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Abstract 

In Ramsay curve item response theory (RC-IRT, Woods & Thissen, 2006) modeling, the 

shape of the latent trait distribution is estimated simultaneously with the item parameters. In 

its original implementation, RC-IRT is estimated via Bock and Aitkin’s (1981) EM 

algorithm, which yields maximum marginal likelihood estimates. This method, however, 

does not produce the parameter covariance matrix as an automatic byproduct upon 

convergence. In turn, researchers are limited in when they can employ RC-IRT, as the 

covariance matrix is needed for many statistical inference procedures. The present research 

remedies this problem by estimating the RC-IRT model parameters by the Metropolis-

Hastings Robbins-Monro (MH-RM, Cai, 2010) algorithm. An attractive feature of MH-RM is 

that the structure of the algorithm makes estimation of the covariance matrix convenient. 

Additionally, MH-RM is ideally suited for multidimensional IRT, whereas EM is limited by 

the “curse of dimensionality.” Based on the current research, when RC-IRT or similar semi-

nonparametric IRT models are eventually generalized to include multiple latent dimensions, 

MH-RM would appear to be the logical choice for estimation. 

Introduction 

In unidimensional item response theory (IRT), two typical assumptions are that the item 

response functions (IRFs) are parametric (e.g., based on the logistic cumulative distribution 

function) and that the latent trait distribution g(θ) is Gaussian. These assumptions are supported 

by decades of success in empirical research in educational and psychological measurement. 

However, only one of these assumptions is necessary, because many different IRF-g(θ) 

combinations can produce the same joint distribution of item responses (Duncan & MacEachern, 

2008). In some of these combinations, nonparametric IRFs may be employed while retaining 

certain parametric assumptions on the latent trait distribution and in others, the latent trait 

distribution may be characterized empirically without invoking the normality assumption. 

There are major advantages associated with retaining the logistic form for IRFs. Doing so 

retains the interpretability of the item parameters and their estimates. In addition, a large part of 

existing assessment design, assembly, delivery, and reporting infrastructure based on standard 

IRT models requires no modifications, in contrast to the case of using non-parametric IRFs. At 
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the same time, abandoning the normality assumption is attractive because it is easy to imagine 

scenarios where assuming normality of g(θ) is likely resulting in model misspecification (see 

e.g., Woods & Thissen, 2006). For example, sampling of participants in psychological or 

educational studies may suggest the correct latent trait distribution should be a mixture of 

normals, or that the distribution of proficiency latent variables may be expected to be non-

normally distributed in certain sub-populations of interest (e.g. English learners), or perhaps the 

underlying latent variable represents the severity of a psychiatric disorder (e.g., depression) 

whose distribution should be non-normal in the general adult population. Consequently, 

researchers have developed several methods to characterize the shape of the latent trait 

distribution. These methods include empirical histograms (Bock & Aitkin, 1981), normal 

mixtures (Mislevy, 1984), Ramsay Curves (RC; Woods & Thissen, 2006; Woods, 2006), 

Davidian Curves (Woods & Lin, 2008), among alternatives. 

Despite the availability of the new techniques, most IRT analyses in practice fall back on 

the traditional assumption of normality. One reason for this incongruence is that the methods 

need further development and generalization. As a primary example, as well as a motivation for 

this research, standard errors for the item parameters are not currently available when using 

Ramsay Curve IRT (RC-IRT). Without standard errors or, more generally, the observed data 

information matrix, researchers are limited in when they can use RC-IRT. For instance, standard 

errors are routinely used in test assembly as part of the item selection process. Also, the observed 

information matrix is needed for some limited-information goodness-of-fit testing (see, e.g., Cai, 

Maydeu-Olivares, Coffman, & Thissen, 2006) and differential item functioning analyses 

(Langer, 2008; Lord, 1980). 

All model parameters of RC-IRT, in its original implementation, are estimated using Bock 

and Aitkin’s (1981) EM algorithm. Decades after its development, the method still enjoys 

extensive use because of its stability and, often, its speed. However, the EM algorithm does not 

yield the observed information matrix upon convergence. Consequently, standard errors for RC-

IRT item parameters are not currently available. There are methods designed to address this 

deficiency within the framework of EM (see, e.g., Cai, 2008; Louis, 1982). However, an 

alternative strategy, adopted here, is to choose another estimation method that is more amenable 

to estimation of standard errors. 

This research uses the Metropolis-Hastings Robbins-Monro algorithm (MH-RM, Cai, 

2010) to perform maximum marginal likelihood (MML) estimation for RC-IRT, and to obtain 

the observed information matrix upon convergence. As noted above, Bock and Aitkin’s (1981) 

EM does not preclude approximation of the observed information matrix. Nevertheless, MH-RM 

is preferred here because it is better-suited to accommodate further generalizations of RC-IRT. 
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More specifically, when future research generalizes RC-IRT (or a similar methodology) to 

multidimensional latent traits, MH-RM would seem to be a logical and attractive choice for 

estimation. This is because the MH-RM algorithm is, in some sense, designed to address the 

“curse of dimensionality” that limits the feasibility of numerical quadrature based Bock-Aitkin 

EM in multidimensional IRT. This is also one of the first applications of the MH-RM algorithm 

to non-normal latent variable models, significantly expanding the boundaries of feasibility of 

MH-RM as a general estimation approach for maximum marginal likelihood IRT modeling. 

As an aside, we are not advocates of RC-IRT, specifically. Rather, we view latent trait 

density estimation, generally, as theoretically appealing and practically useful. The 

characterization of the density, however, may be accomplished by numerous methods, all serving 

the same purpose. We focus on RC-IRT because it is one of the most elegant and well-studied 

semi-nonparametric density estimation approaches for IRT. 

The remainder of this paper is organized as follows. The section labeled A Graded 

Response Model for IRT presents Samejima’s (1969) graded response model. This is followed by 

a review of Ramsay curves and RC-IRT in Ramsay Curve Item Response Theory. The next 3 

sections (Two Approaches to Estimation for RC-IRT; Bock-Aitkin EM for RC-IRT; A Review of 

the Metropolis-Hastings Robbins-Monro Algorithm) review and compare Bock and Aitkin 

(1981) EM and MH-RM (Cai, 2010) algorithms. In An MH-RM Approach to RC-IRT, the details 

of RC-IRT implementation for MH-RM are provided. Then, Simulation Study presents a 

simulation study examining the accuracy of point estimates and standard error estimates. 

Empirical Data Analysis contains an empirical study. Finally, the paper concludes in the 

Discussion and Conclusion section with directions for future research. 

A Graded Response Model for IRT 

This section introduces notation for a logistic IRT model for graded responses following 

Samejima (1969). In principle, other IRT models (e.g., rating scale or partial credit models) may 

also be used, but due to space constraints we do not go into their details. 

Some Notation 

Let there be i = 1, 2,..., N respondents, and j = 1, 2,..., n items. Let Kj be the number of 

response categories for item j. And, let Uij be a random variable denoting the item response from 

person i to item j, with its realization denoted as uij ∈ {0, 1,..., Kj −1}. Then, ui is an n × 1 vector 

of observed item responses from person i, and U is an N × n matrix of observed response 

patterns, whose ith row is   
 . 
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For the jth item, let aj be the item slope. Let cj = (cj1,…,cj(  −1))
Ꞌ
, be a (Kj − 1) × 1 vector of 

intercepts for item j. Parameters for item j are collected in the Kj × 1 vector βj = (aj, cj). 

Collecting all of the item parameters, β = (  
Ꞌ ,   

Ꞌ ,…,   
Ꞌ )

Ꞌ
 is a (    

   ) × 1 vector. For the ith 

person, let θi be the latent trait score, and let θ be the N × 1 vector of latent traits scores for all 

respondents. 

Often, the θi’s are assumed to follow a normal distribution. However, in RC-IRT, they are 

assumed to follow a Ramsay curve density having η as a vector of parameters. The size of η is v 

= degree + number of knots − 1. The terms degree and knots will be discussed in A Review of 

Ramsay Curves. As with density estimation procedures in general, the support of the Ramsay 

Curve density can be numerically represented over a set of points {xq; q = 1,…, Q} along the real 

number line. In the current research, the points are equally spaced every 0.1, and the range can 

be determined by the analyst (e.g., choosing a range from −6 to 6 results in 121 points). 

Assuming a standardized latent trait, this choice of support ensures that the vast majority of the 

response pattern probabilities are captured. 

Observed and Complete Data Likelihood 

Conditional on an individual’s latent trait score, θi, and the item parameters, βj, the 

conditional probability for response Uij = k is given by 

  

where Tij (k) is the (cumulative) conditional response probability for categories k and higher. The 

following response probabilities are defined for the boundary categories: Tij (0) = 1 and Tij(Kj) = 

0. Based on Equation (1), the conditional distribution of Uij is a multinomial with Kj cells and 

cell probabilities πij (k): 

  

where χk (u) is an indicator function defined as 

  

Assuming conditional independence (Lord & Novick, 1968), the conditional response pattern 

probability is 
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Again, for RC-IRT, the shape of the latent distribution depends on the RC parameters, η. 

Therefore, the density for any θi depends on η, and will hereafter be expressed as g(θi |η). Also, 

let
x

ω = (β, η) be the vector of all model parameters with length d = (∑   
 

   
)   . Thus, for a 

person sampled from this potentially non-normal distribution, the marginal probability of ui is: 

  

Treating response patterns as fixed once observed, the observed data likelihood is 

  

If we treat the individual latent traits θ = (θ1,..., θN )
Ꞌ
 as missing data, then the complete data 

can be expressed as (U, θ). Due to conditional independence of item responses and independence 

of respondents, the complete data likelihood has a completely factored form (see, e.g., Cai, 

2010), 

  

Taking natural logarithm of the right-hand side of Equation (7), the complete data log-

likelihood can be expressed as 

  

Equation (8) reveals that the complete data log-likelihood can be understood as the sum of two 

independent parts: a log-likelihood component for the RC parameters, η, and a log-likelihood 

component for the item parameters, β. Moreover, the latter part corresponds to n ordinal logistic 

regressions, one for each item. This structure implies that during estimation, each of these sets of 

parameters can be updated separately, resulting in additional computational savings. 

Ramsay Curve Item Response Theory 

Given the structure of Equation (8), we seek a model that describes the form of the latent 

trait density given values of θ. Equation (8) also makes it clear that such a model does not 

depend on item parameters or responses. Our model uses Ramsay Curves. 
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A Review of Ramsay Curves 

What follows is a brief and general overview of Ramsay Curves. The mathematical details 

are beyond the scope of this research, but interested readers should consult Ramsay (2000) and 

de Boor (2001) for a thorough treatment. Also, Woods and Thissen (2006) provide an 

introduction to Ramsay Curves from a psychometric perspective. 

The shape of the RC density is found by connecting a set of curves known as B-splines. 

The range and potential flexibility of the RC is determined by the analyst, through three choices: 

the range, the degree, and the number of knots. First, the range defines the support of the density 

g(θ|η). As mentioned earlier, a typical range for standardized latent traits is from −6 to 6. 

Second, the degree refers to the degree of the polynomial for each B-spline. Higher degrees can 

accommodate sharper curves. Third, the knots are where the B-splines connect to one another. 

Typically, the knots are evenly spaced across the range of support. A greater number of knots 

also allows more flexibility in the RC. The second and third choices (i.e., degree and number of 

knots) determine the number of elements in η, the vector of RC parameters. As mentioned above, 

the length of η is v = degree + number of knots − 1. 

Together, the three choices determine the structure of the B∗ matrix (see Equation 11 in 

Woods & Thissen, 2006). Assuming that B∗ can be obtained, the height of the RC at θ is given 

by 

  

where 

  

is the normalization constant that ensures g(θ|η) integrates to 1 and is a proper density. As 

defined in Equation (8), the log-likelihood for the RC part of the model is 

  

Given θ, the RC parameters in η can be obtained by maximization of log L(η|θ). Once 

estimates of η are obtained, they can be used in Equation (9) to find g(θi|η) for a particular 

respondent or to construct the entire RC density. 

In practice, there may be some regions of the latent trait scale over which little or no 

information about the RC parameters is available. As a result, the corresponding spline 

coefficients may become empirically under-identified. And due to the dependencies among the 



7 

RC parameters, this may cause a failure in estimation for all elements of η. To guard against this 

possibility, Woods and Thissen (2006) imposed a diffuse ν-variate normal prior on η, and used 

Bayesian maximum a posteriori estimates in lieu of maximum likelihood estimates for the RC 

part of the model. The prior mean vector µ is chosen such that the values match RC coefficients 

that would reproduce a normal density for θ. The covariance matrix of the prior is a ν × ν scaled 

identity matrix ςIν, implying that the marginal univariate priors on the components of η are 

independent and share common prior dispersion ς. Since the main purpose of the prior is to 

stabilize estimation, ς should be as large as possible while still allowing successful estimation. In 

other words, the actual objective function to be maximized is equal to log L(η|θ) + log φ(η|µ, 

ςIν), where φ(·) is the density of a ν-variate normal random variable. 

Two Approaches to Estimation for RC-IRT 

In this research we compare two alternatives for RC-IRT estimation: Bock and Aitkin’s 

(1981) EM (BA-EM) and MH-RM (Cai, 2010). Both approaches have been applied to standard 

unidimensional and multidimensional IRT models and are implemented in available software 

(e.g., IRTPRO; Cai, Thissen, & du Toit, 2011). Further, BA-EM has been used extensively for 

RC-IRT (Woods, 2007, 2008; Woods & Thissen, 2006). 

Both EM and MH-RM exploit relationships between the observed data log-likelihood, 

l(ω|U) = log L(ω|U), and complete data log-likelihood l(ω|U, θ) = log L(ω|U, θ), but do so in 

different ways. In EM, the MLE is found by iteratively maximizing the conditional expectation 

of l(ω|U, θ) over Π(θ|U, ω), where Π(θ|U, ω) is the posterior predictive distribution of missing 

data (the latent traits). Convergence results (Wu, 1983) show that the successive EM iterations 

will result in a (local) maximizer of l(ω|U). 

MH-RM, on the other hand, is at its core a root-finding algorithm. Let  (̇ω|U) denote the 

gradient vector of the observed data log-likelihood. Solving the likelihood equations 

  

yields a potential maximizer of l(ω|U). Due to Fisher ’s identity (Fisher, 1925), the conditional 

expectation of the complete data log-likelihood’s gradient vector  (̇ω|U, θ) is equal to the 

observed data log-likelihood’s gradient vector  (̇ω|U), i.e., 

  

Finding the root of the right-hand side of Equation (13) results in a (local) maximizer of l(ω|U). 

MH-RM obtains the solution iteratively by drawing imputations from the posterior predictive 
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distribution Π(θ|U,ω) and stabilizes the noise introduced by the random draws with the Robbins-

Monro (Robbins & Monro, 1951) method. 

Bock-Aitkin EM for RC-IRT 

Woods and Thissen (2006), in the original RC-IRT implementation, embedded estimation 

of the Ramsay curve within Bock and Aitkin (1981) EM. This section provides a brief overview 

of the algorithm, and the modifications needed to accommodate estimation of the Ramsay curve. 

A Review of the Bock and Aitkin (1981) EM Algorithm 

Notably, Bock and Aitkin (1981) EM (BA-EM) is quadrature-based. This feature dictates 

how values are computed, and requires equations slightly different in form than those presented 

in (5) through (8). The primary distinction is that while MH-RM takes a summation over 

examinees, BA-EM takes a summation over quadrature points. As an aside, this latter summation 

is what can limit the practicality of BA-EM in multidimensional IRT. The number of quadrature 

points grows exponentially with the dimensionality of the latent trait, regardless of sample size. 

In the literature, this phenomenon is sometimes called the “curse of dimensionality.” 

Very generally, the EM algorithm (Dempster, Laird, & Rubin, 1977) iteratively maximizes 

the expectation of l(ω|U,θ) over Π(θ|U,ω), where Π(θ|U,ω) is the posterior predictive 

distribution of missing data. The procedure alternates between E-steps (for expectation) and M-

steps (for maximization) until convergence. For BA-EM, the steps take the following forms. 

For the E-step, given observed data and current parameter estimates, the conditional 

expectation of the missing data, θ, is found. For each item, this conditional expectation is 

collected in the so-called E-step tables. For the M-step, for each item, the E-step tables are 

treated as observed data and logit analysis is performed. The resulting item parameter estimates 

are used in the next E-step. 

Modifications to BA-EM estimation for RC-IRT 

Provided the infrastructure for constructing the RC is in place (as discussed in Ramsay 

Curve Item Response Theory), the modifications needed to use BA-EM for RC-IRT are quite 

minimal. First, revise the E-step by using the current characterization of g(θ|η) to find the 

conditional expectation of θ. As before, fill in the E-step tables for each item. Second, estimate 

the proportion of respondents at each quadrature point, denoted N(xq), by summing across all E-

step tables. Following Woods and Thissen (2006), at this point, the scale is identified by 

standardizing N(xq) to have a mean of 0 and variance of 1. 

Finally, in the M-step, update the RC parameters. Given the structure of Equation (8), this 

update occurs independently of the item parameter updates. Since the set of N(xq) is akin to a 
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collection of “observed” latent trait scores, the RC methodology in A Review of Ramsay Curves 

can be used to find updated estimates of η. The updated RC is used in the next E-step. The 

algorithm is terminated when the iterations convergence. 

A Review of the Metropolis-Hastings Robbins-Monro Algorithm 

What follows is a broad outline of the MH-RM algorithm. For full details, see Cai (2010). 

As its name suggests, the MH-RM algorithm couples stochastic imputation via a Metropolis 

Hastings sampler (Hastings, 1970; Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller, 1953) 

with a Robbins-Monro (Robbins & Monro, 1951) root-finding algorithm for noise-corrupted 

functions. Pieced together appropriately, these two methods complement one another to facilitate 

maximum likelihood estimation. 

Recall Fisher ’s identity in Equation (13), which motivates the MH-RM algorithm. If we 

can find the expectation of  (̇ω|U,θ) over Π(θ|U,ω), then we know the value of  (̇ω|U), the 

gradient of the observed data log likelihood. And, if we can sample from Π(θ|U,ω), we can find 

the requisite expectation by Monte Carlo approximation. Fortunately, Π(θ|U,ω) is proportional 

to L(ω|U,θ), which allows us to construct an MH sampler. This is the MH part of MH-RM. 

By the law of large numbers, we can approximate  (̇ω|U) with arbitrary precision by 

increasing the number of MH imputations. However, such a brute force approach may be 

misguided. From one cycle to the next, the approximation to  (̇ω|U) is only used to find the 

direction of the update for ω. For the sake of efficiency, a more sensible approach is to use a 

small number of imputations. Of course, this renders the sequence of approximations noisy. The 

RM method, though, was designed for such situations. Despite the noise, the RM method allows 

us to find the root of  (̇ω|U), that is, the MLE. This is the RM part of MH-RM. 

An MH-RM Approach to RC-IRT 

Having sketched an outline of the MH-RM algorithm, more details are needed to 

understand the implementation for RC-IRT. Some of these details are specific to the RC-IRT 

model (e.g., derivatives, selection of a sampler), while others are provided for context. The 

subsections that follow detail choices and results for derivatives, gain constants, starting values, 

parameter updates, and standard errors. 

Complete Log Likelihood Derivatives 

As mentioned above,  (̇ω|U,θ) is used to approximate  (̇ω|U). Thus, first derivatives of the 

complete log likelihood are clearly needed. In addition, second derivatives are used in MH-RM 

for two purposes. Following the convention established earlier, let   ̈= ∂
2
l/(∂ω∂ω′) denote the 

matrix of second derivatives of the log-likelihood function. In MH-RM,  (̈ω|U,θ) is used to 
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compute a scaling factor for the parameter update which ideally speeds convergence. Also, it is 

used to approximate the observed information matrix and, by extension, estimates of standard 

errors. How this is accomplished is discussed below. The derivatives for the graded response 

model are standard results (see, e.g., Baker & Kim, 2004, p. 213-217). Derivatives for the RC 

parameters are presented in Appendix A. 

Specification of Gain Constants 

Let m = 1, 2,…, ∞ index the iteration for the MH-RM algorithm. The gain constants γm, for 

m ≥ 1, scale the updates and serve to slowly average out the noise in the approximations to 

 (̇ω|U). For this to occur, the γm need to slowly decrease to zero, which is ensured by the 

following conditions, 

  

If the γm decrease too quickly, then the estimates for ω may stabilize prematurely, before the 

MLE is reached. Alternatively, if the γm decrease too slowly, the estimates for ω may never 

stabilize. One satisfactory option, noted by Cai (2010), is to take γm as 1/m. The rate of the 

decrease can be further fine-tuned by taking γk as 1/m
r
, with 1/2 < r ≤ 1 (Polyak & Juditsky, 

1992). 

Computing Updates 

What follows is an adaptation of Equations (16) through (18) from Cai (2010). There is 

nothing particular to RC-IRT that needs to be addressed here. Nevertheless, the material is 

included because it is essential to understanding other aspects of the RC-IRT implementation.  

Recall that MH-RM seeks to find the root of  (̇ω|U) by iteratively estimating the 

expectation of  (̇ω|U,θ) over Π(θ|U,ω), and updating ω accordingly. Provided appropriate gain 

constants are specified, and samples from Π(θ|U,ω) can be obtained, the parameters are updated 

in the following manner.
L

Let d=(∑   
 

   
) + v be the number of parameters in the model. Then, let 

(ω
(0)

, Γ0) be initial values, where Γ0 is a d×d symmetric positive definite matrix. Let ω
(m)

 be the 

parameter estimate at the end of iteration k. The (m + 1)th iteration consists of stochastic 

imputation, stochastic approximation, and an RM update. 

For stochastic imputation, we draw Sm sets of missing data {  
     

; s = 1, 2,…, Sm} from 

Π(θ|U,ω), to form Sm complete data sets {(U,   
     

); s = 1, 2,…, Sm}. A large Sm is usually 

unnecessary for MH-RM. 

For stochastic approximation, using Fisher’s (1925) identity, we approximate the observed 

data gradient,  (̇ω|U), by the sample average of complete data gradients, 
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Also, to speed convergence, we use curvature information by recursively approximating the 

conditional expectation of the complete data information matrix, 

  

Finally, in the RM update, we set the new parameter estimate to 

  

Constructing an MH Sampler 

As in Patz and Junker (1999) and Cai (2010), a Metropolis-within-Gibbs sampling scheme 

is used to impute the latent trait scores. Let q(  
 ,  

∗) be the transition density for moving from   
  

to   
∗. Also, define the acceptance factor as 

  

Equation (18) depends on the RC parameters to calculate g(θi |η). However, the acceptance 

probability for each θi depends on neither the latent trait scores of other persons, nor their item 

responses. Thus, all draws can be performed simultaneously with vector operations. Commonly, 

a symmetric random walk chain with some scalar dispersion parameter is used (Metropolis et al., 

1953) for the transition density. In such a case, q(  
∗,  ) = q(  ,  

∗), and the acceptance factor can 

be further simplified. 

However, for RC-IRT, a symmetric random walk chain proves problematic. The minimum 

and maximum for xq are user-defined (say, xmin and xmax). The RC has no density outside this 

range. Consequently, for all   
∗ ∉ [xmin, xmax], the RC density evaluates to zero g(  

∗|η) = 0, which 

implies α(  ,  
∗) = 0. Clearly, a transition density producing proposal values that are routinely 

not accepted can become highly inefficient. proposal values that are routinely not accepted can 

become highly inefficient. To address this issue, the implemented transition density is 

constructed so that α(  ,   
∗) ≠ 0 (except very rarely), regardless of the scalar dispersion 

parameter. 

To accomplish this goal, we seek a transition density where Var( ∗) = 1. Such a condition 

will ensure that the imputations only rarely fall outside of the range for xq. Let δ be the scalar 

dispersion parameter, let    ∼ N (0, 1) and let e be a vector of normal deviates whose ith element 

is ei . As a reminder, Var(θ) = 1 to identify the scale. Then, let ϕ = Var(θ + δe) = 1 + δ
2
. Finally, 
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let the proposal draws be generated by  ∗ = (θ/√ ) + (δ/√ )e. It can be verified that Var( ∗) = 

1, which achieves the stated goal. 

Written as a density function, the proposal draws are generated from 

  

Examining the exponent of Equation (19), it is clear that q(  
∗,  ) ≠ q(  ,  

∗). Consequently, the 

ratio of transition densities in Equation (18) cannot be further simplified. 

Providing Reasonable Starting Values 

Without reasonable starting values, MH-RM estimation may fail, particularly if there is 

little information to identify some of parameters. This is not surprising as the convergence theory 

for the algorithm depends on the use of sufficiently good starting values (Borkar, 2008). 

Fortunately, the flexibility of the method admits a simple solution. 

To explain this solution, it helps to consider the algorithm as proceeding through three 

successive stages: Stage 1, Stage 2, and Stage 3. These will be explained momentarily. Similarly, 

it is useful to introduce two types of starting values: “crude” and “refined.” Crude starting values 

are far away from the optimum, whereas refined ones are reasonably close to the solution. Let us 

assume for a moment that if refined values are available to start Stage 3, then estimation will 

succeed. The goal, then, is to find refined values to start Stage 3. 

This goal is achieved in the following way. First, crude values are provided to start Stage 1. 

For instance, set all item slopes to 1.0 and item intercepts to values found by inverting 

cumulative category endorsement proportions on the standard normal cumulative distribution 

function. These values are crude but they can be obtained cheaply. Next, we set γm and Sm equal 

to unity for all of the iterations in Stage 1. As noted in Cai (2010), the MH-RM algorithm, 

specified in this way, is a close relative to Diebolt and Ip’s (1996) stochastic EM (SEM) 

algorithm. Importantly, the SEM-type iterations move ωm quickly to the neighborhood of the 

MLE. Stage 1 should run as long as necessary for the analyst to be confident that ωm has reached 

this neighborhood. In particular, one may observe a trend that the sequence of negative complete 

data log-likelihood function values {            
    ,…,             

      ,…} may exhibit: 

it would typically start off at a large value, but would quickly move toward a region where it 

starts to oscillate. This concludes Stage 1. 

In Stage 2, the SEM-type iterations continue where Stage 1 left off, but with a different 

purpose. As a reminder, the goal of this process is to provide refined starting values for Stage 3. 
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These refined values can be obtained by averaging ωm for some number of Stage 2 iterations 

(e.g., 100). The averaging dampens the Monte Carlo noise in the iterates. Upon obtaining these 

averages, Stage 2 is complete. 

Finally, the refined values are used to start Stage 3. In this last stage, decreasing gain 

constants are used. In this way, the Monte Carlo noise is filtered out and the estimates converge 

to the MLE point-wise. This strategy is effective because the mean of the invariant distribution in 

Stage 2 is close to the MLE. 

 

Figure 1. Example of MH-RM for RC-IRT: Sequences of estimates for three 

parameters. a = slope parameter; c = intercept parameter; η = RC parameter. 

Horizontal lines (dashed) indicate MLE values. Vertical lines (dotted) demarcate the 3 

stages of iterations. Stage 1 consisted of the first 800 iterations. Stage 2 consisted of 

the next 200 iterations. Stage 3 continued until the convergence criteria was reached at 

1,663 iterations. 

Figure 1 shows the Stages for three typical sequences of estimates from one replication of 

the simulation study (presented in Simulation Study). From the top, the three panels show the 
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estimates for a slope parameter, an intercept parameter, and an RC parameter. In Stage 1 (SEM-

type iterations 1 − 800), the estimates move (relatively) quickly to reach the neighborhood of the 

MLE. In Stage 2 (SEM-type iterations 801 − 1000), sample estimates are collected to compute 

means with which to start Stage 3. And lastly, in Stage 3 (decreasing γm iterations 1, 001 − 1, 

663), the estimates converge to the MLE. 

Approximating the Observed Information 

Louis (1982) derived a useful equality, linking the observed information to functions of the 

complete log likelihood. The information matrix of the observed log likelihood is 

  

where the expectation is with respect to Π(θ|U, ω). Cai (2010) proposed a method that uses 

Louis’s equation, where the elements needed for computation are byproducts of the MH-RM 

estimation procedure (Cai, 2010, p. 42). This is one of the (two) methods of approximation 

implemented in IRTPRO (Cai et al., 2011) (Accumulation method) for IRT models with normal 

latent traits. A benefit of this approach is that the observed information matrix is computed 

concurrently with parameter estimation. 

Another approach, again following Louis (1982), is proposed by Diebolt and Ip (1996). 

This strategy uses Monte Carlo integration to approximate the mean and covariance in Equation 

(20). The parameter estimate,  ̂, is fixed at the MLE, and a large number of (say S = 1, 000) 

Monte Carlo samples of θ are generated from Π(θ|U,  ̂). These samples are used to approximate 

the terms on the right-hand side of Equation (20). For some examples of this latter method, see 

Diebolt and Ip (1996) and Fox (2003). For standard IRT models, this method is available in 

IRTPRO (Cai et al., 2011) (Monte Carlo method). 

One last feature of the complete information matrix should be noted. Due to the conditional 

independence assumption, the information matrix is block diagonal. Each block of item 

parameters is Cj × Cj, and the RC block is ν × ν. Hence, while the entire matrix is d × d, where d 

= (    
   ) + ν,xutilizing the blocked structure may lead to substantial savings in storage and 

computation time. 

Simulation Study 

A Monte Carlo simulation study was conducted to compare the MH-RM and EM 

algorithms, and to evaluate the accuracy of the MH-RM standard errors. The purpose of 

comparing MH-RM and EM is to validate the MH-RM implementation as it is the first time the 

algorithm is used outside of standard IRT models with normal latent variables. As both methods 
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compute MLEs, substantially discrepant results would indicate an improper implementation of 

MH-RM. 

Methods and Design 

This section details how the data were generated and how estimation was specified. 

Generally, true parameters were chosen to be realistic for psychological or educational 

measurement. There were N = 1000 simulees and n = 25 items. There were three conditions, 

based on the true shape of the latent trait distribution. Finally, there were 100 replications for 

each condition. 

The true shape of g(θ|η) was either normal, skewed, or bimodal. All densities were 

represented by rectangular quadrature points, ranging from −6 to 6 by 0.1. The RC parameters 

for these densities were generated by mixing two normals. For the skewed density, the 

generating parameters were: µ1 = −0.25, µ2 = 2.19,   
  = 0.37,   

  = 1.10, mp1 = 0.9, and mp2 = 

0.1. For the bimodal density, the values were: µ1 = −1, µ2 = 1,   
  = 0.49,   

  = 0.49, mp1 = 0.48, 

and mp2 = 0.52. The mixtures were then standardized to have µ = 0 and σ2 = 1. Next, the 

standardized mixtures were treated as data in RC log-likelihood functions (see Equation 11) with 

degree=5 and knots=6. Finally, the log-likelihoods were maximized to yield estimates of η. 

These estimates were subsequently treated as the true RC parameters. The resulting densities are 

shown in Figure 2. 

 

Figure 2. True densities used for the simulation study. True normal curve (gray solid line); true 

skewed curve (dashed line); true bimodal curve (thick dotted line). 

The true item parameters were generated in a manner similar to Woods and Lin (2008). 

The slope parameters, a, were drawn from a truncated normal distribution with mean = 1.8 and 
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standard deviation = 0.8, and truncation at 0.5 and 4. Difficulty parameters (typically labeled b) 

were drawn in the following way. The first difficulty parameter (b1) was drawn from a normal 

with mean= 1 and SD= 0.5. To obtain b2, a random draw was taken from a normal (mean= 1 and 

SD= 0.2) and added to b1. Both b3 and b4 were drawn under the same procedure. Since the graded 

response model was presented in terms of slopes and intercepts, the latter were calculated as c = 

−ab. The same item parameters were used for all replications across all conditions, and are 

displayed in Table 1. 

Table 1 

Simulation study: generating item parameter values 

Item Slope Intercept 1 Intercept 2 Intercept 3 Intercept 4 

1 1.89 1.71 −0.32 −2.59 −4.56 

2 1.44 2.37 0.88 −0.66 −1.90 

3 1.45 3.71 2.50 1.42 0.24 

4 2.18 3.20 0.60 −1.24 −2.97 

5 1.56 0.47 −1.66 −3.36 −5.11 

6 1.81 3.28 1.42 −0.25 −2.69 

7 0.50 1.07 0.58 0.20 −0.27 

8 0.89 0.37 −0.48 −1.56 −2.66 

9 0.94 1.00 −0.22 −1.24 −2.37 

10 1.30 1.09 −0.32 −1.30 −2.60 

11 1.56 2.05 0.20 −1.17 −3.17 

12 1.37 2.28 0.51 −1.05 −1.82 

13 3.18 5.04 2.11 −2.37 −5.47 

14 2.02 3.15 1.05 −1.16 −2.65 

15 2.34 3.93 1.97 0.44 −1.23 

16 3.87 2.94 −1.16 −5.59 −10.14 

17 1.63 1.03 −1.06 −2.70 −4.46 

18 1.41 1.39 −0.31 −1.33 −2.93 

19 0.75 0.62 −0.19 −1.13 −2.22 

20 1.99 1.35 −0.37 −2.31 −3.90 

21 1.99 −0.48 −2.54 −4.23 −6.34 
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Item Slope Intercept 1 Intercept 2 Intercept 3 Intercept 4 

22 1.98 0.04 −1.79 −3.29 −5.88 

23 1.85 1.67 −0.52 −2.60 −4.14 

24 1.57 0.35 −1.02 −2.23 −4.22 

25 1.96 1.06 −0.86 −2.99 −5.14 

For each replication, θ was drawn from the true g(θ|η) using rejection sampling (von 

Neumann, 1951). Then, probabilities of uij = 1 (i.e., correct item responses) were simulated 

according to the graded model. These probabilities were compared to random uniform (0, 1) 

variables. Item responses were determined in proportion to the model-implied probabilities. 

The graded model was fitted to the data in each replication, using both EM and MH-RM 

algorithms. The starting values for all a’s were equal to 1. For all cj, the starting values were (1, 

1/3, −1/3, −1). The starting values for η were those that would reproduce a normal density. The 

density, g(θ|η), was represented using 121 support points, evenly spaced from −6 to 6. Finally, 

the correct RC was estimated (5-degree with 6 knots). Thus, for both the item responses and RC, 

the fitted and data generating models were the same. 

As mentioned earlier, the forms of the RC likelihood functions for EM and MH-RM take 

different forms and imply different scales. Thus, different values for ς (the variance for each 

marginal of the multivariate normal prior) are appropriate depending on the method of 

estimation. Based on trial and error, ς was set to 1 for MH-RM. For EM, ς was set to 1000. 

For MH-RM, the simulation size Sm was set to 1 for all iterations. As in the example in 

Providing Reasonable Starting Values, Stage 1 consisted of 800 iterations, followed by Stage 2 

with 200 iterations. For Stage 3, the decreasing gain constants were set to γm = 1/m
r
 with r = 0.75. 

For convergence criteria, the iterations were examined across a window of 3 iterations. Once the 

maximum absolute change across the window dropped below 1.0 × 10
−4

, the iterations were 

deemed converged. For EM, the iterations were considered converged once the maximum 

absolute between-iteration change in parameter estimates dropped below 1.0 × 10
−4

. 

Outcome Measurements 

Overall model fit was assessed using log-likelihood values. Greater values indicate better 

fit. To evaluate the accuracy of item parameter recovery, estimated bias and root mean square 

error (RMSE) are used. Let M be the number of Monte Carlo replications and ω denote the true 

value of an arbitrary element of the parameter vector ω. Then, estimated bias is defined as 
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 ( ̂  ‒ ω) where  ̂  is the MLE for ω in replication m. RMSE is defined as 

√       
   ̂       .

x
 

Since the scales of the true RC parameters are both unfamiliar and quite variable, estimated 

bias and RMSE are less appropriate measures of recovery accuracy. Instead, the integrated 

square error (ISE), 

  

is used to measure the similarity between the true and estimated RCs, as in Woods and Lin 

(2008). The ISE was multiplied by 1,000 to facilitate comparison. Also, when aggregated ISE 

statistic is reported, the median instead of the mean was used due to skewness and kurtosis. 

To assess the accuracy of the estimated standard errors, let se( ̂)m be the estimated 

standard error for ω in replication m. Then,   ̅̅̅( ̂) =        
  se( ̂)m and the Monte Carlo 

standard deviation is defined as sd( ̂) = √           
   ̂     ̅  ,

x
where  ̅ is the mean of 

the estimates across replications. If the standard errors are estimated accurately, the averages, 

  ̅̅̅( ̂), should closely correspond to the observed standard deviations, sd( ̂) of the sampling 

distribution. 

Results: Points Estimates from MH-RM and EM 

All replications converged for both the MH-RM and BA-EM algorithms. For both 

algorithms, the log-likelihood (plus 30,000), ISE (multiplied by 1,000), and estimated bias and 

RMSE of item parameters are displayed in Table 2. Generally, the comparability of EM and 

MH-RM is established by comparing means of outcome measurements across replications, as 

well as inspecting plots of these measurements by replication. 
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Table 2 

Simulation Results for MH-RM and BA-EM Estimations of RC-IRT 

Estimation LogL RMSE: a Bias: a RMSE: c Bias: c ISE 

ISE Normal g(θ|η) 

MH-RM −500.10 0.10 0.01 0.14 −0.01 0.04 

BA-EM −500.11 0.10 0.01 0.14 0.02 0.04 

Skewed g(θ|η) 

MH-RM −393.75 0.12 0.01 0.13 0.00 0.09 

BA-EM −393.07 0.12 0.01 0.13 0.00 0.09 

Bimodal g(θ|η) 

MH-RM −381.78 0.10 0.01 0.14 −0.00 0.13 

BA-EM −381.77 0.09 −0.00 0.14 0.01 0.14 

Note. LogL = log-likelihood (plus 30,000); RMSE = root mean square error; Bias = Monte Carlo average estimate 

minus the true parameter value; a = slope parameter; c = intercept parameter; ISE = median of the integrated square 

error multiplied by 1,000. 

For each true g(θ|η) shape, the average log-likelihoods for MH-RM and EM are virtually 

identical. In addition to the average log-likelihoods, the values at each replication are extremely 

similar. In Figure 3, all of the points are very close to the 45 reference line, regardless of g(θ|η). 

Thus, in terms of global model fit, there is no appreciable difference between the MH-RM and 

EM results. 

 

Figure 3. Log-likelihood Values for MH-RM (x-axis) and EM (y-axis) Algorithms. 

Again consulting Table 2, the average RMSE and estimated bias for the item parameters 

are nearly indistinguishable under MH-RM and EM. Assessing item parameter recovery from 

another perspective, Figure 4 compares the average RMSE for all item parameters, by 

replication, for MH-RM and EM. Again, the vast majority of points are close to the 45 reference 
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line, indicating that within each replication MH-RM and EM are producing generally 

comparable results. 

 

Figure 4. Average RMSE for Item Parameters within a Replication for MH-RM (x-axis) and EM (y-axis) 

Algorithms. 

Results for the accuracy of the estimated RCs is also presented in Table 2 via the ISE 

statistic. As should be expected, the ISE values for the normal g(θ|η) are the lowest among the 

three distributions. While Table 2 presents the median ISE values, Figure 5 compares the MH-

RM and EM ISE values for each distribution by replication. The proximity of the points to the 

45◦ reference line implies that the two methods are yielding comparable density estimates. 

 

Figure 5. ISE for MH-RM (x-axis) and EM (y-axis) Algorithms. 

Given all of the evidence above, it is clear that MH-RM and EM produce very similar point 

estimates for RC-IRT. Additionally, for MH-RM, Figure 6 shows the average approximated RC 

for each condition (left column) and the 95% confidence intervals (right column). For the normal 

and skewed distributions, the differences between true and average approximated RC are nearly 

indistinguishable. Also, the 95% confidence intervals for the normal and skewed distributions 



21 

clearly capture the true curves. For the bimodal distribution, the approximated RCs are less 

accurate. While the approximated curves are largely bimodal distributions, they fail to capture 

the full extent of the local extrema. 

 

Figure 6. True densities (gray solid lines) used for the simulations, average RC-IRT estimates (dotted 

lines), and 95% confidence intervals (dashed lines). RC-IRT = Ramsay-curve item response theory. 

Left column: True curves (gray solid lines) and average RC-IRT estimate (dotted line). Right column: 

True curves (gray solid lines) and 95% confidence interval (dashed lines) for RC-IRT estimate. 

Results: Standard Errors from MH-RM 

Table 3 presents the average standard error and Monte Carlo standard deviation (in 

parentheses) for all slope parameters across the three distributions. As can be seen, overall, the 
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values are very close to one another. Figure 7 presents the same statistics, but for all item 

parameters. From the plots, it is clear that the Monte Carlo standard deviations tend to be slightly 

larger than the average standard errors. 

Table 3 

Average Standard Errors and Monte Carlo Standard Deviations for 

Slope Parameters 

Item Normal Skewed Bimodal 

1 0.09 (0.10) 0.10 (0.11) 0.09 (0.10) 

2 0.08 (0.08) 0.09 (0.12) 0.08 (0.08) 

3 0.09 (0.09) 0.12 (0.13) 0.09 (0.10) 

4 0.10 (0.12) 0.12 (0.13) 0.10 (0.09) 

5 0.09 (0.10) 0.09 (0.11) 0.09 (0.10) 

6 0.09 (0.09) 0.10 (0.11) 0.09 (0.10) 

7 0.06 (0.06) 0.07 (0.07) 0.06 (0.06) 

8 0.07 (0.07) 0.07 (0.07) 0.07 (0.07) 

9 0.07 (0.07) 0.07 (0.07) 0.07 (0.06) 

10 0.08 (0.09) 0.08 (0.10) 0.07 (0.08) 

11 0.08 (0.09) 0.09 (0.10) 0.08 (0.07) 

12 0.08 (0.08) 0.09 (0.09) 0.08 (0.07) 

13 0.15 (0.18) 0.17 (0.20) 0.15 (0.14) 

14 0.10 (0.10) 0.11 (0.12) 0.09 (0.09) 

15 0.11 (0.12) 0.13 (0.14) 0.11 (0.13) 

16 0.20 (0.23) 0.21 (0.23) 0.20 (0.20) 

17 0.09 (0.09) 0.09 (0.12) 0.09 (0.09) 

18 0.08 (0.08) 0.08 (0.11) 0.08 (0.07) 

19 0.07 (0.07) 0.07 (0.07) 0.06 (0.06) 

20 0.10 (0.12) 0.10 (0.12) 0.10 (0.10) 

21 0.11 (0.13) 0.11 (0.14) 0.11 (0.11) 

22 0.11 (0.12) 0.11 (0.13) 0.10 (0.10) 

23 0.09 (0.10) 0.10 (0.13) 0.09 (0.08) 

24 0.09 (0.09) 0.09 (0.11) 0.09 (0.10) 

25 0.10 (0.11) 0.10 (0.12) 0.10 (0.11) 

Note. Entries are the Monte Carlo averages of estimated standard errors 

and the Monte Carlo standard deviations (in parentheses) of the 

estimated parameters. 
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Figure 7. Average Standard Errors and Monte Carlo Standard Deviations for Item Parameters. 

Empirical Data Analysis 

Data used to illustrate estimation of RC-IRT model via the MH-RM algorithm come from 

the Drug Abuse Treatment Outcome Studies (DATOS). DATOS is a national evaluation of 

treatment effectiveness funded by the National Institute on Drug Abuse. The available sample 

was quite large, and N = 2,500 respondents were randomly selected for the analysis. 11 Likert-

type items measuring mental health and emotional distress were analyzed using RC-IRT. As an 

example, one item asked, “How troubled or distressed (bothered) are you now by emotional or 

psychological problems?” Respondents could answer with one of the following: not at all (0), 

somewhat (1), or very troubled (2). Accordingly, higher latent trait scores correspond with 

greater emotional distress. 

To verify that a unidimensional analysis was appropriate, and to provide a comparison for 

RC-IRT, a standard IRT analysis was carried out using Bock and Aitkin’s (1981) EM algorithm 

in flexMIRT
®

 (Cai, 2012). All items were fitted using the graded response model. The resulting 

RMSEA value was 0.04, suggesting that a unidimensional model fits the data reasonably well. 

Further results from the standard IRT analysis will be discussed below. 

RC-IRT was carried out with maximums of degree = 5 and number of knots = 6 (see A 

Review of Ramsay Curves). Model selection was based on the Hannan-Quinn information criteria 

(HQIC), as recommended by Woods (2007, 2008). The MH-RM specifications were identical to 

those used for the simulation study (see Simulation Study). 

Empirical Analysis Results 

For RC-IRT, the 1-3 model (i.e., degree = 1 and knots = 3) yielded the lowest HQIC, and 

was thus selected. Table 4 displays different comparison criteria for both the RC-IRT and 

standard IRT models. For all criteria, the 1-3 RC-IRT model has the lower values, indicating 

better fit. Point estimates and standard error estimates for both RC-IRT and standard IRT models 
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are displayed in Figure 8. Notably, some standard errors obtained for the 1-3 RC-IRT model are 

appreciably larger than the corresponding values obtained via traditional analysis. 

Table 4 

Model Comparison Criteria for 11 DATOS Items (N = 2, 500) 

Model Parameters -2LogL AIC BIC HQIC 

1-3 RC 46 8685.07 8777.07 9044.97 8874.33 

Normal 43 8750.19 8836.19 9086.63 8927.11 

Note. 1-3 RC = RC-IRT Model with degree = 1 and knots = 3; Normal = IRT estimation assuming a 

normal distribution for g(θ); AIC = Akaike information criteria; BIC= Bayesian information criteria; 

HQIC = Hannan-Quinn information criteria. All values are less 30,000 to facilitate comparison. 

 

Figure 8. Estimates of Item Parameter Standard Errors for 11 DATOS Items. RC-IRT = Ramsay curve IRT; 

Normal = Standard IRT with Assumption of Normal Density. 

Figure 9 shows the estimated RC associated with this scale. Interestingly, the distribution is 

skewed left. In comparison to the normal density, the estimated RC indicates a greater number of 

the respondents are characterized by a lack of emotional distress. The difference in the two sets 

of results also manifests itself in the test information curves, shown in Figure 10. Of note, neither 

curve dominates. This implies that the conditional standard error of measurement is not 

uniformly higher for either analysis. That being said, the most obvious difference in the curves 

occurs at moderately positive values for the latent trait, where the RC-IRT analysis reveals more 

information. 
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Figure 9. Estimated RC-IRT Curve for 11 DATOS Items (N = 2, 500). 

 

Figure 10. Estimated Test Information Curve for 11 DATOS Items (N = 2, 500). 

Discussion and Conclusion 

The empirical example provides a nice context for discussing some of the advantages of 

RC-IRT, as well as remaining challenges. First, conventional model selection criteria indices 

(e.g., BIC, HQIC) ensure that the Ramsay curve may be parsimoniously modeled. In the 

empirical example, the Ramsay curve was a function of just three parameters. Nevertheless, its 

shape was clearly non-normal. Furthermore, the RC-IRT model fit better than the corresponding 

standard IRT model, as measured by conventional criteria. And, if the criteria reveal that the data 

do not support non-normality, we can always use the standard model. Thus, from the standpoint 



26 

of improving model fit, there is little to be lost by using RC-IRT or at least starting off the 

analysis with RC-IRT. 

On the other hand, by not using RC-IRT, the potential misspecification may lead to other 

undesirable results. As shown in Figure 10, the test information curves from the RC-IRT and 

standard analyses are clearly different. This discrepancy can have a practical impact on test 

assembly and item selection, where obtaining a certain test information or conditional standard 

error of measurement (SEM) curve may be the ultimate goal. Another practical implication 

involves computerized adaptive testing (CAT), where stopping criteria may be based on the 

conditional SEM. To the extent that RC-IRT models result in smaller conditional SEM values, 

CAT efficiency may be improved. 

In empirical applications, the form of the latent trait distribution is unknown. Thus, treating 

it as such and estimating its shape from the data is a compelling argument. This theoretical 

argument, along with the practical advantages mentioned above, make a strong case for RC-IRT. 

Nevertheless, researchers need and prefer methods that do not limit their lines of inquiry. The 

unavailability of item parameter standard errors is clearly one such limitation. This research has 

provided the means to remedy this situation. 

Still, other limitations exist. A notable example is that a multidimensional generalization of 

RC-IRT has not yet been developed. When such a development does occur, MH-RM will be a 

logical choice for estimation. Unlike EM, MH-RM does not impose artificial ceilings on the 

dimensionality of a model. To the contrary, the method is, in a sense, designed to address “the 

curse of dimensionality.” While other methods for implementing standard errors for 

unidimensional RC-IRT exist, choosing MH-RM lends itself to future generalizations. 

Hopefully, when this occurs, the problems identified and the pitfalls overcome by the current 

research can serve as a better starting point for future investigations involving multidimensional 

models with non-normal latent variables. 
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Appendix A 

Complete Data Log-Likelihood and Derivatives for the Ramsay Curve 
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