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TOWARDS INDIVIDUALIZED INSTRUCTION WITH TECHNOLOGY-ENABLED 

TOOLS AND METHODS: AN EXPLORATORY STUDY1 

Gregory K. W. K. Chung, Girlie C. Delacruz, Gary B. Dionne, Eva L. Baker, John J. Lee, 
and Ellen Osmundson 

CRESST/University of California, Los Angeles 
 

Abstract 

This report addresses a renewed interest in individualized instruction, driven in part by 
advances in technology and assessment as well as a persistent desire to increase the access, 
efficiency, and cost effectiveness of training and education. Using computer-based instruction 
we delivered extremely efficient instruction targeted to low knowledge learners in sixth-grade 
algebra readiness classes and eighth-grade Algebra 1A classes. Our research questions were 
the following: (1) To what extent can very brief exposure to instruction result in learning? and 
(2) How effective is the instruction compared to no exposure? We found that computer-based 
“instructional parcels” can be developed to provide very brief instruction that results in learning 
of mathematics content. 

The current interest in personalization and individualized instruction is driven in part by 

advances in technology (e.g., Advanced Distributed Learning, 2006; IEEE Learning Technology 

Standards Committee, 2006), advances in assessment (e.g., National Research Council, 2001; 

Williamson, Behar, & Mislevy, 2006), and a persistent desire to increase the access, efficiency, 

and cost effectiveness of training and education (e.g., Fletcher, Tobias, & Wisher, 2006). While 

the idea of individualized instruction has existed for some time (Courtis, 1938), what is remarkable 

are the striking similarities of desired goals and methods between current research in training and 

education and work beginning almost a century ago (e.g., teaching machines, Pressey, 1926, 1927; 

Skinner, 1958; Thorndike, 1912; programmed instruction, Lumsdaine & Glaser, 1960; McDonald, 

Yanchar, & Osguthorpe, 2005; mastery learning, Bloom, 1968; domain-referenced testing, Baker, 

1974; Hively, 1974; Hively, Patterson, & Page, 1968; criterion-referenced testing, Glaser, 1963; 

CAI, Atkinson, 1968; Suppes & Morningstar, 1969; intrinsic programming, Crowder, 1960; and 

hypertext, Engelbart, 1962). What differs today, however, is the availability of technology to make 

practical many of the ideas central to individualizing instruction. First, the means now exist to 

deliver tasks that can implement and streamline many of the capabilities that were cumbersome in 

the original formulations of programmed instruction, for example, embedded and dynamic testing, 

immediate feedback, active participation during instruction, and instructional branching. All were 

                                                 
1We would like to thank Donna Morris, Kristin Fairfield, Whitney Wall and the students of Culver City Middle 
School for participating in this study; Jenny Maguire for providing expert review of our materials; Patty Augenstein 
for assistance with the computer lab; and Michelle Chaldu and Long Nguyen for help with data collection. We 
would like to thank Joanne Michiuye of UCLA/CRESST for editorial help with this manuscript. 
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recognized as important capabilities to increase learning, but their implementation was limited by 

the available technology of the time. Second and perhaps more important, advances in the science 

and technology of the assessment of student learning have enabled cost-effective methods to 

embed assessments into digital environments to support diagnosis, feedback, and the selection and 

delivery of appropriate “instructional parcels” tailored to a learner’s particular level of knowledge. 

In this report, we describe our research and development efforts at individualizing instruction 

for low knowledge students learning pre-algebra. Our effort was part engineering (drawing on the 

strongest empirical evidence to design the instruction), part instructional design (developing 

instruction on several pre-algebra concepts), part efficacy testing (testing whether very brief 

exposure to pre-algebra instruction could result in learning), part assessment research (testing a 

novel “next step” assessment for rapid and precise diagnosis), and part technology development 

(testing automated reasoning techniques with Bayesian networks). Our long-term goal is to 

develop an approach to support “faster, cheaper, and better” ways of delivering individualized 

instruction in a distributed learning context. Our research questions for the current study were as 

follows: (1) To what extent can very brief exposure to instruction result in learning? and (2) How 

effective is the instruction compared to no exposure? Implications for education, training, and 

online systems are discussed. 

In the remainder of this report, we first describe our instructional design of what we term 

“instructional parcels”—brief, theory-based, multimedia instruction and practice designed to 

rapidly provide conceptual instruction. Then we describe the use of an innovative and efficient 

approach to the design of measures of pre-algebra knowledge. We then describe the study method 

and results of a test of the approach with middle school students. 

Designing Instruction for Efficient Learning 

A basic assumption underlying our instructional design was that for instruction to be 

maximally effective, particularly when brief, the instructional design should incorporate the 

features known to promote learning. We drew extensively on the work related to multimedia 

learning and cognitive load, analogical reasoning, and feedback (e.g., Black, Harrison, Lee, 

Marshall, & Wiliam, 2003; Catrambone, 1998; Chandler & Sweller, 1991; Kluger & DeNisi, 1996; 

Mayer, 2001, 2005b; Novick & Holyoak, 1991; Sweller, van Merriënboer, & Paas, 1998). Our 

goal was to implement in computer-based instruction the properties with strong empirical evidence 

of effectiveness to deliver extremely efficient instruction targeted to low knowledge learners. 

Conceptual Instruction 

There were two broad instructional design objectives we set for the actual software. The first 

objective addressed the overall structure of the instruction—how should the to-be-learned 
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information be structured to facilitate understanding in content that is typically “brittle” 

(application of math procedures under very specific conditions and tied to the surface form of the 

math expression)? We addressed this objective by providing instruction that conveyed both the 

concepts and procedures of the underlying math concept. Importantly, instruction was based on 

multiple examples applied across different math problems. The desired learning outcome was for 

students to understand that the same solution method or reasoning applied across problems that 

differed in surface features. Instruction was chunked into three areas: what (i.e., the goal 

underlying the math procedure), how (i.e., the procedure), and why (i.e., an explanation of why 

the particular math concept or procedure “works”). 

We designed the instruction to emphasize the relational correspondences among examples. 

Gick and Holyoak (1983) found that performance on transfer items was improved if instruction 

made explicit the comparisons among examples to promote the recognition of similarities. One 

technique is to require learners to explicitly compare examples for similarities (Catrambone & 

Holyoak, 1989; Cummins, 1992; Novick & Holyoak, 1991). Such explicit comparisons promote 

performance on transfer tasks by guiding the learner’s attention to more abstract generalizations 

that might not be obvious in the surface features of the examples. This issue may be particularly 

important with low prior knowledge learners, where directing learners’ attention to superficial but 

semantically related aspects of the problems appears key to learning the underlying structure 

(Catrambone, 1998). Figure 1 shows sample instruction of introducing the goal behind the concept 

of transformations. Transformations refers to the idea of isolating variables by using inverse 

operations.  

 

 

Narration: What are we trying to do? Even though they all look different, we have the same 
goal. We’re trying to find the value of the variable. We want to know what a, x, z, and y are 
equal to. 

Figure 1. Example of instruction that emphasizes the underlying math concept across different surface examples. 
The actual on-screen instruction unfolds in steps and the visual highlighting occurs in coordination with the 
narration. 
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Multimedia-Based Instruction 

The second instructional design objective addressed the delivery of the instruction—what 

techniques could be used to facilitate the communication of the content? We focused on techniques 

that specifically addressed limitations of human cognition (e.g., limited working memory 

capacity), that exploited human sensory channels (visual, auditory), that would be appropriate for 

math, and that were within the capabilities of the available technology. Where practical, we also 

adopted techniques with large effect sizes. We addressed the second objective by adopting many 

of the guidelines derived from research on multimedia and cognitive load (e.g., Clark, Nguyen, & 

Sweller, 2006; Mayer, 2001, 2005a). Figure 2 shows an example of what the screen looked like. 

Note that students could control pacing via the control buttons on the lower right of the screen. 

 

 
Figure 2. Sample screen shot illustrating (a) multiple examples, (b) cuing, (c) segmenting, and (d) split attention. 

Worked-Example Practice 

Similar to the instruction, practice was with multiple examples with different surface forms 

but the same underlying math concept. The practice stage involved students “solving” three math 

problems in parallel using a “next step” approach. We attempted to implement a simplified worked 

example in three stages. First, students were required to identify the appropriate next step of 

solving the problems. Next, given that students were successful, they were asked to identify the 

expression (i.e., if one carried out the next step procedure, what would be the resultant 

expression?). Finally, given that students were successful, they were required to identify the 

underlying math concept. Figure 3 shows a sample screen. Note that in the actual application, the 

practice is administered in three stages, and only the current and previous stages are shown on the 

screen. The student advances to the next stage only after getting all the questions correct on the 

current stage. 
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The purpose of this approach was to provide practice that emphasized the important first 

steps involved in solving math problems, to expose students to math language usage when applying 

math operations, to provide students with practice applying a math concept on different surface 

forms of the problem, to have the technical means of capturing students’ online problem solving 

processes, and to gather information on whether students commit common errors.  

The use of the “next step” was inspired by the work of Kalyuga and Sweller (2004) and 

Kalyuga (2006). They hypothesized that what students wrote down as the first step in solving an 

equation reflected their level of expertise in solving equations. High correlations (rs between .7 

and .9) were found between performance on specifying the first step of a solution and performance 

on specifying the entire solution. Their finding suggests that the first step is the critical event, 

particularly for low prior knowledge students. Thus our instruction attempted to support students 

in identifying the critical first step. 

 

 
Figure 3. Screen shot showing the practice.  
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Tailored Feedback 

After attempting to solve the problems at each stage, feedback was provided to students as 

shown in Figure 4. The feedback included (a) knowledge of results (whether the student got the 

problem correct or incorrect), and (b) explanatory feedback that provided guidance to learners on 

what they should focus on to solve the problem. These two techniques have been found to be 

effective feedback methods, particularly for learners with low knowledge of the domain (e.g., 

Azevedo & Bernard, 1995; Bangert-Drowns, Kulick, & Morgan, 1991; Black et al., 2003; Kluger 

& DeNisi, 1996).  

If the student specified an incorrect response, the explanatory feedback stated what was 

wrong with the response and a hint about what the student should think about to correctly solve 

the problem. If the student specified a correct response, the feedback explained why the response 

was correct. If the student specified “don’t know,” the feedback provided guidance on what the 

student should consider. Finally, access to segments of the original instruction was provided. 

Students could play the video that related to the goal, why, or how instructions that were relevant 

to the particular practice problem. In addition, students could view instruction on related common 

errors. Such feedback was provided for all three stages of the practice. The general timing of the 

feedback was based on findings from Kester, Kirschner, and van Merriënboer (2005), who found 

that procedural information presented prior to the practice task and explanatory feedback provided 

during the practice task led to the most efficient learning.  
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Figure 4. Sample feedback screen. 

Task Sequence 

The general format of instruction was an initial animation-based instruction followed by 

practice opportunities with tailored feedback. Figure 5 shows the flowchart of the task sequence.  
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Figure 5. Flow chart of general task sequence. There are four general stages: (a) initial instruction, 
(b) identifying the “next step” in solving a problem, (c) identifying the equation or expression that 
results from carrying out the step, and (d) identifying the common underlying math property. 

Summary 

Thus, our overall instructional design strategy was pragmatic and focused on addressing the 

question: To maximize the chances of learning, which instructional features have been shown to 

be very effective, relevant to math, and traceable to an empirical research base? Table 1 

summarizes the design properties of the software, our implementation, and the research underlying 

the specific math property. A fuller description is given in Appendix A. 
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Table 1 

Summary of Instructional Design Features Adopted 

Instructional design property Research base 

Use of coordinated graphics and 
human narration 

Modality principle: Learning is higher with graphics and narration than 
from graphics and printed text (Mayer, 2011). Mean effect size is 0.7.  

Complementary sources of 
information—graphics and audio 

Coherence principle: Learning is better when the same information is not 
presented in more than one format and when extraneous words, pictures, 
and sounds are excluded (Mayer, 2011). Mean effect size is 1.0. 

Split attention principle: Materials should be physically and temporally 
integrated (Ayres & Sweller, 2005).  

Learner-controlled pacing Segmenting principle: Learning is greater when a multimedia message is 
presented in user-paced segments rather than as a continuous unit (Mayer, 
2005b). Effect sizes in the range of 1.0. 

Visual annotations Signaling principle: Learning is deeper from a multimedia message when 
cues are added that highlight the organization of the essential material 
(Mayer, 2011). Mean effect size is 0.5. 

Temporal contiguity principle: Learning is deeper from a multimedia 
message when corresponding picture or animation and narration or words 
are presented simultaneously rather than successively (Mayer, 2011). Mean 
effect size is 1.3. 

Use of lay language, first and 
second person references, and use 
of math-specific language  

Personalization principle: Learning is deeper when the words in a 
multimedia presentation are in conversational style rather than formal style 
(Mayer, 2005d) and using a human rather than computer-generated voice 
(Mayer, 2011). Effect sizes in the range of 0.8 to 1.3. 

Instruction centered around 
worked examples 

Worked example: Consists of a problem formulation, solution steps, and 
the final solution (Clark & Mayer, 2011; Renkl, 2005). 

Target low knowledge learners Prior knowledge principle: Instructional strategies that help low knowledge 
individuals may not help or may hinder high knowledge learners (Mayer, 
2001). Effect sizes in the range of 0.6. 

Subgoal chunking and labeling, 
multiple examples 

Structure emphasizing instruction: Instruction that emphasizes the 
structural features that are relevant to the correct solution procedure (Renkl, 
2005). Grouping solution steps by goals and methods, and explicitly 
labeling the chunks as goals and method, particularly across different 
problems with different surface features but with the same underlying 
solution structure, promotes problem solving in low knowledge learners 
(Catrambone, 1998). 

Knowledge of results during 
practice 

Knowledge of results and explanatory feedback promote learning (Bangert-
Drowns et al., 1991; Hattie, 2009; Kluger & DeNisi, 1996). Feedback is 
particularly effective when used to illuminate goals for students, progress 
toward goals, and determine next steps. Examples of effective feedback can 
be used for corrective purposes, to provide information about past attempts, 
to point to alternative strategies, and to increase effort and motivation 
(Hattie, 2009). 

Explanatory feedback tailored to 
participants’ selection 
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Designing Assessments for Rapid and Precise Diagnosis 

To support diagnoses of student knowledge gaps, items were developed to sample the 

following topics: (a) 12 properties of algebra, (b) transformations and related operations, (c) 

arithmetic, and (d) fractions. We used a novel item-generation process intended to provide precise 

information about students’ pre-algebra knowledge. Our assumption is that solving a problem 

requires the successful application of different concepts across multiple steps. Table 2 shows a 

step-by-step derivation for solving the equation 7ݔ െ ሺ3ݔ െ 2ሻ ൌ 38. 

Table 2 

Item Generation Technique Based on Problem Derivation 

Step Equation Transition Operation used from previous step to the current step 

ݔ7 0 െ ሺ3ݔ െ 2ሻ ൌ 38 step 0: given, solve for x 

ݔ7 1 ൅ ሺെ1ሻ3ݔ െ ሺെ1ሻ2 ൌ 38 step 0 → step 1:  distributive property 

ݔ7 2 െ ݔ3 ൅ 2 ൌ 38 step 1 → step 2:  multiplication 

ሺ7ݔ 3 െ 3ሻ ൅ 2 ൌ 38 step 2 → step 3:  factor 

ሺ4ሻݔ 4 ൅ 2 ൌ 38 step 3 → step 4:  subtraction 

ݔ4 5 ൅ 2 ൌ 38 step 4 → step 5:  commutative property of multiplication 

ݔ4 6 ൅ 2 െ 2 ൌ 38 െ 2 step 5 → step 6:  addition property of equality (transformation) 

ݔ4 7 ൅ 0 ൌ 36 step 6 → step 7:  subtraction 

ݔ4 8 ൌ 36 step 7 → step 8:  additive identity 

9 ൬
1
4
൰ ݔ4 ൌ ൬

1
4
൰ 36 step 8 → step 9:  multiplication property of equality (transformation) 

10 ሺ1ሻݔ ൌ ൬
1
4
൰ 36 step 9 → step 10:  multiplicative inverse 

ݔ 11 ൌ ൬
1
4
൰ 36 step 10 → step 11:  multiplicative identity 

ݔ 12 ൌ
36
4

 step 11 → step 12:  multiplication 

ݔ 13 ൌ 9 step 12 → step 13:  division 

 

Each step-to-step transition requires the use of a single or small number of algebra properties 

or arithmetic. The transitions were coded to capture the algebra knowledge required in each 

transition. Note that the decomposition process yielded simpler equations and terms, which we 

used as a source for items. Thus our items were generally of the form identify a valid next step 

instead of solve an entire equation.  
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Deriving items from a single equation yields several benefits: (a) an efficient, simple, and 

precise item-generation scheme that is inherently coherent; (b) a set of items that students can 

solve quickly; (c) items amenable to a selected-response format, particularly the multiple true-false 

(MTF) format (Frisbie, 1992); and most interestingly, (d) a built-in transfer test—solving the 

original equation (or sub-steps within the equation). Example items are shown in Figure 6.  

The use of the next step was inspired by intriguing findings by Kalyuga and Sweller (2004) 

and Kalyuga (2006). The authors gave students equations, but instead of asking students to fully 

solve an equation, the authors asked students to simply write down the first step of their solution. 

Kalyuga and Sweller found this technique to be highly predictive of performance on tasks that 

required students to solve the entire equation. High correlations were found between the two 

methods across different studies, ranging from .7 to .9. While the authors were interested in 

identifying ways of measuring expertise (with more skipped steps indicative of higher expertise), 

the strong relation between the two forms suggested a very efficient assessment.  

 

 
Figure 6. Sample multiple true-false item. Each item is mapped to a single math concept, allowing for precise 
diagnoses of math knowledge. Dots denote the correct answer. 

Research Questions 

We had two research questions related to whether our instructional technique was effective: 

 To what extent can very brief exposure to instruction result in learning? 
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 How effective is the instruction compared to no exposure? 

The first question addresses the basic question of whether our implementation of the 

instructional techniques can be effective. Can even very brief exposure to instruction on pre-

algebra be effective? We know of no other work that has, as a main goal, explicitly designed 

instruction for brevity. Thus, it is an open question on whether such an approach could be effective. 

The second research question was comparative. If our approach demonstrated learning, how 

effective was the instruction? In our case, we used the most straightforward comparison—the no 

instruction condition. Because we were not manipulating instructional variables, we were very 

early in the research, and given that comparisons between instructional techniques are problematic 

(particularly technology vs. “traditional” instruction), we assumed the most appropriate and 

interpretable contrast at this stage of the research would be between students receiving our 

instruction and students receiving no instruction.  

Method 

Participants 

Background. One hundred fifteen participants were recruited from three teachers at an urban 

middle school in southern California. At the end of the first semester participants were drawn from 

two sixth-grade algebra readiness classes (n = 54) and three eighth-grade Algebra 1A classes (n = 

52). The sample was split about evenly by gender and students’ ethnicity was diverse, including 

31% Latino, 25% Asian or Pacific Islander, 17% White, and 13% African American. About three 

fourths of students reported receiving A’s or B’s in math, and nearly all students agreed or strongly 

agreed that they were able to understand their teacher’s explanations in math class, and nearly all 

students agreed or strongly agreed that they were able to read and understand most of the problems 

and explanations in their math textbook. When asked how knowledgeable they were about pre-

algebra, 83% of students reported being moderately or very knowledgeable.  

Correlations among self-reported math grades, knowledge of pre-algebra, and pretest are 

shown in Table 3. In general, achievement variables were significantly related with affective 

variables and language variables. We interpret these relations in light of the student background 

information as suggesting that our sample was typical of middle-school pre-algebra students in 

urban settings. Appendix B contains a more detailed description of the sample and Appendix C 

contains a more detailed description of the measures. 
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Table 3 

Descriptive Statistics and Intercorrelations on Background Variables 

Variable n M SD 1 2 3 4 5 6 7 

Achievement           

1. Pretesta 113 54.2 15.1 –       

2. Self-reported grades in mathb 109 2.9 5.0 -.20 –      

3. Self-reported pre-algebra 
knowledgec 

102 3.0 0.6 .43** -.31** –     

Affect           

4. Interest in mathd 78 2.9 0.7 .31** -.07 .22* –    

5. Self-concept in mathd 78 3.1 0.8 .37** -.19 .52** .49** –   

6. Belief in “math myths”e 78 3.2 0.4 .42** .00 .02 .19 .30** –  

Language           

7. Understand teacher’s 
explanationse 

107 1.6 0.5 -.39** .13 -.42** -.29** -.47** -.19 – 

8. Understand problems and 
explanations in textbooke 

108 1.6 0.6 -.47** .25* -.34** -.31** -.32** -.35** .56**

aMaximum score = 84. b1 = Mostly A’s, 2 = Mostly B’s, 3 = Mostly C’s, 4 = Mostly D’s, 5 = Mostly F’s. c1 = Not 
knowledgeable at all, 2 = Somewhat knowledgeable, 3 = Moderately knowledgeable, 4 = Very knowledgeable. 
d1 = Disagree, 2 = Disagree somewhat, 3 = Agree somewhat, 4 = Agree. e1 = Strongly agree, 2 = Agree, 
3 = Disagree, 4 = Strongly disagree. 

Design 

A pretest, posttest two-condition design was used. Participants in both conditions received a 

pretest one instructional day before the start of the intervention. On the day of the computer-based 

activity, participants in the experimental condition received the individualized remediation 

followed by a posttest. Participants in the control condition received the posttest followed by the 

treatment. This design was used for the control condition to allow those students to participate in 

the computer activity. 

Measures 

Pretest scales and transfer scales. The pretest consisted of 84 items that spanned a range 

of mathematical knowledge and included simple identification of math facts (e.g., whether 0/3 = 

0) to more complex knowledge (e.g., equations with variables on both sides of the equations). 

About 40% of the items used the MTF format as shown in Figure 6. MTF items are highly efficient 

for gathering achievement data and they tend to yield higher reliabilities than other selected-

response formats (Frisbie, 1992). Appendix D contains example items from the pretest.  
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Twelve scales were developed and tested in the pretest. Scales were dropped from the 

analyses for the following reasons: (a) reliability less than .60 (three scales), (b) no instruction 

delivered that directly mapped to the scale (two scales), or (c) the scale had less than four items 

regardless of reliability (three scales). 

Two complex tasks were created, one related to fractions and the other scale related to 

rational number equivalence. The fractions scale was made up of constructed-response items that 

required students to evaluate or solve a problem related to adding or multiplying fractions. The 

rational number equivalence scale was an explanation task, which required students to explain how 

to find equivalent fractions and to provide numeric examples. Appendix E contains the transfer 

items and the scoring rubric.  

Table 4 shows the scale information for the pretest scales and the complex task scales. 

Overall, the pretest subscales retained for analyses had moderate reliability and the transfer scales 

had acceptable reliabilities. 

Table 4 

Scale Reliability 

Scale n No. of items Alpha 

Pretest 81 84 .89 

Pretest subscales    

Adding fractions 101 8 .68 

Distributive property 97 8 .70 

Transformations 104 6 .63 

Multiplicative identity 93 7 .61 

Complex task scales    

Multiplying and adding fractions 96 6 .71 

Rational number equivalence 113 2 .75 

 

Diagnosing Knowledge Gaps 

Bayesian network (BN) of pre-algebra knowledge. We developed a BN to represent the 

domain of pre-algebra. Each hypothesis node could assume the state understands or does not 

understand, and each observable node could assume the state correct or incorrect. Participants’ 

performance (correct or incorrect) on a test item was used as inputs to the observable nodes. 

Relations captured the presumed knowledge dependencies among the different concepts. For 

example, understanding the concept of addition implies understanding of the concept commutative 
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property of addition. The BN was constructed by an electrical engineering graduate. In general, 

nodes higher in the network tended to be more conceptual and abstract (e.g., simplifying) while 

leaf nodes tended to be skill-oriented (e.g., multiplicative identity). The BN included 28 concepts 

related to the properties of algebra, arithmetic, equality, evaluation, fractions, simplifying, rational 

numbers, and factoring.  

A student understanding a concept was operationalized as a fusing of test item performance 

data across the items that required use of the particular concept. The items sampled a variety of 

conditions (e.g., identifying the “next step” in a solution process; use of multiple problems that 

incorporated fractions, integers, variables; correctly solving a problem).  

Given a student’s performance on the items of the type shown in Figure 6, the BN was used 

to compute the probability of a student understanding various pre-algebra concepts. The 

probabilities were used to classify a student’s understanding on a particular concept as high, 

medium, or low. This classification was taken as the diagnosis of a student’s knowledge and used 

as the basis for determining what concepts each student would receive. 

Procedure 

A pretest was administered to students via the classroom teacher. The pretest was a self-

contained paper booklet, with all the directions contained in the booklet. Teachers were instructed 

not to help students with the content. Students had 60 minutes to complete the pretest. The teachers 

reported that students finished the pretest within a range of 45–60 minutes.  

The following week, which represented a gap of one instructional day, students were 

administered pre-algebra instruction on a computer in a computer lab. Students were randomly 

assigned to computer stations. Students received individualized instruction in the following sense: 

Based on students’ pretest performance, students received instruction that they were predicted to 

need help on. In general, students received instruction on four to six concepts within the allotted 

45-minute period. Participants in the instruction condition received the instruction before the 

posttest, and participants in the control condition completed the posttest before receiving 

instruction. 

The posttest was tailored to each individual and included only the concepts the student 

received instruction on. The items on the posttest were identical to the items on the pretest. After 

completing the posttest, students filled out a demographic survey, a satisfaction survey, and a 

“math myths” survey. 
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Results 

Preliminary Analyses 

Check for accuracy of diagnoses. Analyses were conducted to evaluate the quality of the 

classification of students into high, medium, and low knowledge categories. We checked for group 

differences on the pretest by classification. There were significant differences by knowledge level 

for the adding fractions and transformations scales, with students classified as low performing the 

lowest, followed by students classified as medium and high. For the distributive property scale, 

there was no difference between the medium and high groups, and for the multiplicative identity 

scale, there was no difference between the low and medium groups. Because we were only 

interested in participants who demonstrated knowledge gaps, we collapsed the low and medium 

groups. Overall, with the collapsing, the groups appeared differentiated. 

Check for preexisting group differences. A t test was performed to test for a preexisting 

difference in group means between the control (M = 57.7, SD = 16.1) and experimental (M = 53.0, 

SD = 14.6) conditions. The difference between the two conditions was close to significant 

(t(111) = 1.45, p = .15). Because the t test suggested a potential difference between groups on pre-

algebra knowledge, subsequent between-group analyses included the pretest as a covariate. 

Check for implementation of the treatment. The proportion of time spent on the 

instruction relative to the actual running time of the video instruction was computed for each 

student. The computation was based on students’ log files that contained event markers indicating 

the start and end times related to the instruction. A value less than 1 suggests that the student had 

skipped through the video and a value greater than 1 suggests the student replayed portions of the 

video.  

Table 5 shows the distribution of students with respect to the time spent on different 

instruction for different concepts. As Table 5 shows, a number of students did skip the instruction. 

We used the proportion measure as an indicator of treatment implementation and reasoned that if 

students did not receive sufficient exposure to the instruction, then they could not profit from it. 

Thus, we excluded from subsequent analyses students who spent less than two thirds of the time 

viewing the instruction. 
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Table 5 

Distribution of Students Spending Different Amounts of Time on the Initial Instruction by Initial Skill Classification 

Concept 
Instructional time 

(mm:ss) 

Proportion of time spent on the initial instruction 

≤ 0.33 0.33 – 0.67 0.67 – 1.00 1.00 – 1.33 ≥ 1.33 

Adding fractions 10:58 10 5 15 12 2 

Distributive property 4:09 12 11 11 12 2 

Transformations 4:03 7 9 14 7 0 

Multiplicative identity 3:04 4 3 10 13 2 

 

Main Analyses 

Overview of analyses. The main analyses addressed the two research questions: (a) To what 

extent can very brief exposure to instruction result in learning? and (b) How effective is the 

instruction compared to no exposure? Note that separate analyses were conducted by scale. For 

example, participants who received instruction on adding fractions were tested for learning by 

comparing posttest to pretest performance on the adding fractions scale. The items in the scale 

were identical on both occasions. Because participants received instruction on multiple concepts 

the same participant was included in analysis related to those concepts. That is, if a participant 

received instruction on adding fractions and multiplicative identity, then that participant was 

included both in the adding fractions analysis and in the multiplicative identity analysis. Thus, 

caution is warranted on interpreting the results as there may be spillover effects. 

Between-group comparisons included the pretest as a covariate, as the random assignment 

resulted in pretest performance favoring the control condition (p = .15). The pretest included the 

same items on all posttest scales, in addition to more basic math facts. The pretest was taken as a 

much broader measure of pre-algebra knowledge than any one scale. Support for this interpretation 

is seen in the significant correlations between the pretest and nearly all achievement measures, 

attitudinal, and language measures (see Table 3). 

Research question 1: To what extent can very brief exposure to instruction result in 

learning? To address the first question, we examined within-subjects learning from pretest to 

posttest, by condition. Table 6 shows the results of the analyses. In the no-instruction condition, 

there were no significant differences between pretest and posttest on the scales or on the transfer 

tasks. This result strongly suggests opportunity-to-learn effects due to instruction and (re)testing 

effects were not strong enough to affect posttest performance. In the instruction condition, students 
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in general performed higher on the posttest compared to the pretest, on nearly all the scales. 

Posttest results for the complex task are tentative.  
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Table 6 

Within-Subjects Comparison of No-Instruction and Instruction Conditions 

 No instruction  Instruction 

  Posttest  Pretest  
Test of group differences 

(paired t test)   Posttest  Pretest  
Test of group differences 

(paired t test) 

 n M (SD)  M (SD)  t df p d  n M (SD)  M (SD)  t df p d 

Scale               

Adding fractionsa 9 4.67 (2.29) 3.67 (1.66) 1.50 8 .17 -- 22 4.95 (2.13) 3.91 (2.00) 2.63 21 .02 0.50 

Distributive propertya 13 4.46 (1.45) 4.62 (2.43) -0.23 12 .78 -- 18 5.44 (1.50) 4.44 (2.12) 1.80 17 .09 0.54 

Transformationsb 13 4.23 (1.79) 3.62 (1.80) 1.98 12 .07 0.34 21 4.76 (1.09) 3.81 (1.91) 3.21 20 <.01 0.61 

Multiplicative identityc 7 5.29 (1.25) 5.00 (1.83) 0.60 6 .57 -- 21 5.81 (0.98) 4.00 (1.61) 5.29 20 <.01 1.36 

Complex tasks                 

Multiplying and adding fractionsb 12 3.00 (1.28) 2.67 (1.72) 0.74 11 .47 -- 11 4.09 (1.58) 3.36 (2.25) 1.62 10 .14 0.37 

Rational number equivalenceb 13 1.46 (2.18) 1.08 (1.89) 0.81 12 .43 -- 12 4.25 (2.56) 3.17 (2.48) 1.78 11 .10 0.43 

aMaximum score = 8. bMaximum score = 6. cMaximum score = 7. 
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The within-subjects results provide evidence that our computer-based instruction was 

effective on posttest scales and the results are suggestive of a learning effect on the complex tasks. 

While the general finding that learning occurred from instruction is not surprising, we note with 

emphasis that significant learning occurred with very brief exposure to instructional activities 

(effect sizes from .50 to 1.4).  

Research question 2: How effective is the instruction compared to no exposure to 

instruction? To address the second question, we examined differences on the posttest between the 

instruction and no-instruction condition. Table 7 shows the results of the analyses. With the 

exception of the adding fractions scale, there were significant differences (p < .06) on the other 

posttest scales and on the transfer tasks. The effect sizes ranged from 0.5 to 0.9, suggesting the 

instruction was effective. 
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Table 7 

Time on Task, Adjusted Means, Standard Errors, and Analysis of Covariance (ANCOVA) for Pre-Algebra Concepts 

 

Time spent on task components 
(instruction condition) 

 
Comparison of treatment effects 

Instruction  Practice  Instruction  No instruction  ANCOVAa 

M (SD)  M (SD)  n Adj. M SE  n Adj. M SE  df F ratio p effect sizeb 

Scale             

Adding fractionsc 10:46 (2:37) 6:30 (3:32) 22 5.02 0.40 9 4.52 0.62 28 0.46 .50 -- 

Distributive propertyc 4:09 (0:57) 1:55 (0:40) 18 5.39 0.36 14 4.22 0.41 29 4.46 .04 0.76 

Transformationsd 3:50 (0:25) 3:14 (2:19) 21 4.90 0.26 13 4.00 0.33 31 4.58 .04 0.77 

Multiplicative identitye 3:33 (2:21) 2:31 (1:43) 21 5.90 0.21 7 5.03 0.38 25 3.91 .06 0.91 

Complex tasks 19:17 (3:37) 13:17 (6:08)           

Multiplying and adding fractionsd --  -- 12 3.98 .31 13 2.94 .30 22 5.74 .03 0.91 

Rational number equivalenced --  -- 12 4.09 .65 13 1.61 .62 22 7.51 .01 0.50 

aBetween-groups df = 1. bHedge’s g. cMaximum score = 8. dMaximum score = 6. eMaximum score = 7. 



 

22 

The between-subjects results provide evidence that our computer-based instruction was 

effective, compared to having no instruction. Not only did participants learn in general as 

suggested in the within-subjects analysis, but the learning attributable to the instruction (taking 

differences in pre-algebra knowledge into account) resulted in participants in the instruction 

condition performing much higher than participants in the no-instruction condition (effect sizes 

range from .8 to .9). 

The most intriguing finding was an effect on the students’ performance on the transfer tasks. 

The complex tasks were constructed requiring students to generate a solution (vs. the MTF format). 

In addition, the rational number equivalence task required participants to first explain how to find 

fractions that are equivalent to 2/3, and then provide examples. Student responses were judged for 

conceptual understanding (vs. procedural). Participants in the instruction condition outperformed 

participants in the no-instruction condition on the posttest complex tasks, with effect sizes of .9 

(multiplying and adding fractions) and .5 (rational number equivalence). 

Discussion 

This study investigated whether an integrated instructional and assessment system, drawing 

on empirically supported instructional design techniques and assessment approaches, could result 

in low prior knowledge students learning pre-algebra topics after very brief exposure to 

instructional activities—typically less than 5 minutes of direct instruction and less than 3 minutes 

of practice. We found evidence of instructional effectiveness. Participants who received instruction 

outperformed participants who did not receive instruction on nearly all measures of performance. 

This finding held for posttest scales (that were identical to pretest scales) and for near transfer 

items that required solving fraction problems or required explanations related to rational number 

equivalence. While such differences are unremarkable in and of itself, what is remarkable is that 

such differences were observed given the brevity of the instructional treatment. 

Limitations 

This study has several limitations. First, about one third of the sample did not view the 

instructional videos despite their brevity. This result may be because the videos were not engaging, 

not understandable, or other reasons. A second limitation arises from the individualization of 

instruction and assessment. Individuals were given instruction only on topics they were predicted 

to need remediation on, and they were tested only on those particular topics. Thus, for each topic, 

only a subset of the sample experienced the intervention. This reduced the sample size used for 

the analysis of effects; thus, these results should be taken as tentative. 
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Implications 

The most important finding is that we have tentative evidence that computer-based 

“instructional parcels” can be developed to provide very brief instruction that results in learning 

of pre-algebra content. The most important implication of this finding is that our approach is 

practical and works in field settings. These instructional parcels were designed to be self-

contained, stand-alone content with embedded practice. While we did not implement a fully 

automated system, every aspect of the work has been designed to support such an implementation. 

For example, the pretest items (MTF format) were paper-based but they were designed to be 

implemented on a computer and designed to work with Bayesian networks (e.g., dichotomous 

scoring simplifies the integration with Bayesian networks).  

A persistent general question that underlies our work is to what extent can “dumb” 

technology using smart methods be used to result in significant learning outcomes? Is the only 

way to meet the “2-sigma” challenge (Bloom, 1984) with intelligent tutoring systems (ITS)? Are 

there alternative instructional methods and technologies that can be used to replicate many of the 

desirable techniques associated with human tutors and ITSs, but in a way that does not rely on 

highly sophisticated artificial intelligence approaches? ITSs require extremely detailed student 

models and sophisticated inference engines. Development of ITSs is expensive and proprietary, 

and requires very specific skills. 

As suggested by the results of this study, the simple approach we adopted may be able to 

support student learning and fill many classroom capability gaps. We think we have developed a 

general approach for targeted instructional methods that is simple, flexible, easy to use, and 

workable under nominal classroom conditions. We believe that the combination of judicious 

design of multimedia messages, tailored feedback addressing specific misconceptions, and 

multiple-example practice opportunities is key to promoting learning in general, and perhaps 

critical when learning is expected to occur over a brief period of time. 

Next Steps 

There are several next steps of this work. First, the measures need to be refined so that more 

scales can be included in the analyses. Several scales were dropped due to poor reliability and low 

number of items. A second area is to examine retention: While effects were demonstrated, they 

were based on testing immediately following the intervention. Demonstrating longer term 

retention would bolster claims of effectiveness considerably. Another area to investigate is the 

accuracy of the initial diagnoses. While we used a Bayesian network to compute probabilities that 

a student understood different concepts, we did not conduct an extensive examination of the 

accuracy of our diagnosis. This is clearly an area in need of further investigation, as 
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individualization is in large part based on accurate diagnosis of knowledge capabilities and gaps. 

Finally, our initial objective was to design the most effective instruction by integrating a variety 

of techniques. The drawback of this approach is that it is not possible to identify the relative 

effectiveness of the various techniques. Future work that addresses this issue may yield even more 

efficient instruction by providing information that would inform decisions about tradeoffs between 

development time, development cost, degree of learning, length of instruction, and practice time. 

The signature properties of our instructional parcels is that they are brief, stand alone, and 

combine assessment, instruction, and practice. They are not intended to replace teachers or large 

curricular units, but rather to provide instruction on a single topic. We believe our approach is 

feasible and applicable to a variety of contexts ranging from K-16 instruction to military training, 

providing supplementary help to students on an as needed basis. To realize the promise of 

individualized instruction, systems need to address the practical constraints of educational and 

training environments. Instructors in school settings typically have well over 100 students and are 

often limited in what they can do to meet individual student needs—whether it is one-on-one 

tutoring, keeping track of students’ progress, or even correcting homework. Flexible instructional 

parcels may be one solution. 
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Appendix A: 

Summary of Design Guidelines Implemented in Instruction 
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Key instructional 
design property Implementation Multimedia principle 

Use of 
coordinated 
graphics and 
human narration  

The instruction combined graphics and narration. Text was used to show the math 
principle being covered and the associated type of explanation (i.e., Goal, Why, 
How). A narration was used to step the student through the instruction.  

Modality principle: Learning is higher with 
graphics and narration than from graphics and 
printed text (Mayer, 2005b). Effect sizes in the 
range of 0.97. 

Complementary 
sources of 
information—
graphics and 
audio 

We designed the instruction so that each channel (visual and aural) provided 
different information. Thus, one channel alone would be insufficient to understand 
the information. 

Graphics were used to show the form of the math expression or equation, and 
narration was used to provide the ongoing explanation that was coordinated with 
the graphics display. 

All the relevant material was coordinated physically and temporally. Equations and 
their decomposition appeared adjacent to each other, and the narration was 
coordinated with the animation. 

Coherence principle: Learning is better when the 
same information is not presented in more than one 
format (Mayer, 2005c). Effect sizes in the range of 
1.3. 

Split attention principle: Materials should be 
physically and temporally integrated (Ayres & 
Sweller, 2005).  

Learner-controlled 
pacing 

User controls were provided so that students could stop, replay, or fast-forward 
through the instruction. Instruction was segmented into major sections that 
explained what the goal of using the math operation was, why the math concept 
was important, and how to apply the operation.  

Segmenting principle: Learning is greater when a 
multimedia message is presented in user-paced 
segments rather than as a continuous unit (Mayer, 
2005b). Effect sizes in the range of 1.0. 

Visual annotations Visual annotations were added to the instruction to explicitly point out what the 
narration was referring to. Several cuing techniques were used: circling the element 
under discussion, highlighting or superimposing an image to demonstrate 
equivalency (see Figure 2), or using arrows to denote procedural flow.  

Color conventions were used such that the visual annotations were always the same 
color and different from the math equation or expression. 

The visual and aural information were always synchronized in delivery. That is, the 
narration was coordinated with the graphics and cuing. The cuing was intended to 
guide students’ attention to the important information and the narration explained 
the related math procedure or concept. 

Signaling principle: Learning is deeper from a 
multimedia message when cues are added that 
highlight the organization of the essential material 
(Mayer, 2005c). Effect sizes in the range of 0.6. 

Temporal contiguity principle: Learning is deeper 
from a multimedia message when corresponding 
animation and narration are presented 
simultaneously rather than successively (Mayer, 
2005c). Effect sizes in the range of 1.3. 

Use of lay 
language, first and 
second person 
references, and 
use of math-
specific language  

An informal delivery style was adopted rather than a technical style. The use of 
technical math language was minimal. Typically, the math terminology was 
introduced only after the math concept was presented in lay language. The 
presentation was of the form: “… and in math we call this the commutative 
property of addition.” 

First and second person language was used as well.  

Personalization principle: Learning is deeper when 
the words in a multimedia presentation are in 
conversational style rather than formal style 
(Mayer, 2005d). Effect sizes in the range of 1.3. 
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Key instructional 
design property Implementation Multimedia principle 

Instruction 
centered around 
worked examples 

All instruction was centered around the use of worked examples that demonstrated 
the application of the particular math concept. The initial expression or equation 
was given, and the intermediate steps of the solution were shown (with use of cues) 
and explanatory narration.  

Worked-out example: Consists of a problem 
formulation, solution steps, and the final solution 
(Renkl, 2005). 

Target low 
knowledge 
learners 

Our target student population was low knowledge students.  Prior knowledge principle: Instructional strategies 
that help low knowledge individuals may not help 
or may hinder high knowledge learners (Mayer, 
2001). Effect sizes in the range of 0.6. 

Subgoal chunking 
and labeling 

Instruction was chunked to emphasize conceptually meaningful chunks of a 
problem's solution or subgoals. 

Grouping of solution steps by goals and methods, 
and explicitly labeling the chunks as goals and 
method, particularly across different problems with 
different surface features but with the same 
underlying solution structure, promotes problem 
solving in low knowledge learners (Catrambone, 
1998). 

Multiple examples Instruction emphasized explicit comparison of problems, use of multiple examples 
with different surface forms but the same structural form. Instruction also directed 
attention to both abstract and concrete commonalities among the math problem 
examples. 

Structure emphasizing guideline: Instruction that 
emphasizes the structural features that are relevant 
with respect to the selection of the correct solution 
procedure.  

Knowledge of 
results during 
practice and 
explanatory 
feedback tailored 
to participants’ 
selection 

The content of the feedback differed depending on learners’ performance. The 
feedback is whether the selection was correct or incorrect. If the response was 
incorrect, the feedback briefly explained why the response was incorrect and 
provided a suggestion on what to consider. Access to a portion of the original video 
was also provided to specifically address the goal of the problem, the reason why 
operations were performed, how to execute the procedure, and any common errors 
associated with the problem. 

Knowledge of results and explanatory feedback 
promote learning (Bangert-Drowns, Kulick, & 
Morgan, 1991; Kluger & DeNisi, 1996). 
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Appendix B: 

Student Background Detail 

Demographics. One hundred fifteen participants were recruited from three teachers at an 

urban middle school in southern California. The participants were drawn from two sixth-grade 

algebra readiness classes (n = 54) and three eighth-grade Algebra 1A classes (n = 52). Fifty were 

males and 48 females, and there were 34 Latino, 27 Asian American, 19 White, 14 African 

American, and four biracial. Of the remaining participants, nine did not report grade information, 

15 did not report gender information, and eight did not report ethnicity information. 

Self-reported achievement. Ninety-seven percent of the students reported understanding 

spoken English well always or most of the time, and all students reported reading English well. 

Seventy-three percent of the students reported receiving A’s or B’s in math, 16% receiving C’s, 

and 4% receiving D’s. Ninety-eight percent of students reported being able to understand their 

teacher’s explanations in math class, and 94% agreed that they were able to read and understand 

most of the problems and explanations in their math book. When asked how knowledgeable they 

were about pre-algebra, 83% of students reported being moderately or very knowledgeable.  

Self-reported math myths. Students held a variety of positive and negative notions about 

math. For example, 83% of students disagreed with the idea that there is only one way to get an 

answer; 93% disagreed that if a math problem took longer than 10 minutes, it is impossible; 88% 

disagreed with the idea that math is too hard for most people to learn; 97% agreed that most math 

problems could be solved given enough time; and 97% disagreed with the idea that only geniuses 

are capable of understanding formulas and equations. On the other hand, 35% of students 

perceived math as just plugging numbers into formulas, 43% of students agreed that there is a math 

gene that some people have and others don’t, and 50% of students agreed that math is mostly 

memorizing. 
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Appendix C: 

Student Background Measures 

Math myths. We adopted a scale from Amdahl and Loats (1995) to measure participants’ 

beliefs about math. The items in this scale were:  

When solving problems, there is only one way to get the answer. 

If a math problem takes more than 5 or 10 minutes, it is impossible. 

Math is just plugging numbers into formulas. 

There is a math gene some people have and others don’t. 

Math is hard—too hard for most people to learn. 

Math is mostly memorizing. 

With enough time, most math problems can be solved. 

Only geniuses are capable of understanding formulas and equations. 

Only geniuses are capable of creating formulas and equations. 

Participants were instructed to indicate for each item, on a 4-point Likert scale (1 = strongly 

agree, 2 = agree, 3 = disagree, and 4 = strongly disagree), how much they agreed with the 

statements about math. Cronbach’s alpha was .72 (n = 94). 

Interest in mathematics. We adopted a scale from Marsh, Hau, Artelt, and Baumert (2006) 

to measure participants’ interest in math. The items in this scale were:  

When I do mathematics, I sometimes get totally absorbed.   

Because doing mathematics is fun, I wouldn’t want to give it up.  

Mathematics is important to me personally. 

Participants were instructed to indicate for each item, on a 4-point Likert scale (1 = disagree, 

2 = disagree somewhat, 3 = agree somewhat, and 4 = agree), how much they agreed with the 

statements about math. Cronbach’s alpha was .63 (n = 104). 

Self-concept in mathematics. We adopted a scale from Marsh et al. (2006) to measure 

participants’ self-concept in math. The items in this scale were:  

I get good marks in mathematics. 

Mathematics is one of my best subjects. 

I have always done well in mathematics. 
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Participants were instructed to indicate for each item, on a 4-point Likert scale (1 = disagree, 

2 = disagree somewhat, 3 = agree somewhat, and 4 = agree), how much they agreed with the 

statements about math. Cronbach’s alpha was .80 (n = 103). 

Student survey. We administered a background survey to gather information on 

participants’ age, grades in math, perceived level of knowledge in pre-algebra, and language. We 

also asked students about their experience with the software and asked them for comments about 

how the system could be improved. 
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Appendix D: 

Sample of Pretest Items 

 

 
Figure D1. A sample of items related to basic math facts. 
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Figure D2. Multiple true-false format using a single step equation. 

 
Figure D3. Multiple true-false format involving fractions and multiple steps in the prompt. 
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Appendix E: 

Transfer Test Items 

 

Adding and multiplying fractions transfer items 

Evaluate 32
4 2   

Evaluate 
1 1 2

10 2 5
    

Evaluate 
8 3

12 4
   

Evaluate 
2

4 3

a b
   

Reduce 
6

32
 to its simplest form. 

Find the prime factors of 56. 
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Rational number equivalence explanation transfer items 

(a) Explain how to find fractions that are equivalent to 
2

3
. 

(b) Show an example of how to use your method to find three fractions that are equivalent to 
2

3
. 

 
Scoring rubric: 

 
 

 
 


