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UNSUPERVISED ONTOLOGY GENERATION FROM UNSTRUCTURED TEXT 

Hamid Mousavi, Deirdre Kerr, and Markus R. Iseli 
CRESST/ University of California, Los Angeles 

 
Abstract 

Ontologies are a vital component of most knowledge acquisition systems, and recently there 
has been a huge demand for generating ontologies automatically since manual or supervised 
techniques are not scalable. In this paper, we introduce OntoMiner, a rule-based, iterative 
method to extract and populate ontologies from unstructured or free text. OntoMiner 
transforms text into a graph structure called a textGraph in which nodes are candidate terms 
and words from the text and edges are grammatical, semantic, and categorical relations 
between nodes. OntoMiner iteratively uses graph pattern rules over the textGraphs to mine 
ontological information and at the end of each iteration, based on the newly found 
information, OntoMiner improves the existing ontology. Our preliminary experiments 
indicate that OntoMiner achieves up to 93.4% accuracy, which to our knowledge exceeds the 
accuracy levels of previous work. 

Introduction 

By introducing concepts and their relations, ontologies provide a commonly 
understandable structure to represent information, which facilitates the processes of sharing, 
reusing, and analyzing domain knowledge in knowledge-based applications (Gruber, 1993). 
Despite the vast demands for ontologies, the reliance on manual or supervised methods often 
makes existing approaches impracticable and not scalable, as with Bourigault (1992), 
Voutilainen (1995), Pantel and Lin (2001), Drouin (2003), Snow (2006), Wu and Weld (2008), 
and Suchanek, Sozio, and Weikum (2009). Although some successful works such as Banko et al. 
(2007) and Poon and Domingos (2010) have been initiated to extract ontologies from 
unstructured text, their accuracy still needs improvement. As stated in Poon and Domingos 
(2010), none of the existing techniques can achieve a higher accuracy than 91%. 

To address the need to increase accuracy, we introduce an NLP-based method, called 
OntoMiner, to automatically generate ontologies from unstructured text. OntoMiner is 
implemented over a recently proposed text mining framework called SemScape (Mousavi, Kerr, 
& Iseli, 2011a and 2011b) which is briefly described in the next section. In OntoMiner, using the 
grammatical structure of the sentences, we transform the text into a weighted hyper graph called 
textGraph which is a rich structure containing the terms and words together with their 
grammatical relations. We will explains the technique employed to mine terms from parse trees 
of sentences and generate relations between these terms using tree-based patterns (called Tree 
Domain or TD Rules). Note that textGraphs may also include semantic and categorical links 
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which are out of the scope of this report. OntoMiner also uses graph patterns (called Graph 
Domain or GD Rules) to mine ontological relations (e.g. part_of and type_of ) between terms 
from the textGraphs and aggregates their weights and frequencies. Using these relations, 
OntoMiner detects new concepts and aliases and adds them to the current ontology. Finally, if 
the current ontology changes, textGraphs will be regenerated and the same approach will be 
repeated to find more concepts and relations. 

To motivate our work and to understand why we follow the aforementioned approach, 
consider the following sentence: 

Motivating Example: "An algebraic equation, such as linear and nonlinear equations, is an 
expression that contains variables and a finite number of algebraic operations." 

As can be seen, this sentence offers several concepts such as "algebraic equation", 
"equation", "linear equations", "nonlinear equations", "equations", etc. It also offers some 
ontological relations such as "linear equations" is "type of " "algebraic equation", "algebraic 
equation" is "type of " "expression", etc. While these pieces of information are usually very hard 
to extract using keyword-based machine learning techniques over small textual datasets, they can 
be mined using NLP-based techniques with less effort. 
 

The argument against NLP-based techniques is that they suffer from high delay as well as 
from not being fully automatic. The machine learning (ML) community’s claim is that these 
approaches rely on slow text parsers mostly using manually generated rules/patterns, in which 
both pattern generation and pattern matching may be time consuming processes. Nevertheless, 
we believe that NLP-based techniques have a great potential which has not yet been exploited for 
the following reasons: 1) As opposed to ML-based techniques, NLP-based ones can perform on 
much smaller datasets, which to some extent compensate for the high delay issue. 2) They can 
deal with noisier datasets more easily due to their support of linguistic exceptions and ambiguity. 
3) Due to their nature, NLP-based techniques can much more easily utilize distributed systems 
such as MapReduce (Dean & Ghemawat, 2008), since the ML-based techniques are usually 
recursive processes which require a lot of data exchange between nodes in the distributed 
environment. 

In addition to these features, OntoMiner takes advantage of two types of patterns/rules: 
Tree Domain (TD) and Graph Domain (GD) patterns/rules to extract information from annotated 
parse trees and textGraphs respectively. Using TD rules, we mine more meaningful candidate 

terms from parse trees than most of the existing works, and using GD rules, we connect the 
candidate terms through ontological relations. Moreover, unlike most of the existing works, 
OntoMiner accepts candidate terms as new concepts based not only on their frequency and 
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probability, but also on their connection to existing concepts. Our experimental results indicate 
that even for the cases with a very small seed, OntoMiner achieves up to 93.4% accuracy which 
shows 2.4% improvement over one of the best existing works (Poon & Domingos, 2010). 

The Text Mining Framework 

Since OntoMiner is built on top of the SemScape framework (Mousavi, Kerr, & Iseli, 
2011a, 2011b), we briefly introduce the framework and its features in this section. To prepare a 
given text (corpus), say τ, for mining purposes, SemScape uses a probabilistic parser1 to generate 
a few most probable parse trees (PTs) for each sentence in τ. One such parse tree for our 
motivating example is shown in Figure 1 which shows each word tagged with a unique ID to 
differentiate between same words used in different contexts. Additionally, an easy addressing 
scheme has been introduced where each node address contains its parent address plus its position 
in the ordered list of siblings, as shown in the left column in Figure 1. 

Next, SemScape annotates each node in the PTs with information referred to as Main-Parts 
(MPs). Informally, MPs carry up hidden information from the depth of PTs to the upper nodes 
once during preprocessing time. As will be explored later in this section, these pieces of 
information reduce and simplify the required higher-level mining patterns/rules, resulting in an 
overall faster text mining process. 

                                                 
1 Charniak: www.cfilt.iitb.ac.in/anupama/charniak.php 
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Figure 1. The most probable PT for our motivating example in parenthesized format. 

Although four different types of MPs are considered in SemScape, the focus in this work is 
on noun main parts (NMPs), which contain the MP information for noun phrase nodes in the PTs 
(e.g. NP, NN, NNS, etc.). The annotation is done by means of a set of tree-like patterns (also 
called tree domain or TD rules). One such rule to extract NMPs is as follows: 

Rule 1. 
RULE mainPartRule1 (’NMP’) 
{ 
 PATTERN:  (NP * 
       (? |JJ |ADJP  ) 

       (? |CC  ) 
       (JJ |ADJP  ) 
       (NP |NN |NNS  ) !* ) 

 RESULT: < [1], [3] > 
 RESULT: < [1], [0]+[3] > 
 RESULT: < [1], [2]+[3] > 
} 

 
This rule consists of two parts: PATTERN which specifies a nested pattern we need to look 

for in the PTs of all sentences in τ, and RESULT which indicates how the MP information 
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should be generated and assigned to a node (usually the root in the pattern tree). We should add 
that PATTERNs are nested patterns which are more expressive than regular expressions, or 
equivalently, finite automata (Alur & Madhusudan, 2006). This differentiates our work from 
most of the existing NLP-based techniques. Moreover, the tree-based format of our patterns 
makes them more readable and user friendly. 
 

For instance in Rule 1, PATTERN looks for noun phrases whose last four branches are an 
adjective or an adjective phrase (?|JJ|ADJP), a conjunction (?|CC), another adjective or adjective 
phrase (JJ|ADJP), and a noun or noun phrase (NP|NN|NNS). The first two branches are optional 
(indicated by a question mark). From the parse tree shown in Figure 1, it is easy to see that 
"linear and nonlinear equations" in our motivating example matches this pattern.2 If any match 
is found for the PATTERN, the first RESULT in Rule 1 adds the NMPs of the forth branch 

("equations" with address [3] in the pattern tree and address [0,2,2,3] in the matching tree) of the 
matching tree to the NMP list of its root (the node with address [-1] in the pattern tree and 
address [0,2,2] in the matching tree). 

Using the same type of rules, we annotate each noun phrase in the PTs with the multi-word 
NMPs that they may contain. For example, the above rule’s last two RESULTs indicate that for 
the matching trees, the combination of the first and fourth branch (as well as the third and fourth) 
should be considered as an NMP for the root node. That is, it suggests two terms "linear 
equations" and "nonlinear equations" out of the phrase "linear and nonlinear equations" for the 
node located at [0,2,2]. 
 

In the current version of SemScape, we have generated more than 130 MP rules. One of the 
resulting annotated PTs (which are also called main-part trees or MP trees) for our motivating 
example is included in Figure 2. Refer to Mousavi, Kerr, and Iseli (2011a, 2011b) to see more 
detail on how SemScape populates the MP information across the nodes. If the framework is fed 
with an ontology, say O, each generated NMP will be tagged as a concept if it is already listed in 
O. As an example, see the node with address [0,2,2,3] ("equations_Cequation_10"). Since 
"equations" is already in the initial ontology (O0) as an alias for the concept "equation", 
SemScape tags it as a known concept with "_Cequation." 

The generated NMPs for the nodes in the MP trees are basically used as the Candidate 
Terms (CTs) in the OntoMiner. These MP trees will be used to find grammatical relations 
between words and terms using SemScape rules that are similar in format to MP rules. An 
example of such a rule is shown below: 

Rule 2. 
                                                 
2 It also matches with "algebraic equation", "finite number", and "algebraic operations" in the parse tree. 
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RULE subjectToVerb 
{ 
 PATTERN: (S 
        (NP ) 

    (VP )) 
 RESULT (FO1=’NMP’, FO3=’AVMP’, prob=.9): 
  <[0], ’subj_of’, [1]> 
 RESULT (FO1=’NMP’, FO3=’PVMP’, prob=.9): 
  <[0], ’obj_of’, [1]> 
} 

Similar to MP rules, Rule 2 indicates that for the matching trees, the NMPs of the noun 
phrase (NP) should be connected to the active verb main-part (AVMP) of the verb phrase (VP) to 
generate a subj_of relation with weight 0.9. Moreover, the NMPs of the noun phrase (NP) should 
be connected to the passive verb main-part (PVMP) of the verb phrase (VP) as an obj_of link. 
Note that, with the assistance of MP information, this single rule can catch most of the subj_of 
and obj_of relations without needing to know the lower level structure of the parse trees at nodes 
NP and VP. This is actually one of the most important gains in the SemScape framework, since 
having MP information decreases the number of required patterns/rules as well as simplifies 
them. 

As you can see in Rule 2, each generated link has a weight (indicated by keyword "prob") 
showing SemScape’s confidence in the correctness of the link. By selecting negative values for 
this weight, SemScape can also support exceptions in natural languages. So far we have created 
270 rules to generate relations between terms and words of MP trees. After applying these rules 
to the MP trees of each given sentence, the generated relations will be combined to make the 
final set of relations. This set can be seen as a weighted hyper graph, which we refer to as 
textGraph. Figure 3 partially shows an expanded version of textGraph for our motivating 
example. To simplify the figure, we did not include the hyper links between the nodes (e.g. both 
nodes algebraic_2 and equation_3 are inside hyper node algebraic equation_2_3). The 
combination process also handles exceptions (relations with negative weight). For more details 
on SemScape, refer to (Mousavi, Kerr, & Iseli, 2011a). 
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Figure 2. MP tree for the PT in Figure 1. For brevity, we did not include all the MP information in the graph. 

In addition to the TD rules explained earlier, we have added a new type of rules, referred to 
as Graph Domain (GD) rules, to the SemScape framework. GD rules, which operate in the 
textGraph domain rather than on the MP trees, will be explained in the section labeled The 
Relation Extraction Phase. 
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Figure 3. Part of the expanded textGraph for our motivating example. For simplifying 
our discussion, we do not show the weights of the relations in this graph. 

Ontology Generation with OntoMiner 

OntoMiner is an iterative method in which each iteration consists of two main phases: i) 
The relation extraction phase which generates ontological relations between the existing terms 
and ii) the concept extraction phase that detects new concepts and aliases using the generated 
relations. As shown in Algorithm 1, OntoMiner starts with an initial or seed ontology (O0) and a 
corpus (τ) related to the domain of interest. Before starting the first iteration, OntoMiner initiates 
the SemScape framework (Line 2) and uses it to parse each sentence (Lines 5 and 6). Note that 
SemScape stores the parse trees to avoid reparsing the sentences. 

Algorithm 1: OntoMiner() 
1 : OntoMiner (τ, O0) { 
2 :  SemScape = new SEMSCAPE(); /* A new instance of SEMSCAPE */ 
3 :  sntcs = SemScape.getSentences(τ); 
4 :  O = O0 
5 :  for each sntc in sntcs  
6 :  PTs = SemScape.parseSentence(sntc);  
7 :  while (true) /* OntoMiner’s Main Iteration*/ { 
8 :   rels = {}; 
9 :   for each sntc in sntcs{  
10:    TGs = SemScape.generateTGs(PTs, O);  
11:    rels += SemScape.generateOntoRelations(TGs, O);  
12:   } 
13:   rels = combineRelations(rels); 
14:   concepts = detectOntoConcepts(rels); 
15:   aliases = detectOntoAliases(rels); 
16:   O = O.add(rels, concepts, aliases); 
17:   if(len(concepts) == 0 && len(aliases) == 0) 
18:    return O; 
19:  } 
20: } 

In each iteration, OntoMiner transforms each sentence into a textGraph considering the 
current ontology O (Line 10). For each textGraph, OntoMiner generates the ontological relations 
between nodes (Line 11) as described in the next section. Then, it combines the generated 
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relations (Line 13). At this point, the relation extraction phase is finished, and a list of 
ontological relations between terms with their weight and frequency is created. 
 

In the concept extraction phase, OntoMiner uses the ontological relations between concepts 
and non-concept terms to detect new concepts and aliases (Lines 14 and 15). The new relations, 
concepts, and aliases are then added to O (Line 16). This step (usually with looser thresholds) 
can also be done with human supervision, which is explained in the section labeled The Concept 
Extraction Phase. If any new concept, or an alias of an existing concept, is added to the 
ontology, OntoMiner will start the next iteration of mining. Otherwise, O is returned as the final 
result (Line 18). 
 

Note that our experimental results indicate that O0 does not need to be large at all. 
However, the quality of the generated ontology depends on the quality and the domain coverage 
of text. 

The Relation Extraction Phase 

To generate ontological relations between terms in the textGraph of each sentence in τ, we 
use graph domain (GD) patterns/rules which are a new feature in SemScape. Patterns in GD rules 
specify a common graph structure in textGraphs which may indicate a piece of knowledge. In 
our case, we are interested in using GD rules in order to find ontological knowledge, or more 
specifically, ontological relations. For instance, consider the link <"algebraic equation", "type of 
", "expression">. To generate such a link from our motivating example, the graph pattern in 
Figure 4 can be used. 

 

Figure 4. Pattern Graph for Rule 3. 

The following GD rule specifies this pattern: 

Rule 3. 
SELECT ( ?1 "type_of" ?3 ) 
WHERE { 

?1 "subj_of" ?2. 
?3 "obj_of" ?2. 
NOT("not" "prop_of" ?2). 
NOT("no" "prop_of" ?3). 
FILTER (regex(?2, "ˆisˆjˆareˆjˆwasˆjˆwereˆjˆbe*", "i")) } 



 

10 

The GD rules syntax is similar to SPARQL, a database query language. This makes it 
easier to work with, since many people are already familiar with SPARQL. Perhaps the most 
important difference between between our syntax and SPARQL is that GD rules operate on 
textGraphs in which multiple nodes with the same label are allowed, while this is not the case for 
SPARQL. 

As shown in Figure 4, Rule 3 searches for those textGraphs in which there are two nodes 
(labeled ?1 and ?3), that are connected through a third node (?2) being a form of the verb "to be." 
The NOT part filters the negative sentences out, which is usually a challenging task in many of 
the existing works. Rule 3 catches the following four results from the textGraph in Figure 3: 
<equation, type_of, expression>, <algebraic equation, type_of, expression>, <equation, type_of, 
that>, and <algebraic equation, type_of, that>. The last two will later be rejected, since the term 
that is on our black list of concepts. 

The main idea in OntoMiner is to create some GD rules similar to Rule 3 to generate 
possible ontological relations between terms in textGraphs. Note that the weights of all the 
relations generated from GD rules are considered to be the minimum weight among all of the 
edges in the matching graph. After applying the GD rules over all textGraphs, we combine the 
generated ontological relations from different textGraphs. The combination process is very 
similar to that for TD rules. Although many different techniques can be employed for combining 
the relations’ weight, in this work we interpret the weights as our confidence of the correctness 
of the relations. Since we want to keep the confidence less than 1, to combine the weight of two 
relations with weights w1 and w2, OntoMiner uses w1+(1-w1)w2 as the aggregate weight. This way 
each time we encounter new evidence for an existing link, we increase its confidence 
proportional to the new relation’s weight. 

After the combination phase, relations between concepts whose weight (correctness 
confidence) and frequency exceeds our thresholds are added into ontology O. The reason for 
having two thresholds is that relations with very high confidence but low frequency and relations 
with high frequency but low confidence can be rejected. The next subsection shows how 
OntoMiner uses the relations between concepts and non-concepts to detect new concepts. 

Although in this paper, we mainly focus on the use of GD rules to extract ontological 
information, it is worth mentioning that GD rules can also be used to complete the textGraphs, 
especially for cases where several complex TD rules can be replaced with fewer GD rules. 
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The Concept Extraction Phase 

As mentioned previously, nodes in textGraphs can be concepts, non-concept (or candidate) 
terms, and other words in the texts such as verbs, articles, etc. The goal in this section is to find 
out which of the current candidate terms are actually new concepts. Most of the previous works 
in this area use frequency-based techniques to accept candidate terms as concepts. This type of 
technique is usually error-prone and limits the accuracy of the results. 

To address this issue, OntoMiner uses the ontological relations generated in the previous 
section to detect new concepts. The main intuition in OntoMiner is that if a candidate term is a 
concept in the domain of τ, it should be connected to some other concepts of the domain through 
one or more ontological relations. Thus, OntoMiner accepts a term as a new concept if it has a 
"strong" ontological relation to other existing concepts. Here, by a strong relation, we mean that 
the frequency and aggregate weight of the relations from the new term to any existing concepts 
should be greater than given thresholds. In other words, to accept candidate term CTi, 
OntoMiner finds all the relations having CTi at one end and a concept at the other end. Then, it 
combines their weight (confidence) and frequency exactly as in the previous section. At this 
point, high-frequent and high-confident terms will be accepted as new concepts; however, before 
accepting a term as a new concept, we adjust its weight and frequency using heuristics such as: 

• If the term contains a stopping word (e.g. that, which, who, etc.), is a word from the 
black list (e.g. same, the, a, etc.), or is an attributive adjective (e.g. short, similar, 
etc.), we ignore it. 

• If the term contains a word from our black list, an attributive adjective, a numeric (3, 
six, secondary, etc.), a symbol (+, , Ω, etc.), or repeated words, we will decrease its 
weight and frequency3. 

 
After these adjustments, we accept those candidate terms whose weight and frequency are 

larger than our pre-specified thresholds. In the unsupervised version of OntoMiner, the new 
concepts will directly be added to current ontology O. However, for the supervised version, the 
new concepts will be verified by a human scorer. Since precision is not much of an issue in this 
case, we usually use looser thresholds in the supervised version to offer more concepts and 
improve the recall value. 

                                                 
3 Currently, they are decreased by 1% and 30% respectively. 
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Detecting New Aliases 

A single concept may have several "names." Research shows that people use different 
names for the same concept more than 80% of the time (Furnas et al., 1987). Abbreviations, 
variations of the term (e.g. plural form), acronyms, aliases, etc. may be used to address the same 
concept. An important task in generating ontologies is to find these different names or aliases for 
the same concept. In OntoMiner, we use the following three techniques to do so: 

• We directly use either TD or GD rules to find aliases explicitly mentioned in the text 
(e.g. "a node may be called a vertex."). This technique considers aliases as 
ontological relations as in the previous section. 

• For many link types, say l, such as type_of, if two concepts are "strongly" connected 
only through l in both directions, they will be considered aliases (e.g. "edge is type of 
side" and "side is type of edge" means that side and edge are aliases.) 

• If the stem of a concept is also a concept, it will be considered an alias (e.g. sides and 
side). 

The same adjustments explained in the previous subsection will be applied to pick the final 
aliases. Note that we group all the aliases of the same concept and (randomly) consider one of 
them as the head of the group. In the next iteration of OntoMiner, at the MP annotation time, we 
use the head of each group for tagging any of the aliases in that group. As an example, in Figure 
2 both equation_3 and equations_10 are tagged with the same alias (equation). 

Implementation and Optimization 

This subsection is intended to provide more details on OntoMiner’s implementation and 
optimization. 
 

As already mentioned, OntoMiner is implemented on top of the SemScape framework, and 
it can be seen as a new component of SemScape. For numerous text mining applications, this is 
an invaluable feature since it can automatically find the concepts and tag the nodes in the 
textGraphs with ontological information. This basically means that OntoMiner enables the 
SemScape framework to automatically adapt to new domains. As a result, this enriches the 
SemScape framework, and facilitates the mining task even more. 
 

One of the simplest and perhaps most effective optimizations in OntoMiner is to avoid 
redoing tasks by storing and reusing intermediate results. Remember that at the end of each 
iteration, OntoMiner feeds the SemScape framework with the newly found concepts. Parse trees 
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extracted from the sentences in the first iteration are stored and reused in the following iterations. 
MP trees are only recalculated if they have changed due to addition of a new concept or alias, 
which results in OntoMiner working only on sentences that contain one or more of the new 
concepts. 

Another important optimization that OntoMiner can utilize is to distribute its task over 
different processing units. According to our experiments the most time consuming part of 
OntoMiner is transferring text to textGraphs. Fortunately, this task is separately done for each of 
the sentences in τ. This essentially means that by assigning the sentences to different processing 
units, we can distribute the most time consuming task in OntoMiner (and perhaps many other 
text mining algorithms) with minimum effort. This task is best suited for the MapReduce 
architecture (Dean & Ghemawat, 2008) in which mappers perform relation extraction from each 
text graph and the reducer(s) combines them and detects the new concepts. The current 
implementation already supports multi-core machines, and at the moment of writing this paper 
we are extending it to a multi-processor environment. 

The final point we need to clarify is the difference between TD and GD rules. One may 
observe that whatever GD rules can extract from textGraphs, TD rules can extract from MP 
trees. Pattern matching with TD rules is faster than that pattern matching with GD rules. 
However, GD rules are more intuitive for the users to write, and to extract a piece of information 
users need to write fewer GD rules than TD rules, which can make up for the pattern matching 
speed advantage with TD rules. 

Experimental Results 

To evaluate OntoMiner, we use a mathematics ontology manually created by CRESST 
with 877 concepts including their definitions. Considering these definitions, we have created 10 
and 14 GD rules to generate, respectively, type_of (IsA) and part_of (HasA) relations. We have 
also gathered 605 definitions from Wikipedia by selecting the first 3 or 4 sentences of those 
pages having any of our 877 concepts as part of their title. The resulting WIKI dataset has 
approximately 2200 definition sentences whereas the CRESST dataset has approximately 900 
sentences. Note that, to be fair in our results, we have not used any sentences from the WIKI 
dataset to generate the GD rules. In contrast to works such as Gregorowicz and Kramer (2006), 
we do not use the structured part of Wikipedia to extract any ontological information. The 
experiments are run on a 32bit, Intel Core 2 Due 2.53GHz CPU machine running Linux with 
2GB of RAM and 4MB of cache. 
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Table 1 

The results of generated concepts, “-spr” indicates supervised mode 

DataSet Seed size Total # Wrong # Precision Relative recall 

CRESST 1 423 42 90.1% 88.4% 

CRESST 877 293 23 92.1% 94.8% 

CRESST-spr 1 329 0 100% - 

WIKI 1 458 30 93.4% 82.1% 

WIKI 877 313 41 86.9% 86.1% 

WIKI-spr 1 447 0 100% - 

 

Tables 1 and 2 depict the results of running OntoMiner over our two datasets, CRESST and 
WIKI, with two initial (seed) ontologies; one with all 877 concepts and one with only the 
concept "function." In unsupervised experiments, we fixed the weight and frequency thresholds 
on .98 and 4 respectively. We manually evaluated the resulting concepts, aliases, and part_of and 
type_of relations (columns 4 and 5 in both tables). We have eliminated the results for aliases and 
part_of relations due to the similarity of the results. As can be seen, the precision results (column 
5 of the tables) are comparable with the ones in Poon and Domingos (2010). We have over 2.4% 
improvement with respect to them even though we are using a smaller dataset. 

Table 2 

The results of generated type_of relations 

DataSet Seed Size Total # Wrong # Precision 

CRESST 1 307 40 87.0% 

CRESST 877 478 40 91.6% 

CRESST-spr 1 224 13 94.2% 

WIKI 1 273 34 87.5% 

WIKI 877 408 24 94.1% 

WIKI-spr 1 285 8 97.2% 

 

To estimate the recall of the generated concepts, we ran OntoMiner in a supervised mode 
for both of our datasets (CRESST-spr and WIKI-spr in Tables 1 and 2), in which at the end of 
each iteration the suggested concepts and aliases are verified by a human scorer, and only the 
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correct ones are accepted to the current ontology. This is why the generated concept accuracy for 
these two cases is 100%. The weight and frequency thresholds for the supervised version are .96 
and 3. Considering CRESST-spr and WIKI-spr as baselines, we estimated the relative recall 
values for both datasets in the sixth column of Table 1. Not surprisingly, the recall value for the 
CRESST dataset is higher than that for the WIKI dataset because we generated the GD rules 
specifically for the CRESST dataset. Moreover, one can theoretically increase both recall and 
precision of the CRESST dataset to 100% by adding enough rules; however, this in practice may 
require adding several specialized rules. 

 
Figure 5. The number of detected concepts at each iteration for each experiment. 

Note that decreasing the seed size to one concept does not dramatically lessen the accuracy 
of the results. Moreover, applying the same GD rules to a new text (WIKI dataset) improved the 
accuracy over the CRESST dataset, proving that the rules are not specialized to the original 
dataset. However, as shown in Figure 5, the number of iterations generally increases for smaller 
seeds, even though increasing the seed size does not always decrease the number of iterations. 

It could be shown that by adding a few new GD rules and completing our black, stop, and 
attributive adjective lists, the accuracy improved even more. This claim can be verified by the 
high accuracy results of our supervised runs for type_of relations. Figure 6 shows the graph 
structure of type_of relations generated for the WIKI dataset with seed of size one. Note that in 
this graph if X is type of Y and Y is type of Z, the link <X, type_of, Z> will not show; our 
ontology graph is not necessarily a connected graph even considering the part_of links. 
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It is worth mentioning that all of our experiments are run in less than seven hours which is 
still acceptable for a one-time preprocessing task. However, this time performance can be easily 
improved using a distributed environment as discussed in the section labeled Implementation and 
Optimization. Indeed, using two processing cores instead of one core in our experiments has 
almost doubled the speed, showing OntoMiner’s great parallelization capability. 

Related Work 

Machine learning (ML) techniques have been used to generate ontologies for some time. 
Loh, Wives, and Oliveira (2000) used fuzzy reasoning to calculate the likelihood of a term to be 
a concept. Pantel and Lin (2001) proposed a language independent technique in which they 
extract high frequency two-word terms, extending them subsequently to multi-word terms using 
statistical techniques. In Quan, Hui, Fong, and Cao (2004) and Tho, Hui, Fong, and Cao (2006), 
Quan et al. incorporated fuzzy logic into Formal Concept Analysis or FCA (Ganter & Willi, 
1999) to automatically extract ontologies. Another approach, based on fuzzy logic, was proposed 
by Lee, Kao, Kuo, and Wang (2007). Parameswaran, Garcia-Molina, and Rajaraman (2010) used 
some variations of association rule mining techniques to find frequent terms and words from logs 
and tags. 
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Figure 6. Part of the generated ontology for CRESST dataset and seed of size one (type_of 
relations only). Nodes with the same color are generated in the same iteration. 

Most of the above techniques suffer from at least one of the following issues: They either 
need large corpora in order to provide highly accurate results, or they cannot handle reordering 
of the words to make new terms (e.g. "linear equations" from "linear and non-linear equations") 
mostly due to ignoring the grammatical structure of the corpus, or they rely on structured or 
semi-structured datasets which limits their coverage. 
 

Other well studied approaches contain supervised techniques to extract ontological 
information. Bourigault (1992) used a two-phase algorithm to first analyze the given (French) 
corpora for candidate terms and then parse them to find the final terminological units using their 
grammatical structures and the position of words in the maximal-length term. Based on this 
work, Drouin proposed a hybrid technique to extract terms from POS-tagged texts and then filter 
them based on some statistical techniques (Drouin, 2003). Similar techniques are proposed by 
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Voutilainen (1995) and Maedche and Staab (2000). Unfortunately, most of these approaches are 
not scalable, since a human validation is required to verify the final results. Moreover, a limited 
and fixed number of regular expressions (REs) are usually used to find the terms, which limits 
their precision and recall. 

In recent years, more unsupervised text mining methods are appearing. Lin and Pantel 
(2001) automatically found similar paths in dependency trees. These similar paths form a 
(binary) relation structure between terms and can be used in ontology generation systems. Banko 
et al. (2007) introduced a new extraction paradigm, called OIE, in which some relations are 
extracted from the corpus in preprocessing time to facilitate the main process of text mining. 
Later, Poon and Domingos (2010) proposed OntoUPS which is more robust to noise with respect 
to OIE. OntoUPS is based on a semantic parser called UPS (Poon & Domingos, 2009). UPS 
converts dependency trees to quasi-logical forms, and uses recursive reductions to abstract out 
syntactic variation. Krishnamurthy and Mitchell (2011) used the relations extracted from 
NELL’s knowledge-base (Carlson et al., 2010) to extract concepts and aliases. We believe that 
the precision and recall of these new techniques still need improvement. This is mainly because 
they do not fully utilize the grammatical structure of the text and do not explicitly support 
linguistic exceptions, linguistic ambiguity, and negative sentences. Moreover, their clustering-
based technique requires them to use large corpora in order to achieve higher precision. 

Conclusion 

In this paper, we introduced the OntoMiner system which automatically generates 
ontologies from unstructured free text using a fixed set of rules. OntoMiner is a rule-based 
system which takes advantage of two types of rules: tree-domain (TD) and graph-domain (GD) 
rules. TD rules are used to convert text to a graphical structure called textGraph and GD rules are 
used to mine ontological relations among nodes in the textGraph. These relations are later used 
to detect new concepts and iteratively complete the ontology. Although OntoMiner already 
outperforms one of the best existing automatic ontology generators, it still shows a lot of 
potential for improvement. Currently, in addition to completing our GD rules and finding more 
general ontological link types to improve the accuracy of the system, we are working on 
distributing OntoMiner’s task to several machines to improve its time performance and scale it 
up for larger text amounts. We have also been working on pronoun and co-reference resolution 
techniques to improve the textGraphs quality. 
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