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Abstract 

A large-scale randomized controlled trial tested the effects of researcher-developed 
learning games on a transfer measure of fractions knowledge. The measure contained 
items similar to standardized assessments. Thirty treatment and 29 control classrooms 
(~1500 students, 9 districts, 26 schools) participated in the study. Students in treatment 
classrooms played fractions games and students in the control classrooms played solving 
equations games. Multilevel multidimensional item response theory modeling of the 
outcome measure produced scaled scores that were more sensitive to the instructional 
treatment than standard measurement approaches. Hierarchical linear modeling of the 
scaled scores showed that the treatment condition performed significantly higher on the 
outcome measure than the control condition. The effect (d = 0.58) was medium to large 
(Cohen, 1992). 

Introduction 

Funded by the Institute of Education Sciences, UCLA/CRESST established the Center 
for Advanced Technology in Schools (CATS) in fall 2008. The primary goal of CATS is to 
develop and evaluate the effectiveness of computer-based games aimed at improving 
students’ knowledge of pre-algebra topics. 

The allure of using computer games for learning purposes lies in the potential for 
games to support multiple learning outcomes while focusing, increasing, and maintaining 
learners’ engagement in the relevant tasks. Well-designed games will be able to address key 
elements understood to influence learning and performance. These include (a) focusing 
learners’ attention on the game (and thus content) for extended periods of time, 
(b) accommodating complex and diverse approaches to learning processes and outcomes, 
(c) embedding high interactivity, (d) providing appropriate feedback, (e) creating a sense of 
enjoyment and intense engagement (“flow” or “presence”), (f) requiring problem-solving 
skills, (g) providing scaffolding and adaptive challenge, (h) creating contextual learning 
outcomes, and (i) potentially influencing learners’ self-efficacy and other affective constructs 
(e.g., de Freitas, 2006; Kirriemuir & McFarlane, 2003; Mayer, 2011; O’Neil, Wainess, & 
Baker, 2005; Squire, 2011; Tobias, Fletcher, Bediou, Wind, & Chen, 2014; Tobias, Fletcher, 
Dai, & Wind, 2011; Tobias, Fletcher, & Wind, 2014; Young et al., 2012).  
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There is growing empirical evidence that games can be effective in academic settings 
(Tobias, Fletcher, Bediou, et al., 2014; Tobias, Fletcher, & Wind, 2014). Educators and 
trainers have recognized the potential of individualized feedback and computer games for 
education and training since the mid-20th century (e.g., Wiener, 1954), with researchers 
exploring various methods to increase student engagement with subject matter using various 
forms of games (e.g., Donchin, 1989; Malone, 1981; Malone & Lepper, 1987; Ramsberger, 
Hopwood, Hargan, & Underhill, 1983; Ruben, 1999; Thomas & Macredie, 1994). A renewed 
interest and optimism have emerged around games for learning, particularly games that 
incorporate interactive multimedia afforded by rapid developments in technology (e.g., 
Dickey, 2005; Gee, 2003, 2004; Kafai, 2006; Kafai, Franke, Ching, & Shih, 1998; Klopfer & 
Squire, 2004; O’Neil & Perez, 2008). 

Because of the importance of algebra and the high rates of poor performance in algebra, 
we focused on foundational pre-algebra concepts. Success in algebra is predicated on 
students developing foundational math concepts and skills. The National Mathematics 
Advisory Panel (NMAP, 2008) defined the Critical Foundations of Algebra as (a) fluency 
with whole numbers, (b) fluency with fractions, and (c) particular aspects of geometry and 
measurement. One of the clearest findings of the NMAP report is that students entering 
algebra are often underprepared. In their national sample of Algebra 1 teachers, NMAP 
reported that rational numbers was one of the areas that teachers reported their students being 
poorly prepared in. 

Thus, CATS focused on instantiating foundational pre-algebra concepts in games and 
carried out the development and testing of those games, culminating in a large-scale multi-
site cluster randomized controlled trial (RCT). The overarching research question for the 
RCT was: Does playing CATS-developed rational numbers games result in more learning of 
rational numbers concepts compared to playing a control set of games? 

Method 

Game set. Eight games were developed for this study through the process of 
knowledge specification, software design and testing, teacher professional development, and 
assessment development. A central component of the development process was establishing 
knowledge specifications. The purpose for developing knowledge specifications was to 
provide a standardized operationalization of the domain definition of the mathematical 
knowledge that the game, assessment, and professional development were to be designed 
around. Two sets of knowledge specifications were developed: rational numbers/fractions, 
and solving equations. The knowledge specifications served as the design framework for the 
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games. Four games covered fractions concepts (number line concepts, fraction addition, 
relationships among whole numbers and fractions using multiplication and division, direct 
variation) and four games covered solving equations concepts (integer operations, 
expressions, solving equations—conceptual, solving equations—procedural). The four 
fractions games were Wiki Jones, Save Patch, Tlaloc’s Book, and Rosie’s Rates, and the four 
solving equations games were Monster Line, Expresso, Zooples in Space, and AlgebRock. 
Table 1 shows the set of games for the treatment and control conditions. As presented in 
Table 1, the fractions games were implemented as treatment condition games, and the 
solving equations games served as control condition games. A full description of each game 
is given in CATS (2012). 

Table 1 

CATS-Developed Games by Condition 

Game Topics 

Treatment condition games 
(fractions) 

 

Wiki Jones Whole unit, numerator, denominator, and identifying fractions in the context 
of a number line. 

Save Patch Addition of fractions, identification of units and fractional pieces. 

Tlaloc’s Book Multiplicative inverse operations involving whole units and fractional units. 

Rosie’s Rates Direct variation (slope) involving relating changes in x values to changes in y 
values. 

Control condition games 
(solving equations) 

 

Monster Line Addition, subtraction, multiplication, and division of positive and negative 
integers. 

Expresso Manipulation of expressions involving positive or negative whole numbers 
and variables, and grouping. 

Zooples in Space Concept of equality and the use of additive inverse operations. 

AlgebRock Solving one- and two-step equations. 

 

Design and sample. A cluster randomized trial (CRT) design was used where 
individuals were nested within classrooms. Sixty-two teachers were originally recruited to 
participate in the study. Two teachers from the same school withdrew because of technology 
issues and one teacher from another school withdrew because that teacher could not schedule 
sufficient computer lab time to complete the study. No other teachers withdrew from the 
study. 
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Twenty-four schools participated in this study, but one school was excluded from the 
analysis because the intervention could not be on the (obsolete) computers in that school. 

Classrooms were randomly assigned within each school to the treatment and control 
conditions. Among the remaining 23 schools, 14 schools had both control and treatment 
conditions implemented, while the remaining 9 schools had either only treatment condition 
(6 schools) or only control condition (3 schools) classrooms. Note, however, that all the 
participating schools administered both the pretest and the posttest measure of fractions 
knowledge. The pretest and posttest measures largely overlap, that is, the vast majority of 
items were repeated with just a few variant items. 

Classrooms were sampled from sixth grade math classes. Of the total sample, 50% of 
the student sample were female, 49% Hispanic/Latino/a, 24% White, 11% multiracial, 5% 
Black or African American, 4% Asian or Pacific Islander, 2% American Indian or Alaskan 
Native, and 5% of students reported “Other.” 

Measures. The outcome measure of fractions knowledge was developed, tested, and 
refined during the game testing process. Vendlinski, Delacruz, Buschang, Chung, and Baker 
(2010) reported that the outcome measure demonstrated high technical quality. There were 
22 items on the pretest and 23 items on the posttest. The items were systematically developed 
from the knowledge specifications and were similar to items found in typical standardized 
assessments on those topics. Classical discrimination indices were adequate and the items 
were not overly easy or difficult for the target sample (proportion correct ranged from .4 to 
.7). The range of item to total score correlation was from .09 to .85. Classical reliability 
estimates were also moderate (.80).  

Professional development (PD). Prior to using the games in the classroom, teachers 
received PD training on how to integrate the games into their curriculum. This training 
included background information on the research behind the math topics underlying the 
games, the common errors associated with the various concepts, the mathematical concepts 
covered by the games, and the linkage between the game mechanics and the mathematical 
operations. In teacher training sessions, teachers were randomly assigned to a condition prior 
to attending the sessions. Teachers assigned to the treatment condition received training on 
games related to fractions concepts, and teachers in the control condition received training on 
games related to solving equations concepts. To accommodate the availability of teachers, 
the three-hour PD session was split into two sessions of 1.5 hours each, if needed. Some PD 
meetings were conducted during school hours while others were held during after-school 
hours at the district office or at a school site within the district. The first part of the PD 
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session was designed to help teachers understand key conceptual ideas and student 
misconceptions around mathematics concepts in the video games. Teachers discussed general 
“roadblocks” to understanding and then looked at the video game to see how these math 
concepts were addressed in the game. The second part of the PD session focused on having 
teachers play the video games. We had found that many teachers do not play video games; 
therefore the incorporation of video games into the classroom could be intimidating or 
difficult to manage even for a talented math teacher. Because of the low initial comfort level, 
one of our goals was to have teachers play through as much of the video games as possible to 
both give them experience playing the video game and increase their comfort level with 
playing video games. The final part of the PD session focused on helping teachers link the 
video game to their mathematics instruction. Participants discussed their experiences playing 
the game, how these video games could be incorporated into instruction, and how these 
games might benefit students.  

Procedure. The efficacy trial study required 12 instructional days (10 gameplay days 
and 2 testing days). Students were first administered a pretest measure (prior knowledge of 
mathematics, attitudes toward math, and game skill and experience). Students then played 
each game in a prescribed sequence for a set number of periods as shown in Appendix B. In 
general, students played games for at least 40 minutes per period and between two and four 
periods per game. After completing each game, students were administered an immediate 
posttest on content related to the just completed game and a game perception measure. A 
delayed posttest was administered a week after the last gameplay day. 

Teachers also completed measures in the following sequence: Teachers provided 
feedback on the games during the professional development session, completed a background 
measure during the pretest day, kept logs of student activities and problems on each game 
day, and listed the topics covered between the last gameplay day and the posttest. Teachers 
also provided general comments on their study experience after the posttest. 

Results 

Methodology Research Question 

The key research question in this analysis focuses on estimating the game’s treatment 
impact on students’ fractions knowledge learning outcomes. We conducted two different sets 
of analyses. One analysis used the classical measurement approach in which raw summed 
scores of pretest and posttest items were calculated, while the other analysis utilized a 
multilevel two-tier (MTT) item factor model in which a latent gain score was estimated. As 
will be described in detail in the following section, we illustrate how the MTT model 
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addresses four critical aspects of conditional exchangeability that routinely accompany 
analysis of multisite randomized experiments with pre- and posttests.  

In the absence of conditioning on appropriate observed or latent variables in a 
measurement model, the observations of student performance on outcome items or tasks are 
correlated/dependent in four major ways, on top of the dependence of item responses 
themselves: (1) the dependence between the outcome constructs at each occasion due to a 
longitudinal design; (2) the item-level residual dependence due to repeated (pre-post) 
exposure to the same set of measures; (3) the practical implausibility of assuming full 
exchangeability of subjects across treatment and control conditions (see e.g., Lindley & 
Smith, 1972); and finally (4) the obvious dependence of individuals due to their nesting in 
sites. We argue that the traditional summed score approach (using classical test theory) or 
standard “off-the-shelf” Item Response Theory (IRT)-based approaches have assumptions 
that are inconsistent with the conditional exchangeability implied and required by multisite 
randomized experimental studies with repeated measures. In contrast, the MTT model 
embraces conditional exchangeability and specifies model features that appropriately reflect 
the interaction of latent variable measurement models with the experimental design. We 
compare impact estimates obtained from different approaches and explain why MTT 
modeling provides a superior solution to measurement and data analysis issues in multisite 
randomized trials.  

Summed Score Model 

The simplest and most commonly used method for scoring outcome measures is via the 
summed score model (e.g., Curran, Bauer, & Willoughby, 2004; Curran & Bollen, 2001; 
Curran et al., 2008). The ubiquity of this approach stems from the straightforward method of 
scoring and the long history of classical summed score based test theory in the social and 
behavioral sciences. As can be seen in Equation 1 below, the summed score (𝑌!) for person 𝑗 
is calculated by adding the raw item scores, where 𝑦!" represents the observed item scores 
(e.g., 0 or 1 for binary cases; 0, 0.5, or 1 for three partial-credit scoring categories, etc.) on 
item 𝑖. I denotes the total number of items. 

𝑌! =    𝑦!"!
!!!                       (1)  

This simple method, however, has critical disadvantages. Since this method simply 
adds up the item scores with equal weighting, differences in item difficulty, discrimination, 
and/or student guessing (among other psychometric characteristics) are completely ignored. 
Comparability problems arise when the numbers of observed items are different between 
tests or occasions, either by design or due to missing data. Yet another complicating factor is 
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that preassigned item weights (often by fiat, e.g., giving partial-credit scored open-ended 
items more weight than dichotomously scored multiple-choice items) may lead to suboptimal 
reliability in that the total score may in fact be less reliable than component subscores. 
Finally, inferences derived from the summed score distribution are sample-specific and 
dedicated linking/equating studies are required for generalization of the sample-based results 
to other populations. 

Nevertheless, we utilize the summed scoring method to establish baseline results for 
comparison purposes. In our study, the total numbers of items for pretest and posttest are, 
respectively, 22 and 23. Among 22 pretest items, 17 items are dichotomously scored (0 or 1), 
and the remaining 5 items are partial-credit scored: two items to 0, 0.5, or 1; two items to 0, 
0.3, 0.67, or 1; and one item to 0, 0.25, 0.5, 0.75, or 1. Similarly, among 23 posttest items, 17 
items are scored to either 0 or 1; one item to 0, 0.5, or 1; three items to 0, 0.3, 0.67, or 1; and 
two items to 0, 0.25, 0.5, 0.75, or 1. Note that there are 20 common items administered in 
both the pretest and posttest. 

Figure 1 presents descriptive statistics of raw summed pretest and posttest scores for 
control and treatment conditions (see also Table A1 in Appendix A). The dot and the vertical 
bar represent the mean and one standard deviation above and below the mean. The total 
numbers of students for control and treatment conditions used in our analyses are 763 and 
808, respectively. In the control group, there are 709 students who have both pretest and 
posttest scores, 54 students missing posttest, and 36 students missing pretest. In the treatment 
group, there are 759 students who have both pretest and posttest scores, 49 students missing 
posttest, and 33 students missing pretest. The pretest mean score for the control group is 
about 8 and its standard deviation (SD) is approximately 4. Similarly, the pretest mean score 
for the treatment group is 8 and its SD is 4.1. Although random assignment was at the 
classroom level within each school, highly similar overall pretest means across the two 
conditions provide another layer of assurance that the randomization indeed led to balance on 
pre-treatment differences in mathematics knowledge. 

The posttest mean score is higher by approximately 1.5 points for the treatment group 
than for the control group. The observed posttest mean scores are 10.9 for the treatment 
group and 9.5 for the control group. This difference is approximately 0.3 pooled standard 
deviation of posttest. 
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Figure 1. Descriptive statistics of raw total scores of pretest and posttest by 
experimental conditions. 

We also examined the descriptive statistics of raw total pretest and posttest scores by 
schools and experimental conditions. As can be seen in Figure 2, there is some variability in 
pretest mean scores across schools. School 8 has a pretest mean of approximately 4 points, 
while School 9 has a pretest mean close to 13 points. Except for these two schools, most of 
the rest of the schools have similar pretest mean scores. Within-school pretest difference 
between the control and the treatment, which is more important in a randomized trial, is not 
salient. Specifically, the pretest differences between the two groups in most of the schools 
range within a point and half, but three schools (Schools 8, 19, and 23) show differences of 
approximately 2.5 points or higher. 
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Figure 2. Descriptive statistics of raw total scores of pretest and posttest by schools and experimental conditions. 
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As for posttest mean scores, all the schools show higher posttest means than pretest 
means both in control and treatment groups. This positive increase in mean scores is partly 
attributable to the fact that the posttest has one more item than the pretest. However, the 
differences in many schools are larger than one point, and the differences are larger for the 
treatment groups. For example, the difference between pretest mean and posttest mean in the 
treatment group in Schools 1, 4, and 18 is approximately 4 points. Furthermore, the 
differences between posttest mean and pretest mean are larger in the treatment group than in 
the control group for 10 out of 13 schools which have both treatment and control groups. 
These results indicate there may be positive treatment effects across schools. 

Multilevel Two-Tier Item Factor Model With Latent Change Parameterization 

In item factor models, an item can potentially load on one or more latent dimensions 
(common factors). These common factors may also be potentially correlated, in the tradition 
of Thurston’s (1947) multiple factor analysis. The bifactor model, a confirmatory item factor 
analysis model, has increasingly drawn interest among psychometricians. In a typical bifactor 
model, there is one primary dimension, representing a target construct being measured, and 
there are 𝑆  specific dimensions that are also orthogonal conditionally on the general 
dimension, representing residual dependence above and beyond the general dimension. All 
items may load on the general dimension, and at the same time an item may load on at most 
one group-specific dimension. 

Cai (2010b) proposed a two-tier item factor model for single-level data. It is minimally 
a more general version of the bifactor item factor model in which the number of general 
dimensions is not required to be equal to 1 and the correlations among these general 
dimensions may be explicitly represented and modeled. It may also be understood as a more 
general version of the Thurstonian correlated-factors multidimensional Item Response 
Theory (MIRT) model that explicitly includes an additional layer (tier) of random effects to 
account for residual dependence (e.g., due to repeated measures). 

We employed a multilevel extension of the two-tier item factor analysis model as our 
measurement model. In a two-tier model for single-level data, two kinds of latent variables 
are specified, primary and group-specific. This creates a partitioning of the vector of latent 
variables 𝜗! for individual 𝑗  into two mutually exclusive parts: 𝜗! = (𝜂! , 𝜉!), where 𝜂! is a 
vector of (potentially correlated) primary latent dimensions and 𝜉! is a vector of specific 
dimensions that are independent conditional on the primary dimension. All latent variables in 
the model are random effects that vary over the individuals. 
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The MTT model, on the other hand, considers hierarchically nested data wherein 
individuals are nested within schools, for instance. In this model the latent variables for 
individual 𝑗   in school 𝑘  are partitioned into three mutually exclusive parts: 
𝜗!" = 𝜃! , 𝜂!" , 𝜉!" , where 𝜃! is the vector of level-2 (school-level) latent variables and 𝜂!" 
and 𝜉!" are the vectors of individual-level (level-1) primary and specific latent variables, 
respectively. The latent variables interact with item parameters to produce item response 
probabilities. For instance, a model that may work well with dichotomously scored item 
responses is the following extension of the classical 2-parameter logistic IRT model (see, 
e.g., Reckase, 2009): 
 𝑃 𝑌!"# = 1 𝜗!") =

1
1+ exp[−(𝑐! + 𝑎!!𝜗!")]

, (2) 

where 𝑌!"# is a Bernoulli random variable representing the response to item 𝑖 from individual 
𝑗  in school 𝑘, 𝑐! is the item intercept, and 𝑎! is a conformable vector of item slopes. The 
model represents the response probability of a correct response (𝑌!"# = 1) as a function of 
these item parameters and the latent variables. Obviously, 𝑃 𝑌!"# = 0 𝜗!") = 1.0−
𝑃 𝑌!"# = 1 𝜗!"). More complex item response models may be used depending on item types, 
such as the graded model for ordinal response data and the nominal categories model (see 
e.g., Cai, Yang, & Hansen, 2011). Continuous outcomes (e.g., conditional normal) or count 
outcomes (e.g., conditional Poisson) may be included. 

Given 𝑖 = 1,… , 𝐼 items, 𝑗 = 1,… ,𝑛! individuals in school 𝑘, and 𝑘 = 1,… ,𝐾 schools, 
the observed data (marginal) likelihood function may take the following form: 
 
𝐿 𝜸 = 𝑃(𝑌!"# = 𝑦!"#|𝜗!")𝑓(𝜉!")𝑑𝜉!"𝑓(𝜂!")𝑑𝜂!"

!

!!!

𝑓 𝜃! 𝑑𝜃!

!!

!!!

!

!!!

 
(3) 

where 𝑦!"# stands for the observed response to item 𝑖 from individual 𝑗  in school 𝑘, and 𝜸 
stands for the collection of freely estimated model parameters. Yang, Monroe, and Cai 
(2012) developed efficient dimension reduction methods for maximum marginal likelihood 
estimation with the Bock-Aitkin (Bock & Aitkin, 1981) EM algorithm. Alternatively, the 
Metropolos-Hastings Robbins-Monro (MH-RM; Cai, 2010a, 2010b) algorithm may also be 
used to optimize the marginal likelihood function. Both algorithms are implemented in the 
flexMIRT software (Cai, 2013). 

We applied the MTT model for calibrating and scaling pretest and posttest item 
responses in our multisite cluster randomized design. There are three key considerations in 
building the model for our study design and data structure. First, of the 23 items making up 
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the pretest and posttest outcome assessments, 20 items are in common. Thus, the design can 
be thought of as a test-retest administration of (essentially identical) assessments to the same 
group of individuals at two time points, before and after the intervention.  

Cai (2010b) noted that when an IRT model must be calibrated with longitudinal item 
response data, even if the measurement instrument may be unidimensional at each time point, 
the multivariate longitudinal item data are inherently multidimensional. For designs with 
pretest and posttest, at least two occasion-specific primary latent dimensions are needed to 
model the initial status and potential gains in math knowledge, as well as to investigate 
potential differences in the structure of measurement (e.g., shifts in location or discrimination 
of items) over time, if necessary. In addition, the responses to the same item in pretest (time 
1) and posttest (time 2) from the same individual may be residually correlated, even after 
controlling for the influence of the primary dimensions. Thus, item-specific residual 
correlation factors are introduced to handle the potential residual dependence, and there are 
as many of them as the number of repeated items.  

Our randomized experiment consisted of two distinct groups—control and treatment—
within each school. Thus, it is necessary to specify four within-school primary dimensions: 
pretest and posttest math knowledge variables in the control group and pretest and posttest 
math knowledge variables in the treatment group. This is akin to conditioning the latent math 
knowledge variables on the treatment assignment indicator variable, but this approach is 
more general because we allow both means and variances of latent variables to differ across 
treatment and control conditions, just as in a multiple-group model within each site. Finally, 
from the study design, it is clear that our data have a nested structure. Students (level-1 units) 
are nested within schools (level-2 units). More importantly, there are both control and 
treatment students within a school. Thus, both between-school and within-school variations 
in pretest and posttest latent variables need to be modeled. 

Using conventional path diagrams, Figure 3 and Figure 4 show an exemplary multilevel 
two-tier item factor analysis model. Four pairs of common items are shown. We do not show 
all the items due to space constraints. The rectangles represent items, and circles represent 
latent variables. The four pairs of common items load on two between-school (level-2) 
primary dimensions, two within-school (level-1) primary dimensions, and four group-
specific (level-1) dimensions in each condition. 
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Figure 3. A multilevel two-tier item factor analysis model for multisite cluster randomized design with pretest 
and posttest design: Between-school model. 
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Figure 4. A multilevel two-tier item factor analysis model for multisite cluster randomized design with pretest and posttest design: Within-school model. 
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In terms of the factor pattern, the 16 × 14 factor pattern matrix corresponding to the 
model in Figure 4 has the following form: 
 𝑎!

𝑎!
𝑎!
𝑎!
𝑎! 𝑎!
𝑎! 𝑎!
𝑎! 𝑎!
𝑎! 𝑎!
𝑎!
𝑎!
𝑎!
𝑎!
𝑎! 𝑎!
𝑎! 𝑎!
𝑎! 𝑎!
𝑎! 𝑎!

𝑎!
𝑎!
𝑎!
𝑎!
𝑎! 𝑎!
𝑎! 𝑎!
𝑎! 𝑎!
𝑎! 𝑎!

𝑎!
𝑎!
𝑎!
𝑎!
𝑎! 𝑎!
𝑎! 𝑎!
𝑎! 𝑎!
𝑎! 𝑎!

𝑎!!∗

𝑎!!∗

𝑎!!∗

𝑎!!∗

𝑎!!∗

𝑎!!∗

𝑎!!∗

𝑎!!∗

𝑎!!∗

𝑎!!∗

𝑎!!∗

𝑎!!∗

𝑎!!∗

𝑎!!∗

𝑎!!∗

𝑎!!∗

, 

(4) 

where nonempty entries indicate free parameters. 

There are two between-school primary dimensions (item slopes in the first two columns 
above). The first dimension represents school 𝑘’s initial status. The second dimension 
represents the potential posttest deviation from initial status for that school (e.g., due to 
exposure to business-as-usual math instruction outside of the game-based learning 
environment). For the control condition, the two within-school primary dimensions are in 
Columns 3 and 4. For the treatment condition, the two primary dimensions are in Columns 5 
and 6. The interpretations of these dimensions resemble their between-school counterparts. 
Thus, there are a total of two between-school dimensions, four within-school primary 
dimensions, and eight within-school group-specific dimensions. Each residual dependence 
dimension is defined by an item pair within a condition. The constrained equal slope 
parameters on the item-specific residual dependence dimensions reflect an identification 
condition, as there is only one residual correlation per item pair. Note that Figure 3 and 
Figure 4 and the corresponding factor pattern matrix display only a part of model 
specification to the full data due to the space limitation. The size of the full factor pattern 
matrix is 90 (22 pretest plus 23 posttest items, times 2 for both conditions) × 46 (2 between, 
4 within primary, and 40 within residual dependence dimensions), which is a truly high-
dimensional model. 
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For a generic item 𝑖 that appeared in both pretest and posttest, the linear predictor 
portions of the item response models can be written as the following: 

Pretest Control: 𝑎!(𝜃!! + 𝜂!!")+ 𝑎!"∗ 𝜉!"#  (5-1) 

Posttest Control: 𝑎![(𝜃!! + 𝜂!!")+ (𝜃!! + 𝜂!!")]+ 𝑎!"∗ 𝜉!"#  (5-2) 

Pretest Treatment: 𝑎!(𝜃!! + 𝜂!!")+ 𝑎!"∗ 𝜉!"#  (5-3) 

Posttest Treatment: 𝑎![(𝜃!! + 𝜂!!")+ (𝜃!! + 𝜂!!")]+ 𝑎!"∗ 𝜉!"#  (5-4) 

It is seen that each item has an overall discrimination parameter 𝑎! and the various 
latent variables contribute to the item response in a systematic manner. Specifically, two 
between-school latent variables, 𝜃!! and 𝜃!!, represent latent initial status and latent gain 
between pretest and posttest for school k, respectively. In addition, among the four within-
school latent variables, the first two latent variables represent initial status (𝜂!!") and latent 
gain (𝜂!!") for student j in the control condition within school k, and the rest represent initial 
status (𝜂!!") and latent gain (𝜂!!") for student j in the treatment condition within school k. 
As such, the additional latent variables at posttest represent potential gains over the pretest 
level. Furthermore, the variation is decomposed at both pretest and posttest into between-
school and within-school components. By allowing mean differences between 𝜂! and 𝜂! to 
be estimated, that is, the difference between latent changes between the treatment and control 
conditions within schools, potential effects of treatment on learning gain may be explicitly 
represented. This model is motivated by growth modeling developments as represented in 
Bock and Bargmann (1966), Embretson (1991), Cai (2010b), and McArdle (2009), among 
others. Upon estimating the item parameters, IRT scaled scores can be computed for each of 
the latent variables as posterior means or as multiple imputations (plausible values). 

There are several new features of the MTT model that are particularly relevant to 
treatment impact evaluations. First, we estimate mean and variance of pretest and posttest 
latent variables separately for the treatment and control groups. This approach prevents us 
from the inadvertent bias induced by shrinking the individual posteriors of both treatment 
and control conditions to a common mean, when the treatment is expected to differentially 
impact the mean and variance in each condition. It is a standard practice in IRT modeling for 
off-the-shelf assessments that no information beyond the test items themselves (plus 
distributional assumptions about the latent variable, usually presumed standard normal) is 
used in estimating the scaled scores. Thus virtually all off-the-shelf IRT analyses and scaled 
outcome scores assume full exchangeability of the treatment and control students. While 
perhaps needed for practical and legal reasons in summative assessments, we argue that in an 
experimental context, the failure to include important conditioning information (e.g., 
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treatment assignment) in the measurement model will lead to inconsistencies in the 
subsequent inference about treatment effect. It is interesting to note that this is not an entirely 
new observation. In the context of large-scale educational surveys (e.g., NAEP), researchers 
have long argued for the importance of including population conditioning covariate 
information into the measurement model so that estimates from student survey data are 
statistically consistent for the population comparisons of interest (Mislevy, 1991; Mislevy, 
Beaton, Kaplan, & Sheehan, 1992; Mislevy, Johnson, & Muraki, 1992). Similarly, when we 
adopt the view that all latent variables can be viewed as missing data, we could not help but 
notice that this is exactly the same argument made in the multiple imputation literature for 
survey nonresponse (e.g., Little & Rubin, 2002) that important conditioning information 
from the data analysts’ model must be present in the imputation model for the imputation-
based inferences to be valid. We take the conditional exchangeability one step further by 
including a range of observed and latent variables to make the measurement model more 
commensurate with the research design. 

Second, in the IRT model calibration stage, latent gain/change scores are represented 
explicitly in the MTT model. This approach is particularly effective when examining change 
from two-wave (pre-post) data, in that the variance of treatment latent gain scores is reduced 
by an amount proportional to the shared variance between pretest and posttest. In other 
words, the model utilizes the availability of a stable and randomly equivalent control 
condition where there should be (theoretically) only normative change in student posttest 
performance from pretest to decompose the observed variability in the outcome assessment 
into two components that may be provisionally termed latent prior knowledge factor and 
latent malleable factor. As soon as the model-based decomposition is achieved, we submit 
that the comparison between treatment and control conditions should be focused on the latent 
malleable factors. This is in stark contrast with the standard approach, whether summed score 
based or IRT based, in which the posttest outcome score is used directly for impact 
estimation. We argue that the standard approach is less optimal because the variation in the 
posttest outcome (observed or scaled latent variable estimates) conflates two sources of 
variance, that is, that of prior knowledge and that of malleable difference. One direct 
consequence of our approach is that the resulting reduced variance in latent gain estimates 
may lead to substantially increased effect size of the treatment effect (to be elaborated).  

Figure 5 (also see Table A3 in Appendix A) displays descriptive statistics of the 
estimated latent pretest score and latent change score by experimental conditions. The means 
of latent pretest scores for both groups are very nearly 0 and the standard deviations are also 
close to 1. However, the latent change score means for the control and treatment groups are, 
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respectively, 0.022 and 0.341. Thus, the observed difference is equal to 0.319. The 
outstanding pattern is that the standard deviation of the latent change score is far smaller than 
the standard deviation of latent pretest score. The standard deviation of the latent change 
score for the control is 0.335 and for the treatment is 0.448. The pooled standard deviation is 
about 0.40, which is only 40% of the latent pretest score’s standard deviation. 

 
Figure 5. Descriptive statistics of latent pretest scores and latent change scores by experimental conditions. 

This reduced variance of latent change score is necessitated by the fact that the latent 
posttest score can be viewed as a sum of initial status and latent gain (Figure 6). In other 
words, if we treat the total variance of latent posttest as constant, the latent change score is 
equal to the latent pretest score minus the latent pretest score, so the variance has to be 
smaller. When we view the gain score variance in the control condition as representing the 
variability of the malleable factor distribution in the population of interest, it becomes the 
more natural unit of comparison for computing standardized effect sizes. 
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Finally, we note that the particular factor pattern of the MTT model (both between and 
within schools) lends itself to another interpretation that may be useful to some. The latent 
gain score dimensions are effectively a specific dimension (as in a bifactor model) if the 
latent initial status dimension is regarded as the primary dimension, albeit with additional 
equality constrains. Adopting the standard bifactor or hierarchical item factor model 
interpretation, the specific dimensions represent residualized variation above and beyond the 
pretest variation (Reise, 2012). As such, they isolate that part of the posttest individual 
differences in performance that is specific, after controlling for prior knowledge. They are 
more sensitive measures for targeted interventions than the observed outcome scores (see 
e.g., Gibbons et al., 2008, p. 365). 
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Figure 6. Descriptive statistics of latent pretest score and latent change score by schools and experimental conditions. 
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We also plot the means plus/minus one standard deviation for the latent initial status 
and latent gain scores for each condition within a school. The most noticeable effect is that 
both treatment and control groups in almost all the schools now show positive change. 
Furthermore, such positive change is larger for the treatment condition than for the control 
condition. In addition, the standard deviation of the latent change score is significantly 
smaller for the standard deviation of the latent pretest score. As we see in Figure 5, the 
variance in the latent change score is about 40% of the variance in the latent pretest score. 

Impact Model: Two-Level Hierarchical Model 

We employed a standard two-level hierarchical model to estimate the treatment effect 
in multisite cluster randomized trial design. The following level-1 (within-school) model in 
Equation 6 specifies a model with outcome variable, 𝑌!", the raw total posttest score, for 
student 𝑖  in school 𝑗, as a function of treatment indicator variable, 𝑇𝑟𝑡!" . Note that the 
treatment indicator variable takes a value of -0.5 for the control condition, 0.5 for the 
treatment condition within each school 𝑗. By virtue of this coding, 𝛽!! represents the mean 
posttest score for school 𝑗 and 𝛽!! represents the expected difference in the outcome between 
treatment and control conditions in school 𝑗. 

 𝑌!" = 𝛽!! + 𝛽!! ∗ 𝑇𝑟𝑡!"   +   𝜀!" , 𝜀!"~𝑁 0,𝜎!  (6) 
𝛽!! = 𝛾!! +   𝑢!!    𝑢!!~𝑁(0, 𝜏!!) (7-1) 
𝛽!! = 𝛾!" +   𝑢!!    𝑢!!~𝑁(0, 𝜏!!) (7-2) 

The level-1 error term, 𝜀!", is assumed to be normally distributed with mean 0 and 
variance, 𝜎!. At level 2, 𝛽!! and 𝛽!! are modeled as a function of the grand means and the 
random effects around the means, 𝑢!! and 𝑢!! respectively. The regression coefficient 𝛾!" 
represents the overall treatment effect. The two random effects are assumed to be bivariate 
normal with variances 𝜏!! and 𝜏!!, and covariance 𝜏!". 

In addition, we specify another two-level HLM which includes observed pretest 
summed score as a covariate. This variable is group-mean centered so β0j still represents the 
mean posttest score for school j. The key parameter of interest, β1j, becomes the expected 
difference in posttest score between the two groups in school j, holding pretest constant. 

 𝑌!" = 𝛽!! + 𝛽!! ∗ 𝑇𝑟𝑡!"   +   𝛽!! ∗ 𝑃𝑟𝑒𝑡𝑒𝑠𝑡!"   +   𝜀!" , 𝜀!" ∼ 𝑁(0,𝜎!) (8) 
𝛽!! = 𝛾!! +   𝑢!! , 𝑢!!~𝑁(0, 𝜏!!) (9-1) 
𝛽!! = 𝛾!" +   𝑢!! , 𝑢!!~𝑁(0, 𝜏!!) (9-2) 

 𝛽!! = 𝛾!" +   𝑢!! , 𝑢!!~𝑁(0, 𝜏!!) (9-3) 

 
Impact model results using raw total scores. Using those two models above, we 

analyzed two data sets: (1) total raw pretest and posttest scores, and (2) MTT scaled score. 
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The results from total raw scores are presented in Table 2. The grand mean of raw posttest 
total score posttest (𝛾!!) is approximately 10.1 and the expected overall difference between 
treatment and control (𝛾!") is 1.4, which are all statistically significant. This expected 
difference, 1.4, is about 0.23 of pooled standard deviation of posttest raw score. Also, the 
variance of the treatment effect across schools is 5.7 and its 95% interval of the expected 
differences across schools ranges from -3.28 to 6.05. Note, however, that this variability does 
not take the pretest differences into account. 

Table 2 

Impact Model Result: Raw Total Pretest and Posttest 

 Model 1: Unconditional Model 2: Pretest as covariate 

Fixed effects Estimate SE p value Estimate SE p value 

Intercept (𝛾!!) 10.062 0.489 < .0001 10.334 0.486 < .0001 

Trt (𝛾!") 1.388 0.636 .029 1.119 0.332 .001 

Pretest(𝛾!") 
   

0.9304 0.026 < .0001 

Variance 
components Estimate SE p value Estimate SE p value 

Level-1 (𝜎!) 19.914 0.728 < .0001 7.919 0.298 < .0001 

Intercept (𝜏!!) 4.723 1.634 .002 5.178 1.646 .001 

Trt (𝜏!!) 5.669 2.436 .010 1.307 0.686 .029 

Pretest (𝜏!!) 
   

0.005 0.298 < .0001 

 

In the second panel of Table 2, we present the result from the model where pretest 
score is included as a covariate as specified in Equations 8, 9-1, 9-2, and 9-3. As can be seen, 
the pretest score is positively associated with the posttest (i.e., one unit change of pretest 
leads to a 0.93 increase in posttest). After controlling for pretest difference, the overall 
treatment effect is approximately 1.1 and its variance is 1.3, which becomes much smaller 
than the corresponding variance in the previous unconditional model. The lower and upper 
ends of the 95% interval of the treatment effects across schools are -1.05 and 3.43, 
respectively. 

Figure 7 shows each school’s empirical Bayes (EB) estimate of treatment effect which 
is obtained from Model 2. The middle bar in each school (x-axis) represents the EB estimate 
and the vertical line represents its 95% interval. Also, the solid horizontal line represents the 
overall treatment effect (𝛾!" =   1. 119), whereas the dotted horizontal line is the reference 
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line whether each school’s treatment effect is statistically significantly different from zero. 
Ten out of the 23 schools show intervals that do not cover 0, which means that students in 
these schools performed statistically significantly better in the treatment than those in the 
control conditions. Nine of the remaining 11 schools (the exceptions are Schools 15 and 19) 
have positive EB estimate, but their treatment effects are not statistically significant as their 
95% intervals cover a value of 0. 
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Figure 7. Empirical Bayes estimate of treatment effect by schools: Conditional model result with raw total score. 
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Impact model results using MTT scaled scores. We also fit the previously specified 
multilevel models 1 and 2 to the latent gain scaled scores obtained from the MTT model. 
Note that the outcome of the analysis is the latent change scores instead of the posttest score. 
As can be seen in Table 3, the overall difference in the latent change score between the 
treatment and control group is 0.243 and its variance is 0.013. The resulting 95% interval 
estimate of the differences between the two conditions across schools ranges from 0.466 to 
0.021. Interestingly, the overall treatment effect does not change much even after controlling 
for latent pretest score in the model, as we argued that the MTT model has already partialed 
out the initial status difference. The coefficient (𝛾!") in Model 2 is 0.236 and its variance 
reduced to 0.008. The overall treatment effect is approximately 0.58 standard deviation of the 
latent change score.  

Table 3 

Impact Model Result: Latent Gain Scores from the MTT Model 

 Model 1: Unconditional Model 2: Pretest as covariate 

Fixed effects Estimate SE p value Estimate SE p value 

Intercept (𝛾!!) 0.199 0.042 .0001 0.207 0.042 < .0001 

Trt (𝛾!") 0.243 0.035 < .0001 0.236 0.029 < .0001 

Pretest(𝛾!") 

  

 0.107 0.009 < .0001 

Variance components Estimate SE p value Estimate SE p value 

Level-1 (𝜎!) 0.119 0.012  < .0001 0.110 0.004  < .0001 

Intercept (𝜏!!) 0.038 0.008 .001 0.037 0.012 .001 

Trt (𝜏!!) 0.013 0.004 .049 0.008 0.006 .094 

Pretest (𝜏!!) 

   

0.000 0.298 .423 

 

Finally, we present EB estimate of the treatment effects and the 95% confidence 
intervals based on Model 2 for each school in Figure 8. The horizontal line represents the 
overall treatment effect, which is 0.236. The most noteworthy thing in this figure is that 22 
schools’ lower 95% confidence limit is above zero. This indicates that the treatment effects 
in 22 schools except for one school (School 8) are statistically significant. 
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Figure 8. Empirical Bayes estimate of treatment effect by schools: Difference in latent change score between 
the treatment and control groups. 

Effect sizes. Effect sizes (ES) are reported and used extensively in randomized trials as 
they provide more meaningful standardized interpretations of treatment effect estimates. We 
calculated ES of the treatment effect obtained from multilevel impact Model 2. Three 
different effect sizes were calculated as follows: 

Cohen’s 𝛿 (Cohen, 1992) = 𝛾!" / SD of outcome 

Hedges’s ES (Hedges & Rhoads, 2010) = 𝛾!" / sqrt (𝜎! + 𝜏!! + 𝜏!!) 

Conditional ES (Spybrook, Raudenbush, Congdon, & Martinez, 2009) = 𝛾!" / sqrt (𝜎!) 

Cohen’s 𝛿 is colloquially referred to as “the ES” and is calculated by dividing the 
treatment effect coefficient by the standard deviation of the outcome. Thus, the treatment 
effect is phrased in terms of the standard deviations of the outcome measure. Hedges’s ES is 
comparable to Cohen’s 𝛿 except for the fact that it uses a model-based standard deviation of 
the outcome. In other words, the square root of the sum of all the variance components in an 
unconditional two-level hierarchical model for the multisite randomized trials is placed in the 
denominator instead of the standard deviation of outcome in the case of Cohen’s 𝛿. Lastly, 
Spybrook et al. (2009) introduced the conditional ES in their Optimal Design software, 
which is by far the most popular software program for conducting statistical power analysis 
for various cluster randomized design studies. Conditional ES uses only level-1 variance 
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which is reduced after pretest score being included so it is generally bigger than either 
Cohen’s 𝛿 or Hedges’s ES. 

Table 4 

Effect Sizes 

Outcome 
scores 

Est. 
(𝛾!") 

Posttest 
SD 

Lev-1 
var(𝜎!) 

Lev-2 Int 
var(𝜏!!) 

Lev-2 Trt 
var(𝜏!!) 

Hedges’s 
ES 

Cond. 
ES 

Cohen’s 
𝛿 

Raw/summed 1.139 4.986 19.914 4.723 5.669 0.207 0.405 0.228 

Latent change 0.236 0.419 0.110 0.037 0.009 0.615 0.705 0.579 

 

As we see in Table 4, the raw score model yielded an ES of roughly 0.2. Although 0.2 
ES is viewed as a small effect size, given the very short duration and low frequencies of 
treatment, it should be considered as a fairly significant effect. Furthermore, our MTT latent 
change score model produced an ES in excess of 0.55. In addition to the results in Figure 8 
that display statistically significant treatment effects for 22 out of 23 schools in the sample as 
compared to 10 out of 23 schools in the raw score model, the MTT latent change score model 
also significantly improved the ES estimate compared to the raw score model ES. 

Summary 

The instructional effects of video games developed by CATS were examined with a 
large-scale randomized trial with over 1500 students in 30 treatment classrooms and 29 
control classrooms in 26 schools in 9 districts. The video games were intended to improve 
students’ mathematics learning outcomes as measured by items similar to pre-algebra 
mathematics standardized assessment items on rational numbers and fractions. Students in 
treatment classrooms played games on the topic of rational numbers and fractions, whereas 
those in the control classrooms played an alternative set of games on solving equations. 

When data were analyzed with the standard approach using posttest summed scores as 
the outcome variable, results indicated a small (but positive and statistically significant) 
effect size (.23 Cohen’s d). When the outcome variable was constructed from a multilevel 
multidimensional latent variable modeling approach, the effect size improved to medium to 
large range (approximately .6). The new latent variable modeling based outcome measure 
was more sensitive to instructional intervention than standard measurement approaches.  

This study not only demonstrated the effectiveness of carefully designed learning 
games on student outcomes, but also proposed a generalizable solution to measurement error 
and multilevel modeling issues in multisite randomized trials. We argued that the traditional 
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measurement approaches using either raw summed scores or “off-the-shelf” IRT-based 
scaled scores ignored the plausibility of certain inherent exchangeability assumptions. 
Appropriately integrating measurement modeling with treatment impact modeling in 
multisite randomized studies with repeated measures requires the careful specification of 
model features that serve to explain (1) the dependency between the latent outcome variables 
at each occasion; (2) item-level residual dependence due to repeated measures; (3) lack of 
full exchangeability of participants between treatment and control conditions; and 
(4) individual nesting within sites. In contrast, we illustrated how the multilevel two-tier item 
factor model may be used to address each of the four aspects mentioned above to arrive at 
results that may deserve attention from both substantive and methodological perspectives. 
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Appendix A: 
Descriptive Statistics of Pretest and Posttest Scores by Schools and 

Conditions 

Table A1 

Descriptive Statistics of Raw Total Scores of Pretest and Posttest by Conditions 

Condition Variable n Mean SD Min. Max. 

Control Pretest 763 7.97 3.99 0 22.0 

 Posttest 745 9.47 4.58 0.5 22.5 

Treatment Pretest 808 8.04 4.13 0.25 21.0 

 Posttest 792 10.91 5.22 1 22.9 
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Table A2 

Descriptive Statistics of Raw Total Scores of Pretest and Posttest by Schools and Conditions 

School Condition Variable n Mean SD Min. Max. 

1 Treatment Pretest 64 6.86 4.40 0.83 20.00 

Posttest 57 11.37 5.86 2.00 22.88 

2 Treatment Pretest 32 5.32 2.85 1.00 10.83 

Posttest 32 6.63 3.62 1.83 16.54 

3 Treatment Pretest 34 9.13 4.27 2.00 17.42 

Posttest 33 12.08 6.13 2.38 22.54 

4 Control Pretest 31 7.78 4.37 0.00 15.17 

Posttest 31 10.72 4.53 3.17 17.79 

 Treatment Pretest 53 8.78 4.60 1.00 21.00 

Posttest 52 12.59 4.78 4.00 22.50 

5 Treatment Pretest 44 6.15 2.99 1.00 14.25 

Posttest 43 9.29 4.28 2.00 19.83 

6 Control Pretest 32 9.27 4.17 2.33 18.00 

Posttest 29 10.84 4.89 1.33 21.75 

 Treatment Pretest 30 7.41 3.44 0.83 17.25 

Posttest 29 11.18 5.01 1.17 20.88 

7 Control Pretest 23 5.01 2.63 0.00 10.92 

Posttest 24 5.82 2.08 2.00 9.08 

 Treatment Pretest 25 6.38 3.13 1.33 12.75 

Posttest 26 7.72 3.65 2.00 14.41 

8 Control Pretest 17 3.92 1.77 1.17 7.50 

Posttest 19 5.35 2.50 2.00 10.63 

 Treatment Pretest 48 7.61 3.41 2.50 14.92 

Posttest 49 8.23 3.83 1.00 15.91 

9 Control Pretest 25 12.89 5.23 3.00 22.00 

Posttest 18 14.11 5.21 4.88 21.38 

 Treatment Pretest 26 13.13 3.83 4.83 18.58 

Posttest 26 17.21 4.38 8.50 22.13 

10 Control Pretest 26 7.88 2.15 4.50 12.00 

Posttest 24 9.34 3.82 3.55 18.63 

11 Control Pretest 58 9.58 3.07 4.00 16.67 

Posttest 55 11.65 3.82 3.00 17.96 
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School Condition Variable n Mean SD Min. Max. 

12 Control Pretest 57 8.34 3.46 1.00 15.50 

Posttest 57 10.82 4.54 3.38 20.96 

 Treatment Pretest 64 7.62 3.28 1.00 16.58 

Posttest 63 10.31 4.39 2.75 20.13 

13 Treatment Pretest 54 7.82 3.10 2.17 14.75 

Posttest 51 10.66 3.93 2.83 18.83 

14 Control Pretest 16 6.38 2.90 3.00 11.92 

Posttest 16 7.29 1.91 4.08 10.80 

 Treatment Pretest 37 8.07 4.15 1.67 16.33 

Posttest 42 10.61 5.34 2.25 20.38 

15 Control Pretest 77 8.45 4.60 1.00 22.00 

Posttest 79 9.82 5.20 3.00 22.38 

 Treatment Pretest 16 5.12 2.23 2.83 10.00 

Posttest 15 5.19 2.52 1.17 11.16 

16 Control Pretest 28 6.39 3.40 0.00 14.16 

Posttest 25 7.53 3.58 2.17 16.63 

17 Control Pretest 65 9.14 3.91 1.00 17.59 

Posttest 66 10.38 4.52 3.13 20.63 

 Treatment Pretest 64 9.98 3.90 3.00 19.00 

Posttest 63 13.07 5.08 2.50 21.88 

18 Control Pretest 25 9.81 3.65 3.00 21.00 

Posttest 21 11.17 4.10 4.83 18.79 

 Treatment Pretest 29 9.64 3.19 3.08 15.75 

Posttest 29 14.49 3.60 7.25 20.13 

19 Control Pretest 102 7.23 4.22 1.00 19.17 

Posttest 99 9.32 5.07 2.00 22.54 

 Treatment Pretest 31 4.77 2.75 1.00 12.83 

Posttest 28 6.03 2.31 2.00 10.67 

20 Treatment Pretest 26 11.22 3.69 1.33 17.33 

Posttest 25 14.58 4.72 2.33 20.58 

21 Control Pretest 93 7.75 3.43 1.33 16.33 

Posttest 92 9.15 4.23 0.50 20.13 

 Treatment Pretest 32 8.90 4.34 0.25 20.00 

Posttest 32 12.08 4.69 3.55 22.88 
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School Condition Variable n Mean SD Min. Max. 

22 Control Pretest 37 7.65 3.79 1.33 18.42 

Posttest 36 8.11 3.46 0.92 18.63 

 Treatment Pretest 35 6.35 3.47 0.50 15.42 

Posttest 30 8.40 4.18 3.25 18.12 

23 Control Pretest 51 5.77 2.03 1.50 10.92 

Posttest 54 6.88 2.89 2.58 15.71 

 Treatment Pretest 64 9.36 4.76 1.75 19.67 

Posttest 67 12.22 5.13 2.83 21.88 

 

Table A3 

Descriptive Statistics of MTT Scale Scores of Pretest and Posttest by Conditions 

Conditions Variable n Mean SD Min. Max. 

Control Pretest 763 -0.002 0.975 -2.433 3.471 

Posttest 745 0.073 0.335 -0.917 1.215 

Treatment Pretest 808 0.022 0.999 -2.736 3.555 

Posttest 792 0.341 0.448 -0.884 1.877 
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Table A4 

Descriptive Statistics of MTT Scaled Scores of Pretest and Posttest by Schools and Conditions 

School Condition Variable n Mean SD Min. Max. 

1 Treatment Pretest 64 -0.060 1.230 -2.248 3.407 

Posttest 57 0.909 0.407 0.029 1.835 

2 Treatment Pretest 32 0.041 0.915 -1.523 1.806 

Posttest 32 0.111 0.258 -0.489 0.597 

3 Treatment Pretest 34 0.033 1.137 -1.962 2.196 

Posttest 33 0.298 0.453 -0.632 1.247 

4 Control Pretest 31 -0.081 1.152 -2.069 1.767 

Posttest 31 0.346 0.236 -0.302 0.738 

  Treatment Pretest 53 0.101 1.106 -1.979 3.249 

Posttest 52 0.570 0.435 -0.207 1.877 

5 Treatment Pretest 44 -0.076 0.784 -1.698 1.989 

Posttest 43 0.378 0.358 -0.624 0.946 

6 Control Pretest 32 0.226 1.041 -1.569 2.718 

Posttest 29 0.191 0.358 -0.505 0.980 

  Treatment Pretest 30 -0.182 0.920 -2.088 2.121 

Posttest 29 0.502 0.457 -0.470 1.599 

7 Control Pretest 23 -0.130 0.697 -1.485 1.354 

Posttest 24 -0.118 0.232 -0.571 0.441 

  Treatment Pretest 25 0.121 0.855 -1.506 1.614 

Posttest 26 0.037 0.316 -0.612 0.632 

8 Control Pretest 17 -0.740 0.501 -1.553 0.137 

Posttest 19 -0.229 0.289 -0.642 0.437 

  Treatment Pretest 48 0.287 0.872 -1.518 1.916 

Posttest 49 -0.108 0.330 -0.784 0.569 

9 Control Pretest 25 0.002 1.369 -2.433 2.413 

Posttest 18 0.294 0.329 -0.172 0.759 

  Treatment Pretest 26 0.047 0.912 -1.959 1.338 

Posttest 26 0.617 0.423 -0.118 1.474 

10 Control Pretest 26 -0.043 0.618 -1.107 1.236 

Posttest 24 0.000 0.322 -0.474 0.957 

11 Control Pretest 58 0.028 0.733 -1.753 1.252 

Posttest 55 0.191 0.317 -0.674 0.807 
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School Condition Variable n Mean SD Min. Max. 

12 Control Pretest 57 0.224 0.877 -1.166 1.995 

Posttest 57 0.234 0.351 -0.620 0.971 

  Treatment Pretest 64 -0.129 0.874 -2.036 1.829 

Posttest 63 0.355 0.344 -0.621 1.016 

13 Treatment Pretest 54 -0.038 0.811 -1.547 1.816 

Posttest 51 0.370 0.326 -0.521 1.048 

14 Control Pretest 16 -0.274 0.631 -1.330 1.006 

Posttest 16 -0.050 0.162 -0.408 0.201 

  Treatment Pretest 37 0.113 1.060 -1.701 2.136 

Posttest 42 0.331 0.487 -0.630 1.477 

15 Control Pretest 77 0.194 1.227 -2.058 3.471 

Posttest 79 -0.039 0.326 -0.828 1.215 

  Treatment Pretest 16 -0.853 0.638 -1.614 0.684 

Posttest 15 -0.036 0.332 -0.490 0.759 

16 Control Pretest 28 -0.059 0.951 -1.988 1.901 

Posttest 25 -0.008 0.250 -0.490 0.493 

17 Control Pretest 65 -0.055 0.956 -2.109 2.027 

Posttest 66 -0.025 0.292 -0.681 0.645 

  Treatment Pretest 64 0.136 1.013 -1.910 2.171 

Posttest 63 0.196 0.403 -0.749 1.062 

18 Control Pretest 25 -0.063 0.778 -1.231 2.256 

Posttest 21 0.075 0.334 -0.394 0.768 

  Treatment Pretest 29 0.084 0.679 -1.363 1.121 

Posttest 29 0.538 0.395 -0.261 1.336 

19 Control Pretest 102 0.160 1.147 -2.042 2.920 

Posttest 99 0.224 0.293 -0.514 0.922 

  Treatment Pretest 31 -0.532 0.802 -1.942 1.536 

Posttest 28 0.270 0.281 -0.459 0.850 

20 Treatment Pretest 26 0.070 0.933 -2.736 1.894 

Posttest 25 0.342 0.369 -0.376 0.846 

21 Control Pretest 93 -0.021 0.903 -1.960 1.691 

Posttest 92 0.097 0.314 -0.718 1.055 

  Treatment Pretest 32 0.259 1.029 -1.954 3.555 

Posttest 32 0.445 0.340 -0.052 1.369 
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School Condition Variable n Mean SD Min. Max. 

22 Control Pretest 37 0.105 0.896 -1.858 2.500 

Posttest 36 -0.225 0.313 -0.917 0.277 

  Treatment Pretest 35 -0.217 0.982 -1.862 1.926 

Posttest 30 -0.051 0.401 -0.884 0.523 

23 Control Pretest 51 -0.509 0.612 -1.563 1.108 

Posttest 54 -0.050 0.250 -0.456 0.533 

  Treatment Pretest 64 0.427 1.222 -1.750 3.043 

Posttest 67 0.319 0.354 -0.497 1.227 
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Appendix B: 
Summary of Efficacy Trial Procedures 

 
Treatment condition (fractions)  Control condition (solving equations) 

Duration Activity  Duration Activity 

3 hours • Professional development 
conducted about a month before 
gameplay 

 3 hours • Professional development 
conducted about a month before 
gameplay 

30min. × 
1 period 

• Pretest—administered about 1 
week before first day of gameplay 

• Teacher background survey 

 30min. × 
1 period 

• Pretest—administered about 1 
week before first day of gameplay 

• Teacher background survey 

40min. × 
2 periods 

• Game 1: Wiki Jones (number line 
concepts) 

• Immediate math posttest 
• Game perception survey 
• Teacher log 

 40min. × 
2 periods 

• Game 1: Monster Line (operations 
on positive and negative integers) 

• Immediate math posttest 
• Game perception survey 
• Teacher log 

40min. × 
4 periods 

• Game 2: Save Patch (concepts of 
unit, fractional pieces, adding 
fractions) 

• Immediate posttest 
• Game perception survey 
• Teacher log 

 40min. × 
2 periods 

• Game 2: Expresso (transforming 
expressions) 

• Immediate math posttest 
• Game perception survey 
• Teacher log 

40min. × 
2 periods 

• Game 3: Tlaloc’s Book (inverse 
operations) 

• Immediate math posttest 
• Game perception survey 
• Teacher log 

 40min. × 
4 periods 

• Game 3: Zooples in Space (solving 
equations) 

• Immediate math posttest 
• Game perception survey 
• Teacher log 

40min. × 
2 periods 

• Game 4: Rosie’s Rates (functions, 
computing slope) 

• Immediate math posttest 
• Game perception survey 
• Teacher log 

 40min. × 
2 periods 

• Game 4: AlgebRock (solving 
equations) 

• Immediate math posttest 
• Game perception survey 
• Teacher log 

30min. × 
1 period 

• Posttest—administered about 1 
week after last day of gameplay 

• Teacher survey of experience 

 30min. × 
1 period 

• Posttest—administered about 1 
week after last day of gameplay 

• Teacher survey of experience 

 




