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A NEW STATISTIC FOR EVALUATING ITEM RESPONSE THEORY MODELS  

FOR ORDINAL DATA 

Li Cai and Scott Monroe 

CRESST/ University of California, Los Angeles 

 

Abstract 

We propose a new limited-information goodness of fit test statistic    for ordinal IRT 

models. The construction of the new statistic lies formally between the    statistic of 

Maydeu-Olivares and Joe (2006), which utilizes first and second order marginal probabilities, 

and the   
  statistic of Cai and Hansen (2013), which collapses the marginal probabilities into 

means and product moments. Unlike   
 ,    may be computed even when the number of 

items is small and the number of categories is large. It is as well calibrated as the alternatives 

and can be more powerful than   . When all items are dichotomous,    becomes equivalent 

to   
 , which is also equivalent to   . We analyze empirical data from a patient-reported 

outcomes measurement development project to illustrate the potential differences in 

substantive conclusions that one may draw from the use of different statistics for model fit 

assessment. 

Keywords: item response theory, goodness of fit, limited-information 

Introduction 

Recent years have witnessed an increased interest in the formal evaluation of item response 

theory (IRT) models (Maydeu-Olivares, 2013). In particular, great technical strides have been 

made in the area of limited-information fit statistics (Bartholomew & Leung, 2002; Maydeu-

Olivares & Joe, 2006; Joe & Maydeu-Olivares, 2010). In contrast to the classical full-

information statistics such as Pearson’s    statistic or the likelihood ratio statistic   , which 

utilize full response pattern frequencies and residuals, these limited-information statistics are 

based on observed and model-implied lower-order margins, e.g., first- and second order marginal 

frequencies. As Thissen and Steinberg (1997) noted, for a handful of polytomous items, the 

contingency table upon which the item response model is defined becomes extremely sparse. The 

full-information test statistics do not approach the asymptotic chi-square reference distributions 

under such sparseness (see e.g., Bartholomew & Tzamourani, 1999) and consequently have 

limited utility for evaluating IRT models, particularly for ordinal data. On the other hand, 

because the lower-order margins tend to be better filled than the full item response cross-

classifications, limited-information statistics not only retain better calibration than full-

information statistics under the null, but are also more powerful under the alternative (Joe & 

Maydeu-Olivares, 2010). Maydeu-Olivares and Joe’s (2006)    and Cai and Hansen’s (2013) 
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  statistics are examples that have found their way into widely distributed software (Cai, 

Thissen, & du Toit, 2011; Cai, 2013) and have begun to demonstrate their usefulness in 

empirical measurement research that requires evaluating IRT model fit for ordinal data. 

Technical and practical challenges remain, however, and we submit that both the original 

   statistic, which is based on uncollapsed first- and second order marginal residuals, and the 

Cai-Hansen updated   
  statistic, which utilizes a further condensing/collapsing of the first- and 

second order marginal residuals into residual moments, have limitations that result in diminished 

practical utility for IRT models fitted to ordinal data. The original    statistic suffers from a 

more subtle sparseness issue that Cai & Hansen (2013) discussed. For example, suppose two 

ordinal items each with 5 categories (perhaps on a Likert-type scale) both load strongly on the 

same latent variable(s). Then, the observed item responses will tend to covary. Respondents who 

endorse the extreme response categories for item 1 tend to have similar responses for item 2. By 

virtue of the shared underlying latent variable(s), certain cells in the bivariate contingency table 

will have very small expected frequencies, e.g., the combination of the most positive response 

option on item 1 and the most negative response option on item 2. The number of cells that may 

be sparse is exacerbated by an increase in the number of categories, eventually leading to a 

break-down of the asymptotic chi-square approximation. Generally the statistic will be 

stochastically smaller than the reference distribution, leading to lower than nominal Type I error 

rates under the null, and a loss of statistical power under the alternative. Cai and Hansen (2013) 

proposed   
  as a remedy because it uses conventional item scores (0-1-2-3-…) assigned to 

ordinal categories to compute residual moments from the first- and second order margins. Given 

our 2-item 5-category example from above, the original    would require   (   )    first 

order expected marginal probabilities, and (   )  (   )     second order expected 

marginal probabilities.1 For   
 , the 8 first order marginal expected probabilities are used to 

compute 2 first order moments, and the 16 second order expected marginal probabilities 

collapses into a single second order moment. This further collapsing guarantees that sparseness 

no longer affects   
 , and the statistic is shown to be well-calibrated and powerful in Cai and 

Hansen’s (2013) simulations. 

A major issue still remains:   
  appears to have collapsed the contingency table far too 

aggressively. For assessments made up of items with 5 ordered response categories (very popular 

in social and behavioral sciences research), it would take at least 10 items for   
  to begin to 

have positive degrees of freedom, even for a simple unidimensional graded response model. For 

9 items, there are     (   )      first- and second order residual moments, but a 

                                                 
1
 The number of first order marginal probabilities is equal to 4 because the 5 probabilities must sum to 1.0 

and there are only 4 independent probabilities. The same argument applies to the bivariate table. 
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unidimensional graded response model for 5 categories also has    parameters, leaving zero 

degree of freedom for model fit testing with   
 . In this case, the IRT model is not locally 

identified from the set of marginal residual moments. We note that, for instance, in the patient-

reported outcomes measurement context (Hansen, Cai, Stucky, Tucker, Shadel, & Edelen, in 

press), most short forms contain fewer than 10 items and the items tend to have ordinal response 

formats. Thus,   
  cannot be used to evaluate model fit for such short form measures. This 

clearly limits the utility of   
 . 

However, a closer examination of the logic of the further collapsing used in   
  shows that 

the situations for the first order margins and the second order margins are in fact very different. 

Typically, the first order margins are adequately filled, (mostly) as a result of standard operating 

procedures in routine item analysis. If a response category is endorsed by very few respondents, 

either the item is removed altogether, or the categories are collapsed before model-fitting 

commences. In other words, in practice, sparseness of the second order margins is generally not 

accompanied by sparseness of the first order margins. 

Therefore we arrive at the dominating insight of this research: The first order margins 

should not be collapsed into moments, but the second order margins should. We propose a new 

test statistic that stands between the original   , which does not collapse marginal residuals, and 

  
 , which further collapses the marginal residuals into moments. The new statistic still relies on 

first and second order information, but only the second order margins are collapsed into 

moments. This new statistic remedies the weaknesses of    and   
 . We call it   . 

With   , Samejima’s (1969) unidimensional graded response (GR) model or Muraki’s 

(1992) unidimensional generalized partial credit (GPC) model is locally identified (and has 

positive degrees of freedom) for as few as 4 items. More generally, unlike with   
 , the ability to 

compute    does not depend on the number of categories per item. We show that    is as well 

calibrated as the competition (namely    and   
 ), and can be more powerful. Finally, for   , the 

structure of the first and second order margins has an appealing connection to the parameters of 

an IRT model. The uncollapsed raw first order margins are strongly related to the item location 

parameters, while the collapsed second order margins (i.e., moments) are essentially covariances 

and are directly related to the item discrimination/loading parameters. 

The remainder of the paper is organized as follows. We introduce basic notation in Section 

2, and discuss maximum marginal likelihood estimation in Section 3. Properties of multinomial 

residuals are demonstrated in Section 4 to facilitate the introduction of the proposed test statistic. 

In Section 5, we report results from a simulation study to examine the calibration and power of 

the new test statistic. In Section 6, empirical data from a patient-reported outcomes measurement 
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development project will be used to further illustrate the new statistic. We conclude with a 

discussion of possible future research directions. 

Some Notation 

Let there be a total of        items. For an item with    ordered polytomous responses, 

let the response categories be coded as          . Let   denote the underlying latent 

variable, and   (   ) the category response function for item   and category  . Without loss of 

generality, let us consider a logistic version of Samejima’s (1969) graded response model for the 

remainder of this paper, noting that the theory developed in the sequel applies equally well to 

other ordinal IRT models such as the GPC model. The graded model sets the cumulative 

response function for item   in categories   and above as 

 
  

 (   )  
 

     [ (       )]
  

(1)  

for          , where     is the intercept (location) and    is the slope (discrimination) 

parameter. Let the boundary cases be   
 (   )    and   

 (    )   . The category response 

function can be written as 

   (   )    
 (   )    

 (     )  (2)  

for          . 

Let    be a random variable whose realization    is a response to item  . The probability 

mass function of   , conditional on  , is that of a multinomial with trial size 1: 

 
 (         )  ∏[  (   )]  (  )

    

   

  
(3)  

where   (  ) is an indicator function such that 

   (  )  {
         

           
 (4)  

and   collects together all item parameters. Let the dimensionality of   be equal to  , which is 

the number of free and unconstrained parameters in the model. 

Under the assumption of conditional independence (Lord, 1968), the conditional 

probability for the response pattern   (       )  factors into a product: 

 
  (   )   (⋂     

 

   

|   )  ∏ (         )

 

   

  
(5)  
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Assuming that the latent variable distribution has density  ( ), typically standard normal in 

applications, the marginal probability of the response pattern is 

 
  ( )  ∫∏ (         )

 

   

 ( )    
(6)  

Recall that    is the number of categories for item  . For I items, the IRT model generates a 

total of   ∏   
 
    cross-classifications or possible item response patterns in the form of a 

contingency table. For example, with 2 dichotomous items, the 4 possible response patterns are 

(   ) (   ) (   ) (   ), in reverse lexicographical order. Note that   may become very large 

for polytomous items, e.g., for ten 5-category items,   is just under 10 million. 

Maximum Likelihood Estimation of IRT Models 

Based on a sample of N respondents, let the observed proportion of individuals with 

response pattern   be denoted as   . These observed proportions can be collected into a     

vector  . Correspondingly, the   model-implied probabilities   ( ) can be collected into a 

    vector  ( ). We recognize that it is a parametric structural model. The model-implied 

probability vector  ( ) imposes a specific moment structure on     independent probabilities 

(as the sum of the   probabilities must be 1) with   parameters. 

Suppose there is a     vector    containing the true (population) response pattern 

probabilities. If the IRT model is exactly correctly specified, i.e., it fits perfectly in the 

population, then there exists a parameter vector    such that  (  )    . The elements of    

may be taken as the true parameters. When this is the case, parameter estimation is 

straightforward. 

The sampling model for this contingency table is that of a multinomial with   cells and N 

trials (Reiser, 1996). The log-likelihood for the item parameters   is proportional to 

 
    ( )    ∑       ( )

 

  
(7)  

where the summation is nominally over all   response patterns. In reality, when a particular 

pattern is not observed in the data, the corresponding    is zero and the term does not contribute 

to the log-likelihood. Maximization of the     ( ), e.g., with Bock and Aitkin’s (1981) EM 

algorithm, leads to the maximum marginal likelihood estimator  ̂. 

It is a standard result from discrete multivariate analysis (e.g., Bishop, Fienberg, & 

Holland, 1975) that the maximum likelihood estimator is √ -consistent, asymptotically normal 

and asymptotically efficient under correct model specification. In other words, we have 
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 √ ( ̂    )
 
→   (    

  )  (8)  

where      
  [    (  )]

     is the     Fisher information matrix evaluated at the true 

parameter values, and the Jacobian    is a     matrix of all first order partial derivatives of 

the response pattern probabilities with respect to the parameters, evaluated at   : 

   
  (  )

   
  

Furthermore, let  ̂    ( ̂) denote the model-implied probability for response pattern   

under maximum likelihood estimation. The direct comparison between  ̂  and    leads to 

classical full-information fit statistics such as the likelihood ratio   and Pearson’s   : 

 
     ∑     

  

 ̂ 
 

     ∑
(    ̂ )

 

 ̂ 
 

  
(9)  

Under the null hypothesis that the IRT model fits exactly, these two statistics are 

asymptotically distributed as central chi-square variables with degrees of freedom equal to   

     against the general multinomial alternative (Bishop et al., 1975). Unfortunately for IRT 

models,   is exponential in the number of items. As argued earlier, when   is large, the expected 

response pattern probabilities necessarily become small, resulting in an extremely sparse table. 

This sparseness invalidates the chi-square approximation and renders these full-information 

statistics unsuitable for model fit testing (Cochran, 1952). 

Limited-information Goodness-of-fit Testing 

Distribution of Multinomial Residuals under Maximum Likelihood Estimation 

It can be shown that the asymptotic distribution of (    ) is  -variate normal: 

 √ (    )
 
→   (    )  

(10)  

where        (  )      
  is the population multinomial covariance matrix. Recall that 

 ̂    ( ̂) is the model-implied probability for response pattern   under maximum likelihood 

estimation. The   model-implied probabilities may be collected into a     vector  ̂   ( ̂). It 

can also be shown that the residual vector (   ̂) is asymptotically  -variate normally 

distributed under maximum likelihood estimation, albeit with a different limiting covariance 

matrix to take maximum likelihood estimation of parameters into account, 

 √ ( ̂   )
 
→   (    )  

(11)  

where           
    

  (Bishop et al., 1975). 
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For example, for a test made up of 3 items, where item 1 is dichotomous and items 2 and 3 

have 3-categories each, there are 18 possible item response patterns. In reverse lexicographical 

order, the model-implied response pattern probabilities and observed proportions are: 

 

  ̂  

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 ̂(   )

 ̂(   )

 ̂(   )

 ̂(   )

 ̂(   )

 ̂(   )

 ̂(   )

 ̂(   )

 ̂(   )

 ̂(   )

 ̂(   )

 ̂(   )

 ̂(   )

 ̂(   )

 ̂(   )

 ̂(   )

 ̂(   )

 ̂(   ))

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (   )

 (   )

 (   )

 (   )

 (   )

 (   )

 (   )

 (   )

 (   )

 (   )

 (   )

 (   )

 (   )

 (   )

 (   )

 (   )

 (   )

 (   ))

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   

(12)  

First Order Margins 

Using this arrangement, marginal probabilities can be obtained as linear functions of  ̂ and 

 . Consider the 3-item example from above. There are 5 independent first order marginal 

probabilities: 1 from item 1, which is dichotomous; 2 from items 2 and 3 each. In general, for   

items, there are    ∑ (    ) 
    independent first order marginal probabilities. Without loss 

of generality and by convention, we can obtain an independent set of marginal probabilities for 

item   by removing the marginal probability for the lowest category with code 0. These first 

order marginal probabilities can be obtained from the full  -dimensional probability vector using 

a      reduction operator matrix (see e.g., Joe & Maydeu-Olivares, 2010). The first order 

reduction matrix  ̇ is a fixed incidence matrix that contains zeroes and ones, where the ones 

serve to select and sum over those full response pattern probabilities that correspond to a 

particular item and a particular category code to yield the desired marginal probability. 

Importantly, this matrix has full row rank. An example is given below: 
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 ̂ 
( )

 ̂ 
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  ̇ ̂  (

                  
                  
                  
                  
                  

)
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 ̂(   )

 ̂(   )

 ̂(   )

 ̂(   )

 ̂(   )

 ̂(   )
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 ̂(   )

 ̂(   )

 ̂(   )

 ̂(   )

 ̂(   )

 ̂(   )
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(13)  

where  ̂  denotes the   -vector of all independent first order marginal probabilities, and  ̂ 
( )

 

denotes the first order marginal probability for item   in category  . By analogy,     ̇  is a 

  -vector of independent first order observed proportions. The elements of    may be denoted 

  
( )

. Comparing  ̂  and    can show the extent to which the IRT model has successfully 

reproduced the first order proportions. 

On the other hand, Cai and Hansen (2013) considered collapsing the marginal probabilities 

into marginal moments (see also Joe & Maydeu-Olivares, 2010). Cai and Hansen (2013) 

reasoned that for each ordinal item, one could use the usual category codes to compute an item 

mean from both the model-implied and the observed first order marginal probabilities: 

 
 ̂  ∑   ̂ 

( )

    

   

    ∑    
( )

    

   

  
(14)  

This setup has the side benefit of effectively eliminating the first category for each item so that 

no special treatment is required to obtain independent probabilities. They also showed that the 

computation of item means can be computed via reduction operator matrices. In general one only 

has to pre-multiply  ̇ by a      block-diagonal matrix  ̇. The   diagonal blocks of  ̇ are row 

vectors made up of item category codes (sans 0):    (        ). The reduction operator 
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matrix  ̇   ̇ ̇ is of order    . Because  ̇ has full row rank,  ̇  has full row rank as well. An 

example of item mean computation for the 3-item test from above is shown below: 

 

 ̂  (

 ̂ 

 ̂ 

 ̂ 

)   ̇ ̂  (

  

  

  

)  (
     
     
     

)

(

 
 
 
 

 ̂ 
( )

 ̂ 
( )

 ̂ 
( )

 ̂ 
( )

 ̂ 
( )

)

 
 
 
 

 ( ̇ ̇) ̂   ̇  ̂  

(15)  

where  ̂  is a vector containing the   model-implied item means. By analogy,     ̇   is a 

vector of observed item means. The model-implied and observed means can be compared just as 

in model fit assessment for mean and covariance structure models. 

Second Order Margins 

Table 1 

Bivariate Table of Marginal Probabilities for Item Pair (   ) from the Example 

 Item 2 Category Code 

Marginal Probability  

for Item 3 Item 3 Category Code 0 1 2 

0 
 ̂  

(  )
  ̂  

(  )
  ̂  

(  )
  ̂ 

( )
 

1 
 ̂  

(  )
  ̂  

(  )
  ̂  

(  )
  ̂ 

( )
 

2 
 ̂  

(  )
  ̂  

(  )
  ̂  

(  )
  ̂ 

( )
 

Marginal Probability  

for Item 2 
 ̂ 

( )
  ̂ 

( )
  ̂ 

( )
 1.0 

 

Generalizing the notation from first order marginal probabilities, let  ̂  
(  )

 denote the 

second order marginal probability for item pair (   ), where item   is in category   and item   is 

in category  . With   items, there are  (   )   item pairs for        . For each pair, 

these second order marginal probabilities form a       contingency table. Table 1 presents an 

example using the 3-item test from above. Each cell of the table corresponds to a second order 

marginal probability. On the margins of the table are the first order probabilities. Locally in this 

two-way table, given the first order margins, there are only (    )  (    ) independent 

second order probabilities. The shaded cells indicate joint probabilities that we routinely remove 

to obtain independent probabilities. By this point it should not become a surprise that these 

second order marginal probabilities can be obtained via reduction operator matrices. These 
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reduction matrices are also fixed incidence matrix that contain zeroes and ones only. Each row of 

a reduction matrix sums over the response pattern probabilities corresponding to a particular 

second order marginal probability. As such a reduction operator matrix has full row rank and the 

number of rows is equal to    ∑ ∑ (    )  (    )   
   

 
   . The number of columns is equal 

to  . An example is shown below: 

 

 ̂  

(

 
 
 
 
 
 
 
 
 

 ̂  
(  )

 ̂  
(  )

 ̂  
(  )

 ̂  
(  )

 ̂  
(  )

 ̂  
(  )

 ̂  
(  )

 ̂  
(  )

)

 
 
 
 
 
 
 
 
 

  ̈ ̂  

(

 
 
 
 

                  
                  
                  
                  
                  
                  
                  
                  )

 
 
 
 

 ̂  

(16)  

where  ̈ is the      (in this case     ) reduction matrix, and  ̂  denotes the   -vector of all 

independent second order marginal probabilities. Again by analogy,     ̈  is a   -vector of 

independent second order observed proportions. The elements of    may be denoted    
(  )

. 

Comparison of  ̂  and    tells us how well the IRT model fits the second order proportions. 

Returning to the example in Table 1, Cai and Hansen (2013) noted that if there is reason to 

believe that the items in a test are strongly influenced by a common latent variable, as is typically 

the case due to common assessment development practices in educational and psychological 

testing, the second order marginal probabilities for the “inconsistent” response patterns in the 

two-way table will necessarily become small. For example, if both items 2 and 3 provide 

evidence about the respondents’ severity in depression symptoms, then in aggregate, 

endorsement of a category indicating high severity on item 2 will tend to be correlated with 

endorsement of a similar category on item 3. Thus the cells in Table 1 that are close to the main 

diagonal (i.e., the consistent response patterns) will be better filled than the cells that are far 

removed from the diagonal (i.e., the inconsistent response patterns). As the number of categories 

increases, the sparseness of the second order margins becomes increasingly severe. Some of the 

observed second order marginal proportions could be equal to zero, and the model-implied 

probabilities are similarly small. Thus a direct comparison of  ̂  and    has limited utility in 

practical data analysis settings involving ordered polytomous IRT models. 
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This observation led Cai and Hansen (2013) to apply Joe and Maydeu-Olivares’ (2010) 

general framework. Instead of examining the two-way probabilities, Cai and Hansen used the 

ordinal item scores to compute a raw moment statistic for each item pair: 

 

 ̂   ∑ ∑     ̂  
(  )

    

   

    

   

     ∑ ∑       
(  )

    

   

    

   

  

(17)  

where  ̂   and     are the model-implied and observed second order moments for item pair (   ). 

The moment statistic further collapses the two-way contingency table into a single-number 

summary, thereby avoiding the sparseness issue even when the number of categories is large. 

The bivariate moments are effectively measuring pairwise correlations between items. 

Again, the second order moments may be computed via reduction operator matrices. The 

reduction operator matrix for second order moments can be obtained by pre-multiplying  ̈ with a 

 (   )      block-diagonal matrix  ̈. The  (   )   diagonal blocks of  ̈ contain 

Kronecker products of row vectors that are made up of item category codes:      , for 

       , where    (        ) is as defined in Section 4.2. Note that  ̈ has full row 

rank. Thus  ̈   ̈ ̈ has full row rank. An example for the 3-item test is shown below: 

 
 ̂  (

 ̂  

 ̂  

 ̂  

)   ̈ ̂  (

     

     

     

)  ̂ 

 (
        
        
        

)
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 ̂  
(  )
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(  )
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(  )

 ̂  
(  )

 ̂  
(  )

 ̂  
(  )

 ̂  
(  )

 ̂  
(  )

)

 
 
 
 
 
 
 
 
 

 ( ̈ ̈) ̂   ̈  ̂  

(18)  

where  ̂  is a vector containing the  (   )   model-implied second order moments. By 

analogy, we define      
   as a vector of observed second order moments. 

Existing Test Statistics:    and   
  

Maydeu-Olivares and Joe (2006) proposed the    statistic, which utilizes the first and 

second order marginal probabilities. Let   be a (     )    matrix that vertically concatenates 

 ̇ and  ̈ such that its first    rows come from  ̇ and the remaining rows come from  ̈. What this 



15 

implies is that by pre-multiplying   with  ̂ and  , we can obtain the (     )    vector of first 

and second order marginal residual probabilities ( ̂      ) as a linear function of the 

multinomial cell residuals ( ̂   ) defined in Equation (11): 

  ̂       (
 ̂    

 ̂    
)  ( ̇

 ̈
) ( ̂   )   ( ̂   )  

(19)  

Equation (19) implies that the asymptotic distribution of ( ̂      ) is normal: 

 √ ( ̂      )
 
→       

(     )  
(20)  

where         
      

       
    

             
     

 . In particular the marginal 

Jacobian matrix         is the matrix of all partial derivatives against the first and second 

order marginal probabilities 

     
  (  )

   
 

   (  )

   
 

    (  )

   
  

The rank of     determines whether the IRT model is locally identified from the marginal 

probabilities. If     has full column rank, the model is locally identified. 

Let  ̂      ( ̂)   ̂ ̂  be the multinomial covariance matrix evaluated at the maximum 

likelihood solution  ̂, and let  ̂     ̂  . Also evaluate the marginal Jacobian     at  ̂: 

 ̂   
   ( ̂)

   
  

By Proposition 4 in Browne (1984), the test statistic 

     ( ̂      )
  ̂   ( ̂      )  (21)  

where  ̂    ̂  
    ̂  

   ̂  ( ̂  
  ̂  

   ̂  )
  

 ̂  
  ̂  

  , is asymptotically chi-squared with    

     degrees of freedom under the null hypothesis that the model fits exactly in the population. 

Similarly, let    be a  (   )     matrix that vertically concatenates  ̇  and  ̈  such 

that its first   rows come from  ̇  and the remaining  (   )   rows come from  ̈ . The 

 (   )     vector of first and second order marginal residual moments ( ̂      ) is a 

linear function of the multinomial cell residuals ( ̂   ): 

 
 ̂       (

 ̂    

 ̂    
)  (

 ̇ 

 ̈ 

) ( ̂   )   ( ̂   )  
(22)  

and the asymptotic distribution of ( ̂      ) is normal: 

 √ ( ̂      )
 
→   (   )  (     

 )  (23)  
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where    
        

        
        

    
   

     
     

   
  (   

 ) . Let  ̂  
     ̂  

  

and evaluate the Jacobian with respect to marginal moments    
  at  ̂: 

 ̂  
    

  ( ̂)

   
 

    ( ̂)

   
 

    ( ̂)

   
  

By an analogous argument, the test statistic 

   
   ( ̂      )

  ̂  
  ( ̂      )  (24)  

where  ̂  
  ( ̂  

 )
  

 ( ̂  
 )

  
 ̂  

 [( ̂  
 )

 
( ̂  

 )
  

 ̂  
 ]

  

( ̂  
 )

 
( ̂  

 )
  

, is also 

asymptotically chi-squared, but with  (   )     degrees of freedom under the null 

hypothesis that the model fits exactly in the population (Cai & Hansen, 2013). Note that 

when   is small, the degrees of freedom may become negative for polytomous items. 

The Proposed Test Statistic 

Given the foregoing development, we are ready introduce the new statistic. Let      

 (   )   denote the number of first order marginal probabilities and the number of second 

order marginal moments. Let   be a     matrix that vertically concatenates  ̇ and  ̈  such that 

its first    rows come from  ̇ and the remaining  (   )   rows come from  ̈ . Let  ( ̂)   ̂  

  ̂    ( ̂) be the     vector of model-implied first order marginal residual probabilities 

and second order expected marginal moments, and      be the corresponding observed 

proportions and sample moments, i.e., 

  ̂    ̂  (
 ̂ 

 ̂ 
)  (

 ̇
 ̈ 

)  ̂    ̂      (
  

  
)  (

 ̇
 ̈ 

)      
(25)  

The     Jacobian matrix     (  )        (  ) is therefore 

    (  )   
  (  )

   
 

   (  )

   
 

  (  )

   
  

Note that the number of independent first order marginal probabilities    is generally equal to the 

number of location/intercept parameters in GR or GPC models. As long as the number of 

discrimination parameters does not equal or exceed the number of second order marginal 

moments,   is typically larger than   and  ( ) may have full column rank, indicating local 

identification of the IRT model, in contrast to the case of   
 . 

It is clear then the     marginal residual vector ( ̂   ) is still a linear function of the 

multinomial cell residuals ( ̂   ) as defined in Equation (11): 

  ̂    (
 ̂    

 ̂    
)  (

 ̇
 ̈ 

) ( ̂   )   ( ̂   )  
(26)  
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Equation (26) implies that the asymptotic distribution of ( ̂   ) is  -variate normal: 

 √ ( ̂   )
 
→   (   )  (27)  

where       
      

       
    

        
      

    
 . 

Let       
  and let  ̂    ̂  be an estimate under maximum likelihood estimation. 

Define a weight matrix  ̂   ̂    ̂   ̂[ ̂  ̂   ̂]
  

 ̂  ̂  , where  ̂ is simply the Jacobian  ( ) 

evaluated at  ̂. We argue that the new test statistic 

     ( ̂   )  ̂( ̂   )  (28)  

is asymptotically chi-squared with     degrees of freedom under the null hypothesis that the 

model fits exactly in the population. Needless to say,   ,   , and   
  become equivalent when 

all items are dichotomous. 

To see this is the case, assume that  (  ) has full column rank and the model is locally 

identified. By the continuity of the matrix inverse and the consistency of the maximum 

likelihood estimator, the probability limit of  ̂ is            [  
      ]

    
    . Since the 

statistic    is a quadratic form in an asymptotically normal random vector with zero means, it is 

sufficient to show that the product of the limiting covariance matrix and the weight matrix of the 

quadratic form    (      
    

 )         [  
      ]

    
  is idempotent. This is true. 

By Cochran’s theorem and Slutsky’s theorem,    is asymptotically chi-squared. The degrees of 

freedom is equal to the trace (rank) of        [  
      ]

    
 , which is      

A Measure of Model Error 

When the model does not fit exactly in the population, there does not exist a    such that 

 (  )    . In general, for any parameter vector  ,    ( )     ,    ( )      , and 

 ( )     , unless the misspecification only affects third-order margins or above. The limiting 

means of the random vectors in Equations (20), (23), and (27) are generally no longer zero, and 

  ,   
 , and    are no longer distributed as central chi-square random variables. Maydeu-

Olivares (2013) suggested that we borrow from the model fit assessment literature in structural 

equation modeling, and utilize the quadratic forms in   ,   
 , and    to compute Root Mean 

Square Error of Approximation (RMSEA; Browne & Cudeck, 1993; Maydeu-Olivares, 2013) 

type indices to characterize the per degree of freedom error of approximation in the population. 

Generically, for observed discrepancy measure  , an unbiased estimate of the population 

discrepancy is  ̂         (Browne & Cudeck, 1993), where    is the degrees of freedom 

available for testing. The sample RMSEA estimate is defined (with truncation at 0): 
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 ̂     (√

 ̂

  
  )   

(29)  

Confidence intervals of RMSEA may be easily computed from the noncentral chi-square 

distribution by following established procedures in Browne and Cudeck (1993). 

Let    ( ̂      )
  ̂   ( ̂      ) be the observed discrepancy measure based 

on the    statistic,   
  ( ̂      )

  ̂  
  ( ̂      ) the observed discrepancy measure 

based on the   
  statistic, and finally let    ( ̂   )  ̂( ̂   ) be the observed 

discrepancy measure based on the    statistic. Then we can define   ̂,   ̂
 , and   ̂ as 

three different versions of the RMSEA index, each from a different underlying test 

statistic. To the extent that the test statistics have different behavior under the 

alternative hypothesis, the different RMSEAs will exhibit differences in magnitude. The 

variation is important to understand because the conclusions drawn from the RMSEA 

values may be quite different, depending on which version of the limited-information 

test statistic one has chosen to evaluate the fit of the IRT model. 

Simulations 

A small simulation study was conducted to examine the calibration and power of the 

proposed statistic,   . Along with   , the    statistic of Maydeu-Olivares and Joe (2006) and the 

fully collapsed   
  statistic of Cai and Hansen (2013) were considered. In all conditions, a 

sample size of       was used. The data were generated using Samejima’s (1969) GR model, 

with      ordered response categories per item. 

All generating parameter values are presented in Table 2. For the null condition, the 

generating model was unidimensional, with        or  , adding successively more items from 

Table 2 to the generating moel. The     column shows the slopes of the unidimensional GR 

model. As mentioned above, a shortcoming of the   
  statistic is that it cannot be used for 

smaller models with relatively large   , due to lack of local identification and negative degrees 

of freedom. Such is the case here, as   
  cannot be computed except for the     condition. On 

the other hand, both    and    can be computed for all the   considered here. However, since the 

items are polytomous, it is possible that the distribution of    will be distorted because of poorly 

filled second order marginal tables, as demonstrated by Cai and Hansen (2013), leading to a 

reduction of power. To study power, model misspecification was introduced through the 

presence of a second latent variable,     (   ), uncorrelated with   , but influencing a 

doublet of items. More specifically, for all non-null conditions, data for items 1 and 2 were 
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generated using a two-dimensional GR model, wherein the cumulative category probabilities are 

defined as 

 
  

 (       )  
 

     [ (               )]
  

(30)  

The additional slopes on    were set to 0.8, as shown in Table 2. The number of items for the 

non-null condition was also        or  . The fitted model in all conditions was the 

unidimensional GR model. There were 1,000 replications under each of the 6 conditions. 

Table 2 

Generating Parameters for Simulation Study 

Item                       

1 2.0 0.5 -1.0 1.5 0.8 

2 2.0 0.5 -1.0 1.7 0.8 

3 2.0 0.5 -1.0 1.9 

 4 2.0 0.5 -1.0 2.1 

 5 1.0 -0.5 -2.0 1.5 

 6 1.0 -0.5 -2.0 1.7 

 7 1.0 -0.5 -2.0 1.9 

 8 1.0 -0.5 -2.0 2.1 

  

Type I Error Rate 

Table 3 displays means, variances, and empirical rejection rates for the 3 null conditions. 

Also,  -values from two-sided Kolmogorov-Smirnov (KS) tests are reported to detect any 

departures from the reference chi-square distributions. Immediately apparent is the range of 

degrees of freedom for the test statistics. While    has 50 degrees of freedom with just 4 items, 

  
  has barely positive degrees of freedom (df = 4) with as many as 8 items.   , by construction, 

lies somewhere in between. All statistics behave well. The observed mean and variance 

relationships closely track that of a central chi-square variable, with variance approximately 

equal to twice the mean. The non-significant KS  -values and observed rejection rates support 

the proposition that all of the statistics are well-calibrated under the null. Overall, the results 

support the theoretical development claiming that    is approximately chi-square distributed. As 

a consequence, the power of   ,   , and   
  can be more directly compared. 
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Table 3 

Simulation Results: Null Conditions 

  

First order Second order  

   

Rejection Rates at   

 I Statistics Information Information d df Mean Var .010 .050 .100 KS 

8    24 252 32 244 244.36 463.74 .014 .037 .093 .503 

 

   24 28 32 20 19.86 36.19 .005 .046 .084 .671 

 

  
  8 28 32 4 4.00 8.61 .014 .050 .105 .790 

6    18 135 24 129 128.70 237.48 .008 .041 .100 .215 

 

   18 15 24 9 8.90 16.64 .012 .035 .089 .692 

 

  
  6 15 24 -3 

      4    12 54 16 50 50.27 102.40 .017 .052 .105 .519 

 

   12 6 16 2 2.03 4.71 .013 .053 .110 .182 

 

  
  4 6 16 -6 

      Note. For    and   , first order information refers to the total number of independent first order marginal 

probabilities, and for   
 , first order information comes in the form of item-specific marginal means. For   , second 

order information refers to the number of independent second order marginal probabilities, whereas for    and   
 , 

second order information are bivariate product moments. Note that for two conditions,   
  cannot be computed 

because of negative degrees of freedom. 

Power 

Empirical rejection rates for   ,   , and   
  under the non-null conditions are 

presented in Table 4. Overall, the rejection rates increase as the number of items 

decreases from     to 6 to 4. This is expected, as the misspecification only affects the 

first two items regardless of  . Consequently, the misspecification is more severe with a 

smaller number of items. Comparing the three statistics,    is clearly the most powerful, 

for all conditions. As one example, consider the rejection rates at       for    . The 

rejection rate of    (.335) is nearly triple that of    (.119), while the rejection rate of   
  

(.052) barely exceeds the nominal   level. 
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Table 4 

Simulation Results: Power and RMSEA 

  

First order Second order  

 

Rejection Rates at   

 

RMSEA 

I Statistics Information Information d df .010 .050 .100       M 90% CI 

8    24 252 32 244 .027 .119 .196 .017 .008 .008 (0, .020) 

 

   24 28 32 20 .125 .335 .457 .016 .029 .025 (0, .048) 

 

  
  8 28 32 4 .011 .052 .112 < .001 .001 .015 (0, .053) 

6    18 135 24 129 .034 .124 .212 .015 .011 .010 (0, .024) 

 

   18 15 24 9 .188 .386 .506 .014 .040 .035 (0, .067) 

 

  
  6 15 24 -3 

       4    12 54 16 50 .043 .146 .237 .011 .015 .013 (0, .032) 

 

   12 6 16 2 .278 .504 .603 .010 .072 .061 (0, .123) 

 

  
  4 6 16 -6 

       Note. For    and   , first order information refers to the total number of independent first order marginal 

probabilities, and for   
 , first order information comes in the form of item-specific marginal means. For   , second 

order information refers to the number of independent second order marginal probabilities, whereas for    and   
 , 

second order information are bivariate product moments. Note that for two conditions,   
  cannot be computed 

because of negative degrees of freedom. 

Table 4 also shows the sample mean and empirical 90% confidence intervals for   ̂,   ̂
 , 

and   ̂. Interestingly, for a given condition, the means vary considerably depending on which 

statistic is used to compute the sample RMSEA. For instance, for the     condition, the mean 

of   ̂ is .013, while the mean of   ̂ is .061. Under commonly used guidelines, the former would 

indicate “excellent” fit, while the latter would indicate merely “acceptable” fit. 

Some insight into this phenomenon can be gained by computing the population RMSEA 

values. For purposes of illustration, consider the     condition. Under the alternative model, 

the          population multinomial probabilities may be computed and collected in   . 

Then, treating    as  , that is, treating the population probabilities as the sample multinomial 

proportions, Equation (7) may be maximized under the null model to yield  ̂ and  ̂   ( ̂)  

  . Using    and  ̂, three different population discrepancy measures may be computed, based 

on   ,   , and   
 . These population discrepancy measures, in turn, may be used to find 

corresponding population RMSEA values. 

The population discrepancy measures and population RMSEA values are shown in Table 4, 

in the columns labeled    and   , respectively. Generally, for any condition and statistic, the 

mean of the sample RMSEA values is quite similar to its population RMSEA value, indicating 

consistency of the sample estimation. For instance, for the case of    , for    we see that 
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       , while the sample estimate is .013. Similarly, for   ,        , while the sample 

estimate is .061. Note, however, that the two population RMSEA values may lead to different 

evaluations of fit, given common interpretive guidelines. This incongruity underscores the need 

to consider the underlying statistics in interpreting RMSEA. In other words, each test statistic 

provides a different measure of the same model misspecification. 

Analysis of Empirical Data 

The empirical data (a random sample of       ) come from the PROMIS® Smoking 

Initiative (Edelen, Tucker, Shadel, Stucky, & Cai, 2012). One task of this initiative is to develop 

and evaluate short forms measures of cigarette smoking related psycho-bio-social constructs, 

which are more practical to administer in clinical and research settings. In this process, the 

research team considered short forms with as few as 4 items (Hansen et al., in press). As an 

illustration of the application of the    statistic, we analyze a 4-item subset. The item stems, 

presented in Table 5, all pertain to perceived positive benefits of cigarette smoking. The response 

scale elicits respondents’ degree of agreement to the statements presented in the item stems with 

5 ordered categories: 0 = Not at All, 1 = A Little Bit, 2 = Somewhat, 3 = Quite a Bit, 4 = Very 

Much. 

Table 5 

Item Stems for the Four Smoking Items 

S1 Smoking helps me concentrate. 

S2 Smoking makes me feel better in social situations. 

S3 If I’m feeling irritable, a cigarette will help me relax. 

S4 Smoking a cigarette energizes me. 

 

A unidimensional GR model was fit to all items, and several overall tests were calculated. 

The statistics, associated probabilities, and RMSEA estimates are shown in Table 6.   
  can not 

be computed because there are no degrees of freedom left for model fit testing. The null 

hypothesis of exact fit is rejected by all of the statistics except    (      ). However, even 

with just     items, the number of response patterns is         . And due to the 

covariation among the item responses, not all of the response patterns are observed in the sample 

data. Given the sparseness and prior research on the behavior of the full-information statistics, 

we should be skeptical that    and    actually follow their purported distributions. 
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Table 6 

Model Fit Statistics for the Four Smoking Items 

Statistic Value df    ̂ 90% CI 

   624.17 604 .277 .006 (.001, .012) 

   933.63 604  < .001 .023 (.020, .026) 

   245.60 92 < .001 .041 (.035, .047) 

   13.05 2 .002 .074 (.040, .115) 

 

Turning to the limited information statistics,    and   , several interesting observations 

can be made. First, using guidelines developed in the context of linear factor analysis and 

structural equation modeling for continuous data (e.g., Browne & Cudeck, 1993), assessment of 

model fit depends on whether   ̂ or   ̂ is used. Second, the relative magnitudes of   ̂ and   ̂ are 

consistent with the simulation study results, where the means of the   -based RMSEA estimates 

were consistently greater than those of the RMSEA estimates based on   . Again, it is apparent 

that the underlying statistic matters when interpreting RMSEAs. 

Table 7 

Marginal Frequencies for Item Pair (1,3) from the Empirical Example 

 

 Item 1 Category Code Marginal Frequency 

Item 3 Category Code 0 1 2 3 4 for Item 3 

Observed 0 93 8 5 0 0 106  

(Model-Implied)  (87.4) (14.4) (5.1) (1.2) (0.4) (108.6)  

 

1 129 68 20 3 4 224  

 

 (138.0) (55.4) (25.1) (6.7) (2.5) (227.7)  

 

2 79 79 63 15 7 243  

 

 (90.1) (74.4) (49.2) (16.9) (7.2) (237.7)  

 

3 56 61 76 40 13 246  

 

 (48.1) (67.4) (70.5) (35.7) (21.0) (242.7)  

 

4 22 32 31 37 59 181  

 

 (14.6) (29.3) (48.2) (40.8) (50.3) (183.2)  

Marginal Frequency 379 248 195 95 83 1000  

for Item 1 (378.2) (240.9) (198.1) (101.4) (81.4) (1000)  
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Finally, for the given data set, there is reason to suspect that the    statistic may not 

perform well. A number of the sample second order marginal tables are poorly-filled (see e.g., 

Table 7), which might reduce the power of    against model misspecification (Cai & Hansen, 

2013). On the other-hand, there is no similar concern for   , since it is based on a further 

collapsing of the second order marginal tables. 

Discussion 

Motivated by Maydeu-Olivares and Joe’s (2006) seminal work, the limited-information test 

statistic    has become an important new tool in formal evaluations of IRT model fit.    relies 

on a comparison between the observed and expected first order and second order marginal 

probabilities. The formalism to establish asymptotic chi-squaredness of    involves reduction 

operator matrices. Building on Joe and Maydeu-Olivares’ (2010) important insight that test 

statistics could be formed from linear functions of the first and second order marginal residuals, 

Cai and Hansen (2013) proposed a limited-information test statistic   
  for polytomous IRT 

models that utilizes a comparison between observed and expected item means and second order 

moments, which are further reductions of the marginal probabilities. They show that in certain 

conditions   
  can be more powerful than    because some of the second order marginal 

probabilities can become sparse in   . 

In this research, we propose a hybrid statistic    that compares the observed and expected 

first order marginal probabilities in unreduced form, but further collapses the second order 

marginal probabilities into observed and expected moments. This new statistic circumvents a 

limitation of   
 , namely, that the number of items required to compute the statistic depends on 

the number of categories per item. This is because   
  collapses several first order marginal 

probabilities into a single number for each item, which can render the model not locally 

identified from the item means and second order moments. On the other hand, the ability to 

compute    does not depend on the number of categories per item. Also,    is potentially more 

powerful than    because it has none of the sparseness issues associated with   . We 

demonstrate the effectiveness of    with simulation studies and empirical data analysis. We also 

make the observation that to the extent approximate model fit evaluation is desirable via the use 

of RMSEA indices (e.g., as advocated by Maydeu-Olivares, 2013), it is important to keep in 

mind the statistical properties of the underlying test statistics. Sample discrepancy measures 

based on different limited-information statistics,   ,   
 ,   , or full-information statistics    and 

  , may paint different pictures of the degree of model error because they “estimate” different 

population RMSEAs. 
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There are obvious future directions with this line of research. We have chosen to focus on 

IRT models for ordinal data, completely bypassing nominal categories models. The development 

presented here is also limited to unidimensional IRT models. It would be desirable to implement 

and study a version of    for hierarchical multidimensional IRT models, but it would probably 

require technical devices similar to those employed in Cai and Hansen (2013). Also of interest is 

the extension of these statistics to the case of IRT models that do not have continuous underlying 

latent traits. Finally, new step-down model error diagnostics would have to be developed to 

locate the source of misspecification and to explain the rejection of the overall goodness of fit 

hypothesis. There is reason to be excited about these possibilities. 
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