CRESST REPORT 847

MEASURING THE CAUSAL EFFECT OF THE NATIONAL MATH + SCIENCE INITIATIVE'S COLLEGE READINESS PROGRAM

AUGUST 2015

Richard S. Brown Kilchan Choi

National Center for Research on Evaluation, Standards, & Student Testing

UCLA | Graduate School of Education & Information Studies

Measuring the Causal Effect of the National Math + Science Initiative's College Readiness Program

CRESST Report 847

Richard S. Brown West Coast Analytics

Kilchan Choi CRESST/University of California, Los Angeles

August 2015

National Center for Research on Evaluation, Standards, and Student Testing (CRESST) Center for the Study of Evaluation (CSE) Graduate School of Education & Information Studies University of California, Los Angeles 300 Charles E. Young Drive North GSE&IS Building, Box 951522 Los Angeles, CA 90095-1522 (310) 206-1532

Copyright © 2015 The Regents of the University of California.

The findings and opinions expressed in this report are those of the authors.

To cite from this report, please use the following as your APA reference: Brown, R. S., & Choi, K. (2015). *Measuring the causal effect of the National Math* + *Science Initiative's College Readiness Program* (CRESST Report 847). Los Angeles, CA: University of California, National Center for Research on Evaluation, Standards, and Student Testing (CRESST).

TABLE OF CONTENTS

Abstract	1
Introduction	1
Methods	5
Data Sources	6
Results	6
Discussion	25
References	27
Appendix A: ATE Analysis	29
Appendix B: Balance Tables	47
Appendix C: ATT Analysis Subject Subgroups	51
Appendix D: Female Sample Only	
Appendix E: Minority Sample Only	

MEASURING THE CAUSAL EFFECT OF THE NATIONAL MATH + SCIENCE INITIATIVE'S COLLEGE READINESS PROGRAM

Richard S. Brown West Coast Analytics

Kilchan Choi CRESST/University of California, Los Angeles

Abstract

This study employs a potential outcomes modeling approach to estimate the causal effect of the National Math + Science Initiative's College Readiness Program on Advanced Placement test taking and qualifying score earning for three recent cohorts of schools. Results indicate substantial and significant increases in both AP test taking and qualifying score earning for all students. In addition, significant effects for AP test taking and qualifying score earning over baseline were found for female students and minority students when analyzed separately. This study provides evidence of the effectiveness of a College Readiness Program that is having a significant and important impact on preparing more students to succeed in math and science careers and improve the future of math and science education in this country.

Introduction

The National Math + Science Initiative (NMSI) was formed in 2007 for the purpose of improving the number of students prepared to enter into math and science careers with two teacher training programs (UTeach expansion and Laying the Foundation) and a college readiness program (formerly called APTIP or APIP). In this study, we will explore the effects of the NMSI's College Readiness Program by using a propensity score weighting, potential outcomes approach that enables us to make causal estimates in an observational, non-experimental study. West and Thoemmes state, "if all important covariates related to both treatment assignment and outcome have been measured and all propensity scores fall within the bounds of 0 < P(T) < 1, then it is possible to achieve an unbiased estimate of the causal effect of T" (West & Thoemmes, 2010, p. 28).

The goal of the NMSI College Readiness Program (CRP) is to transform schools into centers of college readiness. After reviewing a school's application, NMSI's expert team analyzes all aspects of the school that would impact its students' STEM college readiness. From that analysis, teachers and administrators collaboratively create aggressive performance goals, resulting in an individualized school implementation plan to reach their targets. In order to meet their goals, schools must commit to opening up Advanced Placement to all students. Students who have never been considered or have never been given the opportunity to take more rigorous

classes that lead to AP are encouraged to enroll and given the resources to succeed. During the initial three-year engagement, NMSI increases teacher effectiveness and student achievement through training, teacher and student support, vertical teaming (meetings of middle and high school subject matter teachers for alignment across grades), open enrollment, and nominal monetary awards.

The program begins with NMSI's intensive summer teacher training for AP teachers, as well as non-AP teachers in Grades 3–11 from the high school and its feeder schools who will build the pipeline of students ready for AP courses. Since teacher training has limited effectiveness without additional support, NMSI AP teachers are assigned an expert mentor to provide coaching and assistance throughout the year. NMSI program schools also have access to in-depth, online content for both teachers and students to maximize their success.

The next phase of NMSI's program provides more time on task for students. Students access additional homework help through an online program in which teachers can track progress. Students attend three 6-hour Saturday study sessions taught by a master AP teacher—time that equates to three extra weeks of AP class time. The Saturday study sessions also provide professional development, as local teachers join their students to see how the best in their field help students tackle the most difficult parts of AP courses.

For the three years of NMSI program implementation, teachers continue to receive progressively more rigorous training and lessons; teachers and administrators continue to push further toward increasingly challenging goals; and both students and teachers receive nominal monetary awards for success. NMSI staff work with teachers and administrators throughout implementation to track progress toward their goals and troubleshoot where needed.

At the end of the three years, schools receive NMSI designation and agree to continue to set aggressive goals, provide training for any new teachers in their school, host Saturday study sessions, and report results. At no cost, these NMSI-designated schools have access to all NMSI resources, including pre-AP webinars, online discussion forums, and content upgrades.

A subset of NMSI program schools serve students from military families through a targeted military family initiative. This focus is to ensure that our military families have the best educational options available, that STEM talent near military bases is developed, and that future military recruits are STEM-capable. The initiative has already impacted 110 military-connected schools with plans to expand to a network of 200 military-connected schools.

Figure 1 shows a depiction of the logic model supporting NMSI's College Readiness Program. As discussed, teacher participation in professional development and mentoring, their access to rigorous materials and resources, and the use of incentives are designed to drive increased knowledge and use of instructional strategies that NMSI considers to be effective, as well as increased content knowledge and increased effectiveness in the classroom. Those intermediate outcomes should then drive longer term outcomes for the school and for the teacher, including increases in AP course enrollment, increases in percentage of qualifying scores on AP exams, and increased number of teachers at the school qualified to teach AP courses.

For students, additional time on task; access to rigorous materials, resources, homework help and tutoring; awards for performance on the AP exam; and exposure to highly trained teachers all are designed to increase student engagement in the classroom, student preparation for the AP exam, and student motivation to perform well on that exam. These intermediate outcomes should further influence the rate of AP course enrollment (i.e., if taken prior to graduation, a student may enroll in additional AP courses) and percentage of qualifying AP scores. Finally, more students obtaining qualifying scores on exams and having positive experiences in these classes should further influence the number of students enrolling in postsecondary STEM courses and declaring STEM majors.

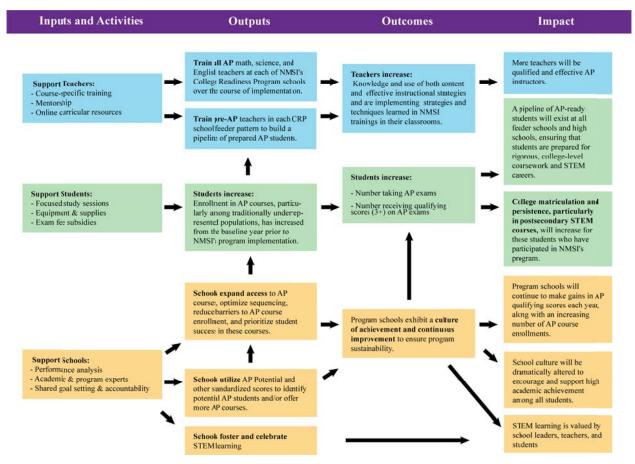


Figure 1. NMSI logic model.

Research has shown the NMSI program to be effective (Holtzman, 2010; Jackson 2010a, 2010b, 2012, 2014; Sherman & Song, 2014, 2015). Holtzman (2010) found that CRP had a positive and statistically significant first year impact on student enrollment in STEM-related AP courses. Likewise significant effects were found on students attaining qualifying scores of 3 or better on STEM-related AP tests. This study employed a Comparative Interrupted Time Series (CITS) design, and found positive effects among the 64 program schools and 128 matched schools. In each analysis investigated, CRP was associated with large and statistically significant increases in the percentages of students taking AP exams. Holtzman reported standardized effect sizes for percentage increase in the likelihood of students taking an AP test in excess of 1.0. Similarly, CRP implementation increased the percentage of students earning qualifying scores, with effect sizes up to 0.5.

Jackson (2010a, 2010b) examined the impact of the NMSI CRP on longer term outcomes in addition to secondary outcomes, such as post-secondary success using Texas data from an earlier incarnation of the program (called APTIP). In these studies, Jackson found positive program effects on AP course enrollment, SAT/ACT scores, and college matriculation (Jackson, 2010a) and on college matriculation, college GPAs, and college persistence (Jackson, 2010b). Jackson (2012, 2014) extended the 2010 studies by investigating the effect of the program on labor-market outcomes, such as wages. Using the same quasi-experimental difference-indifferences (DID) strategy, Jackson found a positive CRP effect on earnings, as well as a significant positive impact on college retention and college grade point average for students in schools implementing the NMSI program.

More recently, Sherman and Song (2014, 2015) analyzed data from two states, Colorado and Indiana, that implemented the NMSI College Readiness Program beginning with their first cohort of 20 schools in the 2012–2013 school year, and expanded to an additional 20 schools in their second cohort in the 2013–2014 academic year. They developed a matched comparison sample for treatment schools in each state. They showed that the NMSI CRP increased the likelihood of AP test taking in math and science significantly in the first year following program implementation in both locations. Specifically, they found that the percentage of students who took a STEM-related AP exam increased by 7.80 percentage points for the treatment schools, but deceased by 2.29 percentage points for the comparison schools over the same time period. They further found that these effects persisted into the second year for the first cohort of students and was repeated for the second cohort of students.

Taken together, this collection of studies provides evidence of the effectiveness of the NMSI College Readiness Program. Each of these studies demonstrated the positive impact of the program but, due to their designs and analytic approaches, failed to yield *causal* estimation of the

program's effect on student outcomes. This study extends and complements these previous investigations by applying a potential outcomes approach to estimate the causal effects of CRP on student outcomes.

Methods

This study employs a potential outcomes modeling approach (Rubin, 2005) to estimate the causal effect of program participation on first, second, and third year improvements over the baseline year in AP test taking and AP qualifying score earning in math and science AP subjects. The goal of the propensity score matching is to construct a sample of comparison schools that are similar to the treatment schools (Rosenbaum & Rubin, 1985) in terms of their likelihood of selection into treatment. This model has gained popularity in recent years and is frequently used to make causal estimates from observational studies. Rubin (2005) has argued, "the potential outcomes formulation of causal effects, whether in randomized experiments or in observational studies, has achieved widespread acceptance" (p. 329).

A propensity score is a scalar value that summarizes the likelihood for a unit to receive a treatment, often based on a large set of variables. In this study, we estimate the propensity score using a weighting approach applied in the Toolkit for Weighting and Analysis of Nonequivalent Groups ("twang") package written in the R programming language (Ridgeway, McCaffrey, Morral, Burgette, & Griffin, 2015).

Previous literature suggests that propensity score models should include all confounding variables, that is, variables that are related to the treatment assignment as well as to the outcome (Rubin, 2007; Rubin & Thomas, 1996; West & Thoemmes, 2010), or all variables that are related to the outcome (Rosenbaum, 2002). Stuart (2010) also argues that one should be generous in including predictors in the propensity score model, because the cost of omitting a variable that might predict the outcome is greater than the cost of including a variable that in fact did not predict the outcome (increase in bias versus slight increase in standard errors of propensity scores). In this study, baseline year AP assessment data provide ample information that may predict the outcomes of this study (i.e., number of students taking AP test and student performance on AP tests in STEM-related subjects). In addition, information such as the percentage of AP tests taken by minority and female students is used to balance the treatment and comparison schools. That is, four variables will be used to balance the treatment and control conditions: percentage of AP tests in the baseline year taken by females; percentage of AP tests in the baseline year taken by females; percentage of AP tests with a qualifying score of 3 or better in the baseline year.

The twang approach to propensity score estimation uses generalized boosted models (GBMs), a multivariate nonparametric regression technique, introduced in McCaffrey, Ridgeway, and Morral (2004). This approach is argued to allow for flexible, nonlinear relationships as well as a large number of variables, and shown to perform well under certain settings (see, e.g., Imai & Ratkovic, 2014). In the GBM approach, instead of matching, a weighting approach is used to estimate the treatment effect. One of the advantages of propensity score approaches is that once non-experimental data are used to "design an observational study" the study achieves balance between treatment and control groups as if it were based on an experimental study (Rubin, 2007). Then, the outcome analysis can proceed in the same way as the analysis that would have been done in an experimental study.

However, note that the effects we seek to obtain can either be the average effect of the treatment on the treated (ATT) or the average treatment effect (ATE). Generally, when we use *matching* strategies based on the estimated propensity scores, we estimate ATT instead of ATE, because we intentionally select and match control group schools that are like treatment schools. However, when we use *weighting* strategies (as is done with the twang package), depending on weights that are used, either ATT or ATE can be obtained. For this study, we estimated the effects of the CRP for both ATT and ATE; however we will focus our attention on the ATT results primarily. Results for ATE analysis are presented in Appendix A.

Data Sources

AP test data from a total of 287 treatment schools from the three most recent NMSI cohorts (108 in Cohort 4, 80 in Cohort 5, and 99 in Cohort 6) plus 10,097 non-treatment schools were analyzed for this study.

Results

The first step in reviewing the results is to check on the extent to which the propensity score weighting approach results in balance across the treatment and control groups in terms of the balancing variables. As mentioned earlier, several variables were used to balance the treatment and control samples. These included: the percentage of AP tests taken in the baseline year by females; the percentage of tests taken in the baseline year by minorities; the total number of tests taken in the baseline year; and the total number of qualifying scores earned at a school in the baseline year. Treatment and control groups for Cohort 4 were fairly balanced prior to weighting on the percentage of tests taken by female and minority students in the baseline year (58.9% vs. 56.2% for females; 24.7% vs. 22.1% for minority students). These minor differences were virtually eliminated through weighting (58.9% vs. 58.7% for females; 24.7% vs. 24.8 for minorities). However, substantial differences between treatment and control schools existed in

average number of tests taken in the baseline year (111.1 vs. 131.5) and in average number of qualifying scores earned (40.3 vs. 77.5). These differences were mitigated through the propensity weighting procedure. After propensity score weighting (ATT estimation), the treatment and control schools were comparable in terms of all four balancing variables (see Figure 2). Specifically, the average number of tests taken in the baseline year for the weighted samples was 111.1 and 108.5 for treatment and control respectively. Likewise, the average number of qualifying scores in the baseline year were balanced at 40.3 for the treatment schools and 44.7 for the control schools. Perfect balance is not to be expected. Austin cautions, "as with randomization, one should not expect that perfect balance will be achieved for all measured baseline variables between treated and untreated subjects in the matched sample" (Austin, 2008, p. 2040).

Similar balance was obtained in Cohorts 5 and 6 through the ATT propensity score weighting approach. For the weighted samples the percentage of baseline year tests taken by females (58.1 vs. 57.9 for Cohort 5; 56.8 vs. 56.8 for Cohort 6), percentage of baseline year tests taken by minorities (18.3 vs. 18.3 for Cohort 5; 30.3 vs. 30.3 for Cohort 6), average number of AP tests taken in the baseline year (128.0 vs. 123.6 for Cohort 5; 165.2 vs. 159.1 for Cohort 6), and average number of qualifying scores earned in the baseline year (54.7 vs. 56.0 for Cohort 5; 74.1 vs. 74.1 for Cohort 6) were comparable between treatment and control groups. For all three cohorts, all post-weighting balancing variables had a mean standardized difference less than 0.2 (see Figure 2, Figure 3, and Figure 4), which indicates good balance between the samples.

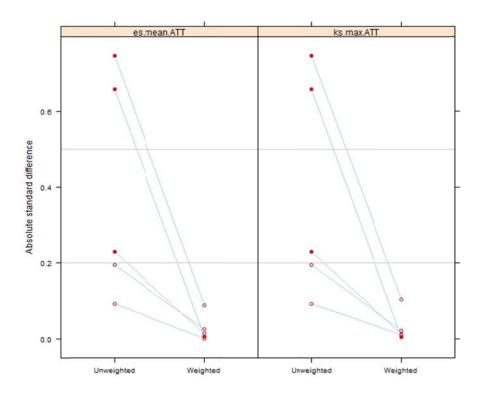


Figure 2. Balance plot for Cohort 4 ATT.

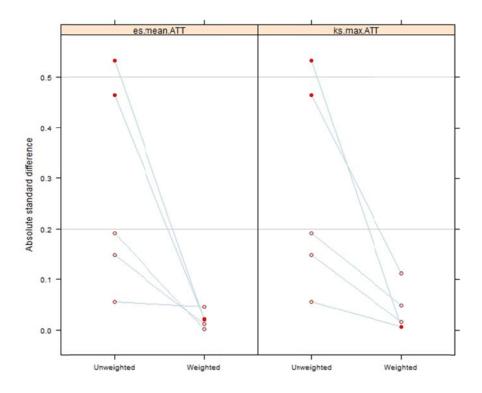


Figure 3. Balance plot for Cohort 5 ATT.

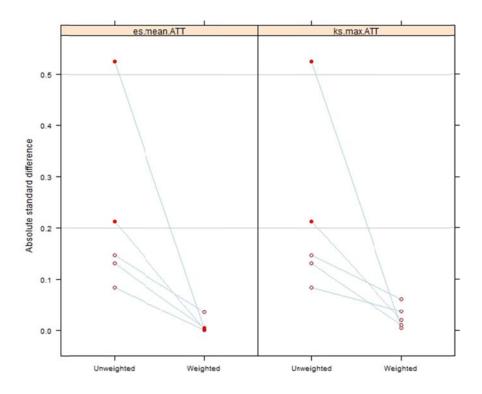


Figure 4. Balance plot for Cohort 6 ATT.

Treatment and control samples were less well balanced using the ATE propensity score estimation procedure (see Figure 5, Figure 6, and Figure 7). Specifically, differences in average number of qualifying scores in the baseline year persisted between the treatment and control groups with the ATE procedure for Cohorts 4 and 5. All of the balance tables for each cohort and both estimating procedures are presented in Appendix B. Given the failure to balance adequately with the ATE procedure, we will focus our attention on the causal estimates from the ATT procedure throughout this report.

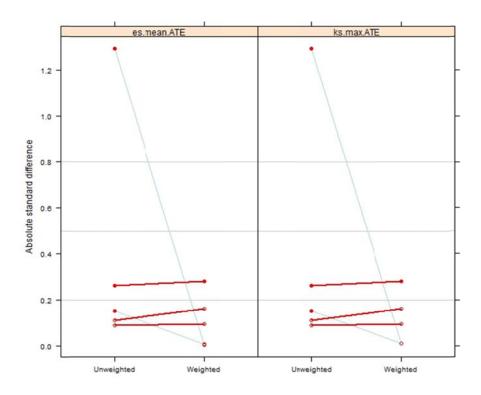


Figure 5. Balance plot for Cohort 4 ATE.

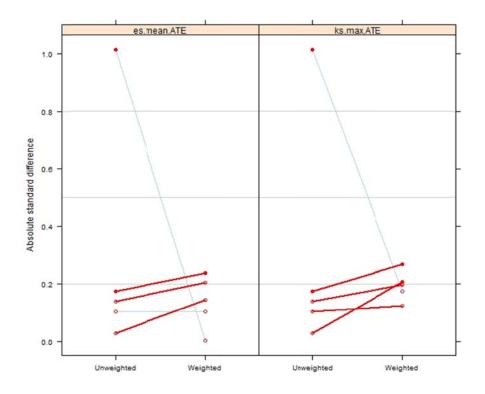


Figure 6. Balance plot for Cohort 5 ATE.

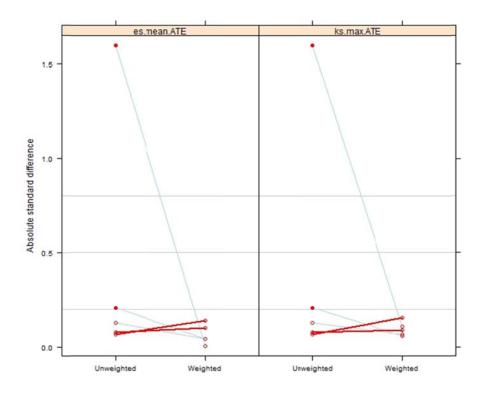
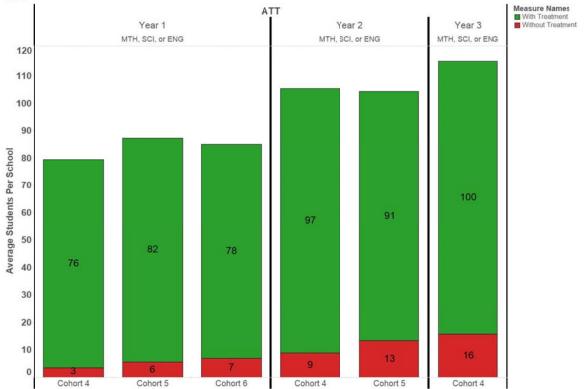
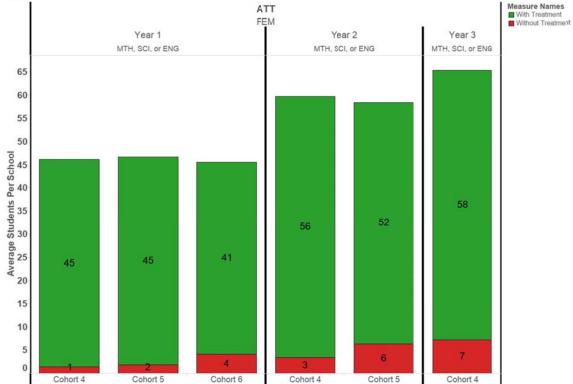
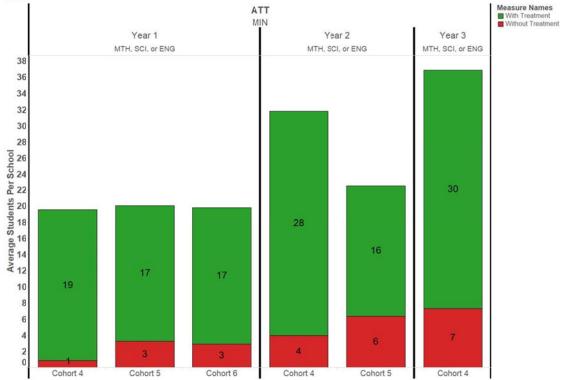



Figure 7. Balance plot for Cohort 6 ATE.


The results of the logistic regressions for the average treatment on the treated (ATT) effect are shown in Table 1, Table 2, Table 3, Table 4, Table 5, and Table 6. Table 1, Table 2, and Table 3 show the impact of the CRP on average school increases in AP test taking, while Table 4, Table 5, and Table 6 show the impact of the CRP on average school increases in earning a qualifying score of 3 or better on AP tests. Similar analyses were conducted for average treatment effects (ATE), the results of which are provided in the Appendix. As indicated in Table 1, the average increase in AP test taking in math, science, English courses rose dramatically for all students over the baseline year in the first, second, and third year following program implementation.

The NMSI College Readiness Program Effects on the Number of Students Taking AP Math, Science, or English Tests

Figure 8. Effect of CRP on AP tests taken.


On average, participation in the CRP caused an average increase of almost 76 additional AP tests taken in the first year for Cohort 4, an additional 81 tests taken for Cohort 5, and an additional 78 tests taken for Cohort 6 (see Figure 8 above). For Cohorts 4 and 5, these results were enhanced in the second year of the program, with average increases over the baseline year of 96 tests for Cohort 4, and 91 tests for Cohort 5. The third year of implementation for Cohort 4 showed an average effect of 100 additional AP tests per school. All of the estimates are highly significant statistically, with standardized effect sizes at or above 1.0 (Cohen's d), indicating a very strong causal effect of the program on increases in student AP test taking in math, science, and English courses.

The NMSI College Readiness Program Effects on the Number of Students Taking AP Math, Science, or English Tests

Figure 9. Effect of CRP on AP tests taken by female students.

In addition, the program was effective at increasing AP test taking for female and minority students when analyzed separately. For females, the increase over baseline year AP testing was substantial. Program participation enhanced the increase in the average number of AP tests taken by females by more than 40 tests in the first year, and by more than 50 tests in the second year of implementation. The third year of program implementation saw an effect of an average 58 additional AP tests taken by females per school (see Figure 9 above). As with the overall student population, the standardized values for these effects are substantial, all near or above 1.0 (Cohen's d).

The NMSI College Readiness Program Effects on the Number of Students Taking AP Math, Science, or English Tests

Figure 10. Effect of CRP on AP tests taken by minority students.

Although the standardized effect size estimates were smaller when viewing minority student test taking increases relative to increases for all students or for female students only, they are nonetheless highly significant and substantial. For example, in the first year following implementation, participation in the College Readiness Program increased the number of AP tests taken by minority students an average of over 18 per school for Cohort 4, and over 17 per school in Cohorts 5 and 6. Without the program, these schools would have only increased the number of tests taken by minority students an average of 1 to 3 tests per school (see Figure 10).

	Estimate	t value	<i>p</i> value <	Cohen's d
All students				
Cohort 4				
Year 1	75.910	11.569	0.000	1.119
Year 2	96.518	11.757	0.000	1.137
Year 3	99.546	11.500	0.000	1.112
Cohort 5				
Year 1	81.684	11.057	0.000	1.241
Year 2	91.061	10.791	0.000	1.211
Cohort 6				
Year 1	78.015	9.603	0.000	0.970
Female students				
Cohort 4				
Year 1	44.756	11.202	0.000	1.083
Year 2	56.275	12.105	0.000	1.171
Year 3	58.155	11.059	0.000	1.070
Cohort 5				
Year 1	44.7576	10.310	0.000	1.157
Year 2	52.1481	10.182	0.000	1.143
Cohort 6				
Year 1	41.297	9.229	0.000	0.932
Minority students				
Cohort 4				
Year 1	18.767	5.588	0.000	0.540
Year 2	27.863	7.016	0.000	0.679
Year 3	29.585	6.025	0.000	0.583
Cohort 5				
Year 1	16.849	5.894	0.000	0.662
Year 2	16.151	5.993	0.000	0.673
Cohort 6				
Year 1	16.946	4.423	0.000	0.447

Table 1ATT Estimates for Test Increases—Math, Science, and English

As would be expected, similar results were found when looking at just math and science AP tests (Table 2) or just English AP tests (Table 3), as these subsamples fully comprise the overall sample. Nevertheless, these findings indicate that the program effects are generalizable across disciplines, as significant and substantial program effects were found for math and science (Table 2) and English (Table 3) separately.

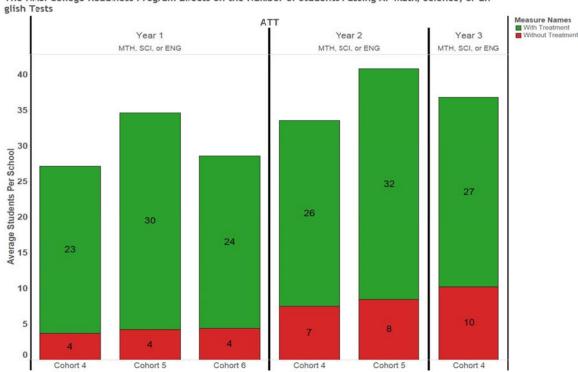

	Estimate	t value	<i>p</i> value <	Cohen's d
All students				
Cohort 4				
Year 1	38.517	10.710	0.000	1.036
Year 2	53.043	10.124	0.000	0.979
Year 3	55.282	10.230	0.000	0.990
Cohort 5				
Year 1	44.589	10.229	0.000	1.148
Year 2	51.170	9.210	0.000	1.034
Cohort 6				
Year 1	44.780	8.34	0.000	0.842
Female students				
Cohort 4				
Year 1	21.839	10.233	0.000	0.990
Year 2	29.316	10.593	0.000	1.025
Year 3	31.216	9.972	0.000	0.965
Cohort 5				
Year 1	22.049	9.311	0.000	1.045
Year 2	27.448	8.981	0.000	1.008
Cohort 6				
Year 1	21.133	7.688	0.000	0.776
Minority students				
Cohort 4				
Year 1	9.553	5.809	0.000	0.562
Year 2	14.628	6.072	0.000	0.587
Year 3	16.813	5.907	0.000	0.571
Cohort 5				
Year 1	8.725	5.850	0.000	0.657
Year 2	8.348	5.819	0.000	0.653
Cohort 6				
Year 1	8.952	3.783	0.000	0.382

Table 2ATT Estimates for Test Increases—Math and Science

	Estimate	t value	<i>p</i> value <	Cohen's d
All students				
Cohort 4				
Year 1	35.938	7.923	0.000	0.766
Year 2	42.963	9.352	0.000	0.905
Year 3	42.483	8.684	0.000	0.840
Cohort 5				
Year 1	36.352	8.795	0.000	0.987
Year 2	39.063	8.755	0.000	0.983
Cohort 6				
Year 1	31.688	7.449	0.000	0.752
Female students				
Cohort 4				
Year 1	22.014	7.497	0.000	0.725
Year 2	26.569	8.925	0.000	0.863
Year 3	25.808	8.107	0.000	0.784
Cohort 5				
Year 1	22.131	8.684	0.000	0.975
Year 2	24.218	8.300	0.000	0.932
Cohort 6				
Year 1	19.096	7.606	0.000	0.768
Minority students				
Cohort 4				
Year 1	8.859	4.118	0.000	0.398
Year 2	27.863	7.016	0.000	0.679
Year 3	29.584	6.025	0.000	0.583
Cohort 5				
Year 1	8.649	4.677	0.000	0.525
Year 2	8.221	4.561	0.000	0.512
Cohort 6				
Year 1	8.009	3.442	0.000	0.348

Table 3ATT Estimates for Test Increases—English

In addition to increasing the number of students taking AP tests, the NMSI College Readiness Program increased the number of qualifying scores earned by students in STEM-related AP disciplines. Figure 11 shows that participation in CRP resulted in an additional 23 qualifying scores, on average, for Cohort 4 schools following the first year of implementation. This jumped to an average of 26 additional tests in Year 2, and up to an average of 27 additional tests following the third year of implementation. Cohort 5 results were even better, with an average first year effect of 30 additional qualifying scores and a second year effect of an average of 32 additional qualifying scores. Cohort 6 saw a one year effect of an average of 24 additional qualifying scores per school. Taken together, these findings indicate that more than 15,500 additional qualifying scores were earned as a result of participation in the NMSI CRP in these three cohorts of schools in the last three years. These gains are fairly equally distributed between math and science courses and English Courses.

The NMSI College Readiness Program Effects on the Number of Students Passing AP Math, Science, or En-

Figure 11. Effect of CRP on qualifying scores earned.

	Estimate	t value	<i>p</i> value <	Cohen's d
All students				
Cohort 4				
Year 1	23.479	8.462	0.000	0.819
Year 2	26.129	7.445	0.000	0.720
Year 3	26.658	7.121	0.000	0.689
Cohort 5				
Year 1	30.428	8.103	0.000	0.910
Year 2	32.394	7.209	0.000	0.809
Cohort 6				
Year 1	24.205	6.733	0.000	0.680
Female students				
Cohort 4				
Year 1	13.160	8.483	0.000	0.820
Year 2	14.764	7.644	0.000	0.739
Year 3	15.125	7.415	0.000	0.717
Cohort 5				
Year 1	15.308	7.464	0.000	0.838
Year 2	17.655	6.288	0.000	0.706
Cohort 6				
Year 1	12.095	6.387	0.000	0.645
Minority students				
Cohort 4				
Year 1	3.029	4.617	0.000	0.447
Year 2	3.506	3.546	0.000	0.343
Year 3	4.110	3.654	0.000	0.353
Cohort 5				
Year 1	3.157	4.196	0.000	0.471
Year 2	3.598	3.808	0.000	0.427
Cohort 6				
Year 1	1.688	1.689	0.091 (NS)	0.171

 Table 4

 ATT Estimates for Qualifying Score Increases—Math, Science, and English

It is worth noting that although the general pattern of substantial and significant causal effects of the NMSI CRP on student testing outcomes is apparent, there is much variation in the size of the effect across the variety of comparisons (see Figure 12), and in a few particular instances, no significant effect of the program was found. For Cohort 6, no significant program effect on the number of qualifying scores earned by minority students was found when looking at math, science, and English tests together, just math and science tests, or just English tests. Of the 108 estimates of average treatment on the treated (ATT) effects, these three were the only ones to not reach an acceptable level of statistical significance; 105 of the 108 comparisons did show a strong, significant effect (97.2%). One possible source of explanation may involve the fact that Cohort 6 schools had a much higher average number of qualifying scores earned in the baseline year (roughly 70) compared to Cohort 5 (55 to 56) and Cohort 4 (40 to 44).

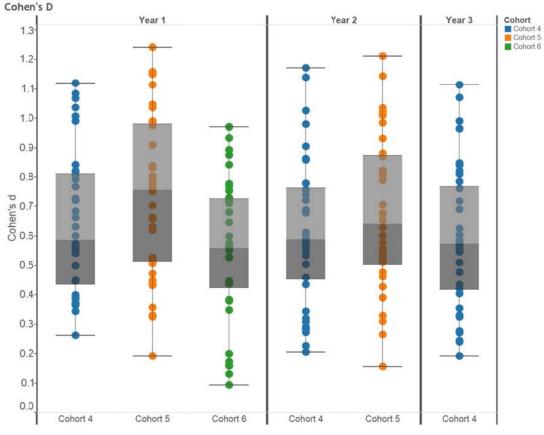


Figure 12. Variation in standardized program effect sizes (216 analyses).

Further investigation of the sources of variation in the effect size estimation is warranted. Clearly, which estimand (ATT or ATE) is being estimated has an effect on the size of the standardized effect estimate. As Figure 13 shows, standardized effect estimates are larger for ATT estimation than for ATE estimation. It also appears the average treatment on the treated (ATT) impact of the CRP is stronger for increasing AP test taking in math, science, and English courses (mean effect size of .941) than it is for increasing qualifying score attainment (mean effect size of .628) in these courses.

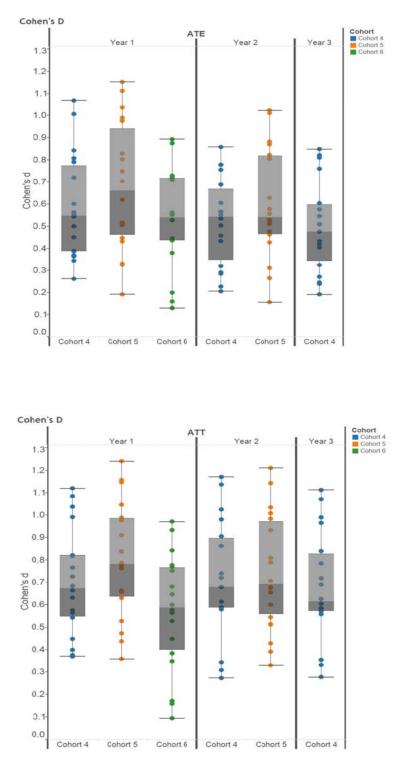


Figure 13. Variation in standardized program effect sizes.

	Estimate	t value	<i>p</i> value <	Cohen's d
All students				
Cohort 4				
Year 1	11.220	6.517	0.000	0.630
Year 2	15.144	5.974	0.000	0.578
Year 3	14.728	5.754	0.000	0.557
Cohort 5				
Year 1	17.702	7.020	0.000	0.788
Year 2	20.330	7.028	0.000	0.789
Cohort 6				
Year 1	15.594	5.919	0.000	0.598
Female students				
Cohort 4				
Year 1	5.295	5.922	0.000	0.573
Year 2	7.234	6.057	0.000	0.586
Year 3	7.233	5.896	0.000	0.570
Cohort 5				
Year 1	7.420	5.603	0.000	0.629
Year 2	9.743	6.032	0.000	0.677
Cohort 6				
Year 1	6.416	5.210	0.000	0.526
Minority students				
Cohort 4				
Year 1	1.546	3.811	0.000	0.369
Year 2	2.195	2.816	0.000	0.272
Year 3	2.321	2.854	0.000	0.276
Cohort 5				
Year 1	1.609	3.182	0.000	0.357
Year 2	2.152	3.472	0.000	0.390
Cohort 6				
Year 1	1.303	1.566	0.117 (NS)	0.158

 Table 5

 ATT Estimates for Qualifying Score Increases—Math and Science

	Estimate	<i>t</i> value	<i>p</i> value <	Cohen's d
All students				
Cohort 4				
Year 1	12.378	7.058	0.000	0.683
Year 2	10.992	6.324	0.000	0.612
Year 3	11.561	6.453	0.000	0.624
Cohort 5				
Year 1	12.779	6.797	0.000	0.763
Year 2	12.150	5.338	0.000	0.599
Cohort 6				
Year 1	8.730	5.567	0.000	0.562
Female students				
Cohort 4				
Year 1	8.029	6.842	0.000	0.662
Year 2	7.673	6.066	0.000	0.587
Year 3	7.732	6.232	0.000	0.603
Cohort 5				
Year 1	7.845	6.923	0.000	0.777
Year 2	7.916	4.830	0.000	0.542
Cohort 6				
Year 1	5.712	5.688	0.000	0.574
Minority students				
Cohort 4				
Year 1	1.511	3.867	0.000	0.374
Year 2	1.307	3.182	0.001	0.308
Year 3	1.723	3.420	0.001	0.331
Cohort 5				
Year 1	1.615	3.893	0.000	0.437
Year 2	1.539	2.933	0.004	0.329
Cohort 6				
Year 1	0.395	0.916	0.360 (NS)	0.093

Table 6ATT Estimates for Qualifying Score Increases—English

In sum, the results of this study indicate substantial and significant increases in both AP test taking and qualifying score earning for all students. In addition, significant first year effects for AP test taking and qualifying score earning were found for female students and minority students when analyzed separately. Average effect sizes (Cohen's *d*) for first year increases over both average treatment on treated (ATT) and average treatment effects for all students (ATE), all subgroups of students, both outcomes, and all disciplines was .64, showing a substantial positive causal impact (a total of 216 causal estimates). These first year effects persisted into the second year (average effect size of .64) but diminished slightly in the third year (average effect size of .59).

The effects are stronger when looking only at the average treatment on the treated (ATT) effects, where the average effect size for first year effects was 0.69 across all subsamples and subjects analyzed. This increased to 0.73 for average second year effects and returned to 0.68 for average third year effects. When looking just at the aggregated student samples with ATT estimation, the average standardized first year effects for increased test taking in math, science, and English courses exceeds 1.1, and for increased qualifying score attainment it exceeds .80.

Discussion

The effects of this program may have more distal impacts on students' academic careers. Research shows that students who take AP courses have a greater likelihood of attending college (Mattern, Marini, & Shaw, 2013). Mattern et al. state, "the odds of enrolling in a four-year institution increased by 171% for students who took one AP exam compared with students who took no AP exams. The increase in odds was even higher for students who took more than one AP exam" (p. 5). Students participating in AP classes also earn better grades in college (Shaw, Marini, & Mattern, 2013), and have a greater likelihood of persisting in and graduating from college (Dougherty, Mellor, & Jian, 2006; Hargrove, Godin, & Dodd, 2008). In addition, students who earn qualifying scores on AP tests outperform matched non-AP students on many college outcome measures (Murphy & Dodd, 2009).

This work is significant because it demonstrates the use of propensity score potential outcomes modeling to observational data to yield meaningful and significant causal estimates of program effectiveness in contexts where randomized assignment to treatment condition is either infeasible or impractical. This study provides evidence of the effectiveness of a College Readiness Program that is having significant and important impacts on preparing more students to succeed in math and science careers and improve the future of math and science education in this country.

References

- Austin, P. C. (2008). A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003. *Statistics in Medicine*, 27, 2037-2049.
- Dougherty, C., Mellor, L., & Jian, S. (2006). The relationship between Advanced Placement and college graduation (National Center for Educational Accountability: 2005 AP Study Series, Report 1). Austin, TX: National Center for Educational Accountability.
- Hargrove, L., Godin, D., & Dodd, B. (2008). College outcomes comparisons by AP and non-AP high school experiences (College Board Research Report 2008-3). New York: The College Board.
- Holtzman, D. (2010). The Advanced Placement Teacher Training Incentive Program (APTIP): Estimating the impact of an incentive and training program on AP taking and passing. Unpublished manuscript. Washington, DC: American Institutes for Research.
- Imai, K., & Ratkovic, M. (2014). Covariate balancing propensity score. *Journal of the Royal Statistical Society: Series B*, *53*, 597-610.
- Jackson, C. K. (2010a). The effects of an incentive-based high-school intervention on college outcomes (NBER Working Paper 15722). Cambridge, MA: National Bureau of Economic Research.
- Jackson, C. K. (2010b). A little now for a lot later: A look at a Texas Advanced Placement incentive program. *Journal of Human Resources*, *45*(3), 591-639.
- Jackson, K. (2012). *Do college prep programs improve long term outcomes?* (Working Paper Series WP-12-12). Evanston, IL: Institute for Policy Research, Northwestern University.
- Jackson, K. (2014). Do college preparatory programs improve long-term outcomes? *Economic Inquiry*, *52*(1), 72-99.
- Mattern, K. D., Marini, J. P., & Shaw, E. J. (2013). *The relationship between AP Exam performance and college outcomes* (College Board Research Report 2009-4). New York: The College Board.
- McCaffrey, D. F., Ridgeway, G., & Morral, A. R. (2004). Propensity score estimation with boosted regression for evaluating causal effects in observational studies. *Psychological Methods*, 9, 403-425.
- Murphy, D., & Dodd, B. (2009). A comparison of college performance of matched AP and non-AP student groups. (College Board Research Report No. 2009-6). New York: The College Board.
- Ridgeway, G., McCaffrey, D., Morral, A., Burgette, L., & Griffin, B. (2015). twang: Toolkit for weighting and analysis of nonequivalent groups. Available at http://cran.rproject.org/web/packages/twang/twang.pdf.
- Rosenbaum, P. R. (2002). Observational studies (2nd ed). Springer, New York.
- Rosenbaum, P. R., & Rubin, D. B. (1985). Constructing a control group using multivariate matched sampling methods that incorporate the propensity score. *The American Statistician*, *39*, 33-38.

- Rubin, D. B. (2005). Causal inference using potential outcomes: Design, modeling, decisions. *Journal of the American Statistical Association*, *100*(469), 322-331.
- Rubin, D. B. (2007). The design versus the analysis of observational studies for causal effects: Parallels with the design of randomized trials. *Statistical Medicine*, *26*, 20-36.
- Rubin, D. B., & Thomas, N. (1996). Matching using estimated propensity scores, relating theory to practice. *Biometrics*, *52*, 249-264.
- Shaw, E. J., Marini, J. P., & Mattern, K. D. (2013). Exploring the utility of Advanced Placement participation and performance in college admission decisions. *Educational and Psychological Measurement*, 73, 229-253.
- Sherman, D., & Song, M. (2014). *Findings for first-year impacts of APTIP on student outcomes in Cohort 1 schools*. Washington, DC: American Institutes for Research.
- Sherman, D., & Song, M. (2015). Year 2 Findings for APTIP impacts on students' AP performance in Cohorts 1 and 2 schools. Washington, DC: American Institutes for Research.
- Stuart, E. A. (2010). Matching methods for causal inference: a review and a look forward. *Statistical Science*, 25(1), 1-21.
- West, S. G., & Thoemmes, F. (2010). Campbell's and Rubin's perspectives on causal inference. *Psychological Methods*, *15*(1), 18-37.

Appendix A: ATE Analysis

	Estimate	t value	p value <	Cohen's d
All students				
Cohort 4				
Year 1	73.62	11.020	0.000	1.066
Year 2	94.38	8.035	0.000	0.777
Year 3	99.24	8.483	0.000	0.821
Cohort 5				
Year 1	77.44	10.270	0.000	1.153
Year 2	87.29	9.109	0.000	1.022
Cohort 6				
Year 1	82.89	8.834	0.000	0.892
Female students				
Cohort 4				
Year 1	43.04	10.400	0.000	1.006
Year 2	54.57	8.876	0.000	0.859
Year 3	57.97	8.770	0.000	0.848
Cohort 5				
Year 1	41.66	9.913	0.000	1.113
Year 2	50.60	9.005	0.000	1.011
Cohort 6				
Year 1	46.00	8.663	0.000	0.875
Minority students				
Cohort 4				
Year 1	15.19	4.649	0.000	0.450
Year 2	23.32	5.826	0.000	0.564
Year 3	26.90	4.918	0.000	0.476
Cohort 5				
Year 1	14.77	4.589	0.000	0.515
Year 2	12.63	4.692	0.000	0.527
Cohort 6				
Year 1	12.72	5.205	0.000	0.526

Table A1ATE Estimates for Test Increases—Math, Science, and English

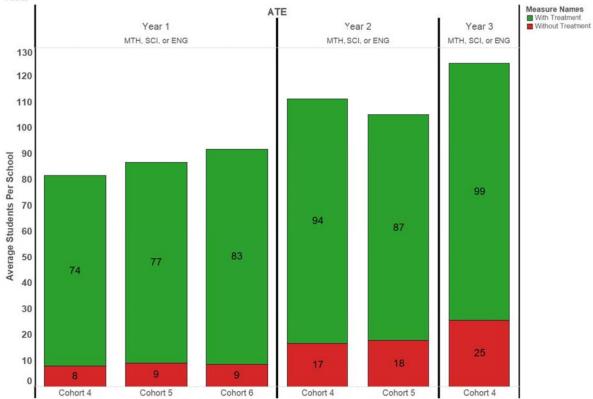
	Estimate	t value	<i>p</i> value <	Cohen's a	
All students					
Cohort 4					
Year 1	32.10	8.703	0.000	0.842	
Year 2	47.81	6.248	0.000	0.604	
Year 3	50.54	5.939	0.000	0.575	
Cohort 5					
Year 1	39.61	8.689	0.000	0.975	
Year 2	45.25	7.179	0.000	0.806	
Cohort 6					
Year 1	45.27	7.117	0.000	0.719	
Female students					
Cohort 4					
Year 1	18.40	8.340	0.000	0.807	
Year 2	26.16	7.104	0.000	0.687	
Year 3	28.78	6.227	0.000	0.602	
Cohort 5					
Year 1	18.86	7.389	0.000	0.829	
Year 2	25.28	7.323	0.000	0.822	
Cohort 6					
Year 1	22.70	7.223	0.000	0.729	
Minority students					
Cohort 4					
Year 1	6.89	5.157	0.000	0.499	
Year 2	11.54	4.737	0.000	0.458	
Year 3	14.48	4.341	0.000	0.420	
Cohort 5					
Year 1	7.51	3.983	0.000	0.447	
Year 2	5.43	3.803	0.000	0.427	
Cohort 6					
Year 1	6.36	4.340	0.000	0.438	

Table A2ATE Estimates for Test Increases—Math and Science

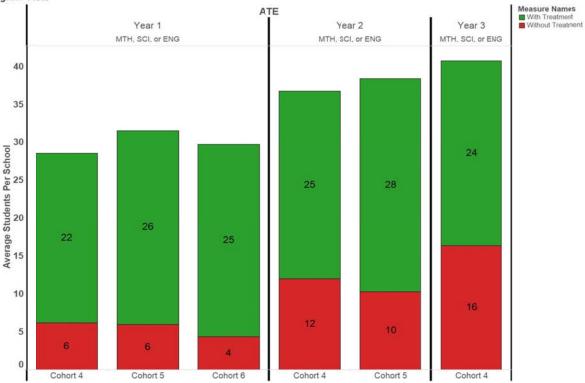
	Estimate	t value	<i>p</i> value <	Cohen's d
All students				
Cohort 4				
Year 1	38.11	8.175	0.000	0.791
Year 2	46.69	8.049	0.000	0.779
Year 3	45.84	8.369	0.000	0.810
Cohort 5				
Year 1	35.70	8.816	0.000	0.990
Year 2	38.08	7.749	0.000	0.870
Cohort 6				
Year 1	34.85	7.021	0.000	0.709
Female students				
Cohort 4				
Year 1	22.70	7.438	0.000	0.720
Year 2	28.33	7.811	0.000	0.756
Year 3	27.29	7.855	0.000	0.760
Cohort 5				
Year 1	21.36	9.220	0.000	1.035
Year 2	23.06	7.849	0.000	0.881
Cohort 6				
Year 1	21.66	7.159	0.000	0.723
Minority students				
Cohort 4				
Year 1	7.11	4.019	0.000	0.389
Year 2	23.32	5.826	0.000	0.564
Year 3	26.90	4.918	0.000	0.476
Cohort 5				
Year 1	8.31	4.577	0.000	0.514
Year 2	7.76	4.115	0.000	0.462
Cohort 6				
Year 1	6.12	3.749	0.000	0.379

Table A3ATE Estimates for Test Increases—English

	Estimate	Estimate t value		Cohen's d	
All students					
Cohort 4					
Year 1	22.39	5.686	0.000	0.550	
Year 2	24.81	4.484	0.000	0.434	
Year 3	24.43	4.174	0.000	0.404	
Cohort 5					
Year 1	25.62	6.256	0.000	0.702	
Year 2	28.13	5.593	0.000	0.628	
Cohort 6					
Year 1	25.35	5.476	0.000	0.553	
Female students					
Cohort 4					
Year 1	12.37	5.802	0.000	0.561	
Year 2	13.64	5.191	0.000	0.502	
Year 3	13.32	4.484	0.000	0.434	
Cohort 5					
Year 1	12.39	5.507	0.000	0.618	
Year 2	15.47	4.946	0.000	0.555	
Cohort 6					
Year 1	12.95	5.455	0.000	0.551	
Minority students					
Cohort 4					
Year 1	2.67	3.804	0.000	0.368	
Year 2	2.42	2.928	0.003	0.283	
Year 3	3.79	2.798	0.005	0.271	
Cohort 5					
Year 1	1.99	2.894	0.004	0.325	
Year 2	1.83	2.358	0.018	0.265	
Cohort 6					
Year 1	1.34	1.964	0.050	0.198	


Table A4ATE Estimates for Qualifying Score Increases—Math, Science, and English

	Estimate	t value	<i>p</i> value <	Cohen's d	
All students					
Cohort 4					
Year 1	9.09	3.763	0.000	0.364	
Year 2	12.40	2.994	0.003	0.290	
Year 3	10.68	2.523	0.012	0.244	
Cohort 5					
Year 1	12.82	4.502	0.000	0.505	
Year 2	15.31	4.670	0.000	0.524	
Cohort 6					
Year 1	15.95	4.315	0.000	0.436	
Female students					
Cohort 4					
Year 1	4.49	3.549	0.000	0.343	
Year 2	5.78	3.299	0.001	0.319	
Year 3	4.95	2.464	0.014	0.238	
Cohort 5					
Year 1	4.59	2.939	0.003	0.330	
Year 2	7.38	4.242	0.000	0.476	
Cohort 6					
Year 1	6.35	4.407	0.000	0.445	
Minority students					
Cohort 4					
Year 1	1.37	2.699	0.007	0.261	
Year 2	1.51	2.112	0.035	0.204	
Year 3	1.96	1.964	0.050	0.190	
Cohort 5					
Year 1	0.81	1.699	0.095	0.191	
Year 2	0.74	1.372	0.170	0.154	
Cohort 6					
Year 1	0.88	1.568	0.117	0.158	


Table A5ATE Estimates for Qualifying Score Increases—Math and Science

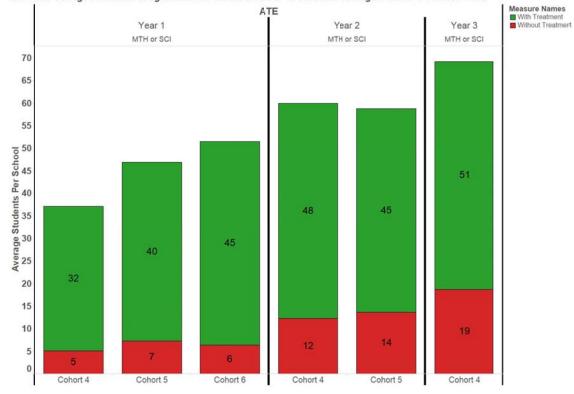
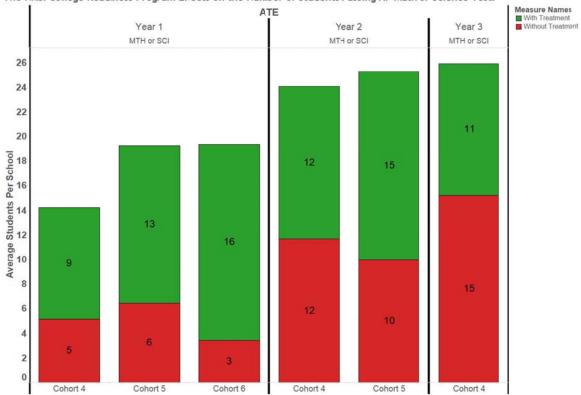
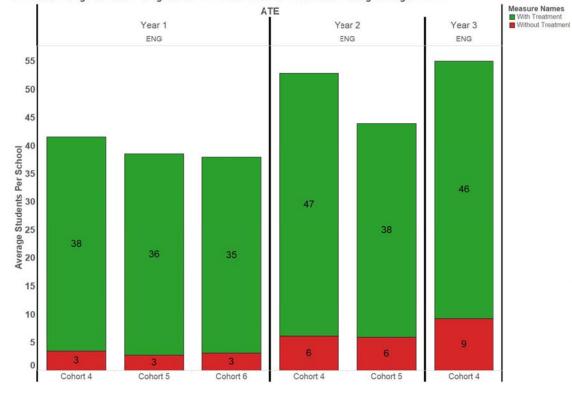
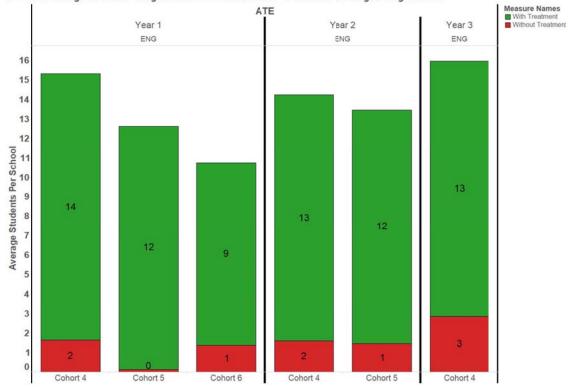
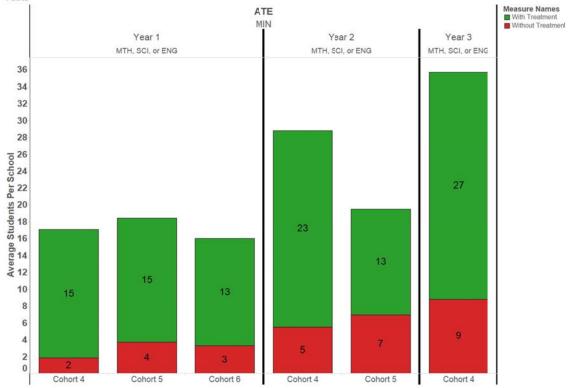

	Estimate	t value	<i>p</i> value <	Cohen's d		
All students						
Cohort 4						
Year 1	13.685	6.195	0.000	0.599		
Year 2	12.652	5.694	0.000	0.551		
Year 3	13.135	5.628	0.000	0.544		
Cohort 5						
Year 1	12.496	6.674	0.000	0.749		
Year 2	12.003	5.138	0.000	0.577		
Cohort 6						
Year 1	9.371	5.562	0.000	0.562		
Female students						
Cohort 4						
Year 1	8.332	5.616	0.000	0.543		
Year 2	8.314	5.512	0.000	0.533		
Year 3	8.109	5.259	0.000	0.509		
Cohort 5						
Year 1	7.525	7.146	0.000	0.802		
Year 2	7.572	4.548	0.000	0.510		
Cohort 6						
Year 1	6.69	5.219	0.000	0.527		
Minority students						
Cohort 4						
Year 1	1.38	3.997	0.000	0.387		
Year 2	0.90	2.324	0.020	0.225		
Year 3	1.77	3.346	0.001	0.324		
Cohort 5						
Year 1	1.29	3.847	0.000	0.432		
Year 2	1.14	2.763	0.006	0.310		
Cohort 6						
Year 1	0.45	1.279	0.201	0.129		

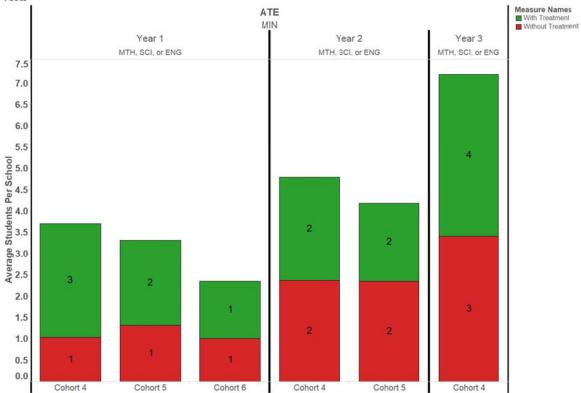
Table A6ATE Estimates for Qualifying Score Increases—English

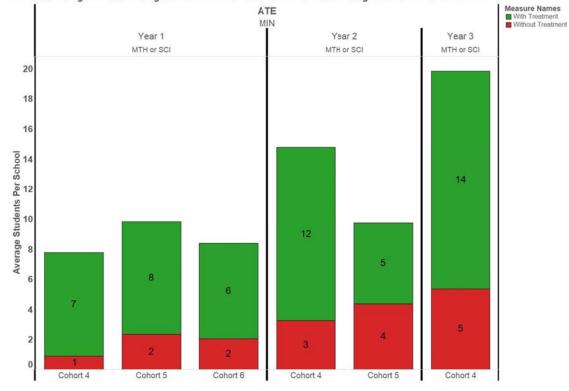

The NMSI College Readiness Program Effects on the Number of Students Taking AP Math, Science, or English Tests

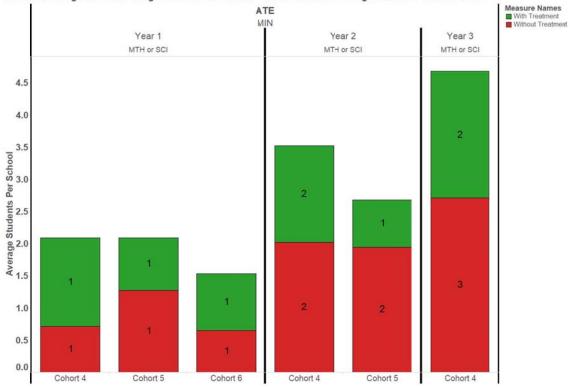


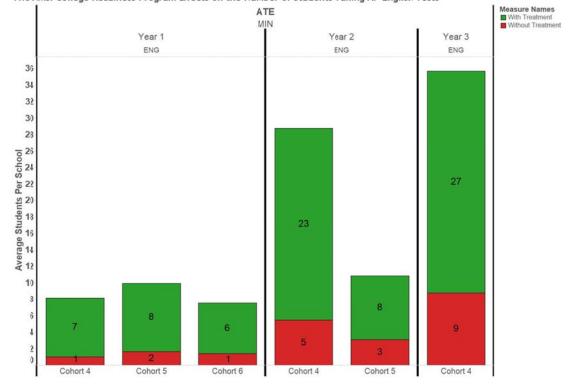

The NMSI College Readiness Program Effects on the Number of Students Taking AP Math or Science Tests

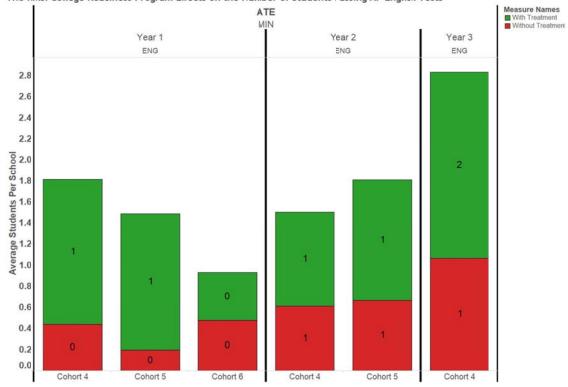


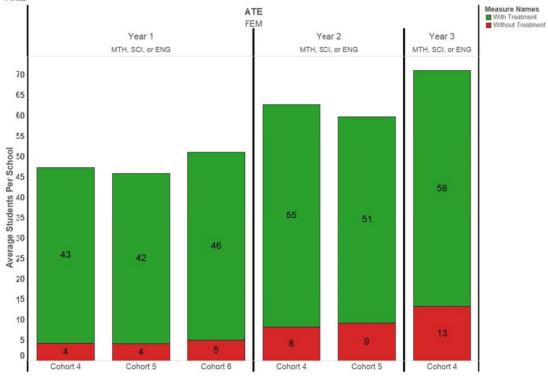


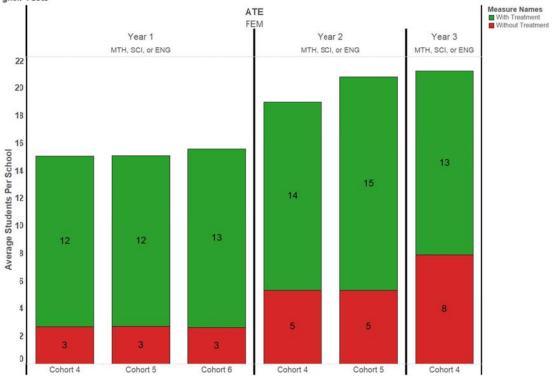

The NMSI College Readiness Program Effects on the Number of Students Taking AP English Tests

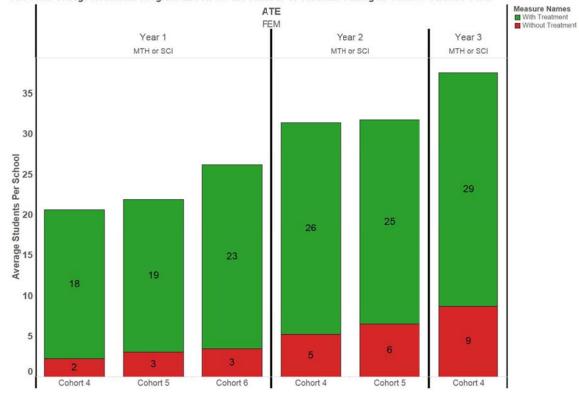


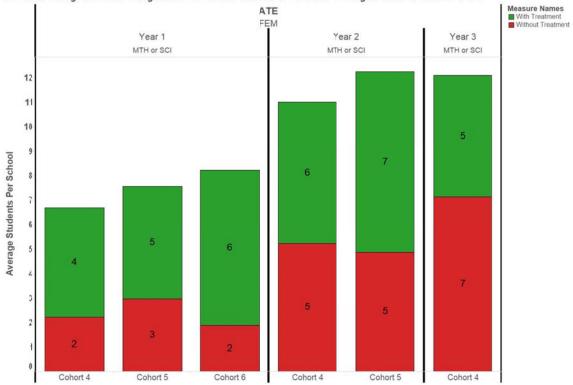

The NMSI College Readiness Program Effects on the Number of Students Taking AP Math, Science, or English Tests

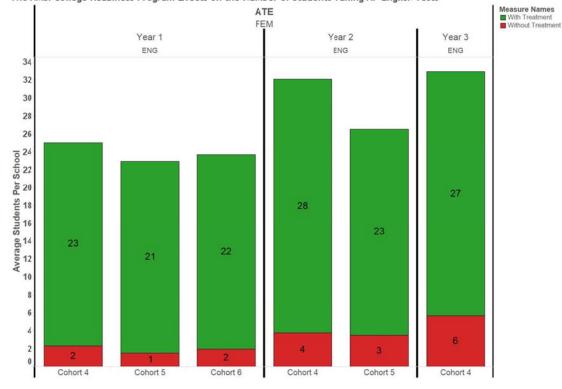


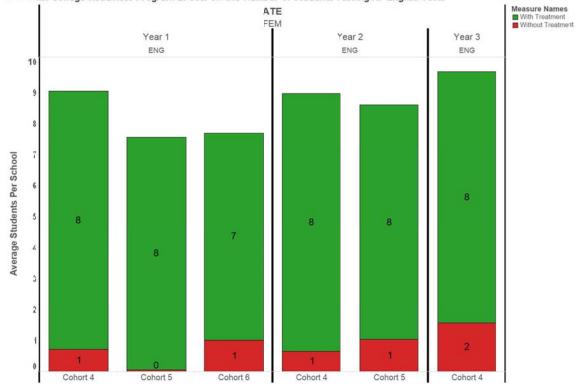

The NMSI College Readiness Program Effects on the Number of Students Taking AP Math or Science Tests




The NMSI College Readiness Program Effects on the Number of Students Taking AP English Tests




The NMSI College Readiness Program Effects on the Number of Students Taking AP Math, Science, or English Tests



The NWSI College Readiness Program Effects on the Number of Students Taking AP Math or Science Tests

The NMSI College Readiness Program Effects on the Number of Students Taking AP English Tests

Appendix B:

Balance Tables

Balance Table—Cohort 4 ATT

<pre>> bal.table(ps.coh4_y2y) \$unw</pre>								
Juin	tx.mn	tx.sd	ct.mn	ct.sd	std.eff.sz	stat	p k	s ks.pval
mse_femaledemo_2011	0.589	0.120	0.562	0.180	0.229	2.268	0.023 0.14	
mse_femaledemo_2011: <na></na>	0.065	0.246	0.384	0.486	-0.657	-5.609	0.000 0.31	9 0.000
mse_minoritydemo_2011	0.247	0.287	0.221	0.298	0.092	0.925	0.355 0.10	9 0.174
mse_minoritydemo_2011: <na></na>	0.065	0.246	0.384	0.486	-0.657	-5.609	0.000 0.31	9 0.000
mse_allstudents_pass_2011	40.267	50.049	77.545	142.676	-0.745	-7.064	0.000 0.14	5 0.027
mse_allstudents_pass_2011: <na></na>	0.065	0.246	0.384	0.486	-0.657	-5.609	0.000 0.31	9 0.000
mse_allstudents_total_2011	111.099	105.105	131.522	184.774	-0.194	-1.914	0.056 0.23	2 0.000
mse_allstudents_total_2011: <na></na>	0.065	0.246	0.384	0.486	-0.657	-5.609	0.000 0.31	9 0.000
\$es.mean.ATT								
	tx.mn	tx.sd	ct.mn	ct.sd	std.eff.sz	stat	Ship p	ks ks.pva
mse_femaledemo_2011	0.589	0.120	0.587	0.124	0.015	0.148	8 0.882 0.0	32 1.00
mse_femaledemo_2011: <na></na>	0.065	0.246	0.068	0.252	-0.007	-35.539	0.000 0.0	0.89
mse_minoritydemo_2011	0.247	0.287	0.248	0.284	-0.001	-0.007	0.995 0.0	31 1.00
mse_minoritydemo_2011: <na></na>	0.065	0.246	0.068	0.252	-0.007	-35.539	0.000 0.0	03 0.89
mse_allstudents_pass_2011	40.267	50.049	44.693	71.680	-0.088	-0.880	0.379 0.0	25 1.00
mse_allstudents_pass_2011: <na></na>	0.065	0.246	0.068	0.252	-0.007	-35.539	0.000 0.0	0.89
mse_allstudents_total_2011	111.099	105.105	108.479	113.070	0.025	0.247	0.805 0.0	39 0.99
mse_allstudents_total_2011: <na></na>	0.065	0.246	0.068	0.252	-0.007	-35.539	0.000 0.0	0.89
\$ks.max.ATT								
	tx.mn	tx.sd	ct.mn	ct.sd	std.eff.sz	stat	р	ks ks.pva
mse_femaledemo_2011	0.589	0.120	0.588	0.125	0.011	0.113	8 0.910 0.0	32 1.000
mse_femaledemo_2011: <na></na>	0.065	0.246	0.067	0.251	-0.005	-35.539	0.000 0.0	03 0.917
mse_minoritydemo_2011	0.247	0.287	0.250	0.286	-0.010	-0.103	8 0.918 0.0	33 1.00
<pre>mse_minoritydemo_2011: <na></na></pre>	0.065	0.246	0.067	0.251	-0.005	-35.539	0.000 0.0	03 0.917
mse_allstudents_pass_2011	40.267	50.049	45.483	73.876	-0.104		8 0.299 0.0	
mse_allstudents_pass_2011: <na></na>	0.065	0.246	0.067	0.251	-0.005	-35.539	0.000 0.0	03 0.917
mse_allstudents_total_2011	111.099	105.105	108.818	114.769	0.022	0.216	5 0.829 0.0	39 0.997
<pre>mse_allstudents_total_2011:<na></na></pre>	0.065	0.246	0.067	0.251	-0.005	-35.539	0.000 0.0	03 0.917

Balance Table—Cohort 4 ATE

<pre>> bal.table(ps.NMSI4.y2y)</pre>									
\$unw	tx.mn	tx.sd	ct.mn	ct sd	std.eff.sz	stat	p	ke	ks.pval
mse_femaledemo_2011	0.589		0.562	0.180				0.142	0.034
mse_femaledemo_2011: <na></na>	0.065	0.246	0.384	0.486		-5.609			0.000
mse_minoritydemo_2011	0.247	0.240	0.221	0.298	0.089			0.109	0.174
mse_minoritydemo_2011: <na></na>	0.065	0.246	0.384	0.486		-5.609			0.000
mse_allstudents_pass_2011	40.267	50.049		142.676		-7.064			0.027
mse_allstudents_pass_2011: <na></na>	0.065	0.246	0.384	0.486		-5.609			0.000
mse_allstudents_total_2011	111.099					-1.914			0.000
mse_allstudents_total_2011: <na></na>		0.246	0.384	0.486		-5.609			0.000
inse_arrstudents_tota1_2011. <na></na>	0.005	0.240	0.504	0.400	-1.295	-5.009	0.000	0.519	0.000
\$es.mean.ATE									
	tx.mn	tx.sd	ct.mn	ct.sd	std.eff.sz	stat	p	ks	ks.pval
mse_femaledemo_2011	0.563	0.150	0.562	0.180	0.006	0.044	0.965	0.086	0.647
mse_femaledemo_2011: <na></na>	0.381	0.486	0.381	0.486	0.001	-0.664	0.506	0.000	0.997
mse_minoritydemo_2011	0.194	0.274	0.221	0.298	-0.094	-0.875	0.381	0.082	0.695
mse_minoritydemo_2011: <na></na>	0.381	0.486	0.381	0.486	0.001	-0.664	0.506	0.000	0.997
mse_allstudents_pass_2011	44.362	63.763	77.223	142.171	-0.282	-3.547	0.000	0.101	0.442
mse_allstudents_pass_2011: <na></na>	0.381	0.486	0.381	0.486	0.001	-0.664	0.506	0.000	0.997
mse_allstudents_total_2011	105.128	124.431	131.321	184.190	-0.152	-1.469	0.142	0.089	0.607
<pre>mse_allstudents_total_2011:<na></na></pre>	0.381	0.486	0.381	0.486	0.001	-0.664	0.506	0.000	0.997
\$ks.max.ATE									
	tx.mn	tx.sd	ct.mn	ct.sd	std.eff.sz	stat	p	ks	ks.pval
mse_femaledemo_2011	0.564	0.149	0.562	0.180	0.009	0.066	0.947	0.087	0.628
mse_femaledemo_2011: <na></na>	0.376	0.484	0.381	0.486	-0.009	-0.830	0.406	0.004	0.964
mse_minoritydemo_2011	0.195	0.274	0.221	0.298	-0.093	-0.864	0.387	0.082	0.705
mse_minoritydemo_2011: <na></na>	0.376	0.484	0.381	0.486	-0.009	-0.830	0.406	0.004	0.964
mse_allstudents_pass_2011	44.424	63.743	77.227	142.175	-0.282	-3.550	0.000	0.100	0.449
mse_allstudents_pass_2011: <na></na>	0.376	0.484	0.381	0.486	-0.009	-0.830	0.406	0.004	0.964
mse_allstudents_total_2011	105.245	124.241	131.324	184.194	-0.151	-1.471	0.141	0.090	0.593
<pre>mse_allstudents_total_2011:<na></na></pre>	0.376	0.484	0.381	0.486	-0.009	-0.830	0.406	0.004	0.964

Balance Table—Cohort 5 ATT

> bal.table(ps.coh5_y2y) \$unw

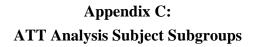
	tx.mn	tx.sd	ct.mn	ct.sd	std.eff.sz	stat	p ks	ks.pval
mse_femaledemo_2012	0.581	0.132	0.561	0.187	0.148		0.202 0.173	0.022
mse_femaledemo_2012: <na></na>	0.062	0.242	0.309	0.462	-0.534	-4.111	0.000 0.246	0.000
mse_minoritydemo_2012	0.183	0.217	0.224	0.300			0.099 0.139	0.105
mse_minoritydemo_2012: <na></na>	0.062	0.242	0.309	0.462			0.000 0.246	0.000
mse_allstudents_pass_2012	54.747	55.602	80.520	148.263	-0.464	-3.892	0.000 0.199	0.005
mse_allstudents_pass_2012: <na></na>	0.062	0.242	0.309	0.462	-0.534	-4.111	0.000 0.246	0.000
mse_allstudents_total_2012	127.960	95.924	133.273	189.158	-0.055	-0.473	0.636 0.259	0.000
<pre>mse_allstudents_total_2012:<na></na></pre>	0.062	0.242	0.309	0.462	-0.534	-4.111	0.000 0.246	0.000
\$es.mean.ATT								
	tx.mn	tx.sd	ct.mn	ct.sd	std.eff.sz	stat	p ks	ks.pval
mse_femaledemo_2012	0.581	0.132	0.579	0.125	0.011	0.097	0.922 0.026	1.000
mse_femaledemo_2012: <na></na>	0.062	0.242	0.071	0.258	-0.019	-29.075	0.000 0.009	0.757
mse_minoritydemo_2012	0.183	0.217	0.183	0.220	0.000	-0.004	0.997 0.046	0.997
<pre>mse_minoritydemo_2012:<na></na></pre>	0.062	0.242	0.071	0.258	-0.019	-29.075	0.000 0.009	0.757
mse_allstudents_pass_2012	54.747	55.602	55.959	68.887	-0.022	-0.186	0.852 0.033	1.000
mse_allstudents_pass_2012: <na></na>	0.062	0.242	0.071	0.258	-0.019	-29.075	0.000 0.009	0.757
mse_allstudents_total_2012	127.960	95.924	123.636	106.622	0.045		0.703 0.055	
<pre>mse_allstudents_total_2012:<na></na></pre>	0.062	0.242	0.071	0.258	-0.019	-29.075	0.000 0.009	0.757
\$ks.max.ATT								
	tx.mn	tx.sd	ct.mn	ct.sd	std.eff.sz	stat	p ks	ks.pval
mse_femaledemo_2012	0.581	0.132	0.579	0.125	0.016	0.137	0.891 0.036	1.000
mse_femaledemo_2012: <na></na>	0.062	0.242	0.065	0.247		-29.075	0.000 0.003	0.921
mse_minoritydemo_2012	0.183	0.217	0.193	0.232			0.672 0.044	
<pre>mse_minoritydemo_2012:<na></na></pre>	0.062	0.242	0.065	0.247	-0.006	-29.075	0.000 0.003	0.921
<pre>mse_allstudents_pass_2012</pre>	54.747	55.602	60.977	79.332	-0.112	-0.962	0.336 0.033	1.000
<pre>mse_allstudents_pass_2012:<na></na></pre>	0.062	0.242	0.065	0.247	-0.006		0.000 0.003	
mse_allstudents_total_2012	127.960		127.386	115.584	0.006		0.959 0.046	
<pre>mse_allstudents_total_2012:<na></na></pre>	0.062	0.242	0.065	0.247	-0.006	-29.075	0.000 0.003	0.921

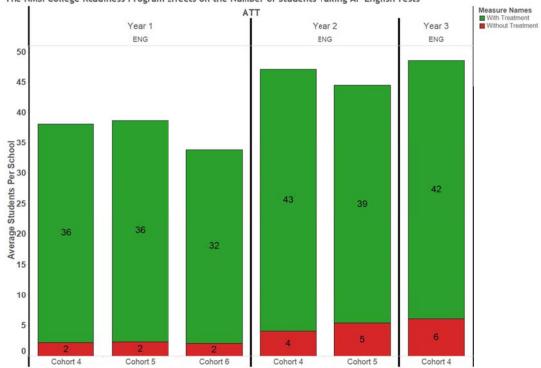
Balance Table—Cohort 5 ATE

<pre>> bal.table(ps.NMSI5.y2y)</pre>									
\$unw		the set	-	at ad	and off an	atat		les.	les musl
man formaledame 2012	tx.mn		ct.mn		std.eff.sz	stat 1.276	p 202		ks.pval
mse_femaledemo_2012		0.132	0.561	0.187	0.105				0.022
mse_femaledemo_2012: <na></na>	0.062	0.242	0.309	0.462		-4.111			0.000
mse_minoritydemo_2012	0.183	0.217	0.224	0.300		-1.649			0.105
mse_minoritydemo_2012: <na></na>	0.062	0.242	0.309	0.462		-4.111			0.000
mse_allstudents_pass_2012		55.602		148.263		-3.892			0.005
<pre>mse_allstudents_pass_2012:<na></na></pre>	0.062		0.309	0.462		-4.111			0.000
mse_allstudents_total_2012		95.924		189.158		-0.473			0.000
<pre>mse_allstudents_total_2012:<na></na></pre>	0.062	0.242	0.309	0.462	-1.016	-4.111	0.000	0.246	0.000
<pre>\$es.mean.ATE</pre>									
	tx.mn	tx.sd	ct.mr	n ct.sd	std.eff.sz	stat	p	ks	ks.pva]
mse_femaledemo_2012	0.581	0.190	0.562	0.187	0.102	0.532	0.594	0.101	0.634
mse_femaledemo_2012: <na></na>	0.306	0.461	0.307	0.461	-0.001	-0.591	0.554	0.000	0.996
mse_minoritydemo_2012	0.167	0.244	0.224	0.300	-0.205	-1.624	0.104	0.107	0.553
mse_minoritydemo_2012: <na></na>	0.306	0.461	0.307	0.461	-0.001	-0.591	0.554	0.000	0.996
mse_allstudents_pass_2012	51.607	64.092	80.422	2 147.945	-0.237	-2.970	0.003	0.136	0.267
mse_allstudents_pass_2012: <na></na>	0.306	0.461	0.307	0.461	-0.001	-0.591	0.554	0.000	0.996
mse_allstudents_total_2012	110.386	101.840	133.265	5 188.789	-0.143	-1.574	0.115	0.135	0.279
<pre>mse_allstudents_total_2012:<na></na></pre>	0.306	0.461	0.307	0.461	-0.001	-0.591	0.554	0.000	0.996
\$ks.max.ATE									
	tx.mn	tx.sd	ct.mn	ct.sd	std.eff.sz	stat	р	ks	ks.pval
mse_femaledemo_2012	0.585		0.562	0.186	0.124	0.561			0.582
mse_femaledemo_2012: <na></na>	0.392	0.488	0.307	0.461		-0.228			0.424
mse_minoritydemo_2012	0.168	0.258	0.224	0.300		-1.376			0.582
mse_minoritydemo_2012: <na></na>	0.392	0.488	0.307	0.461		-0.228			0.424
mse_allstudents_pass_2012		63.217		147.844		-3.180			0.642
mse_allstudents_pass_2012: <na></na>	0.392		0.307	0.461		-0.228			0.424
mse_allstudents_total_2012	100.117		133.242			-2.245			0.694
mse_allstudents_total_2012: <na></na>	0.392		0.307	0.461		-0.228			0.424

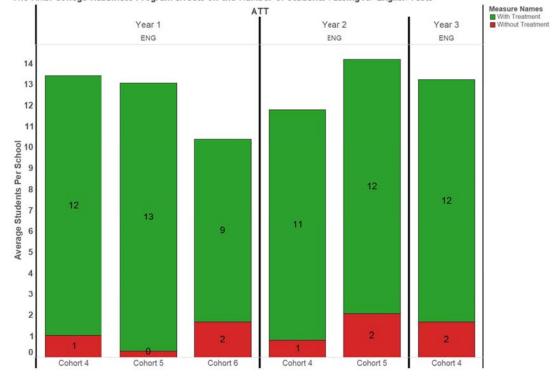
Balance Table—Cohort 6 ATT

> bal.table(ps.COH6)

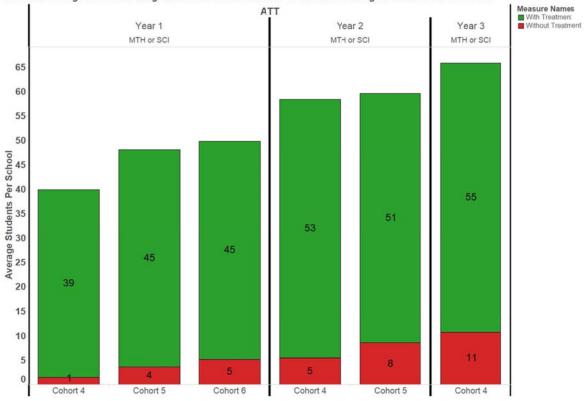

Sui	

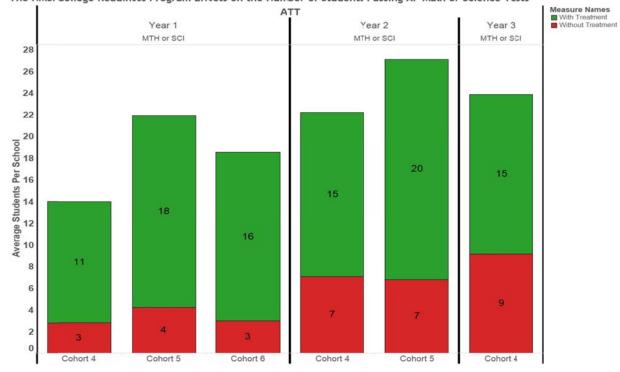

	tx.mn	tx.sd	ct.mn	ct.sd	std.eff.sz	stat	p	ks	ks.pval
mse_allstudents_total_2013	165.186	173.264	139.857	198.888	0.146	1.435	0.151	0.258	0.000
<pre>mse_allstudents_total_2013:<na></na></pre>	0.020	0.141	0.246	0.430	-0.525	-3.860	0.000	0.225	0.000
mse_allstudents_pass_2013	74.072	119.267	84.089	155.170	-0.084	-0.822	0.411	0.121	0.110
mse_allstudents_pass_2013: <na></na>	0.020	0.141	0.246	0.430	-0.525	-3.860	0.000	0.225	0.000
mse_minoritydemo_2013	0.303	0.297	0.239	0.305	0.214	2.103	0.036	0.257	0.000
mse_minoritydemo_2013: <na></na>	0.020	0.141	0.246	0.430	-0.525	-3.860	0.000	0.225	0.000
mse_femaledemo_2013	0.568	0.107	0.554	0.186	0.130	1.265	0.206	0.116	0.142
<pre>mse_femaledemo_2013:<na></na></pre>	0.020	0.141	0.246	0.430	-0.525	-3.860	0.000	0.225	0.000
\$es.mean.ATT									
	tx.mn	tx.sd	ct.mn	ct.sd	std.eff.sz	stat	р	ks	ks.pval
mse_allstudents_total_2013	165.186	173.264	159.064	173.305	0.035	0.342	0.732	0.049	0.970
<pre>mse_allstudents_total_2013:<na></na></pre>	0.020	0.141	0.021	0.144	-0.003	-0.078	0.938	0.001	0.938
mse_allstudents_pass_2013	74.072	119.267	74.102	120.741	0.000	-0.002	0.998	0.030	1.000
mse_allstudents_pass_2013: <na></na>	0.020	0.141	0.021	0.144	-0.003	-0.078	0.938	0.001	0.938
mse_minoritydemo_2013	0.303	0.297	0.303	0.303	-0.001	-0.012	0.990	0.042	0.995
<pre>mse_minoritydemo_2013:<na></na></pre>	0.020	0.141	0.021	0.144	-0.003	-0.078	0.938	0.001	0.938
mse_femaledemo_2013	0.568	0.107	0.568	0.124	-0.005	-0.050	0.960	0.039	0.998
<pre>mse_femaledemo_2013:<na></na></pre>	0.020	0.141	0.021	0.144	-0.003	-0.078	0.938	0.001	0.938
\$ks.max.ATT									
	tx.mn	tx.sd	ct.mn		<pre>std.eff.sz</pre>	stat	р		ks.pval
<pre>mse_allstudents_total_2013</pre>		173.264		166.200	0.062				0.983
<pre>mse_allstudents_total_2013:<na></na></pre>	0.020	0.141	0.022	0.147	-0.005	-0.134	0.894	0.002	0.894
mse_allstudents_pass_2013	74.072	119.267		112.585	0.038	0.368			1.000
<pre>mse_allstudents_pass_2013:<na></na></pre>	0.020	0.141	0.022	0.147		-0.134			0.894
mse_minoritydemo_2013	0.303	0.297	0.297	0.297	0.020	0.185			0.995
<pre>mse_minoritydemo_2013:<na></na></pre>	0.020	0.141	0.022	0.147		-0.134			0.894
mse_femaledemo_2013	0.568	0.107	0.569	0.118		-0.099			0.999
mse_femaledemo_2013: <na></na>	0.020	0.141	0.022	0.147	-0.005	-0.134	0.894	0.002	0.894

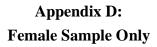
Balance Table—Cohort 6 ATE

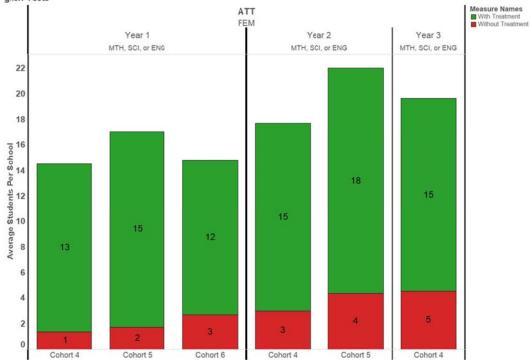

> bal.table(ps.COH6ATE) \$unw

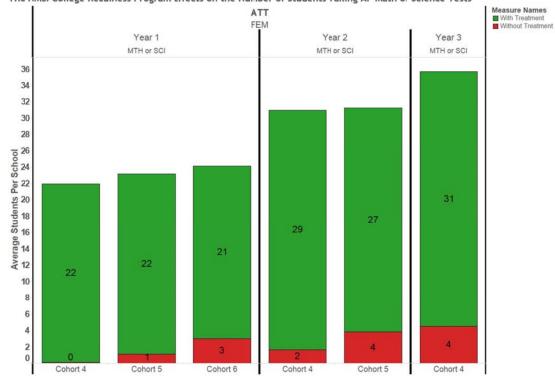
JULIW									
	tx.mn	tx.sd	ct.mn		std.eff.sz	stat	p		ks.pval
mse_allstudents_total_2013	165.186	173.264	139.857	198.888	0.128	1.435	0.151	0.258	0.000
mse_allstudents_total_2013: <na></na>	0.020	0.141	0.246	0.430	-1.602	-3.860	0.000	0.225	0.000
mse_allstudents_pass_2013	74.072	119.267	84.089	155.170	-0.065	-0.822	0.411	0.121	0.110
mse_allstudents_pass_2013: <na></na>	0.020	0.141	0.246	0.430	-1.602	-3.860	0.000	0.225	0.000
mse_minoritydemo_2013	0.303	0.297	0.239	0.305	0.208	2.103	0.036	0.257	0.000
mse_minoritydemo_2013: <na></na>	0.020	0.141	0.246	0.430	-1.602	-3.860	0.000	0.225	0.000
mse_fema]edemo_2013	0.568	0.107	0.554	0.186	0.075	1.265	0.206	0.116	0.142
mse_femaledemo_2013: <na></na>	0.020	0.141	0.246	0.430	-1.602	-3.860	0.000	0.225	0.000
\$es.mean.ATE									
	tx.mn	tx.sd	ct.mn	ct.sd	std.eff.sz	stat	p	ks	ks.pval
mse_allstudents_total_2013	132.258	175.555	140.166	198.831	-0.042	-0.393	0.695	0.068	0.926
mse_a]]students_tota]_2013: <na></na>	0.243	0.429	0.243	0.429	0.000	-1.570	0.116	0.000	0.999
mse_allstudents_pass_2013	64.849	115.895	84.121	155.067	-0.138	-1.495	0.135	0.083	0.770
mse_allstudents_pass_2013: <na></na>	0.243	0.429	0.243	0.429	0.000	-1.570	0.116	0.000	0.999
mse_minoritydemo_2013	0.228	0.289	0.240	0.306	-0.039	-0.315	0.753	0.060	0.976
mse_minoritydemo_2013: <na></na>	0.243	0.429	0.243	0.429	0.000	-1.570	0.116	0.000	0.999
mse_femaledemo_2013	0.570	0.116		0.186	0.098	0.955	0.340	0.092	0.658
mse_femaledemo_2013: <na></na>	0.243	0.429	0.243	0.429	0.000	-1.570	0.116	0.000	0.999
<pre>\$ks.max.ATE</pre>									
	tx.mn	tx.sd	ct.mn	ct.sd	std.eff.sz	stat	p	ks	ks.pval
mse_allstudents_total_2013	127.800	172.660	140.182	198.845	-0.066	-0.602	0.547	0.068	0.942
mse_allstudents_total_2013: <na></na>	0.293	0.455	0.243	0.429	0.108	-0.591	0.555	0.049	0.727
mse_allstudents_pass_2013	62.981	112.310	84.113	155.056	-0.152	-1.606	0.108	0.090	0.728
mse_allstudents_pass_2013: <na></na>	0.293	0.455	0.243	0.429	0.108	-0.591	0.555	0.049	0.727
mse_minoritydemo_2013	0.223	0.289	0.240	0.306	-0.057	-0.433	0.665	0.058	0.986
mse_minoritydemo_2013: <na></na>	0.293	0.455	0.243	0.429	0.108	-0.591	0.555	0.049	0.727
mse femaledemo 2013	0.568	0.115	0.554	0.186	0.086			0.092	

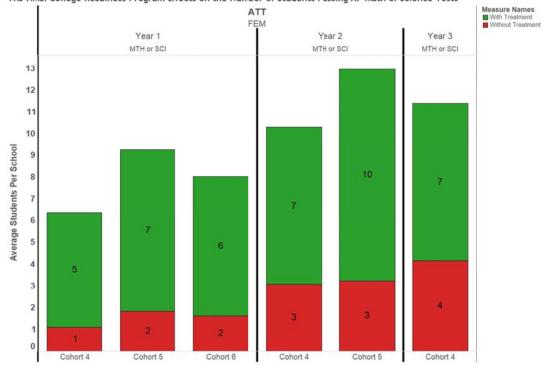


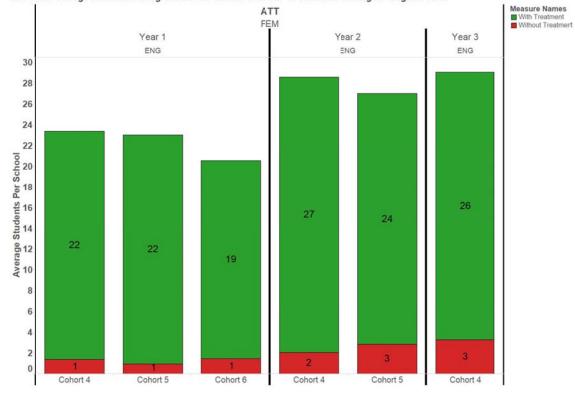

The NMSI College Readiness Program Effects on the Number of Students Taking AP English Tests

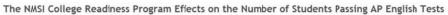


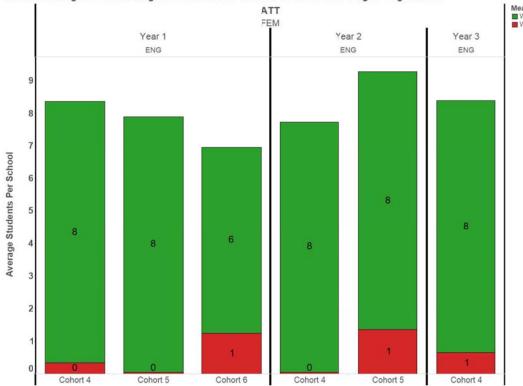

The NMSI College Readiness Program Effects on the Number of Students Passing AP English Tests

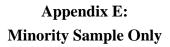


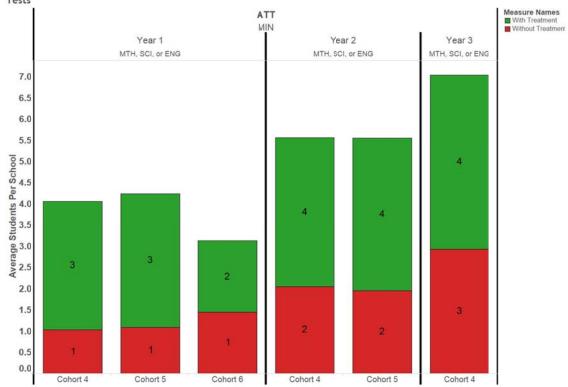


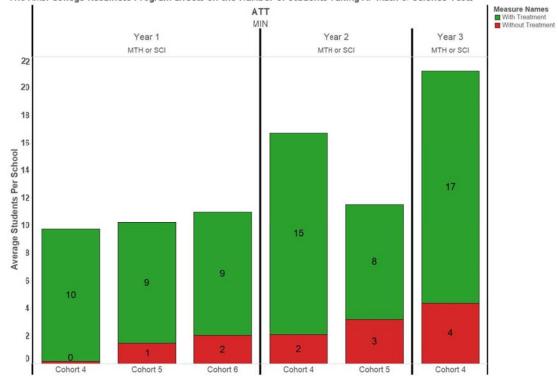


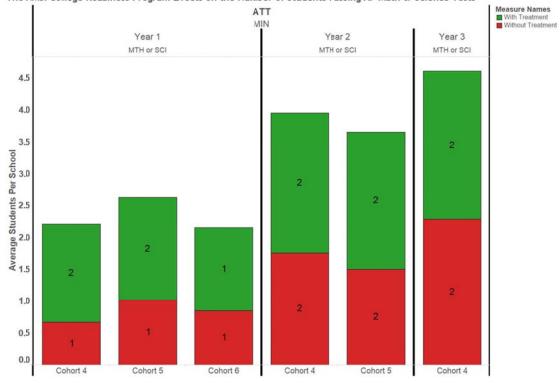


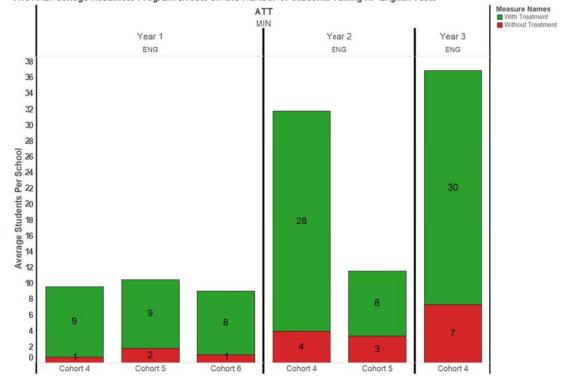

The NMSI College Readiness Program Effects on the Number of Students Taking AP Math or Science Tests

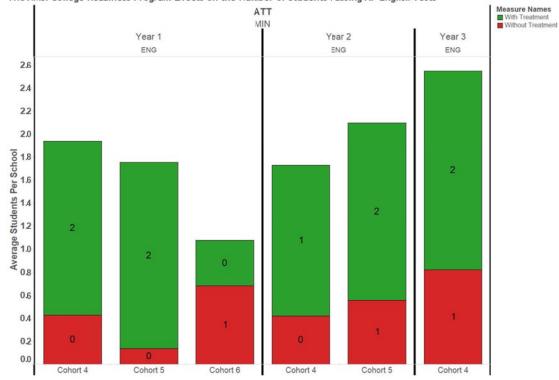



The NMSI College Readiness Program Effects on the Number of Students Taking AP English Tests




Measure Names
With Treatment
Without Treatment





The NMSI College Readiness Program Effects on the Number of Students Taking AP Math or Science Tests

The NMSI College Readiness Program Effects on the Number of Students Taking AP English Tests

