB  0.3753 3 0.04066 0.03 4 0.08 0.38 

Introduction to Algebra Baseline (gamey)  0.8035 3 0.15806 0.03 4 0.17 0.16 

Introduction to Algebra Control (Mathemagic)  0.4675 3 0.24217 0.01 4 0.21 0.04 

Algebra Success/CAHSEE Gamey instruction, video FB 0.4476 5 0.19653 0.04 8 0.18 0.22 

Algebra Success/CAHSEE Math text instruction and FB  0.4857 4 0.34301 -0.03 6 0.32 -0.1 
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Class type Instruction condition M N SD 

Mean 

difference df SD pooled Cohen’s d 

Algebra Success/CAHSEE video instruction and text FB 0.4532 4 0.26574 0.01 6 0.29 0.04 

Algebra Success/CAHSEE video instruction and FB  0.3659 4 0.15458 0.02 6 0.17 0.13 

Algebra Success/CAHSEE baseline (gamey)  0.2683 3 0.05589 0.07 4 0.09 0.75 

Algebra Success/CAHSEE control (Mathemagic)  0.4281 3 0.22147 -0.01 4 0.22 -0.05 

Algebra Success/Algebra gamey instruction, video FB 0.4612 11 0.28232 0 20 0.28 -0.02 

Algebra Success/Algebra math text instruction and FB  0.4236 9 0.15156 -0.02 16 0.16 -0.11 

Algebra Success/Algebra video instruction and text FB 0.3561 5 0.25947 0.01 8 0.28 0.05 

Algebra Success/Algebra video instruction and FB  0.4954 4 0.17598 -0.01 6 0.16 -0.08 

Algebra Success/Algebra baseline (gamey)  0.4927 5 0.19178 0 8 0.19 -0.01 

Algebra Success/Algebra control (Mathemagic)  0.4898 2 0.17522 -0.06 2 0.16 -0.38 

Middle school algebra gamey instruction, video FB 0.8994 8 0.04689 0.01 14 0.05 0.28 

Middle school algebra math text instruction and FB  0.8606 7 0.03918 0.02 12 0.04 0.55 

Middle school algebra video instruction and text FB 0.8484 7 0.10277 0 12 0.11 0.01 

Middle school algebra video instruction and FB  0.8384 8 0.10358 0.03 14 0.1 0.25 

Middle school algebra baseline (gamey)  0.8527 9 0.09853 0.03 16 0.09 0.3 

Middle school algebra control (Mathemagic)  0.9032 5 0.06363 0 8 0.08 -0.06 

High school algebra gamey instruction, video FB 0.5134 49 0.23226 0 96 0.23 0 

High school algebra math text instruction and FB  0.3754 30 0.18973 0.01 58 0.2 0.03 

High school algebra video instruction and text FB 0.5084 25 0.21595 0 48 0.23 0.01 

High school algebra video instruction and FB  0.5277 25 0.21777 0.03 48 0.23 0.14 

High school algebra baseline (gamey)  0.4303 14 0.23878 0.01 26 0.24 0.04 

High school algebra control (Mathemagic)  0.4853 15 0.17715 0.01 28 0.19 0.03 

 


