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AN EXPLORATORY STUDY EXAMINING THE FEASIBILITY OF USING BAYESIAN 

NETWORKS TO PREDICT CIRCUIT ANALYSIS UNDERSTANDING1 

Gregory K. W. K. Chung and Gary B. Dionne 
CRESST/University of California, Los Angeles 

 
William J. Kaiser 

Department of Electrical Engineering/University of California, Los Angeles 
 
 

Abstract 

Renewed interest in individualizing instruction, particularly with the use of technology, has 
resulted in a search for methods that can accurately diagnose student knowledge gaps and 
prescribe appropriate remediation. In this study we gathered validity evidence for the use of a 
Bayesian network to model students’ understanding of circuit analysis concepts. Thirty-four 
undergraduate students completed tasks designed to measure conceptual knowledge, 
procedural knowledge, and problem-solving skills. Results suggested that the Bayesian 
network was generally working as intended. When high- and low-performing groups were 
formed on the basis of posterior probabilities, significant group differences were found 
favoring the high-performing group with respect to circuit definitions and circuit analysis 
problems, for both actual and self-assessments, and higher major GPA. The Bayesian 
network also predicted participants’ performance on problem-solving items on average 75% 
of the time. The findings of this study are promising for developing scalable and feasible 
online automated reasoning techniques to diagnose student knowledge gaps. 

 

Renewed interest in individualizing instruction, particularly with the use of technology, has 

resulted in a search for methods that can accurately diagnose student knowledge gaps and 

prescribe appropriate remediation. While the idea of individualized instruction has its roots in the 

programmed instruction movement of 40 years ago, the major difference now is the availability 

of far more sophisticated, affordable, and accessible delivery technologies (e.g., Internet/Web, 

low-cost personal computers) and technologies to support knowledge representation and 

automated reasoning (e.g., Bayesian networks). Together, these technologies provide the 

mechanism to make feasible and practical individualized assessment and instruction. 

In this study, we explored the feasibility of using Bayesian networks to estimate students’ 

understanding of introductory circuit analysis topics (e.g., Kirchhoff’s current law). Our work 

focused on two major activities: (a) modeling the knowledge dependencies among the various 

                                                 
1An earlier version of this report was presented at the 2006 annual meeting of the National Council on Measurement 
in Education, San Francisco, CA. 
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concepts, and (b) gathering validity evidence on the quality of the model. This research directly 

supports the development of online assessment and instruction for individual students in 

distributed and distance learning settings. In such contexts, automated reasoning techniques are 

the only feasible method for diagnosing knowledge gaps for large numbers of students. Note that 

our interest is not in whether automated reasoning techniques are superior to traditional 

techniques (e.g., an instructor diagnosis) but rather in the extent to which automated reasoning 

techniques can be used to diagnose knowledge gaps.  

Bayesian networks are one of the most influential tools for modeling and reasoning under 

uncertainty (Jensen, 2001). A Bayesian network is a graphical probabilistic model, which 

comprises two parts: (a) a directed acyclic graph, in which nodes represent variables of interest 

and edges represent direct causal dependencies, and (b) a set of conditional probability tables, 

which quantify the dependencies between variables. Considerable past research has focused on 

the use of Bayesian networks for user modeling or assessment purposes (e.g., Almond, Mislevy, 

Steinberg, Yan, & Williamson, 2015; Anderson, Corbett, Koedinger, & Pelletier, 1995; Chung, 

Delacruz, Dionne, & Bewley, 2003; Culbertson, 2016; Martin & VanLehn, 1995; Mislevy & 

Gitomer, 1996; Mislevy, Steinberg, Breyer, Almond, & Johnson, 2002; O’Neil, Chuang, & 

Chung, 2003). In this study we use Bayesian networks to represent circuit analysis knowledge 

and gather validity evidence. 

For the current study, we modeled the domain in terms of knowledge dependencies. In our 

case, the domain concepts related to node-voltage and mesh-current analyses in circuit analyses 

at the introductory level. Given that a student knows concept X, (a) what are the most directly 

related concepts, and (b) to what extent are students likely to know those concepts? Conversely, 

given that a student does not know concept X, how likely is it that the student will know the 

related concepts? A key feature of Bayesian networks is the inclusion of uncertainty via 

probability estimates. This is critical as learning is inherently uncertain, occurring in many 

different ways and under many different conditions. 

Validity Research Questions and Validation Approach 

There were three research questions in this study: 

1. What was the relation among the measures of knowledge? To answer this question, we 
gathered a broad set of knowledge measures related to circuit problem solving. These 
measures allowed examination of the extent to which the Bayesian network “scores” 
related to different kinds of knowledge. 
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2. To what extent is the model capturing systematic differences in student responses? To 
answer this question, we examined the effect of random input data, and whether 
participants, classified as high or low circuit problem solving based on the Bayesian 
network scores, would also show differences on other measures of circuit analysis 
knowledge. 

3. How accurate is the Bayesian network in predicting performance? To answer this 
question, we examined how well the Bayesian network predicted performance on 
individual circuit problem-solving items. 

Method 

Participants and Design 

Participants. The sample comprised 34 participants (27 males, seven females) who were 

ethnically diverse (21 Asian Americans, four White, one Latino/a, one biracial, one African 

American, and six unspecified) and with a mean age of 20.3 years old (SD = 2.1 years). Table 1 

shows descriptive statistics and intercorrelations for GPA and self-reported SAT measures. In 

general, the sample were mostly male electrical engineering juniors with B-average GPAs. With 

respect to grades in the particular course that covered the concepts used in this study, 20 

participants were currently enrolled in the course, 11 received an A or B, three received a D or F, 

and two participants did not take the course. Thus, the sample appeared to be typical with respect 

to background variables, and the sample also appeared to have differential exposure to the main 

concepts used in this study.  

Table 1 

Descriptive Statistics and Intercorrelations (Spearman) for Achievement and SAT Measures (N = 34) 

Measure n M SD Min. Max. EE GPA 
SAT I Verbal 

Score 
SAT I Math 

Score 

Overall GPAa 29 3.32 0.45 1.90 3.84 .77** .07 .52* 

EE GPAb 30 8.64 2.04 3.75 12 — -.12 .45* 

SAT I Verbal Scorec 25 654.4 78.2 440 770  — .09 

SAT I Math Scorec 26 752.3 48.8 610 800   — 

aMax. = 4.0. b12-point scale. cMax. = 800. 
*p < .05 (two-tailed). **p < .01 (two-tailed). 

Design. A single-group correlational research design was used to support examination of 

how the various measures related to each other.  
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Procedure 

Participants were recruited via class announcements in introductory circuit classes. 

Participants who participated in prior research were also recruited via email. Participants were 

administered the tasks individually or in small groups. The set of tasks, order, and allotted time 

are shown in Table 2. Pilot testing of the measures provided the basis for the time; however, 

participants were allowed to complete the task at their own pace. In general, participants finished 

all the tasks within the allotted time. 

Table 2 

Administration Schedule 

Task 

Time 
allotted 
(mins.) 

Introduction to study 5 

Knowledge mapping 25 

Conceptual definitions 30 

Circuit analysis essay 20 

Background survey 10 

Circuit problem solving 60 

 

Tasks and Measures 

Participants were administered a variety of tasks intended to provide the basis for 

measuring their understanding of circuit analysis concepts. Two classes of measures were 

developed: (a) knowledge measures that were designed to gather direct evidence of participants’ 

knowledge of circuit analysis; and (b) Bayesian network-based measures whose correspondence 

with the knowledge measures we were particularly interested in. In addition, we were interested 

in examining the extent to which the Bayesian network-based measures related to the various 

kinds of knowledge measures.  

Knowledge measures. Five tasks were administered to gather information on participants’ 

knowledge of circuit analyses: conceptual definitions of circuit concepts, procedural 

understanding of node-mesh and node-voltage analyses, conceptual understanding of circuit 

analysis concepts, circuit problem solving, and self-ratings of understanding.  

Conceptual definitions of circuit analysis concepts. Participants were asked to define, in a 

few sentences, 19 concepts related to circuit analysis. Participants were asked to state the concept 
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in mathematical or descriptive form. The topics participants were asked to define were 

combination of sources, constraint equation, current division, dependent source, equivalent 

resistance, essential node, KCL, KVL, mesh, mesh current, node, node voltage, Ohm’s law, 

parallel resistance, series resistance, sign convention, super mesh, super node, and voltage 

division. This task was intended to provide information on participants’ general familiarity with 

each concept.  

Participants’ written responses to each question were scored dichotomously and the 

measure computed as the sum of correct responses. A second measure was obtained, based on 

participants’ self-assessment. Participants were asked to score themselves, on a scale of 0 to 10, 

on how well they understood each topic. The specific score ranges were:  

0 = no understanding of the topic at all, could use a lot of help with the content 

1 – 5 = some understanding, could use some help with the content 

6 – 9 = more understanding than not, may need some help with the content but probably 
not 

10 = complete understanding of the topic, don’t need any help with the content 

Circuit explanation essay. Participants were asked to write an essay to explain the 

importance of KCL, KVL, and Ohm’s law in circuit analysis. The instructions emphasized that 

the goal of the essay was to convey their conceptual understanding, and one way to help them 

write the essay was to imagine that they were asked to give a guest lecture to new EE students 

about why these topics (KCL, KVL, Ohm’s law) are fundamental and important to circuit 

analysis. Some guiding questions were provided with the intention of helping participants start 

the essay and frame their response (Why is it important to know these laws? What do these laws 

let you do? What role do KCL, KVL, and Ohm’s law play in electrical engineering in general—

not only in solving simple circuits, but in the larger circuit analysis picture? Are 

KCL/KVL/Ohm’s law simply a set of mathematical relationships used to figure out voltage 

current and resistance, or is there something more fundamental to these laws?). The specific 

prompt for this task was: 

Please explain the importance of KCL, KVL, and Ohm’s law. Why are these topics so 
fundamental and important to circuit analysis? Remember, the essay should convey your 
conceptual understanding.  

The task was intended to provide information on participants’ deep understanding of the 

interrelationships among the fundamental concepts of Ohm’s law, KVL, and KCL. Participants’ 

responses were scored on a 5-point scale using the rubric shown in Table 3. 
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Table 3 

Explanation Essay Rubric 

Score Scoring guidelines 

1 No indication that the response shows understanding of any of the three concepts (Ohm’s law, KCL, KVL). 

2 Basic understanding of one or more of the concepts.  

Includes only a description or a statement of the equations behind these concepts. 

No elaboration or insight into the concepts (i.e., why the concepts are important). 

3 All concepts are mentioned, and at least one is explained on a more conceptual level (i.e., goes beyond 
stating the definition of the concept). 

Descriptions and definitions are partially correct. 

Minimal elaboration. 

4 Two concepts discussed thoroughly or one in detail. 

Shows some principled understanding. 

Processes are elaborated. 

Response contains only a few minor misconceptions. 

5 Complete response. All three concepts are discussed and elaborated. 

High level of detail. 

High level of discussion of concepts. 

Descriptions and definitions are accurate. 

 

Knowledge mapping of circuit problem-solving procedures. A knowledge mapping task 

was administered which required participants to diagram the procedure to solve circuit problems 

using the node-voltage method and mesh-current analysis techniques. Seventeen steps (choose 

solution approach (1), conduct mesh current analysis (2), conduct node voltage analysis (3), 

determine what is being asked (4), draw and label mesh currents (5), identify dependent sources 

(current) (6), identify dependent sources (voltage) (7), identify essential branch(es) (8), identify 

essential node(s) (9), label node voltages (10), list given information (11), report results (12), 

simplify circuit (13), solve equation (14), use KCL to write equations (15), use KVL and Ohm's 

law to write source equation (16), and write constraint equations (17)) and three links (next step, 

if mesh current analysis, and if node voltage analysis) were provided.  

Scoring of participants’ knowledge maps was done by counting the number of propositions 

(node-link-node) in the participant’s map that were also in the criterion map (Herl, Baker, & 

Niemi, 1996). This measure was intended to provide information on participants’ knowledge of 

the problem-solving procedure for node-voltage and mesh-current analyses. The criterion map 

was based on a written problem-solving procedure developed by the class instructor (Appendix 

A) and is shown in Figure 1. 
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Table 4 

Rubric for Assigning Probability Values to the Conditional Probability Table  

Parent node state: Understands Parent node state: Does not understand 

State 

Explanation 

State 

Explanation R W R W 

1.00 .00 Absolute correlation, if you understand the concept you 
must get the question right. People will occasionally make 
mistakes even with a perfect understanding of the topic. An 
exception is a "true/false" question that is directly 
questioning the targeted concept with no computation. 

.00 1.00 It is impossible to get this question right if you do not understand the targeted 
concept. There is no chance of guessing the question correctly, so there must 
be significant, necessary computation involved. An undesirable question, 
since the extra computation could be responsible for the incorrect answer. 
Using the targeted concept must be the only way to arrive at the correct 
answer. 

.95 .05 Essentially a perfect question. If you understand the concept 
you will get the question right; this probability allows for 
"stupid" mistakes. 

.05 .95 It is unlikely that the correct answer could be guessed, so there must be more 
than a few possible answers. Using the targeted concept must be the only way 
to arrive at the correct answer. Incorrect ways of attempting the problem must 
not coincidentally result in the correct answer. 

.85 .15 This is a good question. It is a question designed to test only 
the targeted concept so there is very little chance of a 
computational error. No necessary computation. Very few 
false negatives. 

.15 .85 This is a question that may have only a handful of possible answers, such as a 
"How many?" question. Or it is a question with no apparent ways to solve the 
problem that do not directly test the targeted concept. 

.70 .30 This question tests the desired concept but there may be a 
less significant influence from another concept that may 
cause an incorrect answer. Also, there may be minor, 
necessary computations. 

.30 .70 This question has just a few plausible options for answers. Guessing the right 
answer is possible, but not likely. There shouldn't be any easy or obvious way 
to get the answer without using the targeted concept. 

.60 .40 This is a fairly poor question. The targeted concept is still 
being tested, but there are many other concepts that may 
influence the answer of the question or there are significant 
necessary computational steps that may result in an incorrect 
answer. 

.40 .60 A question whose answer is easily guessed. An example is a "true/false" 
question. Or a question that can be easily solved using knowledge of a non-
targeted concept. 

  .45 .55 A poorly designed question. Attempting to solve the problem with a 
commonly held, incorrect assumption coincidentally yields the correct answer.

.50 .50 A meaningless question. There is no correlation between 
knowing the concept and answering the question correctly. 

.50 .50 A meaningless question. There is no correlation between knowing the concept 
and answering the question correctly. 

Note. R = right or correct. W = wrong or incorrect. 



10 

Bayesian network-based measures. The basic measure from the Bayesian network (BN) 

used was the probability values associated with each hypothesis (i.e., unobserved) variable. The 

graphical model is shown in Appendix B. The construction of the network was based on the 

following:  

1. The hypothesis nodes were defined as “understanding C,” where C was a circuit 
analysis concept.  

2. The conditional probability table was based on a node being in two states: understands 
or does not understand. The guidelines used for assigning specific a priori probability 
values are given in Table 4. 

3. The BN was constructed using a causal framework. Understanding a concept C directly 
influences understanding Cchild, where Cchild is a descendent of C. For an observable 
node O connected to C, C directly influences whether the participant answers O 
correctly (or incorrectly). 

4. An observable node was an item, scored correct or incorrect, from a subpart in the 
circuit problem-solving questions. Each subpart targeted a specific concept. 

Concept understanding. The probability for each hypothesis node was interpreted as the 

probability that the participant understood circuit analysis concept C. The probability was treated 

as a score and was used as a measure of understanding of concept C. The higher the probability 

for C, the higher the understanding of C.  

Decision. Because of how we interpreted the probability values in each node, and how we 

intended to use the BN in a practical setting (to detect and administer feedback), we derived from 

the probabilities an understand/does not understand dichotomous measure. In a practical setting 

this measure would be used to detect understanding (or not understanding) and serve as the basis 

for remediation; thus, it was important to examine the characteristics of this measure. 

Manipulation check measures. Self-reports were gathered about participants’ perception 

of the knowledge mapping, definitions, explanation essay, and circuit problem-solving tasks. For 

each task, participants were asked three questions: (a) how difficult they found the task (1 = not 

difficult, 2 = somewhat difficult, 3 = moderately difficult, 4 = very difficult); (b) in general, how 

well they thought their conceptual understanding of circuit analyses was reflected by the tasks 

(1 = not well at all, 2 = somewhat well, 3 = moderately well, 4 = very well); and (c) in general, 

how much effort (i.e., trying to really do their best to answer the question) did they put into the 

task (1 = not much at all, 2 = some amount, 3 = moderate amount, 4 = a lot). 

Reliability of measures. Cronbach’s alpha was computed for each measure. Reliability of 

the measures was generally in the .80s and .90s. Three scales in the problem-solving scales were 

low or contained two items (combination of sources, parallel resistance, current division, Ohm’s 



11 

law, constraint equations, and KVL). These scales were dropped from subsequent analyses at the 

scale level; however, the items were retained in total score analyses. Interestingly, the self-

ratings of understandings were uniformly high, with  ranging from .82 to .97. Table 5 and 

Table 6 show the reliabilities for the measures used.  

Table 5 

Reliability of Measures 

 Score Self-rating 

Measure 
n 

No. of 
items 

α n 
No. of 
items 

α 

Circuit definitions 24 19 .85 19 24 .92 

Overall problem solving       

Total score 24 9 .81 19 9 .92 

Total holistic self-rating   -- 19 9 .93 

 

Table 6 

Alpha Coefficient for Circuit Problem-Solving Topic Scales, Scores, and Self-Rating 

Topics n No. of items Score Self-rating 

Combination of sources 24 5 .41 .82 

Parallel resistance 34 2 .13 .87 

Voltage division 33 3 .75 .88 

Current division 33 2 .76 .85 

Node 27 -- .78a .92b 

Essential nodes 34 3 .79 .95 

KCL 33 4 .62 .92 

Ohm’s law 34 2 .42 .97 

Constraint equations 33 2 .61 .90 

Mesh 34 4 .91 .97 

KVL 33 2 .57 .85 

ano. of items = 7. bno. of items = 5. 

Background information. Participants were asked to complete a questionnaire asking for 

their age, gender, and ethnicity. In addition, self-reported SAT I Verbal and SAT I Math scores, 

overall GPA, class standing, and major were gathered. Participants were asked for a list of 
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courses they were currently taking, as well as their grades in all electrical engineering (EE) 

courses they had taken. The EE grades were computed to a 12-point scale. 

Results 

Manipulation Check 

Prior to conducting the analyses, participants’ responses to manipulation check questions 

were examined. Table 7 shows self-reported perception of task difficulty, utility, and effort. In 

general, participants perceived all tasks as having some difficulty, with the circuit problems rated 

as being the most difficult. Participants perceived the measures as somewhat to moderately 

reflecting their conceptual understanding, with circuit analyses being rated the highest. Finally, 

most participants reported a moderate amount of effort at completing the tasks. 

Table 7 

Descriptive Statistics for Participant Self-Reports of Task Difficulty, Utility, 
and Effort (n = 33) 

Measure M SD 

Difficulty of taska   

Knowledge mapping 1.36 0.49 

Definitions 1.79 0.65 

Essay 2.33 0.99 

Circuit problems 2.25 0.95 

How well task captured conceptual understandingb   

Knowledge mapping 2.64 0.82 

Definitions 2.61 0.70 

Essay 2.36 1.17 

Circuit problems 3.03 0.88 

How much effort put into taskc   

Knowledge mapping 2.94 0.83 

Definitions 3.15 0.67 

Essay 2.70 0.77 

Circuit problems 3.30 0.88 

a1 = not difficult, 2 = somewhat difficult, 3 = moderately difficult, 4 = very 
difficult. b1 = not well at all, 2 = somewhat well, 3 = moderately well, 
4 = very well. c1 = not much at all, 2 = some amount, 3 = moderate amount, 
4 = a lot. 
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For the knowledge mapping task, we found a significant correlation between participants’ 

ratings of how well the task represented their conceptual understanding and their knowledge map 

score (r = .46, p = .001). The higher participants reported that their understanding was 

represented by their knowledge map, the higher their knowledge map scores. For the essay task, 

we found a significant correlation between participants rating of their effort and their essay score 

(r = .35, p = .05). In other words, participants who put more effort into the task (based on self-

report) generally had higher essay scores. 

For the circuit problems, perceived difficulty of the circuit problems was negatively related 

to participants’ problem-solving score across all problems (r = -.57, p = .001), and negatively 

related to their overall self-rating of each circuit problem (r = -.38, p < .06). In general, the more 

difficult the task was perceived to be, the lower the scores and self-ratings. In addition to 

perceived difficulty, effort was positively associated with problem-solving scores (r = .35, 

p < .06). As participants put more effort into solving the problems, the higher their scores. 

These data are consistent with the idea that participants were taking the tasks seriously and 

expended reasonable effort. The pattern of correlations, particularly between performance and 

perceived difficulty and perceived utility, is consistent with prior research (e.g., Chung & Baker, 

2003; Chung et al., 2003). Thus, we concluded that the data were suitable for subsequent 

analyses. 

Validity Analyses 

Validity evidence was gathered by examining three questions: 

 What was the relation among the measures of knowledge? We expected to observe 
positive correlations among measures of circuit knowledge and participants’ self-
reports. This question was addressed by correlational analyses. Due to the small sample 
size, non-parametric (Spearman) correlation was used.  

 To what extent is the model capturing systematic differences in student responses? We 
addressed this question by examining (a) the Bayesian network probabilities when 
random student performance data were entered, and (b) examining the relation between 
the Bayesian network probabilities and other measures (i.e., performance on the other 
knowledge measures, self-ratings, and EE GPA). We expected to observe null 
correlations when random student data were entered, and we expected to observe 
positive correlations between the Bayesian network probabilities and the other 
knowledge measures. This question was addressed by correlational analyses and by 
checking for group differences between high and low performers (as defined by the 
Bayes net posterior probabilities). Due to the small sample size, correlational analyses 
were conducted with the nonparametric (Spearman) correlation. Tests for group 
differences were conducted with the nonparametric Mann-Whitney test. 
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 How accurate is the Bayesian network in predicting performance? One indicator of the 
quality of the model is the degree to which it can predict student performance. We used 
a variation of a “leave-one-out” analysis to examine this issue.  

What was the relation among the measures of knowledge? Overall, the results shown in 

Table 8 are consistent with the idea that the content and instruction are highly problem-focused. 

That is, one of the main desired instructional outcomes of a course at this level (EE10) is being 

able to solve a variety of different circuit analysis problems. Informal discussions with the 

instructor, the personal experience of all authors (all have electrical engineering backgrounds), a 

review of the instructor’s lecture notes, the textbook, and observation of discussion sections and 

lectures support this idea. 
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Table 8 

Descriptive Statistics and Nonparametric (Spearman) Intercorrelations Among Circuit Knowledge Measures 

Measures 

     Conceptual knowledge 

Procedural 
knowledge

Circuit problem solving     

Essay 

Circuit definitions 

n M SD Min. Max. 
Total 
score 

Total 
self-rating 

Total 
score 

Total 
self-rating

Mean EE GPA 30 8.64 2.04 3.75 12 .06 .45* .29 -.01 .65** .63** 

Conceptual knowledge            

Essay 33 3.09 0.98 1 5 -- .20 .55* .12 .15 .27 

Definitions—total score 25 14.68 3.93 0 19  -- .53* .21 .62* .72** 

Definitions—total self-rating 30 186.80 34.85 96 239   -- .31 .52* .71** 

Procedural knowledge 34 4.79 2.11 1 8    -- .28 .40* 

Circuit problem solving            

Total score 33 13.27 5.66 1 21     -- .77** 

Total self-rating 26 166.73 52.84 5 218      -- 

*p < .05 (two-tailed). **p < .01 (two-tailed). 
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With this context in mind, it is unsurprising that EE GPA related most strongly to the 

circuit problem-solving measures. Much of the coursework in electrical engineering at the 

undergraduate level is developing competency in solving problems, and is reflected in the 

correlation with performance on the circuit problem-solving task (rsp = .65, p < .01). Similarly, 

the correlation between conceptual knowledge of circuit concepts and success in solving 

problems is unsurprising (rsp = .45, p < .05) as basic knowledge of the concepts was required to 

solve the circuit problems. 

Participants’ self-ratings of their performance were significantly related to their actual 

performance, for both the circuit definition (rsp = .45, p < .05) and circuit problem-solving (rsp = 

.77, p < .01) tasks. This is an important result for two reasons. First, the positive correlations 

suggest that participants were capable of evaluating their understanding of their own responses, 

and especially so when they were solving problems. That is, participants were aware of when 

they understood (or did not understand) how to solve a problem. Our speculation as to why the 

self-reports were so accurate for the problem-solving task lies in how the task was structured: 

Participants were asked to judge their understanding immediately after attempting to solve a 

subpart of the problem (see Figure 2), resulting in a response that was highly contextualized and 

specific.  

The second reason the results are important is related to our long-term goal of developing 

automated methods for diagnosis of knowledge gaps (and remediation) in online learning 

contexts. The use of self-ratings may provide (a) a short-term solution to the automated scoring 

of student responses by serving as proxy scores, as long as the actual response is still required; 

and (b) a quick measure of participants’ metacognitive skills. 

Unexpected results. The emphasis on solving problems may also explain the results related 

to the essay measure. In this case, it may have been too much to ask of participants who may 

have been too inexperienced in general to have developed much insight into the significance of 

the concepts the task was targeting. We also expected procedural knowledge to relate to circuit 

problem-solving performance, particularly because the knowledge mapping task asked 

participants to explicitly lay out their circuit problem-solving steps.  

To what extent is the model capturing systematic differences in student responses? 

We conducted three analyses to examine how well our Bayesian network was capturing 

systematic differences among participants’ knowledge. Our first analysis was essentially a 

verification that the Bayesian network did not contain any unusual dependencies. We replaced 

each participant’s actual responses (i.e., the correct/incorrect value that served as inputs to the 

Bayesian network) with randomly generated correct/incorrect responses. Our assumption was 
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that with a random set of responses the Bayesian network should yield probabilities that show no 

relationship with the other outcome variables. Results confirmed this assumption. When a set of 

analyses (parallel to all analyses in this report) were conducted using the randomized data, there 

were no statistically significant relationships or differences on any group comparisons. This is an 

important piece of validity evidence as it verifies that the “machinery” was working as intended. 

The second analysis was also a check to verify that our Bayesian network was computing 

probabilities consistent with our interpretation of how we viewed the dependencies among the 

concepts. This analysis examined the relation between probabilities yielded by the Bayesian 

network and scores on our circuit problem-solving measures. As expected, there was a positive 

and statistically significant relation between the Bayesian network concepts and corresponding 

circuit problem-solving measures as shown in Table 9. A more interesting result was the 

significant relationships between the Bayesian network scales with the corresponding self-ratings 

of understanding. In this case, most of the correlations were significant and of moderate 

magnitude, rsp = .40–.83, compared to the aggregate self-rating scores (see Table 8).  

Table 9 

Nonparametric (Spearman) Correlations Between Bayesian Node Posterior 
Probabilities and Corresponding Circuit Problem-Solving Measures 

  Circuit problem solving 

Concept n Scale score Scale self-rating 

Combination of sources 24 --a .52** 

Voltage division 33 .95** .83** 

Node 27 .99** -- 

Essential nodes 34 .87** .51** 

KCL 33 .97** .65** 

Mesh 34 .68** .40* 

aDropped due to low reliability ( < .50). 

The third analysis examined the condition closer to our expected operational use of 

Bayesian network to infer degree of learner understanding. We examined whether differences 

existed on various background measures when participants were classified into high- and low-

performing groups, based on the posterior probabilities for each concept in the Bayesian 

network. The classification was based on the top and bottom thirds of the sample, when sorted by 

the total number of concepts in the Bayesian network that had posterior probabilities of 

understanding greater than .50. We reasoned that if the Bayesian network was detecting 



18 

systematic differences in participants’ level of understanding, then performance on measures of 

knowledge should favor participants in the high-performing group. A similar result should be 

observed on background measures related to circuit analysis knowledge. 

Results confirmed significant differences between high and low groups in favor of the 

high-performing group. As shown in Table 10, high performers scored significantly higher on 

the definitions and circuit analysis problems, for both actual and self-assessments, and had 

higher grades in EE courses. We interpret these results as evidence that our Bayesian network 

was sensitive in detecting overall differences in knowledge. (Note that the difference in the 

circuit problem-solving total score measure is expected, as these scores served as inputs to the 

Bayesian network.) 

Table 10 

Nonparametric (Mann-Whitney) Test of Group Differences Between Bayesian Network Inferred High and Low 
Groups 

Measure 

Bayesian network inferred groups 
Mann-Whitney test 
of group difference  Low High 

n M SD n M SD U p value rpb 

Mean grade in EE courses 9 6.84 1.88 11 9.76 1.23 7.50 <.01 .70**

Conceptual knowledge          

Essay 11 2.91 1.14  13 3.15 .99 62.50 .59 .12 

Definitions—total score 7 12.57 2.15 9 15.33 5.85 11.00 .03 .30 

Definitions—total self-rating 9 161.33 47.50 12 200.92 24.92 27.00 .05 .49* 

Procedural knowledge 11 4.27 2.00 13 5.31 2.25 52.00 .25 .24 

Circuit problem solving          

Total score 11 6.55 3.01 13 18.54 1.81 .00 <.01 .93**

Total self-rating 7 111.14 65.64 12 189.17 31.76 11.50 .01 .65**

 *p < .05 (two-tailed). **p < .01 (two-tailed). 

How accurate is the Bayesian network in predicting performance? The last analysis 

examined the accuracy of the Bayesian network with respect to predicting performance using a 

“leave-one-out” analysis. Given all data less one response (the item left out), how accurate is the 

Bayesian network’s prediction of the left-out response? This question was asked for all 39 items 

across all circuit problem-solving items. Accuracy was computed as the percentage of correct 

predictions. For example, 100% accuracy would indicate the Bayesian network correctly 

predicted a participant’s performance (correct or incorrect) on all 39 items. The mean percentage 
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correct, across all participants, was 79% (SD = 12%). The lowest accuracy rate was 43%, and the 

highest accuracy was 90%. 

When accuracy of prediction was examined by item (i.e., on a given item, for how many 

participants did the Bayesian network accurately predict performance?), results were similar. The 

mean was 72% (SD = 14%), the lowest accuracy was 36%, and the highest 94%. We interpreted 

these results as additional evidence that our Bayesian network was measuring systematic 

understanding. In addition, these results provide evidence that the network was reasonably robust 

against missing information.  

Table 11 

Percentage of Responses Accurately Predicted by the Bayesian Network (Correct/Incorrect) 

 n M SD Min. Max. 

Across participants 33 72 12 43 90 

Across circuit problem-solving items 39 72 14 36 94 

 

Summary and Discussion 

The focus of this work has been on gathering validity evidence to help us understand how 

well Bayesian networks could model the knowledge dependencies associated with node-voltage 

and mesh-current analyses. More broadly, to what extent can Bayesian networks be used to infer 

students’ understanding of various circuit concepts given their performance on various circuit 

problem-solving tasks? 

We found evidence in support of our general approach. Results suggested that the Bayesian 

network was working as intended. Interestingly, the posterior probabilities correlated 

significantly with participants’ self-ratings of understanding (r = .40–.83). Further, when the 

posterior probabilities were used as the basis for forming high- and low-performing groups, 

significant differences were found favoring the high-performing group with respect to circuit 

definitions and circuit analysis problems, for both actual and self-assessments, and the high-

performing group also had higher grades in EE courses. Additional evidence of the quality of the 

Bayesian network was found in the accuracy of the prediction of participants’ performance. The 

Bayesian network was successful on average 75% of the time in predicting whether a participant 

was going to get the item correct. This percentage is consistent with work modeling complex 

content (e.g., VanLehn & Martin, 1997; Wei, 2014) but lower than tests with arithmetic (> 95%) 

(e.g., Lee & Corter, 2010; Shih & Kuo, 2005). However, we did not find evidence of an 

association between either conceptual knowledge (essay) or procedural knowledge and circuit 
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problem-solving performance. This was surprising as we expected higher performance on the 

circuit problem solving to be linked to deeper understanding of the content or with more 

knowledge of how to solve the problems.  

The results of this study, while exploratory, are provocative for they suggest that 

probabilistic reasoning approaches can be fruitful in diagnosing students’ understanding of 

different circuit analysis concepts at the group level. We tested a method that is feasible: 

(a) simple scoring (dichotomous scoring of problem-solving steps) and thus a candidate for 

online scoring, and (b) modeling of the knowledge dependencies via Bayesian networks.  

Future Directions 

A clear next step is to gather additional validity evidence that would shed light on the 

accuracy of the network at the individual concept level in the Bayesian network. In the current 

study, we aggregated all concepts in the Bayesian network. Whether the probabilities at the 

individual concept level are in fact accurate in their diagnosis remains unknown. Thus, while 

probabilities of whether someone understands a concept are easy to compute given performance 

data, one is left wondering about the accuracy of the probabilities computed for concepts where 

there is no direct evidence (i.e., actual observable performance). This is clearly an important 

issue for individualized diagnosis, remediation, and instruction, where inferences are likely to be 

made not only about concepts directly tested (with the assessment items), but also about 

antecedent concepts. 

A second area that deserves attention is the sensitivity of the a priori probabilities specified 

in the conditional probability tables. In this study we used a general rubric to guide specification 

of the probabilities. Further work is needed to investigate the robustness of the network against 

swings in the probability specifications. This issue becomes important for practical reasons. If 

such methods are to scale well, there needs to be a simple and feasible method to elicit the 

probabilities from subject-matter experts (e.g., deriving numerical values from qualitative 

statements, Druzdzel & van der Gaag, 2000; Renooij & Witteman, 1999). 

Implications for Assessment and Instruction 

Over two generations have passed since the ideas of programmed, adaptive, and 

individualized instruction were introduced by Lumsdaine and Glaser (1960). Current 

technologies, particularly advances in delivery system (e.g., distributed learning technologies) 

and automated reasoning capabilities (e.g., Bayesian networks), make feasible and seamless 

many of the techniques and ideas that by today’s standards seem cumbersome and impractical. 

Having the capability to model and quantify the knowledge dependencies of a domain is a 

necessary step in establishing a credible link between assessment and instruction. Assessments 
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provide data on a sampling of to-be-learned content, the domain model articulates the 

dependencies among and between the antecedent concepts and the to-be-learned content, 

assessment data fusion occurs via probabilistic statements about performance on the assessments 

and whether concepts are learned, and inferences are drawn about what a student knows about 

various concepts. Echoing the optimisms of Lumsdaine and Glaser (1960), we are well on the 

way to developing the means for detecting gaps in learning and understanding, and the methods 

for implementing individualized and dynamic instruction and assessment.  

While this work has been limited to group-level comparisons, our long-term goal is to 

develop interactive, individualized assessment and instruction to support student learning in 

distance and distributed learning settings. In such settings individualized diagnosis and 

prescription become a clinical judgment about knowledge of particular concepts, and much more 

work is needed to develop methods that are accurate on an individual basis. The findings of this 

exploratory study suggest that automated reasoning can meet this challenge. 
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Appendix A: 

Node-Voltage Analysis Problem-Solving Procedure (Kaiser, 2003) 

 

Procedure 

1. List the information that is requested by the problem. 

2. Examine the circuit to determine the approach for a solution. 

3. Determine if a circuit simplification may be accomplished using an equivalent circuit, for example, a 
parallel, series, delta, or Y, circuit structure. 

4. List known values of circuit variables. 

5. Identify and label the NE Essential Nodes. 

6. Choose one Essential Node and label it with a Reference Potential Symbol. The choice of this node will 
determine the level of simplicity of the calculation. However, any choice of an Essential Node will 
yield the same problem results. You should select in the circuit, that Essential Node that is connected to 
the most branches. 

7. Identify and label the non-reference node voltages. 

8. Each non-reference node voltage is labeled as positive. 

9. Use KCL to write down an equation for each non-reference node, writing the equations in terms of the 
resistances, and node voltages. 

10. Write down constraint equations associated with dependent sources 

11. If a voltage source exists between two essential nodes (and is not in series with any other elements), 
then introduce a current variable associated with this source that will appear in node voltage equations 
at each node at each terminal of this source. 

12. Write down NE – 1 equations. 

13. Solve the set of equations. 

 



 

A

Baye

25 

Appendix B: 

esian Network

 


