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ABSTRACT

Recent calls for understanding-based mathematics instruction imply a need
for alternative kinds of assessment (National Council of Teachers of
Mathematics, 1989; Webb & Romberg, 1992; Wilson, 1992). One of the most
significant implications of the National Council of Teachers of Mathematics
Standards and other reform documents is that assessment strategies should be
aligned with theoretical analyses of the construct domains they are intended to
assess. To be useful for instructional purposes, assessments should also be
sensitive to changes in students’ understanding. At present there are few
published reports of assessment or instruction strategies based on systematic
models of mathematics knowledge, and even fewer reports on the construct
validation of such strategies.

The purpose of this study was to develop and test measures of principled
understanding, based on conceptual analysis of a key domain in elementary
mathematics, fractions. The study compared two differently-instructed groups of
fifth-grade students. One group, comprising 11 randomly-assigned classrooms,
received explicit instruction on fraction principles deriving from measurement
situations. Another group of 11 randomly-assigned classrooms practiced using
more traditional area representations and computation techniques. Before
instruction all students took a 60-item measure of general fraction knowledge.
After instruction both groups completed representational knowledge and
explanation tasks, in addition to tests of problem solving, conceptual knowledge,
and computation knowledge. The problem-solving, conceptual knowledge, and
computation tests, in addition to teacher ratings and standardized achievement
test scores, were used to validate the representational knowledge and explanation
measures.

One of the most important findings is that students who received explicit
instruction on fraction principles performed better than students in the other
group on nearly all measures of principled understanding, and equally well on
measures of computation. In response to instruction, many students appeared to
add new ideas about fractions to their existing repertoires, without discarding or
reworking previously learned ideas, and to draw upon all available ideas in
constructing their explanations. Results also showed the feasibility of assessing
important aspects of mathematical understanding through students’ use of
mathematical representations and language. It was found that mathematics
justifications and explanations could be reliably scored and that students used
their representational knowledge when they constructed justifications and
explanations.   
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INSTRUCTIONAL INFLUENCES ON CONTENT AREA EXPLANATIONS AND

REPRESENTATIONAL KNOWLEDGE:   EVIDENCE FOR THE CONSTRUCT

VALIDITY OF MEASURES OF PRINCIPLED UNDERSTANDING–

MATHEMATICS

David Niemi, CRESST/UCLA

INTRODUCTION

Statement of the Problem

In response to unacceptable levels of mathematics achievement in the U.S.,
and to the problematic nature of prevailing instruction and assessment practice, a
number of influential professional groups have put forth compelling proposals for
the reform of mathematics education (e.g., California Board of Education, 1991;
National Council of Supervisors of Mathematics, 1989; National Council of
Teachers of Mathematics [NCTM], 1989; National Research Council, 1989).
These proposals express a new conception of mathematics achievement, in which
understanding plays a central role and mathematical knowledge is conceived as a
system of knowledge about mathematical concepts, operations, symbols,1 and

                                                
1 Following usage common in mathematics education and psychology literature, the term
“symbol” is used here to denote an element of what has been called mathematical
“orthography,” such as 2, +, =, or 3/5, whose referent is typically a mathematical concept or
operation. In Peircean semiotic theory (e.g., Houser, 1987; Peirce, 1932), however, notational
elements are not considered to be symbols in themselves; instead, a symbol consists of the
following set of relations:

    i nt erpret ant

sign

object

The Semiotic Triangle

In Peircean semiotics, the meaning of a symbol inheres in its triadic structure, not in a
mechanical mapping between symbol and object or between symbol and interpretant. According
to Peirce, the elements in this relational network cannot be decomposed without altering the
meaning. Symbols, concepts and operations, and situations—the elements of mathematical
knowledge assessed in this study—are respectively analogous to the elements of Peirce’s triad:
sign, interpretant, object. Greeno expresses a similar interpretation of mathematical meaning:
“Processes of learning to construct and reason with numerical mental models probably require
coordination of symbolic representations of numbers with physical quantities or mental models
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situations (e.g., Cole, 1986, 1990; Webb & Romberg, 1992; Wilson, 1992). This
conception contrasts with the more common “instrumental” view, in which
mathematics is implicitly or explicitly defined as a collection of memorized
“problem-solving” procedures that have little or no relation to one another
(Skemp, 1976). Unfortunately, mathematics as a system of knowledge is not an
idea that has taken hold  in mathematics education: The instrumental view
dominates conventional practice.

In the typical elementary school classroom, 85% or more of the available
instruction time is devoted to demonstrating and practicing computational
procedures; 15% or less is given to the development of conceptual understanding
(Peterson & Fennema, 1985; Porter, 1989; Romberg & Carpenter, 1986). Most
procedures are taught and practiced in isolation from one another and from any
conceptual knowledge students may have (Davis & McKnight, 1980; Fey, 1979;
McKnight et al., 1987; Porter, 1989; Romberg, 1987; Skemp, 1976; Stodolsky,
1988). Learners are supposed to acquire the procedures, which are dignified by
mathematical names such as “addition” and “subtraction” (McLellan & Dewey,
1895), by extended repetitious practice, usually after watching demonstrations on
a blackboard. This rote-acquisition-of-algorithms method has persisted for at least
a century and is not limited to the United States: researchers in the Second
International Study of Mathematics found that current mathematics teaching
can be categorized almost universally as formal lectures on procedures and rules
for manipulating symbols, followed by lengthy rehearsal (McKnight, 1987).

Rote-acquisition approaches to instruction imply that mathematics is an
unstructured collection of meaningless procedures, a position contradicted by the
findings of cognitive scientists and other researchers studying the psychology of
mathematics (e.g., Schoenfeld, 1987), and by a massive body of evidence
suggesting that rote learning of isolated rules leads to mathematical
incompetence. In general students do not understand the mathematics they have
been “taught” and cannot remember or apply procedures they have practiced for
many years (e.g., Brown & VanLehn, 1982;  Brownell, 1945; Carpenter et al.,
1988; Davis, 1984; Davis & McKnight, 1980; Dossey, Mullis, Lindquist, &
Chambers, 1988; Greeno, 1978; Hart, 1981;  Hiebert, 1988; Lesh, Landau, &

                                                                                                                                                      
of quantities” (1991, p. 197), that is, links between interpretants (“numerical mental models”),
signs (“symbolic representations”), and objects (“physical quantities or mental models of
quantities”).
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Hamilton, 1983; National Council of Teachers of Mathematics, 1989; Resnick,
1987; Romberg & Carpenter, 1986; Silver, 1986; Silver & Carpenter, 1990).
Approaches that take mathematics to be a system of knowledge are more
consistent with cognitive theory (e.g., Anderson, 1983, 1990; Ausubel, 1968;
Gelman & Greeno, 1989; Marshall, 1988; Ohlsson & Rees, 1991), empirical
evidence (e.g., Chi & Ceci, 1987;  Chi, Hutchinson, & Robin, 1989; Hiebert &
Carpenter, 1992; Mayer, Larkin, & Kadane, 1984), and the views of an increasing
number of mathematicians and educators (e.g., Davis & Hersh, 1981; NCTM,
1989; Webb & Romberg, 1992).

Theoretical Framework

One concern in this study has been to engage a theoretical framework
powerful enough for the analysis of elementary mathematics concepts. Classical
concept formation theory does not adequately account for the construction of
fundamental math concepts (Ernest, 1991; Glasersfeld, 1989; Herscovics &
Bergeron, 1993; Johnson-Laird, 1988; Lakoff, 1988; Wittgenstein, 1968). As
Herscovics and Bergeron (1993) observe, it is hard to imagine teaching even the
most basic concepts, such as number or function, simply by presenting their
attributes for students to memorize, or by listing examples and non-examples.
Knowledge about mathematical concepts cannot be reduced to lists of defining
attributes, as in classical concept formation theories, and memorization of
attributes and exemplars is unlikely to lead to greater understanding than rote
acquisition of procedures. At the same time, assessment of piecemeal acquisition
of knowledge does not give a valid account of mathematical understanding.

It is now widely acknowledged that mathematical concepts, like other
complex concepts, are not optimally characterized as single discrete ideas but as
structured systems of knowledge and skill. (Ernest, 1991; Glasersfeld, 1989;
Herscovics & Bergeron, 1993; Johnson-Laird, 1988; Lakoff, 1988; Wittgenstein,
1968). Concepts exist in and are characterized by systems of relations to other
concepts, each concept serving as an axis around which other forms of knowledge
can be organized. The fundamental problem in mathematics education is therefore
mastery of a system of concepts, and the essential problem of assessment is to
ascertain the degree and quality of that mastery. Thus the NCTM Standards and
other reform documents stress that assessment strategies should be aligned with
the complex structure of mathematics: “Consideration of the structure of
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mathematics in constructing assessment methods affects how tasks are designed
and chosen, how tasks are administered, the desired form of response, [and] what
rules are followed to make judgments about responses” (Webb & Romberg, 1992,
p. 45). Unfortunately, this alignment rarely occurs. At present there are few
published reports of assessment or instructional strategies based on systematic
models of mathematics knowledge, despite the fact that most contemporary
accounts of mathematical understanding incorporate such models. And in many
areas of mathematics, the essential theoretical and empirical work needed to
determine what it means to understand important concepts and principles and
how that understanding may be developed and assessed in classrooms has yet to
be done. As a result, traditional instruction and assessment have not much
attended to the structured nature of mathematical understanding, and
educational practice is not linked as yet to this powerful theoretical framework.
Many widely used large-scale tests, for instance, do not adequately assess
understanding of specific concepts or relational knowledge of any kind and are not
useful for decision making in the course of teaching for understanding. Their
validity rests primarily on “face validity” judgments of content, on correlation with
similar tests, on “predictive” correlations, and on post-hoc analyses of the factors
represented by different items, not on diagnostic utility or construct validity of the
measures. Traditional content and predictive validation procedures provide only
limited evidence about the construct-interpretation and use of scores (Messick,
1989), however; many standardized achievement tests have been “validated” by
these methods, yet fall short as useful measures of understanding.

When mathematical understanding is conceived as a personally-constructed
system of relations among symbols, concepts, operations, and objects or
situations, valid assessment of understanding for instructional purposes requires
that one obtain information on students’ knowledge about each of these entities,
as well the relations among them. For example, one would expect of students who
had constructed mathematical meaning for the representations and situations
they had encountered in school that they would be able to: (a) see that there can
be multiple ways to represent the same concept or mathematical structure; (b)
see that the structure of a task may be the same despite changes in
representation—different representations do not necessarily imply a different
concept or operation; (c) use representations of concepts effectively in problem
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solving; and (d) be able to explain the meaning and use of concepts and
representations.

Identification of a Domain for Study

Fractions were chosen as the domain in which to address the objectives of
this study for reasons that include the following: (a) fractions constitute one of the
most complex and important domains in elementary school mathematics; (b)
fractions are among the domains targeted as conceptually important but
underrepresented in contemporary curricula, according to the NCTM Standards
and state curriculum frameworks (e.g., California Board of Education, 1991); (c)
few children at any grade level appear to know what fractions are or what fraction
symbols represent, a consistent finding in both cognitive research and assessment
contexts (e.g., Carpenter et al., 1988; Dossey et al., 1988; Hart, 1981; Hope &
Owens, 1987; Kerslake, 1986; Kieren, Nelson, & Smith, 1985; Lesh et al., 1983;
Nik Pa, 1989; Peck & Jencks, 1981; Post, 1981; Silver & Carpenter, 1990);  (d)
the inability to develop fraction understanding inhibits many students from
mastering mathematics beyond the elementary school level (e.g., Hart, 1981;
Hope & Owens, 1987; Kerslake, 1986; Kieren et al., 1985; Kouba, Carpenter, &
Swafford, 1990; Nik Pa, 1989; Behr, Harel, Post, & Lesh, 1992); and (e) evolving
theories of mathematical understanding, recent cognitive research, and analyses
of the fraction concept suggest new possibilities for addressing these problems.

Although its aim was to contribute to the improvement of mathematics
assessment and instruction in general, the study focused on fifth-grade students’
fraction understanding. Fifth grade is a critical year because for many students (in
California) it is the last year of elementary school. And fifth grade represents a
turning point in fraction instruction. In kindergarten through fourth grade, children
typically encounter a bewildering array of fraction representations and meanings,
including parts of pies or brownies; subsets of sets of objects; “sharing” situations;
parts of line segments; fractions as operators, quotients, ratios, proportions,
probabilities, and measures; and decimal fractions. The implicit expectation is
that students will induce fraction understanding as a result of exposure to many
different representations, models, and activities. The crucial question is whether
students are able to generalize across these disparate experiences to construct a
coherent understanding of fractions and fraction representations, one that serves
as a basis for understanding operations on fractions, and for making sense of new
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situations and tasks. This is a question of singular consequence, because a review
of commonly-used instructional sequences (e.g., Eicholz, O’Daffer, & Fleenor,
1989; Fennel, Reys, Reys, & Webb, 1988; Scott, Foresman, 1988) shows that,
after fifth grade, fraction instruction becomes increasingly and more explicitly
procedural, emphasizing computational algorithms rather than the meaning of the
fraction concept. The NCTM Standards (1989) recommend such a sequence:
kindergarten-through-fourth grade fraction curricula should focus on meaning, and
fifth-grade and middle school curricula should cover operations and the relation of
fractions to other constructs such as decimals. On the evidence, most schools
adhere to this sequence, so if students do not know the meaning of fractions by
fifth grade, they are unlikely to get many more opportunities to develop that
understanding.

Objectives of the Study

The purposes of this study were to develop and test related assessment and
instruction activities based on analysis of a pivotal concept in elementary
mathematics (fractions), to ascertain whether the assessments were responsive
to variations in instructional content, to examine whether the assessments
provided diagnostically useful information, and to explore relationships among
measures of different types of knowledge and performance, including external
validity measures.

REVIEW OF LITERATURE

Children’s Difficulties With Fractions

Fraction knowledge forms a basis for understanding a wide range of related
concepts, including ratio, proportion, decimals, per cents, and rational numbers;
and it is essential to expertise in more advanced topics such as algebra and
calculus (Kieren, 1992). Because of their importance and difficulty, fractions are
conventionally introduced to children in kindergarten and occupy a prominent
place in school curricula from second grade on. In typical textbook series (e.g.,
Eicholz et al., 1989; Fennel et al., 1988; Scott, Foresman, 1988), 25% or more of
the intended instructional material in Grades 2 through 6 covers fraction symbols
and related rational number representations.
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Yet even the simplest fraction problems vex many students, as analyses of
large-scale assessment data show. Fifty-five percent of the 13-year-olds in one
national sample selected either 19 or 21 as the best estimated answer to 12/13 +
7/8, and 30% added numerators and denominators to find the sum of 1/2 and 1/3
(Post, 1981). In the fourth National Assessment of Educational Progress (NAEP),
only 44% of eleventh graders could choose the correct answer for the following
item (Carpenter et al., 1988, p. 40):

5 1/4 is the same as:

a. 5 + 1/4

b. 5 - 1/4

c. 5 x 1/4

d. 5 / 1/4.

NAEP results indicate that many students see fractions as purely symbolic
entities not linked to concepts or principles. Several findings support this
conclusion. Performance is much higher on problems where known algorithms are
easy to apply than on problems that are relatively difficult to solve using common
algorithms (e.g., 3 1/2 - 3 1/3 versus 7 1/6 - 3 1/2 ). But there is no corresponding
effect related to the ease with which conceptual knowledge might be used to solve
a problem, suggesting that many students do not have or do not use conceptual
knowledge to answer NAEP items.

In more complex problem-solving situations, where greater understanding is
required, performance is even more egregious. Studies across a range of grade
levels confirm that many students resort to searching among procedures that
have almost no meaning to them in order to find one that might lead to an answer,
and cannot evaluate or justify their solution procedures (Behr et al., 1992; Behr,
Lesh, Post, & Silver, 1983;  Behr, Wachsmuth, & Post, 1985; Hart, 1981;
Kerslake, 1986; Kieren, 1988; Nik Pa, 1989; Pandey, 1991; Peck & Jencks, 1981;
Post, 1981; Silver, 1981; Wearne & Hiebert, 1988a, 1988b). In one study, 90% of
several hundred sixth-through-eighth-grade students interviewed could not give
any meaningful explanation or representation for fraction addition and were judged
to have a conceptual base inadequate to guide problem solving or further study of
fractions (Peck & Jencks, 1981). When asked to sketch fractions, nearly all
students could show 1/2 but fewer than half could represent fractions such as 3/5
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(Peck & Jencks, 1981). Researchers in another extensive and widely-cited project
found that fourth-through-eighth-grade students’ fraction knowledge was
extremely unstable and susceptible to almost any type of perceptual distraction
(e.g., Behr et al., 1983, 1992; Lesh et al., 1983).

Taken together, these studies document profound deficiencies in children’s
fraction understanding, and the glaring failure of instruction to address those
deficiencies. In consequence of these deficiencies, the NCTM (1989) and other
influential professional and government groups have called for mathematics
education to move toward a greater focus on mathematics understanding. Yet the
statements published by these groups contain a relatively small number of
examples of recommended classroom activities and assessment tasks. None of
them provide detailed conceptual analyses of any domain in mathematics, nor
specific information on how to help students construct conceptual understanding,
nor specifications for assessments that might help to ascertain whether students
have constructed such understanding. The strategy for addressing these issues in
this dissertation begins with an analysis of what it means to understand the
fraction symbol.

As the mathematician Rene Thom (1973) has argued, “The real problem
which confronts mathematics teaching is not that of rigor, but the problem of the
development of ‘meaning,’ of the ‘existence’ of mathematical objects” (p. 202). The
concept of “meaning” is far from transparent when applied to the term “fraction,”
however, which no doubt accounts for much of the difficulty of teaching and
learning about fractions. Despite the proliferation of efforts to explicate the
fraction concept, no single definition of fractions has been identified and used
consistently in the literature,  (e.g., Behr et al., 1983, 1992; Clements & Campo,
1990; Hope & Owens, 1987; Hunting, 1984; Kieren, 1980, 1988; Larson, 1979; Nik
Pa, 1989; Novillis, 1976; Ohlsson, 1988; Pothier & Sawada, 1983). In some cases
investigators use the same label for different constructs; in others, different labels
for equivalent constructs. Sometimes fractions are equated with rational numbers
(Clements & Campo, 1989), while in other reports they are called “subconstructs”
(Behr et al., 1983; Kieren, 1980), “applications” (Ohlsson, 1988), or “elements of
equivalence classes” (Behr et al., 1992) of rational numbers.

Recent analyses of the semantics of rational numbers reveal that fractions
are part of a family of “subconstructs” of rational numbers that includes parts-of-
wholes, decimals, ratios, rates, quotients, operators, and measures (Behr et al.,
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1983; Kieren, 1980). When the symbol a/b represents a fraction, it can be added to
other fractions. When it represents a ratio, it cannot be added in the same way to
other ratios. This confusing “multi-representationality” complicates the process of
learning the meaning of the fraction symbol, at least to the extent that students
are exposed to different subconstructs. At least one researcher has resigned
himself to the unfortunate ambiguities of fraction usage, arguing that it would be
futile to try to standardize the vocabulary related to fractions and rational
numbers (Vergnaud, 1983). In this study it has been assumed that it is all but
futile to try to teach for, assess, and validate assessments of mathematical
understanding without explicating the meaning of the concepts, principles, and
procedures to be understood.

Sense and Reference in Fraction Semantics

In an argument paralleled by Detlefsen’s (1986) thesis on ways to validate
knowledge claims in mathematics, Ohlsson (1987) asserts two sources of meaning
for mathematical constructs. First a construct may acquire meaning from the
formal theory in which it is embedded: “The axioms and theorems of the theory
function as meaning postulates that specify the mathematical meaning of the
construct” (Ohlsson, 1987, p. 61). Second, constructs may acquire meaning from
their applications:  “Applications confer both sense and reference, sense being
specified by a natural language concept that circumscribes the class of real-world
situations to which the construct is applied. The reference is specified through a
mapping between the math construct and real-world objects” (Ohlsson, 1987, p.
61).

Since many formal theorems are advanced achievements occurring
relatively late in the history of mathematics (e.g., the laws of the number system
and the definition of numbers as entities obeying those laws), these theorems can
hardly be taken as starting points for developing arithmetic understanding.
Historically, understanding of arithmetic preceded formulation of the laws of
number, and this ordering has been sensibly recommended by mathematics
educators and researchers since at least the time of Dewey (McLellan & Dewey,
1895). It is implausible to expect, for example, that students can construct a
formal number theory before learning counting principles and the laws of
arithmetic (Ohlsson, 1987). The recommended strategy is therefore to begin with
activities, objects and situations that enable concept development and provide
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referential meaning for mathematical symbols (a course recommended by
Brownell, 1945; Clements & Campo, 1989; Davydov & Tsvetkovich, 1991;
Glasersfeld, 1987, 1989;  Goldin, 1987; Hiebert & Carpenter, 1992; Lampert,
1986; McLellan & Dewey, 1895; Menchinskaya, 1969; National Council of
Teachers of Mathematics, 1989; Ohlsson, 1987; Resnick, 1987, 1989; and many
others). One effect of learning to understand the language of arithmetic in this way
is that “procedures and principles become easier to learn and to understand”
(Ohlsson, 1987, p. 319). For this reason, the National Council of Teachers of
Mathematics Curriculum and Evaluation Standards recommend that school
curricula should focus on conceptual understanding:

A conceptual approach enables children to acquire clear and stable concepts by
constructing meaning in the context of physical situations and allows mathematical
abstractions to emerge from empirical experience. A strong conceptual framework
also provides anchoring for skill acquisition. Skills can be acquired in ways that
make sense to children and in ways that result in more effective learning. A strong
emphasis on mathematical concepts and understandings also supports the
development of problem solving. (1989, p. 17)

Opportunities to develop referential meaning have another function, which is
to demonstrate that the laws of arithmetic are “true,” “to give intuitively
convincing demonstrations, in lieu of the strict proofs which presumably should
take their place when the learner has reached a more mature age” (Ohlsson, 1987,
p. 311).

Importance of Symbolic Understanding

Compelling arguments for providing a referential semantics have been made
on the basis of the inherent “representationality” of mathematical activity. The
burden of the argument is twofold: (a) symbols are indispensable to mathematical
activity (Davis & Hersh, 1981; Goldin, 1987; Kaput, 1987; Pimm, 1987; Resnick,
1987; Skemp, 1982); and (b) mathematical symbols have meanings and may be
interpreted; they are not just marks that can be manipulated to perform
calculations (Davis & Hersh, 1981; Skemp, 1982). With respect to the second
point, it has been noted that many mathematical symbols have multiple
meanings or referents, permitting a great variety of situations to be represented
by a small number of symbols. For example, the symbol 2/3 represents a rational
number which in turn can represent diverse situations, including those involving
ratios, rates, proportions, and division. Understanding the applications of a symbol
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means that one can abstract the elements that different problem situations have
in common and can represent these elements by mathematical symbols, giving
access to solution procedures that might otherwise be unavailable.

Historically symbols and representations have played an essential role in the
development of mathematical thought. Descartes, for instance, argued that
symbolic writing made it easier to keep mathematical elements in mind, permitted
the external representation and visualization of ideas, and enabled
mathematicians to organize ideas and patterns of reasoning more succinctly and
develop broader intuitions (Bednarz, Dufour-Janvier, Poirier, & Bacon, 1993).
Mathematical symbols can also be subsumed under the general claim that explicit
representation of knowledge “provides an intellectual tool of great power,
generality, and cultural significance” (Bruner & Olsen, 1977-78, p. 12).
Mathematical symbols hardly constitute “an intellectual tool of great power” in
elementary school, however, where most students and possibly some teachers do
not understand what the symbols they are using mean.

Fractions as Pieces of Pie

One particular semantic referent or model has dominated elementary
fractions instruction. In this model, the denominator of a fraction is interpreted as
the total number of parts in some object (often a pie) or set of objects, and the
numerator as a number of those parts selected for some purpose. This is a “part-
whole” model of fractions (Behr et al., 1983; Kieren, 1980, 1988; Novillis, 1976).
Part-whole illustrations make it easy to generate language about fractions
because already-acquired whole number language can be used. Part-whole models
can also be easily assimilated to counting schemas, particularly when all
examples presented to students are “already divided up.”  Exclusive reliance on
part-whole illustrations risks leading many students into misconceptions,
however. Fraction numerators and denominators can be seen in these situations
as unrelated whole numbers representing two separate counts. Children simply
learn to put the outcome of one count (number of pieces in the “part”) above a
“fraction line” and the outcome of the other count (number of pieces in the
“whole”) below the line. A fraction such as three-fourths is then regarded only as
the outcome of a double count and not as a single number or quantity. This makes
it more difficult to conceive fractions as numbers. Under this model, fractions
greater than one are conceptually anomalous. (In fact most textbooks refer to
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fractions such as 7/6 as “improper”; 1 1/6 is not called a fraction but a “mixed
number.”)

Both Davydov (Davydov & Tsvetkovich, 1991) and Dewey (McLellan &
Dewey, 1895) have criticized part-whole instruction for its reliance on “vague
percepts” in place of concepts or principles. Other critiques of the part-whole
model spring from the fact that this model does not generalize well to other
fraction applications and rational number subconstructs. A fraction is not “a piece
of pie that you eat,” but an abstraction, a number that represents a relation
between two other numbers: “The thought of 7/8 demands the thought of both
numbers, 7 and 8, and the thought of their modification each through the other”
(Harris, 1895, p. vii).

“To begin the teaching of fractions with vague and undefined ‘units’ obtained
by breaking up equally undefined wholes—the apple, the orange, the piece of
paper, the pie—may be justly termed an irrational procedure,” McLellan and
Dewey (1895) argue. “Half a pie, e. g., is not a numerical expression at all, unless
the pie is defined by weight or volume; the constituent factors of a fraction are not
present; the unity of arithmetic is ignored; the process of fractions is assumed to
be something different from that of number as measurement; it becomes a
question—it actually has been questioned—whether a fraction is really a number”
(McLellan & Dewey, 1895, p. 140).

Data support the conclusion that it is difficult to develop the concept of a
fraction as a number representing a relation between two numbers (or two
quantities) simply by partitioning, “shading in,” or combining parts of objects (e.g.,
Kerslake, 1986; Kieren, 1992). These activities tend to lead to perceptions of
fractions as pieces of objects, that is, away from, not toward, a more advanced
rational number concept (Harris, 1895). McLellan and Dewey advance the claim
that “the definitions which ignore fractions as a mode of measurement are in
general vague and inaccurate, and lead to much perplexity in the treatment of
fractions. It is hardly accurate to say that a ‘fraction is a number of the equal
parts of a unit,’ or that ‘it originates in the division of a unit into equal parts.’
These definitions overlook the important distinction between unit and unity. A pie
as typically used is not a unit of measurement nor does it become one after it has
been cut into pieces. After measuring its surface area, this area can be regarded
as a unity of units, or sum” (1895, p. 132). It has also been argued that the part-
whole model does not yield a good theory for fractional quantities because among
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other things it implies that the result of joining 1/4 and 2/4 is 3/8 (Davydov &
Tsvetkovich, 1991; Kerslake, 1986; Ohlsson, 1988). This is an extremely common
misconception, held by many children throughout elementary school. It is not
unusual for students to offer part-whole diagrams as “proof” that a/b + c/b =
(a+c)/(b+b) (Kerslake, 1986), as shown in Figure 1.

Kieren (1992) points out serious discontinuities in the traditional sequence for
fraction instruction, which begins with the assumption that fractions are parts of
wholes and makes several quantum leaps to teaching procedures (such as adding
unlike fractions) that are based on number theory principles. The full sequence
has five levels:

Level 1: Fractions are assumed to be parts of wholes.

Level 2: Fractions are generated by counting parts in a single predivided whole.

Level 3: Fractions in general are assumed to represent double counts (as
opposed, for example, to representing a relation between two quantities);
they are generated by counting the number of pieces in a whole and the
number of pieces in some part of the whole.

Level 4: Fractions with like denominators are added by counting like “parts.”

Level 5: Unlike fractions are added according to number theory principles. This
requires finding common denominators, using equivalence principles.

It is presumptuously thought that this sequence represents a hierarchy. In
fact, as Kieren (1992) has pointed out, knowledge developed early in this sequence
has little bearing on the procedures taught later; for example, the idea of a fraction
as a part of a pie cannot be used to justify the procedure for adding 4/3 and 7/5.
(Among other reasons, one cannot take 4/3 of a single pie.) To cope with these
discontinuities, some teachers give mathematically inapt justifications, such as
“You can’t add thirds and fourths because that’s like adding apples and oranges.”

     
+ =

         
1
2        +        

1
2           =            

2
4 

Figure 1. Using part-whole figures to justify
an incorrect addition procedure.
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The concept of fractions as fractional quantities implies an alternative to
part-whole instruction, specifically one based on measurement applications. It
also implies that assessment should not be limited to part-whole models but
should encompass understanding of fractional quantities.

Fractions as Quantities

Understanding fractions as quantities implies the construction of several
related principles, including but not limited to the following:

1. Principles for measuring quantities, such as:
(a) The “equal interval principle”: all intervals or units in a measured or

partitioned quantity must be equal.
(b) The size of the units used in measurement does not affect the

quantity measured but is inversely related to the outcome of the
measurement.

2. Any quantity can be measured by some smaller quantity or partitioned
into smaller quantities.

3. Between any two numbers you can find an infinite number of fractions.

4. For any given fraction you can find an infinite number of equivalent
fractions.

5. Any two quantities of the same type may be compared by measurement.
One quantity may be identified as a referent quantity and the other expressed as a
fraction of the first. Davydov and Tsvetkovich (1991) have argued that fraction
understanding implies the ability to establish the units necessary to carry out this
operation.

6. Two quantities may be easily compared or added if they have been
expressed in terms of the same measurement unit.

7. Quantities cannot be directly compared, added, or subtracted unless they
have the same units of measure.

All of these principles can be developed and understood in the context of
measurement activities, and as a set they have been consistently targeted by
researchers studying quantitative understanding (e.g., Behr, Wachsmuth, Post, &
Lesh, 1984; Bright, Behr, Post, & Wachsmuth, 1988; Davydov & Tsvetkovich,
1991; Gelman, Cohen, & Hartnett, 1989; Kerslake, 1986; Larson, 1979;
Muangnapoe, 1975; Novillis, 1976). Among the important ideas that can be
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derived from these principles about quantities is the concept of fraction
equivalence. For example, the relation between two quantities can be expressed in
an infinite number of ways simply by changing the unit used to measure the
quantities. If one length is found to be 3 inches and another 5 inches, the relation
of the first to the second is 3/5. If the same lengths are measured by one-half-inch
units, the relation becomes 6/10, and so on. Equivalence is an extremely
important feature of fractions, underlying many operations, and has been
identified as the “fundamental property” of fractions (Davydov and Tsvetkovich,
1991).

Fraction addition and other operations can also be derived from
measurement situations. The procedure for adding 2/3 and 1/2 can be understood
in terms of re-measuring the three quantities (the two fractional quantities and
the “whole” or referent quantity to which they are related) with a smaller unit, in
this case a unit that is 1/12 of the whole quantity. Figure 2 illustrates this re-
measurement. After 2/3 and 1/2 have been expressed in terms of twelfths, the two
fractions can be added. The challenge in this situation is finding a new unit that
can be used to express the two fractional quantities.

Research on Measurement Applications of Fractions

One of the instructional approaches designed for this study focused on the
above principles. This approach was modeled in part on successful fraction
instruction demonstrated by Davydov and Tsvetkovich (1991). These authors

10
1
2

6
12

2
3

8
12

1
2    =   6

12    and   23    =   8
12 

so   12    +   23    =   6
12    +   8

12 

Figure 2. Expressing 1/2 and 2/3 as twelfths.
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reported a high level of fraction understanding among third-grade students in
response to their method, which emphasized the development of fraction language,
principles and symbol use in the context of measurement activities. Their method
avoided some of the pitfalls inherent in part-whole models. The search for a
common denominator, for example, was related to finding a common
measurement unit with which to express quantities. However, results reported are
mainly anecdotal; there are no statistical tests, and even when percent of items
correct on pre- and posttests is given, the number of students tested is not stated.
To assess fraction understanding, Davydov used number lines, measurement,
finding equivalent fractions, and finding fractions between two numbers tasks.

In another study, Sambo, cited in Kieren (1992), demonstrated the
effectiveness for Nigerian seventh graders of a measure-oriented approach to
fraction equivalence and addition. Sambo’s strategy derived from the isomorphism
between the mathematics of linear measure and rational number but Kieren’s
description of the interventions used in Sambo’s unpublished dissertation was not
detailed enough to be useful here. Nevertheless, development of the assessment
and instruction for this study was stimulated by the results of these studies, as
well as those from related research on number lines.

Research on Quantitative Understanding

Number Lines

Several researchers in addition to Davydov and Tsvetkovich have taken the
ability to recognize or place fractions on number lines as evidence of
understanding of the quantitative nature of fractions. Larson (Larson, 1979;
Novillis, 1976) found in a series of studies that elementary and middle school
children have difficulty identifying or placing fractions on number lines,
particularly when the number lines show more than one unit. Associating a proper
fraction with a point on a number line proved more difficult for intermediate grade
students than associating a proper fraction with a part-whole model where the
unit was a geometric region (Novillis, 1976) and with a part-group model where the
unit was a set (Novillis, 1976). Larson (1979) contends that the difficulty of
number lines is attributable to the difficulty of identifying the unit when multiple
units are represented; the unit cannot be taken for granted as it can in
partitioning a geometric region or set. This point may also account for her finding
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that for seventh graders associating proper fractions with points on number lines
of length one was significantly easier than associating proper fractions with points
on number lines of length two. Another result Larson obtained is that associating
proper fractions with points on number lines whose units were subdivided into
segments equal in number to the denominator of the fraction to be represented
was significantly easier than with points on number lines where the number of
segments did not equal the denominator.

These tasks should have been equally difficult regardless of the number of
partitions or whether the number lines represented one or two units. Difficulties
suggest that students were mechanically applying part-whole concepts or other
inappropriate routines and were lacking knowledge of number line representations,
a concept of proper fractions as naming a number of equivalent parts of a defined
unit, or a concept of fractions as names for numbers (Larson, 1979). A related
point was made by Muangnapoe (1975) who found that third and fourth graders
tend to treat a total number line as a unit no matter how many units are actually
represented. Streefland (1978) saw the number line as a critical device for helping
students to develop a coherent fraction model, but argued that it should be used as
a tool for formalizing experience and organizing results from action-oriented
experiences. This approach is closer in spirit to the instruction developed for this
study than that of other researchers who have studied whether students could
learn specific procedures for placing fractions on number lines. Bright et al. (1988),
for example, found that 4–8 days of such “procedural” instruction can be effective
in improving performance on number line tasks.

Effects of Fraction Familiarity and Size

Salim, in a study reported in Vergnaud (1983), found that fraction
understanding was strongly related to the numerical value of the fractions. The
difficulty of three different expressions of the fraction relation (“find the compared
quantity,” “find the operator,” “find the referent quantity”) was expected to vary,
as was the difficulty for discrete (set of pearls) and continuous (discs and strips)
quantities. There were some differences, but Vergnaud (1983) described them as
“not as large as expected and very small compared with the differences due to the
numerical values” (p. 168). All tasks were easily accomplished for both continuous
and discrete applications of 1/2 and 1/3, but the same tasks with other fractions,
particularly non-unit fractions (numerator ≠ 1), were difficult for many students.
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For unit fractions (numerator = 1), there were only “slight” differences on the three
relational variants; differences for non-unit fractions were greater.

Salim found a four-year gap between mastery of 1/2 and mastery of other
unit fractions on most tasks; that is, mastery of tasks involving 1/2 occurred up to
four years earlier than mastery of tasks involving other unit fractions. 1/4 was the
next fraction mastered after 1/2; 1/3 proved more difficult than other unit
fractions. In the first grade, 1/2 was “fully mastered” by 30% of the subjects and
“partially mastered” by 50%. By the fifth grade, all students had mastered 1/2 but
only 40% had mastered 3/4 and 2/5. On a simpler task, where students were
presented disks (partitioned by lines) and asked to show 1/2, 1/4, 1/5, 3/4, and 2/5,
50% of the first grade students succeeded with the last two fractions. Their
strategy was simply to count pieces of the disk, e.g., three pieces for 3/4. A similar
strategy worked for comparing 3/5 and 2/5; many first graders said that three of
something was more than 2 of something. These are whole number strategies that
work on certain fraction tasks but not others. First and second graders, for
example, could not successfully compare fractions when the denominators were
different because a larger denominator means a smaller fraction. When one is
interested in whether students have a mathematically correct fraction concept,
and are not simply using whole number principles to solve problems, the choice of
tasks is critical.

In another sequence of studies investigating children’s rational number ideas
in Grades 2–8, Lesh (Lesh, 1981; Lesh et al., 1983) found that task
characteristics such as number size, context, and type of manipulative material
caused performance variations, suggesting that many students have unstable
models. For example, word problems differed from analogous real-world problems
in difficulty, predominant representational mode used in solution, and most
frequent error types. It is difficult to draw definite conclusions from Lesh’s studies,
however, because task characteristics are varied unsystematically and statistical
tests are not reported.

Assessing Fraction Understanding as a System of Knowledge

To capture the embeddedness of mathematical concepts in organized
knowledge structures, several different models and theories have been developed
in the last 15 years or so. Mathematical knowledge has been variously conceived
in terms of relational or schematic knowledge (Skemp, 1972, 1976), conceptual
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fields (Vergnaud, 1983, 1988; Webb & Romberg, 1992), conceptual schemes
(Herscovics & Bergeron, 1993), and theories about concepts (Detlefsen, 1986;
Kitcher, 1983; Ohlsson, 1988). These highly related constructs, two of which are
considered in more detail below, coincide in highlighting the central status of
mathematical concepts in organized knowledge structures.

Conceptual Schemes

Herscovics and Bergeron (1993) have introduced the expression “conceptual
scheme” to refer to relational structures or networks in a given concept domain.
This phrase refers to the notion of a network of related knowledge about a concept
together with the situations where such knowledge can be used. Analysis of a
concept scheme provides the basis for designing assessment tasks and
instructional activities. The notion of a conceptual scheme is fundamentally
consistent with contemporary versions of schema theory (e.g., Anderson, 1990;
Chi & Ceci, 1987;  Chi et al., 1989; Marshall, 1988), as well as other approaches to
understanding that discuss the integration of skills and concepts and the
advantages of such an integration (e.g., Ausubel, 1968; Brownell, 1967; Gelman &
Greeno, 1989; Hiebert & Carpenter, 1992; Mayer et al., 1984; Ohlsson & Rees,
1991). Schemas have been thought of as organizing and relating both declarative
knowledge—”knowledge about facts and things”—and procedural knowledge—
”knowledge about how to perform various cognitive activities”—(Anderson, 1985,
p. 198) as well as the strategic (Greeno, 1978; Linn, Baker, & Dunbar, 1991;
Messick, 1984) or interpretive knowledge (Gelman & Greeno, 1989) that facilitate
problem solving; and linguistic/symbolic knowledge that enables explicit expression
of concepts and principles (Brown, 1987). Numerous related analyses of expert
knowledge focus on knowing the concepts and principles that organize the domain
and represent another way of referring to schema constructs (e.g., Gelman &
Greeno, 1989; Ohlsson & Rees, 1991; Skemp, 1972).

Across these related theoretical frameworks, building new conceptual
understanding can be seen as a process of learning to operate within a conceptual
scheme; that is, learning: (a) to operate within the system; (b) to make
connections among concepts and between concepts, symbols, and skills; and (c) to
use concepts to make sense of situations, solve problems, and generate new
knowledge. Point (c) implies that both concepts and the symbols used to represent
them can be connected to semantic knowledge. This is consistent with the
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frequently-made point that mathematics has semantic content. It has often been
argued, for example, that mathematical symbols are not just empty tokens that
can be arranged and manipulated to perform calculations (Davis & Hersh, 1981;
Goldin, 1987; Kaput, 1987; Pimm, 1987; Resnick, 1987; Skemp, 1982). Rather,
the marks or symbolic representations can be interpreted as referring to
mathematical concepts and operations, which in turn can be applied to
practical/concrete/physical/“real-life” objects, situations, and activities.

Several authors have explicitly addressed the general question “How is
systematic understanding of mathematics constructed?” from an assessment
perspective. Webb and Romberg (1992), for example, outline a strategy for
identifying key elements in a structured domain that builds on Vergnaud’s (1983,
1988) theory of conceptual fields. A conceptual field has several types of elements:
a set of symbols; concepts and operations represented by the symbols; procedures
for transforming the symbols; and objects, actions, and situations that give
meaning to the symbols and concepts. These elements map directly onto those in
the theories of mathematical representation referred to earlier.

Vergnaud’s notion of conceptual fields is based on the premise that “a small
number of symbols and symbolic statements can be used to represent a vast
array of different problem situations” (Webb & Romberg, 1992, p. 45). This means
that many different assessment situations can be generated from the small set of
symbols that define a single conceptual field. Assessing a conceptual field requires
that the defining symbols, concepts, and situations be identified, a process that
Webb and Romberg (1992), following Vergnaud (1983), call “constructing the
domain.”  Hively, Patterson, and Page (1968) in effect describe a similar
methodology for specifying assessment domains, albeit within a different
theoretical framework. Constructing the domain yields a “map” or relational
network of domain knowledge. This map provides a framework for assessment
task design that is somewhat different from other possible frameworks such as
content-by-behaviors. When students (as opposed to assessors) construct such a
map, it is equivalent to a mental model or schema for the domain.

Analysis of Elements in the Conceptual Domain

Following Vergnaud, a three-step process was used to specify elements in the
domain for this study:

1. Identification of symbolic expressions characterizing the domain.
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2. Specification of implied tasks in the domain, including symbolic
manipulation.

3. Identification of situations that give meaning to concepts represented by
the defining symbols, or to operations performed on the symbols.

The symbolic expressions that defined the target domain for this study were
the fraction symbol a/b, defined as representing a fractional quantity, and related
expressions such as a/b = c/d. Tasks implied by these symbols include, for
example, representing fractional quantities and equivalent fractions. Implied
situations include a great diversity of contexts in which it is useful to represent
and compare or operate on fractional quantities. In the assessment tasks devised
for this study, many of these situations were described verbally and pictorially in
word or “word-and-picture” problems or were represented graphically in
representational knowledge items. In addition, students were expected in their
problem-solving justifications and explanations to make connections among
symbols, graphic representations, linguistic representations of principles and
concepts, and “real-life” situations.

Construct Validation of the Assessments

Construct validity has traditionally been evaluated by “testing what qualities
a test measures, that is, by determining the degree to which certain explanatory
concepts or constructs account for performance on the test” (Messick, 1989, p.
16). When the goal is to provide broad predictive or evaluative information, as in
most large-scale standardized achievement testing, only highly indirect and
usually inadequate answers are obtained for the question “Do students understand
what they are doing when they do mathematics?”  Valid information on
understanding of particular concepts is generally not obtainable from measures
like these that consist of items sampled from many disparate domains and that
are not aligned with schematic conceptions of mathematics understanding. Even
Bloom (1956) has argued that testing large numbers of discrete skills and
fragments of knowledge “might lead to fragmentation and atomization of
educational purposes such that the parts and pieces finally placed into the
classification might be very different from the more complete objective with which
one started” (pp. 5-6).
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Given the considerable evidence on the power of testing to influence
curriculum, testing, and learning (Linn et al., 1991; Fredericksen, 1984; Garcia,
Rasmussen, Stobbe, & Garcia, 1990; Goldin, 1992; Hatch & Gardner, 1990), it is
likely that tests emphasizing fragmented, memorized knowledge encourage
teachers and students to see mathematics in this way. It is well documented that
students tend to believe that mathematics is the collection of skills they are
tested on, and most students believe mathematics consists of a huge number of
procedures and facts to be memorized (Izard, 1993). Test use, Messick argues,
should be based on the “action implications” of score meanings, and there is an
urgent need for validation of assessments aligned with concept-referenced
instruction. Diverse types of information can contribute to the validation of such
assessments, but the contribution will be strongest where alignment of empirical
information with an underlying theory of score interpretation has been explicitly
evaluated (Messick, 1989).

In the past, construct validation has emphasized internal and external test
structures, or “the appraisal of theoretically expected patterns of relationships
among item scores or between test scores and other measures” (Messick, 1989, p.
7). More significant and illuminating evidence may be obtained, however, when a
theory of the construct serves as the basis for identifying knowledge and skills to
be assessed, for designing the assessment tasks, and for interpreting patterns of
performance (Messick, 1989). Where instructional improvement is a goal of
assessment, sensitivity to instruction constitutes essential evidence about the
interpretation and instructional implications of the assessment results. When the
characteristics of an instructional program used to validate assessment tasks are
based on a theory of the construct being assessed, both construct theory and
tasks gain credibility (Messick, 1989). At the same time, assessments that are
insensitive to learning can hardly be used to guide and inform instruction. The key
measures for this study were derived from two essential tools for generating
meaning—knowledge representation and explanation. Validation strategies for
these measures depended on the theoretical analyses of fractions and
mathematical understanding reported in other sections of this report.

Hypotheses

Based on the analysis of fractions as a conceptual scheme, the role of explicit
representations in the development of understanding, and empirical work cited
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above, predictions were made about student performance across tasks. Students
who received explicit instruction on fraction principles were expected to
demonstrate greater understanding of principles across a variety of conceptual,
problem-solving, and explanation tasks. It was also expected that these students
as a group would be able to identify and generate more representations of
fractions as quantities, that is, number line representations. To the extent that
students across both instructional groups understood the principles underlying
construction of fraction representations, they should also have been able to
recognize a greater number of correct representations of fractions and avoid
misidentifying incorrect representations, assuming that the range of
representation types was sufficiently large. Greater representational fluency was
therefore hypothesized to be associated with higher performance on complex
tasks requiring understanding and use of fraction representations.

Specific hypotheses tested were as follows:

1. Students who receive explicit instruction on fraction principles (principle
group) will demonstrate greater understanding of principles than those who
receive activity-oriented instruction (activity group).

2. Students who receive instruction on measuring principles (principle group)
will be more fluent in recognizing and constructing quantitative representations of
fractions than students who do not receive such instruction (activity group).

3. Students more fluent with fraction representations will have higher
performance on explanation tasks.

4. Students with greater fluency in recognizing fraction representations will
have higher performance on problem-solving justification tasks.

METHOD

Overview of Research Design and Procedures

To test instructional sensitivity of the tasks, two dissimilar instructional
approaches were set up, one designed to teach principles derived from relatively
unfamiliar measurement applications of fractions (principle group), the other
based on traditional fraction activities found in textbooks (activity group). The
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textbook activities essentially presented part-whole and operator applications of
fractions.

Post-instruction performance of the two groups was compared on measures
of  representation knowledge and explanation. Data on problem solving,
computation, and conceptual/declarative knowledge were obtained as validity
evidence—specifically, to check whether there were relationships between these
measures and measures of explanation and representation knowledge. Eighteen
classrooms, nine in each group, were observed to verify that instruction occurred
as intended, and external validity data were collected from teachers and the school
district.

Procedures

Twenty-two fifth-grade classrooms were recruited from a midsized
urban/suburban school district in a manufacturing city in southern Washington.
Altogether 540 students participated although not all students completed all
measures. Overall duration of the study was about three weeks.   

Before instruction, students took a 20-minute, 60-item pretest. Then all
students were given seven and one-half days of instruction. (Overall duration of
instruction ranged from 1 1/2 to 2 1/2 weeks because of assemblies, days off for
conferencing, and so on.)  Eleven classrooms were randomly assigned to a
“principled” instruction condition, and eleven to a group receiving instruction based
on the district’s fifth-grade mathematics textbook. For schools with two or more
classrooms, classrooms were randomly assigned within schools, in an effort to
balance instructional treatments within schools. Half of the remaining
“unmatched” classrooms were then assigned at random to each instructional
group. Immediately after instruction both groups spent two class periods
completing the posttest measures described above.

Training for Instruction

Teachers in both instruction groups attended training workshops before
introducing instruction. Teachers in the principled instruction group met twice for
a total of about three hours, while the textbook (activity) group met once for two-
and-one-half hours. One teacher missed the activity training and one teacher
missed the first of the two principle group sessions; these teachers were briefed by
telephone and were not judged to be significantly handicapped by their absences.
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(This was especially true for the activity teacher, who was a district trainer on the
activity program.)  

During the workshops, teachers were introduced to the aims and overall
design of the study. A researcher explained to both groups that the purpose of the
study was not to evaluate teachers or students but to investigate the
effectiveness of some new assessments, and that fractions had been chosen
because they were hard for many students to understand. Teachers then reviewed
instruction activities and plans for implementing them. The general instructional
approach recommended to both groups was whole-class discussion interspersed
with individual and small-group activity, as implemented in the Japanese
classrooms described by Stigler and Stevenson (1991). The notion of meaningful
instruction as described was also discussed with teachers. Meaningful or
understanding-based instruction was described as promoting analysis of symbolic
expressions in terms of meaningful referents, reducing the need for every
syntactic rule and computational procedure to be memorized. If students
understand symbols and rules, new rules and procedures can be figured out from
known ones.

The goal of this training was not to create dramatic differences in teaching
style across groups, but to ensure to the greatest extent possible that instruction
for the principle group would give rise to more opportunities for developing
mathematical principles. It was assumed that teachers could not drastically alter
their teaching procedures or styles after only three hours of training, and that
major differences in teacher quality and method across groups would be controlled
by random assignment of teachers to treatments. As it turned out, this
assumption was supported by data on teacher knowledge, experience, and
confidence in teaching math, and by classroom observations (see Analyses and
Results). On average, for example, teachers in both groups asked about the same
number of questions during instruction, and organized the same number of small
group activities. The big differences were in the topics on which questions and
activities focused. Principle group questions and activities were directed at explicit
representation of principles; activity group instruction was more focused on
learning how to do things, for example, learning procedures for figuring out pizza
shares, or for computing a fraction of a number. To clarify these differences,
differences in methods for training teachers in the two groups will be discussed in
somewhat more detail.
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Training for Principled Instruction

At the first meeting, held one month before instruction began, measurement
applications of fractions and the possible advantages of fraction principles derived
from measurement situations were discussed. Teachers had received explanatory
materials and brief descriptions of possible activities about one week before the
meeting. Principles related to fractional quantities were reviewed. Principles
discussed were identical to those listed above under the heading “What It Means
to Understand Fractions as Quantities.”  All teachers agreed that it would be
useful for students to experience a new application of fractions, and that
measurement applications and related principles were bypassed in the Real Math
curriculum. Some teachers endorsed the idea that the instruction we were
planning could help students to construct a more mathematically-correct fraction
concept, but it is not clear that all teachers felt this way. At the second meeting,
ten days before instruction began, teachers worked in small groups to evaluate
and refine instructional plans, then all teachers reviewed plans and suggestions
generated by the small groups.

The purpose of the training was to familiarize teachers with the goals and
content of the instructional activities, not to give them detailed, minute-by-minute
“scripts” to follow. They were introduced to the concept of a fraction as a relation
between two quantities and to applications of this idea in measurement situations.
Nevertheless, some teachers requested sample scripts so they could see how the
activities might be conducted. Several such scripts became part of a new set of
guidelines (see Appendix A) that were sent to teachers one week before instruction
began. The guidelines contained descriptions of instructional activities and
suggestions for introducing and managing the activities. Student activity sheets
were also included for teachers who might want to use them (see Appendix A).  

Teachers were advised to improvise and adapt the suggested activities in any
way deemed necessary to help their students understand the targeted concepts.
Prior to the training workshop, one teacher, recommended by the district’s
mathematics resource coordinator, tried out the activities for one week with her
class and made suggestions for improving them. During the training workshop she
recommended the activities highly to other teachers, gave advice on managing
group work, and described a fraction game she had invented while testing the
activities. This game was added to the curriculum package for all teachers. The
teacher who pilot tested activities was not included in the final study.
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Activities in the guidelines for instruction were organized into four modules
comprising 10 lessons. Lessons 1–7, which all classes completed, covered
measuring principles and procedures, partitioning line segments, and placing
fractions on number lines; lessons 8 and 9 dealt with fraction equivalence; and
lesson 10, adding fractions (Appendix A).  

The purpose of the measurement instruction was to ensure that students
knew the measurement principles prerequisite to developing a measurement-
based model of fractions. Approximately two days of instruction were devoted to
measuring with non-standard units, followed by discussion of the advantages of
measuring with equal-sized units and the effect of different-sized units on the
outcomes of measurement. These measurement activities were added to the
sequence in response to teachers who were worried that their students did not
know how to use rulers to measure lengths. It is important to note that these were
not conventional measuring lessons, however; they were structured to help
students understand fundamental principles. In lesson 1, for example, students
are asked to measure objects with variously-sized units and to theorize about the
effects of measuring objects with different units (Appendix A).

At the suggestion of the district’s mathematics resource coordinator,
teaching guidelines for the early lessons were more detailed than those for later
lessons; she hoped this would encourage teachers to rely more on their own
judgment and initiative to plan activities, once they became more comfortable
with the content and aims of the lessons.

Only six of the eleven classes completed lessons 8–10, which constituted brief
introductions to the possibilities for using number lines to understand fraction
addition and equivalence. This was not unexpected, given that teachers reported
sizable initial differences in knowledge and ability between classrooms. Because
some students could not measure with rulers at the onset of instruction, it was not
predicted that all students would be able to justify fraction addition after two days’
(at most) experience with number lines.

Activity Training

Activities for this group were selected from the textbook used by all fifth-
grade teachers in the district, Open Court’s Real Math (Willoughby, Bereiter,
Hilton, & Rubinstein, 1991). According to the publisher:
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Thinking skills and problem-solving strategies, real applications, mental arithmetic,
estimation, approximation, measurement with metric units, organizing data, and
topics in geometry, probability, and statistics are emphasized at all levels [K–8].
(Teacher’s Guide, Level 5, p. xii)

Computation skills are stressed at particular grade levels and “maintained”
or reviewed at later levels. Fractions are introduced at Level 1 (first grade). By the
end of Level 4 (fourth grade), the following topics have been covered: introductory
work with fractions (shading and identifying parts of figures), fractions of areas
and fractions of numbers, fraction-decimal conversions, and addition and
subtraction of common fractions. Review of the Level 1–4 texts shows that part-
whole and operator illustrations are emphasized: objects are divided up and some
parts shaded or taken way to show fractions, and students are further taught that
a “fraction is something that operates on other things, including numbers,” for
example, 2/3 of 24 (Willoughby et al., 1991).

Activity instruction began with several short lessons (approximately 10
minutes each) on fraction notation, estimating fractional lengths, and adding
fractions. All classes spent one-and-one-half to two-and-one-half days on each of
the following topics:

1. Finding fractions of objects and figures (pizzas, wooden boards, rectangles).

2. Finding a fraction of a number:  “1/3 of 15 = n; find n.”

3. Finding missing numerators or denominators in equivalent fractions.

Three classes spent all seven-and-one-half days on these topics.

Eight classes (all but three) spent an additional one to two days total on (a)
adding fractions with like denominators, after seeing addition modeled on line
segments and pizzas; and (b) word problems involving fractions of objects, lengths,
volumes and time periods. One class completed all of the above activities and also
covered adding and subtracting with unlike denominators, and mixed numbers and
improper fractions.

Four lessons scattered throughout the text were assembled into one unit for
this study, following the recommendation of a district master teacher who had
combined these lessons in previous years and felt they made a cohesive unit. This
represented a change from the normal sequence in the text, which is based on the
principle that students should spend only a day or two at a time on any given
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topic. Returning to the same topic later in the year enables students to gradually
synthesize understanding over time, according to the district’s mathematics
coordinator.     

An example of an activity group lesson is shown in Appendix B. It is possible
that some students developed principled understanding by doing these activities,
but it was hypothesized that explicit efforts to develop principles and concepts
would produce greater understanding. With respect to familiarity of the content,
however, the activity teachers had some distinct advantages over the principled
instruction teachers. Most of the activity teachers were teaching lessons they had
taught many times before; they averaged about three years teaching from the
Real Math text, and only one teacher had less than one year of Real Math teaching
experience. All teachers had attended district workshops on teaching the Real
Math program. Two of the teachers were school district trainers for these
workshops. None of the teachers in the principle group reported prior experience
teaching measurement applications of fractions.

Methods for Assessing Principled Understanding

The NCTM Curriculum and Evaluation and Assessment Standards (1989,
1993) recommend multiple sources of information about students’ understanding,
which is consistent with the idea that domains in mathematics have complex
internal structures and complex relations with other domains, as Vergnaud (1983)
and others cited above have argued. As fraction understanding implies a system of
interconnections among symbols, concepts, operations, and meaningful objects
and situations, assessment focused on knowledge of the three main categories of
relations:

1.  Knowing the referents of fraction symbols, which implies knowing the
concepts, operations, objects, actions, and situations to which the symbols can
refer. One assessment focused on the relations between symbols and graphic
representations, each of which in turn can refer to a great variety of “real life”
situations. The use of graphic representations made it possible to assess a much
broader range of knowledge than use of “real” situations or hands-on activities.
Use of graphic representations also enhances the feasibility of assessing
representational knowledge at the classroom level or in larger scale studies.

2.  Ability to relate and apply symbols and procedures to particular contexts,
including problem-solving situations.
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3.  Ability to justify the use of the symbols and operations, which for most
students means the ability to relate symbols and operations to meaningful
situations and verbally-expressible knowledge.

4.  Ability to explain fractions in terms of mathematical principles and
operations that are part of the conceptual scheme for fractions.

Pretest

Prior to the instructional period, a general measure of fraction knowledge was
obtained from all students for possible use as a covariate. This test was intended
to cover knowledge assumed to be related to the instruction students would
receive, including: general conceptual knowledge (e.g., How many thirteenths equal
one whole?); fractions of areas; fractions as measures; fractions as points on a
number line; and computational knowledge.

Since no existing test was judged to be an adequate measure of these types of
knowledge, pretest items were constructed in cooperation with Geoffrey Saxe,
Maryl Gearhart, and Elana Joran, (University of California, Los Angeles), who
used a similar pretest in another study. To build the test, items were either
constructed or adapted from one of two sources: (a) tasks used in research studies
of rational number understanding (e.g., Gelman et al., 1989; Kerslake, 1986;
Larson, 1979; Lesh et al., 1983); and (b) fourth-, fifth-, and sixth-grade textbooks.

This test comprised 60 constructed-response items. Most items selected had
been successfully solved by approximately 40% to 60% of fifth-grade subjects in
previous studies, including preliminary testing for this study.

A copy of the pretest is provided in Appendix C.

Posttests

Appendix D contains copies of the posttests described below. Where item
orders were counterbalanced, only one form is shown. Administration directions for
the two days of testing may be found after the assessments.

Representational fluency. This was a measure of perceived relations
among symbolic and graphic representations of equivalent and non-equivalent
fractions. Task format was based on a type of item widely used in assessment and
research: This item type requires that students select a graphic representation for
a given symbol. Similar tasks are commonly used as instructional activities.
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To construct this test five different fraction symbols were placed at the top of
five different pages. Students were asked to circle all representations showing the
same amount as the symbol at the top of the page. Below each symbol, a set of 18
graphic representations was randomly arrayed on the remainder of the page (see
Appendix D). A reverse ordering of the array for each fraction was also produced,
and each version given to half the students in each classroom. Each type of
representation was equally represented across the five pages; for example, for
each symbol there were two correct circle and set representations. Figure 3 shows
a matrix of all item types. Altogether the five pages contained 90 graphic
representations.

The set of targeted fractions, 1/2, 2/4, 2/3, 4/6, and 3/2, varied on several
dimensions likely to affect the difficulty of representing the fraction (e.g., Lesh,
1981; Lesh et al., 1983; Nik Pa, 1989;  Novillis, 1976; Vergnaud, 1983); familiarity
of the fraction (e.g., 1/2, 2/4 compared with 2/3); greater versus smaller size of
numerator and denominator in equivalent fractions (1/2, 2/3 compared with 2/4,
4/6); whether the fraction is greater or less than 1 (3/2 compared with other
fractions). Three additional considerations influenced the selection of fractions: (a)
Numerators and denominators of represented fractions should be as small as
possible to reduce counting errors and permit the use of a large number of
relatively small graphic representations; (b) the fractions should include both unit
(numerator = 1) and non-unit fractions; and (c) equivalent fractions should be
represented.

Graphic representations also varied on several dimensions related to the
difficulty of identifying the fraction (Bright et al., 1988; Carpenter & Lewis, 1976;
Hope & Owens, 1987; Kieren et al., 1985;  Lesh et al., 1983; Nik Pa, 1989;
Novillis, 1976; Pettito, 1990). These dimensions included number of partitions and
type of representation (area, set, length).

“Distractors” in the form of incorrect representations of each fraction were
also included; these were generated by partitioning area and linear representations
incorrectly, by marking non-equivalent fractional quantities, or by inverting the
numerals in the fraction symbol.  Distractors were based on common
misconceptions about fractions and fraction representations (Behr et al., 1992).
For example, a significant number of students do not realize that the partitions in
a fraction representation must be equal in size.



32

1
2 

2
3 

2
4 

4
6 

3
2 

Area of circle

Area of circle, equivalent

Area of rectangle

Area of rectangle, equivalent

Alternately shaded area

Set

Set, equivalent

Number line

Number line, equivalent

Line segment

Line segment, equivalent

Area distractor 1

Area distractor 2

Number line distractor 1

Number line distractor 2

Line segment distractor 1

Line segment distractor 2

Line segment distractor 3

Figure 3.  Types of representations used in representational
knowledge measure.
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Two differently-ordered sheets were generated for each fraction. First, items
were randomly assigned to positions on a page, then a reverse ordering was
created. For each fraction, each of these orderings was randomly assigned to a
different form (A or B) and the forms were counterbalanced within each
classroom.

Students were given 20 minutes to complete this task.

Computation. On this measure there were 11 computation items (covering
fraction addition, subtraction, and equivalence) used in earlier large-scale
evaluations; these items constitute a scale designed to be maximally sensitive to
group-level instructional differences (Miller, 1981). Eight minutes were allotted for
these items.

Declarative/conceptual knowledge. This measure consisted of 26 short-
answer items requiring: measurement knowledge (5 items), ability to place
fractions on number lines (8 items), taking a fraction of a whole number (6 items),
“sharing” tasks (4 items), conceptual information such as how many ninths equal
one whole (4 items), ability to draw multiple equivalent graphic representations (1
item), and ability to use fractions to represent sharing (2 items) and length
comparison (2 items) situations. Presentation order of area and linear
representations was counterbalanced. Students had 12 minutes to complete the
first 23 items; the remaining declarative/conceptual items appeared in the first
three pages of the problem-solving and justification measure (items 1–5, 7, 8, 10,
and 11).

Problem solving and justification. Students solved six symbolically
presented fraction problems requiring them to compare fractions of a distance (3/5
vs. 1/2 of a mile) and of a pizza (2/5 vs. 2/4 of a pizza), evaluate the truth of an
addition statement (1/2 + 1/6 = 4/6) and an equivalence statement (9/12 = 6/8),
and find fractions between two other fractions. These six problems are
subsequently referred to as MILE, PIZZA, ADD, EQUIVALENT, BETWEEN1
AND BETWEEN2, respectively. In BETWEEN1 students had to find a fraction
between 1/2 and 3/4; in BETWEEN2 they had to find a fraction between 2 1/2 and
2 3/4.

In each case students were directed to use writing and drawing to show and
explain why their solutions were correct. The fraction comparison problems were
given first in counterbalanced order, because they represented situations related
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to the types of instruction students received. The other four problems followed,
ordered in the same way for all students. Total time required for these problems
and the nine declarative/conceptual items packaged with them was 25 minutes.

Explanation task. Following the problem-solving posttest, students
completed a contextualized explanation task. The writing prompt asked students
to imagine that they had been recruited to explain fractions on a television show.
They were given several questions to help structure their explanations. The
format of this prompt was informed by earlier efforts to elicit mathematics
explanations from third- and fourth-grade students (see below). This format
represents an effort to elicit lengthier explanations and improve variance on
several scored dimensions.

There are a number of reasons for assessing explanations in this domain.
First, the ability to communicate mathematical knowledge is a major curriculum
goal in the NCTM Standards (1989). “A person’s knowing of a conceptual domain
is a set of abilities to understand, reason, and participate in discourse. . . . Critical
components of these sets of practices include the appreciation and use of
explanatory ideals that are shared within the community and provide basic modes
and goals of explanatory discourse” (Greeno, 1991, p. 176). Second, explanations
may provide evidence about explicit understanding of procedures and concepts
(Brown, 1987; Kieren, 1990; Kluwe, 1990) and help to determine whether
procedures and declarative knowledge have simply been memorized without
understanding. Third, explanations may reflect the degree of complexity and
organization of domain knowledge.

Pilot testing of assessments. Drafts of the criterion measures and pretest
items were pilot-tested to discern whether: (a) item content and format for tasks
assessing representational fluency, problem solving, and explanation were
appropriate for elementary school students; (b) time allocations were sufficient;
(c) responses to problem-solving and explanation tasks could be scored using a
version of the CRESST content knowledge assessment rubric (Baker, Freeman,
Clayton, 1991);  and (d) patterns of relations among task responses would be as
predicted by relational conceptions of mathematical knowledge and analyses of
the fraction concept (e.g., Bright et al., 1988; Davydov & Tsvetkovich, 1991;
Hunting, 1984; Kerslake, 1986; Kieren et al., 1985; Lesh et al., 1983; Nik Pa,
1989; Novillis, 1976; Pettito, 1990; Piaget, Inhelder, & Szeminska, 1960; Pothier
& Sawada, 1983).
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For these purposes, students at the end of fourth grade were considered
representative of beginning fifth-grade students. Thirty to sixty students at the
end of their fourth-grade year completed early versions of the measures. Refined
versions of the tasks were then given to 20 fifth-grade students who had received
brief instruction on fractions as measures. Findings from these studies informed
the redesign of several items and construction of new items for the present study.

Scoring

Explanations

To score explanations, raters used a rubric adapted from Baker et al. (1991)
and previously pilot-tested for fifth-grade mathematics explanations by Niemi
(1993). The rubric had five dimensions: (a) general impression of content quality,
GICQ; (b) use of principles and concepts, C/P; (c) knowledge of facts and
procedures, FACT; (d) misconceptions, MIS; and (e) integration of knowledge, INT.

Three CRESST researchers scored the papers; one researcher had previous
experience with CRESST rubrics and trained the other two. Rater training
followed procedures described in Baker, Aschbacher, Niemi, and Sato (1992).
Raters were introduced to the assessment tasks and scoring rubric and were given
model responses illustrating score points on each of the dimensions to be scored.
Appendix F contains a draft of the rubric as well as anchor papers used by raters
to score the GICQ and INT scales, and examples of principles, facts and
misconceptions excerpted from student papers. Before scoring, raters practiced
scoring several sample responses and were tested on five prescored papers to
determine whether they were using the rubric correctly. The criterion for
proceeding, based on what had been achieved in previous CRESST studies, was at
least 65% exact agreement on all scales.

After each rater had scored 20-30 papers, agreement on these papers was
checked and additional training provided; that is, serious score disagreements were
discussed. Similar retraining occurred after raters had scored about 80 papers.

Raters scored randomized sets of papers. Some sets were double scored.
Intrarater scores were obtained by randomly selecting papers from the first 50 or
so papers scored by each rater and inserting these selected papers into sets read
later. At the time of rating, raters did not know which instruction groups the
authors of the papers belonged to.
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A total of 197 out of 506 papers (nearly 40%) was scored by at least two
raters. Inter- and intrarater reliability and agreement figures for explanations, as
well as for other scored responses described below, are reported in the Analysis
and Results section.

Problem solving. Solutions to the six symbolically-presented fraction
problems (comparing fractions, judging equivalence and addition statements,
finding fractions between numbers) were scored as correct or incorrect (score = 1
or 0). Any mathematically correct solution was awarded one point; expressions did
not have to be simplified or reduced; for example, 5/4, 10/8, and 1+1/4 could all be
scored as correct. Additional score points reflected the presence or absence of
graphic or verbal justifications for each of the six problems; students were given 1
point for either a graphic or verbal justification and 2 points for both, creating a
possible score of 3 for each problem.

Problem-solving justifications. Two raters scored 401 and 192 of the
problem justifications, respectively. Approximately 15% of student responses
were selected at random to be scored by both raters.

Representations generated. Types of representations generated across
the six problems were also tallied, in seven categories: circle, rectangle, line
segment, number line, triangle, set, polygon. Students received one point for each
representation used to justify problem solutions. In addition to a point total for
each type of representation, a score was computed to reflect the total number of
different types of representations (out of seven possible) that each student
produced.

Selected response and short constructed response items. Pretest,
representation, computation, and conceptual/declarative knowledge items were
scored as correct or incorrect (1 or 0). Subscale scores as well as a total score
were computed for the representation, computation, and conceptual/ declarative
knowledge items. For any item which students answered by generating a number,
all mathematically-equivalent expressions of the correct answer were scored as
correct; for example, equivalent fractions.

Additional Data

Classroom observations. An effort was made to verify that instructional
treatments occurred as intended in each classroom. Eighteen of the 22 classrooms
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(9 in each group) were observed at least once for a full class period. Two retired
mathematics teachers were trained to do the observing, in addition to the
researcher. Observations of classroom processes and resources in use were taken
at 5-minute intervals over one or two class periods, using an observation form
adapted from one developed in the Apple Classrooms of TomorrowSM (ACOT)
project. The researcher had previous experience with this form and trained the
other observers to use it. Appendix E contains a copy of the form. Artifacts
produced by students and teachers during the study were also collected, and
teachers were asked to log activities completed each day.

External measures. Some external validity data, including standardized
achievement test scores and gender data were obtained. Elementary school grade
point averages are not kept by the school district, but teachers rated, on a 1–5-
point scale, students’ fraction knowledge and general mathematics ability.

ANALYSIS AND RESULTS

This sections opens with a presentation of pretest results, because total
pretest score was used as a covariate in many subsequent analyses. Then
analyses and results bearing on the hypotheses are discussed, followed by other
analyses pertaining to the construct validity and diagnostic utility of the
instruments.

Pretest Results

Table 1 shows means for each pretest scale by instruction group. A
hierarchical MANOVA with classes nested within instruction groups was

Table 1

Pretest Means and Standard Deviations by Type of Instruction Group

Variables

Principle
–—————————

Mean SD

Activity
–—————————

Mean SD
Total
items

PRETEST
TOTAL

27.4382 10.5922 27.3504 9.1453 60

AREA ITEMS 18.9775 6.2492 19.1732 5.2744 26

LINEAR  ITEMS 2.4345 1.5651 2.4409 1.5408 17

COMPUTATION 3.3109 4.1960 2.8386 3.4995 7

Note.  n for Principle = 267; n for Activity = 254.
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conducted on three pretest subscales—area representations, linear
representations, and computation. The first two subscales reflected
representation types emphasized in activity and principle instruction,
respectively. This analysis showed no difference overall between groups, F(3, 18) =
.54024, p = .661, and no differences on any of the subscales. These results indicate
that random assignment produced groups equivalent on prior fraction knowledge
as measured by this instrument.

To control for individual differences in prior knowledge about fractions, total
pretest score was used as a covariate in subsequent analyses except where noted.
Pretest subscales were not used because inspection of bivariate plots revealed
that the subscales were not linearly related to many of the dependent variables.

Summary of Posttest Results

Tests of Hypothesis 1: Effects of Principled Instruction on Explanations

One of the most important findings is that students receiving explicit
instruction on fraction principles expressed significantly more principles in their
essays than activity group students (M = .7199 compared with .4135), and fewer
misconceptions (M = 1.9180 compared with 1.7057), as shown in Table 2. The
finding that principle group students expressed a higher level of principled
understanding is important because it shows that instruction can enhance
understanding of principles in a relatively short period of time, and that written
explanations are sensitive to these cognitive changes.

Table 2
Mean Essay Scores by Instruction Group

Essay
dimensions

Principle
–—————————

Mean SD

Activity
–—————————

Mean SD

GICQ 2.0922 .9480 2.0578 .7937

C/P .7199 .8877 .4135 .6822

FACT 1.2896 1.5168 1.7280 1.5218

MIS 1.9180 .9447 1.7057 .8940

INT 1.6345 .9784 1.6938 .8556

Note. GICQ = General Content Quality, PK = Prior Knowledge,
C/P = Concepts/Principles, TX = Text, MIS = Misconceptions, A
= Argumentation.  n for Principle = 243, n for Activity = 235.
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Since distributions of essay scores were positively skewed for both groups,
nonparametric tests of significance were used; results are shown in Table 3.

As a group, principle group students clearly benefited from the
measurement- and number-line related principles they learned. Forty-four percent
of them expressed one or more principles in their explanations, compared with only
32% of the students in the activity group. In the principle group, 25.9% of students
expressed two or more principles, compared with 9.6% in the activity group.
Across both groups, the most commonly expressed principles were (a) the infinite
density of fractions between two numbers; (b) equivalence principles, especially
the principle that for any fraction there are an infinite number of equivalent
fractions; and (c) the equal interval principle with respect to measurement.
Percentages of students expressing each of these principles were 25%, 26%, and
2%, respectively

Reviewing familiar area representations during instruction appeared to help
activity students to use these representations in their explanations, earning them
higher scores on the FACT scale than the principle group (M = 1.7280 compared
with 1.2896). Score points on this scale were awarded for correct use of
representations, as well as procedures and factual statements. Given the body of
data showing the difficulty of number lines for students at all age levels (Bright et
al., 1988; Larson, 1979; Nik Pa, 1989), it is not surprising that learning about a
difficult new representation, number lines, did not appear to help the principle
group students as much as practice with area representations helped the activity

Table 3

Results of Mann-Whitney U-Wilcoxon Rank Sum W Test on Explanation Scores, by
Instruction Group

Essay
dimensions

Principle
mean rank

Activity
mean rank u w z

2-tailed
p

GICQ 240.56 243.47 28806.5 58189.5 -.2450 .8065

C/P 261.67 221.92 24359.0 53039.0 -3.6092 .0003

FACT 217.14 267.38 23093.0 63903.0 -4.0770 .0000

MIS 255.37 228.35 25895.0 54575.0 -2.3775 .0174

INT 232.28 251.92 26787.0 60209.0 -1.7222 .0850

Note. GICQ = General Content Quality, PK = Prior Knowledge, C/P = Concepts/Principles,
TX = Text, MIS = Misconceptions, A = Argumentation. n for Principle = 243, n for Activity
= 235.
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students on the FACT scale. In fact the ability of the explanation rubric to
discriminate in this way between differentially instructed groups lends support to
its construct validity.

Reliability of explanation scores. Inter- and intrarater reliability and
agreement figures for double-scored papers are shown in Tables 4 and 5. For all
rater pairings on all scales, percentage of agreement within one score point was
100%. Alpha coefficients indicate that individual raters and the raters as a group
were scoring consistently. As these results were comparable to or better than
those in previous CRESST ratings, the remaining explanations were single scored.

Lower percentages on the FACT scale may reflect the open-ended nature of
this scale. Raters counted numbers of mathematical “facts” and procedures
ranging from 0 to 9. Scores on other scales ranged from 0 to 5 or less.

Table 4

Interrater Agreement on Essay Scores by Dimension

Raters GICQ C/P FACT MIS INT

Alpha coefficients

1– 2a .9062 .9584 .9692 .9132 .8767

2 –3b .8884 .7641 .9016 .8317 .9629

1 –3c .7725 .7999 .9214 .8511 .6748

Percentage exact agreement

1 –2 84.1 89.1 81.2 85.5 84.1

2 –3 72.4 75.9 58.6 75.9 86.2

1 –3 64.4 78.2 64.8 69.0 62.1

Note. GICQ = General Content Quality, C/P = Concepts/Principles,
FACT = Facts and Procedures, MIS = Misconceptions, INT =
Integration.

an = 138.    bn =  29.    cn = 87.
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Table 5

Intrarater Agreement on Essay Scores

Rater GICQ C/P FACT MIS INT

Alpha coefficients

1a 0.8444 0.9056 0.9716 0.9111 0.9000

2b 0.9467 1.0000 1.0000 0.0946 0.9302

1c 1.0000 0.8989 1.0000 0.8840 1.0000

Percentage exact agreement

1 77.8 77.8 72.2 72.2 88.9

2 90.0 100.0 90.0 80.0 90.0

1 100.0 90.0 100.0 80.0 100.0

Note. GICQ = General Content Quality, C/P = Concepts/Principles,
FACT = Facts and Procedures, MIS = Misconceptions, INT =
Integration.
an =  18.   bn =  10.    cn =  10.

Tests of Hypothesis 2: Effects of Instruction on Representational
Knowledge

The design for testing effects of instruction on representational fluency was
hierarchical, with classrooms nested within instructional treatments (Kirk, 1982).
Neither group received instruction on the types of items used in this measure, so
these items in effect constituted a measure of transfer of knowledge obtained in
activity- and discussion-based settings to symbolic and graphic recognition tasks.
The principle group, for example, measured lengths and generated linear
representations, while activity students worked on “sharing” or “dividing up”
problems involving pies and other objects.

It was expected that each treatment group would do better on the types of
representations on which it received instruction, and that these differences would
“wash out” when subscales were combined to produce a total score. Three
subscale scores were therefore used as dependent measures: number line,
segment, and area/set. Principle group students should have correctly identified
more number line representations, and activity students should have done better
on area and set representations. Both groups received instruction on line
segments, so no difference was anticipated on line segment items.
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Representational knowledge means and standard deviations for the two
instruction groups appear in Table 6. Overall there was a significant difference
between the groups. Univariate statistics unexpectedly revealed that the principle
group had superior performance on number line items and performed just as well
as the activity group on area/set and segment items. Table 7 summarizes these
results. The relatively large number of items for area/set reflects the great variety
of part-whole representations introduced in elementary school. Number line and
line segment representations are much more limited, each having essentially one
type of representation.

Table 6

Representation Subscale Means and Standard Deviations, by Instruction
Group

Variable

Principlea
–—————————

Mean SD

Activityb
–—————————

Mean SD
Total
Items

NUMBER LINE 9.7396 3.3761 8.2760 2.7183 20

SEGMENT 18.5283 3.1826 18.5160 3.0698 25

AREA/SET 28.4432 7.4699 29.3560 7.1128 45

an = 265.     bn = 250.

Table 7

Multivariate Tests of Significance for Group Effect on Representation Subscales

Test name Value Exact F Hypoth. DF Error DF Sig. of F

Pillais .36470 3.25306 3.00 17.00 .048

Note.  F statistics are exact.

Univariate statistics

Hypoth. Error Hypoth. Error Sig. of
Variable SS SS MS MS F F

NUM. LINE 240.15324 506.42839 240.15324 26.65413 9.00998 0.007

SEGMENT 0.03580 292.97075 0.03580 15.41951 0.00232 0.962

AREA/SET 114.91743 3535.05443 114.91743 186.05550 0.61765 0.442

Note.  DF = 1, 19.
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It is not possible from these data alone to tell whether both groups or neither
group improved on the part-whole items as an effect of instruction, but a
comparison of some posttest items with equivalent pretest items indicated that
both groups added to their knowledge about part-whole representations (see
“Conceptual/declarative knowledge results” below). For the principle group,
instruction on measuring applications appears to have influenced their thinking
about part-whole representations and situations.

Tests for Hypotheses 3 and 4: Influence of Representational Knowledge
on Problem Solving and Explanation

To test hypotheses 3 and 4, predicting that high performance on the
representational knowledge task would be related to problem-solving and
explanation performance, two groups were constructed on the basis of total scores
on the representation task. Students scoring in the top 25% constituted a high-
fluency group; those in the lowest 25%, a low-fluency group. Because the
distributions of problem-solving and explanation scores for these groups were not
normal, scores were compared in nonparametric tests. Means and standard
deviations, shown in Table 8, and Mann-Whitney U-Wilcoxon results, presented in
Table 9, convey the significant superiority of the high-fluency group on total
problem-solving score and all essay dimensions.

Table 8

Problem-Solving and Essay Dimension Means by Level of Representational
Knowledge

Variable

Low fluency
—————–—————

Mean  SD N

High fluency
———————————
Mean  SD  N

PROBLEM TOTAL 1.3063 1.4881 111 5.2051 3.8294 117

GICQ 1.7603 .6939 112 2.5763 .9666 118

C/P .3020 .5688 112 1.1017 .9281 118

FACT .9225 1.1374 112 2.1553 1.8411 118

MIS 1.5595 .8340 112 2.2669 .9051 118

INT 1.3363 .5663 112 2.1836 1.1619 118

Note. PROBLEM TOTAL = total problem-solving score. GICQ = General
Content Quality, C/P = Concepts/Principles, FACT = Facts and Procedures,
MIS = Misconceptions, INT = Integration.
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Table 9

Results of Mann-Whitney U-Wilcoxon Rank Sum W Test on Problems and Essay Scores, by
Level of Representational Knowledge

Variable
Low fluency
mean rank

High fluency
mean rank u w  z

2-tailed
p

PROBLEM TOTAL 75.35 151.65 2147.5 8363.5 -8.8293 .0000

GICQ 87.13 142.43 3430.5 9758.5 -6.6281 .0000

C/P 87.46 142.12 3467.0 9795.0 -6.8767 .0000

FACT 91.45 138.33 3914.0 10242.0 -5.4960 .0000

MIS 91.88 137.92 3963.0 10291.0 -5.7717 .0000

INT 89.70 139.99 3718.5 10046.5 -6.2562 .0000

Note.  n for both groups = 120.  PROBLEM TOTAL = total problem-solving score. GICQ =
General Content Quality, PN = Concepts/Principles, FACT = Facts and Procedures, MIS =
Misconceptions, INT = Integration.

Additional Evidence of Instructional Effects

 Problem-solving differences. It was not specifically predicted that the two
types of instruction would lead to different levels of performance on problem
solutions, because both groups received instruction that could have influenced
performance on these tasks. The primary intention in administering symbolic
problem-solving tasks was to provide an additional source of validity evidence for
the explanation and knowledge representation tasks. Nevertheless, non-
parametric tests were conducted to see whether there were any group differences:
Principle students did better on the pizza and addition problems, and there were no
significant differences in mean ranks on the other problems (Tables 10 and 11).

Table 10

Mean Problem-Solving Scores by Instruction Group

Variable

Principle
–—————————

Mean SD

Activity
–—————————

Mean SD

MILE .7695 .9070 .6851 .8338

PIZZA .9218 .8565 .7574 .8503

ADD .3498 .8113 .1830 .5435

EQUIVALENT .2346 .6731 .1532 .5488

BETWEEN 1 .3333 .6492 .3489 .6111

BETWEEN 2 .2510 .5950 .2766 .5431

Note. n for Principle  = 244, n for Activity  = 239.



45

Table 11

Results of Mann-Whitney U-Wilcoxon Rank Sum W Test on Problem-Solving Scores by
Instruction Group

Variable
Principle

mean rank
Activity mean

rank u w z
2-tailed

p

MILE 244.15 234.69 27422.0 55152.0 -.8198 .4123

PIZZA 252.72 225.83 25341.0 53071.0 -2.2738 .0230

ADD 247.13 231.61 26697.5 54427.5 -1.9643 .0495

EQUIVALENT 244.10 234.74 27433.5 55163.5 -1.3958 .1628

BETWEEN 1 235.46 243.67 27571.5 57263.5 -.8457 .3977

BETWEEN 2 233.81 245.38 27170.0 57665.0 -1.3029 .1926

Note. n for Principle  = 244, n for Activity  = 239.

Reliability of problem-solution and justification scoring. One rater
scored all problem solutions as correct or incorrect and a second rater scored 66 of
these solutions; the second rater agreed with the first on 65 out of 66 (98.5%)
problem solutions. At least 40 justifications for each problem type were also
scored by two raters; the remaining justifications were single scored. Table 12
shows reliability coefficients and percentages of agreement on justification scores
for the double-scored papers.

Representations generated in problem-solving and explanation tasks.
In the course of solving problems, justifying solutions, and creating explanations,
principle group students drew five times as many number lines (M = .4368
compared with .0861) and more rectangle and line segment representations of
fractions than activity students  (Table 13). Activity students created more
representations falling into other part-whole categories, circle, polygon, set, and
triangle. To create their problem-solving justifications and explanations, students
obviously tended to use the types of representations they had been instructed on.

Table 12

Rater Agreement on Problem Justification Scoresa

MILE PIZZA ADD EQUIVALENT BETWEEN1 BETWEEN2 Overall

% Exact
agreement

92.50 97.50 89.00 93.00 96.00 98.00 94.33

n 40 40 83 81 81 81

a For 2 raters.  n = number of papers scored by two raters.
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Table 13

Number of Representations Generated to Justify Problem Solutions, by Type
and Group

Variable

Principle
–—————————

Mean SD

Activity
–—————————

Mean SD

GENERATED CIRCLE 4.0903 3.6079 4.9549 3.8567

GENERATED NUMBER LINE .4368 1.1518 .0861 .3089

GENERATED POLYGON .0686 .3051 .1066 .4501

GENERATED RECTANGLE 2.5018 3.1926 2.0205 2.4435

GENERATED SEGMENT 1.6318 2.4880 .5287 .9358

GENERATED SET .3285 .9308 .5205 1.2288

GENERATED TRIANGLE .0433 .2210 .0820 .3166

Note. n for Principle  = 244, n for Activity  = 239.

A hierarchical MANOVA on the number of different types of representations
used (out of seven) showed no overall difference between the instruction groups.
Mann-Whitney tests on the seven different types of representations, which did not
have normal distributions, revealed significant differences between instruction
groups on circles, line segments, sets, and number lines (Table 14). Predictably,
activity students ranked higher on circles and sets, two representations they
studied, and principle group students ranked higher on line segments and number
lines. This sensitivity to instruction added to the credibility of the problem
justifications as measures of learned knowledge.

Reliability of generated representation scoring. One rater coded all
representations. A second rater coded 10 papers, achieving 100% agreement with
the first rater on these papers.

Conceptual/declarative knowledge results. Tasks labeled as conceptual/
declarative provided an additional check on the effectiveness of instruction. Most
of the items were similar to items used in instruction or on the pretest.

Separate analyses were conducted on three different sets of scores.
Administration directions required 12 minutes for the first 23 items, but several
teachers erroneously gave these items at the end of short math periods, allotting
only 5 minutes for the test. This meant that many students did not have time to
complete all items. Since these items were counterbalanced as described in the
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Table 14

Results of Mann-Whitney U-Wilcoxon Rank Sum W Test on Generated Representations, by
Instruction Group

Variable
Principle

mean rank
Activity

mean rank u w z
2-tailed

p

GENERATED
CIRCLE

226.25 267.42 25188.5 64714.5 -3.2289 .0012

GENERATED
RECTANGLE

254.31 238.43 28297.0 57700.0 -1.2742 .2026

GENERATED
SEGMENT

273.82 218.28 23420.5 52823.5 -4.9086 .0000

GENERATED
SET

237.73 255.56 28056.5 61846.5 -1.9895 .0466

GENERATED
TRIANGLE

242.81 250.31 29328.5 60574.5 -1.4815 .1385

GENERATED
POLYGON

244.70 248.36 29799.5 60103.5 -0.6787 .4973

GENERATED
NUMBER LINE

262.34 230.14 26290.0 55693.0 -4.1399 .0000

Note. n for Principle  = 244, n for Activity  = 239.

Method section, only scores on the first half of the test were analyzed (that is,
either part-whole and multiplication or number line and measuring items) for each
student. This had the effect of reducing the number of cases by about half for each
item.

Items given on the first day of posttesting constituted six subscales
representing placing a fraction on a number line, labeling a mark on a number line,
measuring, two types of area-partitioning problems (sharing pies and sharing
brownies), and simple multiplication of fractions by whole numbers.

Table 15 reports descriptive statistics by group for all conceptual/
declarative measures.

As Tables 16 and 17 show, principle group students achieved significantly
higher scores on measuring (M = 3.0606 compared to 2.5447 for the activity
group) and on number line placement (M = 3.0606 compared to 2.5447 for the
activity group). As noted earlier, ability to place fractions on a number line is
generally held to be an indicator of quantitative understanding of fractions. Use of
fraction notation in a measuring context demonstrates understanding of one
application of the fraction symbol.
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Table 15

Conceptual/Declarative Knowledge Means and Standard Deviations by Type of
Instruction

Variable

Principle
———————————

Mean SD N

Activity
———————————

Mean SD N
Total
items

SHARING PIES 1.1382 .7051 123 1.3386 .6071 127 2

SHARING BROWNIES .2377 .4820 123 .2441 .5151 127 2

FRACTION OF NUMBER 1.9919 1.7993 123 2.4016 2.0674 127 6

NUMBER LINE PLACE .8258 .9205 132 .5610 .8312 123 3

NUMBER LINE LABEL 1.1061 1.4102 132 .9837 1.4199 123 5

MEASURING 3.0606 1.5470 132 2.5447 1.6208 123 6

PARTS 1.5244 1.3870 246 1.4202 1.4022 238 4

FRACTION PICTURES .1748 .3805 246 .2353 .4251 238 1

SLICES .9472 .6890 246 .9538 .6766 238 1

HEIGHTS .6951 .8669 246 .3277 .6638 238 1

LINES .8659 .9003 246 .2899 .5989 238 1

Table 16

Multivariate Tests of Significance for Group Effect on Number Line and
Measurement Tasks

Test name Value Exact F Hypoth. DF Error DF Sig. of F

Pillais .37067 3.33764 3.00 17.00 .044

Univariate statistics

Hypoth. Error Hypoth. Error Sig. of
Variable SS SS MS MS   F  F

NUM. LINE PLACE 5.05475 14.82352  5.05475 .78019 6.47892 .020

NUM. LINE LABEL .82940 33.84036 .82940 1.78107 .46568 .503

MEASURING 14.21580 47.30268 14.21580 2.48961 5.71004 .027

Note. DF = 1, 19.
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Table 17

Multivariate Tests of Significance for Group Effect on Area and Multiplication
Tasks

Test name Value Exact F Hypoth. DF Error DF Sig. of F

Pillais .23151 1.70712 3.00 17.00 .203

Univariate statistic

Hypoth. Error Hypoth. Error Sig. of
Variable SS SS MS MS   F  F

SHARING PIES 1.98521 12.74956 1.98521 0.67103 2.95845 0.102

SHARING
BROWNIES

0.08283 5.61894 0.08283 0.29573 0.28007 0.603

FRACTION OF
NUMBER

9.29521 84.42585 9.29521 4.44347 2.09188 0.164

Note.  DF = 1, 19.

Table 18 discloses MANOVA results for conceptual/declarative tasks given
on the second day of posttesting. Here there is a significant overall group
difference deriving primarily from the superior performance of the principle group
on the use of fractions to compare heights and the lengths of lines (HEIGHTS and
LINES); means for the principle group were .6951 and .8659 on these variables,
compared respectively with .3277 and .2899 for the activity group.

Table 18

Multivariate Tests of Significance for Group Effect on General Conceptual/
Declarative Tasks

Test name Value Exact F Hypoth. DF Error DF Sig. of F

Pillais 0.70307 7.10348 5.00 15.00 0.001

Univariate statistics

Hypoth. Error Hypoth. Error Sig. of
Variable SS SS MS MS F F

PARTS 0.07367 95.61474 0.07367 5.03235 0.01464 0.905

FRACTION PICTURES 0.50330 5.02648 0.50330 0.26455 1.90248 0.184

SLICES 0.06351 17.19857 0.06351 0.90519 0.07016 0.794

HEIGHTS 15.10990 42.84698 15.10990 2.25510 6.70031 0.018

LINES 34.49222 22.18586 34.49222 1.16768 29.53918 0.000

Note. DF = 1, 19.
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There were no significant differences on tasks involving: (a) relations between
fractions and whole numbers (PARTS); (b) generating different representations for
3/6 (FRACTION PICTURES); and (c) writing fractions representing shares of
partitioned pizzas (SLICES). Across the two days, the principle group did better
on tasks reflecting quantitative knowledge about fractions, and equally well on
sharing and other fraction situations presented to the activity group.

Pretest to posttest gains. There were four conceptual/declarative
knowledge items, 1a to 2b, that were identical in type to four items on the pretest,
items 16a to 17b (see Appendix B). In these items students were asked to shade in
parts of circles and rectangles to represent “shares” of pizzas and brownies. They
were also asked to write fractions identifying the shaded-in areas. Posttest and
pretest scores on this set of items (PRETEST AREA and POSTTEST AREA)
were analyzed in a hierarchical MANOVA with time (pretest-posttest) as a
within-subjects factor, instruction group as a between-subjects factor, and classes
nested within groups. Table 19 shows means and standard deviations for the pre-
and posttest measures. There was a significant effect for time, F(1,20) = 96.29, p
<.001, and no group by time interaction, suggesting that instruction improved
knowledge about area representations for both groups. The relatively low numbers
of cases in this analysis are explained in the discussion of conceptual/declarative
knowledge results later in this section.

Computation results. Activity students had one or more class periods of
practice figuring out numerators and denominators of equivalent fractions, and
spent a similar amount of time adding and subtracting fractions. This led to the
prediction that these students would do better than principle group students on
the computation posttest, but a hierarchical MANOVA revealed no significant

Table 19

Means and Standard Deviations for Pretest and Posttest Area
Measures, by Group

Variable

Principle
–—————————

Mean SD

Activity
–—————————

Mean SD

PRETEST AREA .6250 .9639 .5169 .7705

POSTTEST AREA 1.3984 .8634 1.5593 .7343

Note. Principle n = 128.    Activity n = 118.
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difference. Mean, standard deviation, and n for the principle group were 5.79, 2.93,
and 261; for the activity group, 6.68, 2.86, and 249. It seems plausible that both
groups gained in computation knowledge, given time spent on it by the activity
group, but this possibility was not systematically examined in this study, as the
focus was on principled understanding, not computation.

Other Evidence Bearing on Task Validity

Evidence reviewed in this section relates to (a) the degree to which the
assessments provide useful diagnostic information, (b) the extent to which results
are consistent with those obtained in previous studies, and (c) predictable
consistencies across tasks. Data on representational knowledge are discussed
first. Means and standard deviations for each representational item type appear
in Table 20.

Table 20

Representational Knowledge Item Means

Variable Mean   SD

CIRCLE 4.29 0.95

CIRCLE EQUIVALENT 2.08 1.55

NUMBER LINE 1.20 1.39

NUMBER LINE EQUIVALENT 1.03 1.30

RECTANGLE 4.12 1.06

RECTANGLE-ALTERNATE SHADING 2.58 1.48

RECTANGLE EQUIVALENT 2.15 1.50

SEGMENT 3.32 1.23

SEGMENT EQUIVALENT 2.21 1.48

SET 3.88 1.10

SET EQUIVALENT 1.92 1.49

CIRCLE DISTRACTOR 3.83 1.08

NUMBER LINE DISTRACTOR 1 3.53 0.97

NUMBER LINE DISTRACTOR 2 3.27 1.32

RECTANGLE DISTRACTOR 1 4.02 1.02

SEGMENT DISTRACTOR 1 4.34 0.85

SEGMENT DISTRACTOR 2 4.27 0.87

SEGMENT DISTRACTOR 3 4.39 0.88

Note. Each variable comprises five items. “EQUIVALENT” indicates
representations of equivalent fractions. “DISTRACTOR” indicates
incorrect representations.  n = 515 for all items.
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Each variable in Table 20 represents a total score from five items distributed
across five fraction types. As expected, the familiar part-whole representations
(circles, rectangles, sets) were much easier than the less familiar number lines,
with line segments falling in between. Simple or direct representations, in which
the number of partitions matched the numbers used in the symbolic
representation, were easier than equivalent representations, where the number of
partitions did not match the numbers in the symbol. Figure 4 shows examples of
direct and equivalent representations for the fraction 1/2.

Factor analysis of representational knowledge items. An exploratory
factor analysis was performed, using principal components analysis for
extraction, and varimax rotation. The purpose was to discover whether
performance on the 18 representational knowledge types could be explained in
terms of fewer underlying dimensions, and whether those dimensions could be
plausibly interpreted in terms of item characteristics that students responded to
in more or less similar ways. Results appear in Table 21. Factors with eigenvalues
greater than 1 were accepted and the five factors accepted accounted for 70.2% of
the variance in the original variables. Percentages of variance accounted for by
factors 1–5 respectively were: 29.7, 16.6, 10.2, 7.7, and 5.9.

Different types of representations clearly loaded on different factors. Factor 1
has high loadings for equivalent part-whole representations of fractions; factor 2
has high loadings for simple part-whole representations and one type of segment
distractor; and factors 3, 4, and 5 have high loadings for part-whole distractors,
number line representations, and number line distractors, respectively. The
factors appear to be orthogonal.

    Direct             Equivalent

Figure 4.  Direct and equivalent
representations for the fraction 1/2.
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Table 21

Rotated Factor Matrix for Representational Knowledge Items

Variable Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

CIRCLE EQUIVALENT .90966 .08603 .10290 .12030 -.04623

RECTANGLE EQUIVALENT .90237 .04796 .09233 .17181 -.09721

SET EQUIVALENT .88101 .02827 .11131 .07347 -.07786

SEGMENT EQUIVALENT .81557 .04533 .14367 .11211 -.08971

RECTANGLE-ALT. SHADING .78228 .06539 .08996 .30630 -.23125

RECTANGLE .02108 .76313 .11244 .18573 -.06919

CIRCLE .13137 .70226 .01233 .29978 -.17517

SET -.01541 .69796 .17351 -.15642 .12655

SEGMENT .08018 .68158 -.03080 -.16694 .24825

SEGMENT DISTRACTOR 1 .04222 .65921 .27839 -.22216 .16083

RECTANGLE DISTRACTOR .08626 .12403 .83199 .02157 -.00400

SEGMENT DISTRACTOR 2 .14066 .20376 .80108 .00865 -.00288

CIRCLE DISTRACTOR .10079 .05945 .78977 -.08034 -.04062

SEGMENT DISTRACTOR 3 .40616 .04707 .48985 .35110 -.23471

NUMBER LINE .22010 -.05501 .01211 .86344 .06529

NUM. LINE EQUIVALENT .32617 -.02660 -.04158 .84420 .07719

NUM. LINE DISTRACTOR 1 -.07781 .09486 -.06547 .07198 .80376

NUM. LINE DISTRACTOR 2 -.30013 .10084 -.00896 .02748 .77900

Distractor effect. It appears to have been easier for students to avoid
distractors than to select correct representations in the more difficult categories.
For example, scores on NUMBER LINE DISTRACTOR 1 (M = 3.53) and
NUMBER LINE DISTRACTOR 2 (M = 3.27) were more than twice as high as
scores on correct number line representations, NUMBER LINE (M = 1.20) and
NUMBER LINE EQUIVALENT (M = 1.03). For more familiar representations,
such as circles and rectangles, there was little difference between means for
correct representations and distractors. The overall mean for RECTANGLE, for
example, was 4.12, compared with a mean of 4.02 for RECTANGLE
DISTRACTOR.
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Fraction difficulty. Predictions about fraction difficulty were also tested.
Based on studies reviewed earlier, the expected easy-to-hard sequence was: 1/2,
2/4, 2/3, 4/6, 3/2. 2/3 turned out to be slightly easier than 2/4, but this difference
was not significant. Otherwise, results supported the predicted hierarchy.
Consistent with every reported study of fraction performance at this grade level,
1/2 is the easiest fraction for students to recognize and use. In the case of 2/3
versus 2/4, the smaller number of partitions in 2/3 representations may have
compensated for the relative lack of familiarity of this fraction.
Representations of 2/4 were significantly easier to identify than representations of
4/6, and 4/6 was easier than 3/2.

Table 22 contains means and standard deviations for total scores on each of
the five fractions, and Table 23 summarizes results of the repeated measures
analysis comparing contiguous pairs of measures in the difficulty sequence (the
sequence in this case was based on the means obtained).

Table 22

Mean Number of Correct
Representations by Fraction

Fraction Mean    SD

1/2 13.50 2.36

2/4 11.20 2.92

2/3 11.36 2.20

4/6 10.84 1.94

3/2 10.55 3.54

Note.  n = 515 for all fractions.

Table 23

Results of Pairwise Comparisons of Fraction Difficulty

Variable
Hypoth.

SS
Error

SS
Hypoth.

MS
Error
MS F

Sig. of
F

T2 2345.24466 3163.75534 2345.24466 6.15517 381.02054 0.000

T3 14.02913 3468.97087 14.02913 6.74897 2.07871 0.150

T4 65.02718 3629.97282 65.02718 7.06220 9.20777 0.003

T5 44.27379 5630.72621 44.27379 10.95472 4.04153 0.045

Note. T2 compares 1/2 with 2/3; T3, 2/3 with 2/4; T4, 2/4 with 4/6; T5, 4/6 with 3/2. DF =
1, 514.
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Correlations with external measures. Relationships between total
representation and computation scores, essay scores, and external measures
were also examined. Nonparametric correlations were computed for the essay
scales. Tables 24 and 25 report the correlations. Correlations with all CTBS
(Comprehensive Test of Basic Skills) subscales were significant and moderately
high, although not as high as intercorrelations among the CTBS subscales, which
ranged from .70 upwards. Teacher ratings did not correlate highly with the
representation or computation totals, or the misconception essay dimension.
Relatively low correlations for teacher ratings may reflect the lack of detailed
information they had about students early in the school year.

Other data. Classroom observational data reported in Appendix G suggest
that there were no major differences in the management of classroom activities
across instruction groups. Categories measured included teacher actions and
student responses and behaviors. At intervals during the class period, observers
noted the degree of control and direction by the teacher, size of working groups,

Table 24

Correlations Between Fraction Measures and External Variables

Representation total Computation total

CTBSMC.A .5373** .4805**

CTBSMCMP .4716** .4579**

CTBSRC .4242** .4313**

CTBSRV .4210** .4058**

TRFRAC .1917** .1521**

TRMATH .1854** .1603**

TROVER .1636** .1400**

TRWRITE .1592** .1380**

Note.  CTBSMC.A = CTBS Math Concepts and Applications. CTBSMCMP = CTBS
Math Computation. CTBSRC = CTBS Reading Computation. CTBSRV = CTBS
Reading Vocabulary. TRFRAC = Teacher Rating of Fraction Knowledge. TRMATH
= Teacher Rating of Mathematics Knowledge. TROVER = Teacher Rating of
General Academic Ability. TRWRITE = Teacher Rating of Writing Ability.

** p <.01 (2-tailed).
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Table 25

Non-Parametric Correlations Between Student Background Variables and Essay Scores

GICQ PN FACT MIS INT

CTBSMC.Aa .4625*** .3992*** .3147*** .2518*** .4511***

CTBSMCMPb .3106*** .2750*** .2309*** .1181* .3370***

CTBSRCc .4916*** .3826*** .3319*** .2508*** .4771***

CTBSRVc .4632*** .3764*** .3406*** .2182*** .4008***

TRFRACd .3830*** .2307*** .3106*** .0735 .3683***

TRMATHd .3704*** .2288*** .2993*** .1014* .3634***

TROVERd .4114*** .2298*** .3674*** .1080* .4013***

TRWRITEd .4271*** .2129*** .3819*** .0927* .4047***

Note.  CTBSMC.A = CTBS Math Concepts and Applications. CTSBMCMP = CTBS Math
Computation. CTBSRV = CTBS Reading Vocabulary. TRFRAC = Teacher Rating of
Fraction Knowledge. TRMATH = Teacher Rating of Mathematics Knowledge. TROVER =
Teacher Rating of General Academic Ability. TRWRITE = Teacher Rating of Writing
Ability.

an = 301.    bn = 302.    cn = 303.    dn = 457.

* p <.05. ** p <.01 (2-tailed). *** p  = .00.

types and qualities of student responses, degree of student focus and
appropriateness of behavior, and resources used. Differences in frequencies across
groups were generally small, although principle group teachers did ask a higher
percentage of questions and use more teacher-made materials.

DISCUSSION

Construct Validation of the Explanation
and Knowledge Representation Measures

The success of this study depended to a great extent on the effectiveness of
the instruction, which was given with the intention to test the instructional
sensitivity of the explanation and knowledge representation measures and to
increase variance on all measures. This was not essentially a study of
instructional methods, but instructional effects constituted one of the linchpins for
the validation effort. As the data collected formed a network of related evidence,
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validation information was obtained on various elements of the network. In
construct validation, Cronbach and Meehl (1967) observe, “We examine the
relation between the total network of theory and observations. The system
involves propositions relating test to construct, construct to other constructs, and
finally relating some of these constructs to observables” (p. 69). Traditionally, in
construct validation studies “the proposition claiming to interpret the test has
been set apart as the hypothesis being tested, but actually the evidence is
significant for all parts of the chain. If the prediction is not confirmed, any link in
the claim may be wrong” (p. 69). If predictions are supported, on the other hand,
all elements of the chain are supported; this follows from the concept of a
nomological network.

“The basic notion of nomological validity,” argues Messick, “is that the theory
of the construct being measured provides a rational basis for deriving empirically
testable links between the test scores and measures of other constructs. It is not
that a proven theory serves to validate the test, or vice versa. Rather, the test
gains credence to the extent that score consistencies reflect theoretical
implications of the construct, while the construct theory gains credence to the
extent that test data jibe with its predictions” (1984, p. 48). In this study, a theory
of the construct was used to design assessments and instruction and to make
predictions. There were two major aspects of the construct theory:

1. A description of the structure of conceptual understanding in terms of
relations among three types of elements: a symbol system, concepts and
operations represented by the symbol system, and situations that give meaning
to the symbols and concepts. This description provided a general framework for
developing tasks and validity evidence. Relations that were assessed included the
relations children discerned among different fractional representations of the same
and different rational numbers (representational and conceptual/declarative
knowledge tasks); relations between symbols and graphic representations
(representational and conceptual/declarative knowledge tasks); relations between
concepts, principles and symbolic problem-solving procedures
(conceptual/declarative knowledge tasks, problem-solving tasks, and
justifications); and relations between explicit (linguistically stateable) principles
and operations, graphic representations, situational knowledge, and fraction
symbolism (explanation task).
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2. An analysis of the referential semantics of fractions, deriving from
analyses by Ohlsson (1987, 1988) and others. This semantic analysis provided
specification of the meaning of fractions as quantities and a set of related
situations, for example, those in which quantities are measured and compared.

This construct theory guided the design of new instruction and assessments
as well as predictions about the effects of instruction. Hypotheses about relations
between instruction and outcomes were empirically supported. Hypotheses about
relations among outcome and other measures were also supported. If the
explanation and representational knowledge measures had not effectively
discriminated students who received principled instruction from those who did not,
the utility of these measures for instructional purposes would be impugned. If
students who demonstrated high performance on explanation and
representational knowledge measures had been markedly less successful on
related measures, the validity of the explanation and representational knowledge
scores would become more doubtful. If patterns of relations among representation
item types had not been explainable in terms of structural differences in the
representations, if students had circled items randomly, or if factors extracted in
factor analysis had been uninterpretable, then the representational knowledge
task could not be supported as a measure of fraction understanding. Given the
effectiveness of instruction and the fact that the assessments operated as
predicted, there is support not only for the construct theory but for the integrated
assessment and instruction strategies derived from it.

Effects of Principled Instruction

The effort in this study to assess the relational structure of knowledge is
consistent with a broad swatch of cognitive research. Studies comparing expert
and novice performance have consistently shown that for many domains, the
organization of knowledge typifies expert knowledge, and that organization around
principles and structure tends to result in more flexible, generalizable knowledge
(Chi & Ceci, 1987; Larkin, McDermott, Simon, & Simon, 1980; Silver, 1981).
Novices tend to organize knowledge in superficial ways, classifying word problems,
for example, on the basis of key words or the particular situations represented,
rather than mathematical structure (Silver, 1981). Initial fraction instruction has
likely reinforced the tendency to of young students to focus on the surface features
of fraction representations. To counteract this tendency, an analysis was
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conducted to discover the “deep structure” of fractions, and that structure was
used as the basis to design tasks from which its construction by students might
then be inferred (Davydov & Tsvetkovich, 1991; McLellan & Dewey, 1895).

One of the most important results is that students receiving instruction on
fraction principles expressed a higher level of principled understanding, and fewer
misconceptions, on several different assessments. The principle group had
superior performance to the activity group on the principles and misconceptions
dimensions of explanation, as well as on other tasks requiring understanding of
fractions as quantities. The latter tasks included recognition and generation of
quantitative representations (number lines) in knowledge representation and
problem-solving situations; placing fractions on number lines; and recording
fractional measurements. This convergence of evidence supports the reliability of
the conclusion that principled instruction had an effect; the same evidence
supports the likelihood that these multiple tasks were measuring principled or
conceptual understanding developed in response to instruction.

It was not expected that the activity group would receive no benefit from
instruction, because the textbook-based activities were judged to be well-designed
for their purposes and were strongly endorsed by activity group teachers. Certain
assessments were therefore introduced to check whether the activity group did in
fact profit from instruction. These assessments, which included the FACT
explanation scale, computation test, and some conceptual/ declarative items, were
keyed to the types of tasks included in activity instruction. On nearly all of these
measures the performance of the principle group was equivalent to that of the
activity group (the major exception being the FACT scale).

The achievement of the principle group is particularly impressive in light of
the relatively small amount of time devoted to instruction on fraction principles.
Of the seven days initially allotted for experimental instruction, two had to be
redirected to teaching basic measurement principles rather than fractions, leaving
only five days focused on principles related to the fraction concept. Instruction on
part-whole representations did not improve performance on recognizing these
representations to a greater extent than instruction on measurement principles
did, nor did it produce significant differences in computation skill. But it did
increase the likelihood that students would use part-whole representations in
problem-solving and explanation situations. Some evidence, albeit limited,



60

supported the possibility that both types of instruction may have influenced
students’ knowledge about part-whole representations.

Inadequate Overall Performance

Another finding that stands out is the low overall level of performance on complex
tasks, which is consistent with results from many studies of fraction
understanding. Students had moderate levels of representation knowledge, some of
it probably developed in response to instruction during this study, but
performance overall was not impressive. Mean representation scores ranged from
13.50 (out of 18 items) on the easiest fraction, 1/2, to 10.55 on the most difficult.
But 98% of the students incorrectly circled at least one distractor. Only 10 out of
515 students avoided circling any distractors. Across the five fractions, students
incorrectly circled an average of 7.13 distractors, indicating that many did not
know (a) that the partitions shown had to be equal, or (b) how many partitions
there should be. The most commonly circled distractors were number lines (M =
3.20), followed by line segments (M = 2.00), circles (M = 1.08), and rectangles (M =
1.02). Altogether there were 10 number line distractors, 15 line segment
distractors, and 5 circle and 5 rectangle distractors. Students correctly identified
fewer than half of the number line representations, and only about 63% of the
area and set representations, which they had seen many times before. As
reported above, however, the rate of success was higher than 80% on some item
types, for example, circles and rectangles. But even with these representations,
students were confused by equivalent representational forms and by incorrectly
partitioned distractors.

With respect to the six problems, each of which has been taken as an
indicator of fraction understanding in previous studies, 54% of the students
successfully compared fractions of a pizza, but only 38% could solve an analogous
problem involving fractions of lengths. Across the problems the percentage of
students with correct solutions ranged from 9% on judging equivalence to 26% on
finding a fraction between two mixed numbers.

On the explanation task, 25.6% of the students scored at the bottom of the
GICQ scale, meaning that they expressed no fraction content knowledge. 63% of
the students failed to give evidence of understanding any mathematical principle
or concept, and 31% did not include any facts or procedures in their essays.
Obviously the range of performance was restricted on most measures. This
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influenced the analyses that could be performed, and it would be useful for this
reason to collect similar data from larger numbers of students who are well-
instructed over a longer period of time. The main purpose of the assessments was
not to rank students, however. It was to determine what kinds of fraction
understanding students had achieved and to make that determination using
methods consistent with construct theory and previous research, cited above.
Among the many results consistent with previous research are those on fraction
difficulty and those showing differentiated performance on number line and part-
whole representations.

Time Limitations

Because of school district time constraints, the durations of teacher training
and student instruction were unhappily short, so it was not expected that all or
most students would undergo the kinds of profound conceptual change that might
take a year or more under ideal conditions. As an application or interpretation of a
rational number, a fraction must be conceived as the result of a relation between
two numbers and at the same time as a single entity subject to mathematical
operations. To grasp this point, even implicitly, requires considerable cognitive
restructuring (Gelman et al., 1989) and a new understanding of mathematical
units (Davydov & Tsvetkovich, 1991; Piaget et al., 1960). Based on belief that the
meaning of a concept inheres in an elaborated cognitive structure, not in a simple
definition, Menchinskaya (1969) estimated that it takes at least one-and-one-half
years (assuming optimal instruction) to develop a concept such as “fraction,”
which is very close in kind to the “scientific” concepts discussed by Vygotsky.
Understanding of such concepts develops over a long period of time, becoming
deeper and more elaborated with increasing knowledge and experience.

In this study instruction and assessment focused on one particular concept,
not on sampling from broad item domains varying enormously in content and
infinitesimally in format, nor on vaguely defined constructs such as “problem-
solving skills” or “higher level reasoning.”  It may seem that intensive analyses of
all concepts in elementary mathematics would be impractical, but in fact, as
Whitehead (1967) and others have argued, the number of essential ideas at any
given level of school mathematics is limited. One might cull about seven or eight
“big ideas” from a close reading of the NCTM (1989) Standards for fifth grade, for
example. Unfortunately, analyses of textbook series have found as many as 250-



62

300 different important ideas introduced in a single year (Porter, 1989). Often new
concepts are presented in 10 minutes or less, with little opportunity for discussion.
In this study, slightly more than seven consecutive days were given to activities
related to a single concept; this is an atypically-long block of time but still much
too short for the major conceptual accommodations most students need to make.
Nevertheless, the study provided a look at what the beginning stages of such
instruction might be like, and how assessment might work to support it.

Implications of Constructivism

The fundamental purpose of mathematics education, it has been argued, is to
initiate learners into a community of mathematical discourse (Greeno, 1991).
Given this purpose coupled with constructivist epistemology, the need for
improved assessments of students’ understanding of and ability to use
mathematical symbol systems is inescapable. From a constructivist’s point of
view, the purpose of instruction is to induce students to construct new
understanding, using and building on what they already understand. Full
realization of this aim depends on the availability of techniques for assessing
understanding. In the ideal situation instruction is informed by frequent
assessment of each student’s understanding of mathematics as a system of
knowledge, but instructional effectiveness will be attenuated when teachers do not
have or do not use validated methods for discerning when systematic
understanding has been achieved. In such instances instructional decisions have
to be made without knowing whether students understand previously-taught
concepts, or how they interpret topics under discussion.

In designing assessments for this study it was assumed that students who
cannot use mathematical symbols appropriately and do not know the
mathematical meanings of the symbols cannot be judged to know mathematics.
Students who cannot effectively explain the meaning and justify the use of
mathematical symbols, concepts, and operations are not yet full-fledged members
of the community of discourse. And Greeno has argued that “a person’s knowing of
a conceptual domain is a set of abilities to understand, reason, and participate in
discourse. . . . Critical components of these sets of practices include the
appreciation and use of explanatory ideals that are shared within the community
and provide basic modes and goals of explanatory discourse” (1991, p. 176).
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Assessing Mathematics Understanding

Representational Knowledge

Based on constructivist ideas about how children move to greater knowledge
and understanding, one would expect of children who had constructed
mathematical meaning for the representations they had encountered in school
that they would be able to see that there can be multiple ways to represent the
same concept or mathematical structure; see that the structure of a task may be
the same despite changes in representation (different representations do not
necessarily imply a different concept or problem); use representations effectively
in problem solving and be able to explain their use.

Representational fluency was used as another index for understanding of the
fraction symbol. This strategy derived from the view that understanding of the
fraction symbol can be viewed as generally analogous to understanding the
written symbol for a word: greater understanding of a symbolic representation is
closely related to the number of different synonymous meanings one can associate
with the representation. To put this another way, the greater the network of
meanings one can associate with a given symbol, the greater the conceptual
understanding of that symbol. The number and variety of graphic representations
students could associate with fraction symbols were therefore taken as indices of
meanings for the fraction symbol, that is, as representations of possible
meaningful situations, much as one might take synonyms for a word as
representing extended meanings for that word. Another index consisted of a
measure of the ability to generate and use representations in problem-solving
justifications and explanations.

Explanations

Explanations are necessary to determine whether symbols and procedures
have been memorized without understanding and whether students can connect
symbolic activity to other knowledge. In addition, the NCTM Standards identify
communication in mathematics as a central goal of instruction; communication is
one of the core standards for elementary school. Another important reason for
obtaining explanations is the mediating effect of linguistic ability on mathematical
knowledge. Gelman and Lee (in press) review a number of recent studies in
support of the conclusion that constructing explanations enhances learning; these
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studies examine the possibility that asking students for an explanation may help
them organize their knowledge into a more explicit and more generalizable form.
Other recent work suggests that linguistic representations of mathematics
concepts, principles, and operations may mediate the construction of higher level
principles (e.g., Gelman et al., 1989; Gelman & Greeno, 1989; Hiebert & Wearne,
1993). Gelman et al. (1989), for example, found a relation between “early mastery
of the ordering of fractions and the ability to talk coherently about the principles
underlying the construction of fractions.” Lesh (1981), in a similar vein, has
proposed that episodic experience that students gain from concrete materials may
not provide retrievable knowledge without semantic information about the
episodes and about relationships among different episodic experiences; his
proposal buttresses the need for verbal interaction between learners and teachers
and peers to compare episodic experiences and representations, and for teachers
to assess students’ understanding through their explanations. Referencing
Thagard’s theory of explanatory coherence, which proposes that coherence is a
measure of the quality of an explanation, Gelman and Lee (in press) speculate
that explanations elicited from students may provide insight into the coherence of
their knowledge.

Implications for Educational Practice

Assessment

The NCTM and many others have argued that mathematical knowledge,
because it is conceptually based, is not easy to evaluate. Nevertheless, if we wish
to improve students’ understanding of mathematical concepts, it is essential to
know what it means to understand a given concept at different levels of
complexity, and to be able to assess different levels of understanding. It is often
difficult to tell on the basis of scores from multiple-choice tests whether students
understand the concepts, principles, and methods within a domain (Nickerson,
1989). According to Linn et al. (1991), the psychometric methods used for
selection, placement, classification, and certification may not be adequate for the
design of diagnostic tests. It is not enough to show that a task discriminates
between high and low achievers on some other measure, when one is interested,
for example, in how students understand symbols or procedures, and how that
understanding generalizes to novel problems and situations. Task development
approaches based on psychometric methods are often indifferent to cognitive
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constructs like meaning or understanding, in the sense that they are not based on
formal theories about them and their relation to performance. Understanding
cannot be usefully measured by strategies deriving from theories in which it is not
an important construct: behavioral psychology, for example, which dominated
conceptions of learning in psychology and education in the 1960s. Thus advances
in cognitive theory create the need for new kinds of tests that may be used as an
integral part of instruction (Linn et al., 1991). The application of behaviorism in
education has led to an emphasis on discrete skills defined as “precise, well-
delimited behaviors” (Cole, 1990, p. 2). Many forms of criterion-referenced and
objectives-based testing reflect this emphasis. Generalizability or transfer of skills
and knowledge is not a central concern in such testing.

Evidence collected in this study supports the potential utility of
representational knowledge, problem solving, justification, and explanation tasks
in providing information about students’ mathematical understanding. When
prompted to do so, a majority of students were able to generate representations to
support their conceptual explanations and problem-solving justifications.
Students who were taught novel types of representations attempted to use those
representations in their justifications and explanations. Students with higher
levels of representational knowledge produced superior justifications and
explanations. The types of principled knowledge measured by the assessments
turned out to be teachable. And it was found that mathematics justifications and
explanations could be reliably scored. In this study the prompt was open-ended—
students were not told which representations to draw—but one could easily design
a similar task to assess the ability to generate particular representations.

Results from this study also demonstrate the need to assess
representational knowledge across a broad array of representations, and this
array should encompass common misconceptions. On the evidence, the
representational knowledge assessment strategy used here can provide useful
information in a relatively efficient way on students’ understanding of
representational principles and misconceptions. Results from factor analyses of
the representational items were interpretable in terms of specific categories of
representations that students treated in more or less similar ways. Factors
mapped onto specific item types. The number and types of factors extracted
imply that most students had not constructed the principled understanding that
would enable them to recognize (and generate) virtually any correct
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representation: Their performance was unstable across representation types.
Also, there was a consistent fall-off in performance across the five different
fractions. The knowledge that enabled students to recognize representations of
one-half could not be generalized to other fractions.

Tasks developed and tested in this study should have broad applicability
across diverse conceptual fields in arithmetic and higher mathematics. With
respect to assessing representational knowledge, in many areas of mathematics,
concepts are so closely tied to their representations that it is difficult to imagine
the concepts without the representations, heightening the importance of knowing
how students understand representations, and also the importance of choosing
correct representations for assessment and instruction. It is easy to think of
concepts and principles, for example, number, rational number, signed numbers,
arithmetic principles, function, limit, and so on, that could be usefully assessed in
terms of representational knowledge and the ability to talk about and use both
representations and concepts.

The NCTM’s (1989, 1993) recommendation of multiple sources of evidence on
student understanding was taken up here in the form of several major tasks:
knowledge representation, conceptual understanding, problem-solving
justification, and explanation. When multiple assessments are used, inferences
about understanding should be based on the convergence of evidence from
different sources. Convergence takes on particular importance when one is
interested in making inferences about a system of knowledge. Confidence in
inferences about a student’s understanding, that is, construct validity, will derive
not simply from “external validity” evidence such as correlations of particular
items with standardized achievement measures, nor from traditional measures of
reliability, for example, item and scale reliabilities or rater reliability, but primarily
from the patterns of relations among tasks representing different facets of domain
understanding, and from the instructional sensitivity of the tasks.

Instruction

Overall, the study is thought to have particular relevance to educational
approaches described by Prawat and Floden (1994) as “discourse oriented” and to
the question of how assessment may serve the purposes of such approaches,
variants of which have been demonstrated in different instructional contexts by
Lampert (1986) and others. Validation of the assessments constructed for this
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study represents a step toward knowing how to assess students’ understanding of
and ability to use mathematical representations and language, which is an
important index of their status as participants in the universe of mathematical
discourse. One of the strikingly salient issues with regard to “discourse-oriented”
teaching, and to closely related social-constructivist strategies, relates to the
difficulty of choosing appropriate mathematical representations, that is,
representations that help students construct mathematically correct ideas and
that students at the same time find “authentic” and interesting. Choosing a
representation is only a first step; one must also construct situations in which to
introduce the representations in a way that gives students opportunities to learn
about the represented concepts, not just the representation itself. And the
activities chosen should minimize the possibility that students will focus on
misleading or irrelevant aspects of the representations, as many students
presently do with the fraction representations they encounter. A large percentage
of students who took part in this study, for example, defined a fraction as
something you take away from something else; for instance, “A fraction is a piece
of pie that you eat.”  This is not necessarily a “wrong” definition—in some contexts
it may be correct—but it seemed to be the only meaning many students could
generate, thus limiting their ability to generalize fraction knowledge to a broad
range of situations and problems,

Advocates of discourse-based instruction (e.g., Prawat & Floden, 1994) have
begun to address some of its inherent difficulties, in particular the difficulty of
helping students who are individually constructing mathematical meanings, based
on their discourse activities, to arrive at mathematically acceptable
interpretations of what they are doing. Overcoming these difficulties demands a
higher level of knowledge and skill than many elementary school teachers have
today. Some examples, albeit unrealistic in the face of current economic
conditions, indicate how such knowledge and skill might be obtained. Japanese
elementary school teachers, according to one report (Stevenson & Stigler, 1992),
spend substantial amounts of time on curriculum issues, including time for regular
peer meetings. Stevenson and Stigler report that entire meetings are sometimes
devoted to the most effective ways to phrase a question about a topic or the best
ways of engaging young children’s interest in a lesson.
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Teacher Judgment

Teachers seemed more willing than most researchers and theorists have
been to accept any knowledge about fractions as evidence of understanding and to
discount contradictory evidence. One teacher, referring to a student who wrote “A
fraction is a (w)hole with parts,” said, “I know students who write like this, and I
know they understand fractions.”  But this teacher and others found it hard to say
exactly how they knew that students understood fractions. On the evidence
collected in this and other studies, most students have only partial, fragmented,
and inconsistent knowledge about fractions.

There are a number of problems with the assessment stance taken by some
teachers, which is that they can know whether students understand fractions
without making any systematic assessment effort—that is, on the basis of their
day-to-day interactions with students. For one thing, it is unlikely that teachers
can assess understanding on this basis in classrooms where there is little
discourse of any kind. And it cannot be taken for granted that students who
participate in hands-on, small-group activities will automatically construct
understanding. During pilot testing for this study, some students who were
working very productively in small groups on brownie-and-cookie-sharing
problems discovered an algorithm: “Put the number of brownies on the top and the
number of people on the bottom and you get the right fraction.”  This algorithm
was quickly communicated throughout the classroom and thereafter used by most
students to solve the problems. The teacher observed that students who learned
the algorithm from others did not seem to learn anything about fractions, even
though they successfully completed all the hands-on and word problem tasks.

Another serious problem has been elucidated by developmental
psychologists, who have argued that young children use preconceptual
representations that are functionally equivalent but not identical to adult
concepts (Kozulin, 1990; Vygotsky, 1978); for this reason, functionality cannot
serve as a basis for differentiating conceptual from preconceptual thinking.
Pseudo-concepts, as Vygotsky called them, look so similar to true concepts that
adults often do not notice the difference, and the similarity of preconceptual to
conceptual generalizations allows children to practice the use of conceptual
generalizations before achieving awareness of the operations involved and the
structure of the concept. “There is a great difference,” Kozulin argues, “between
an intelligent-looking action, and an adequate knowledge of one’s own intellectual
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operations. A person may solve problems in a way suggestive of conceptual
reasoning, but his or her own interpretation of this solution may still be carried out
at the preconceptual level. With respect to educational practice this implies that
there is a considerable difference between learning how to operate with concepts
and becoming aware of the conceptual structure involved” (1990, p. 162). “At the
center of this problem lies the relationship between symbol, concept, and the
nonverbal referent,” Kozulin concludes. “The success of pseudo conceptual
reasoning hinges on the coincidence between symbol and referent with the concept
out of picture.”  This is precisely the problem motivating this study.

Functionally appropriate use of fraction language in part-whole contexts
cannot be taken as sufficient evidence of conceptual understanding, and it is hoped
that advances in assessment methods will help make clearer for teachers and
others the distinction between conceptual understanding and merely functional or
instrumental use of mathematical language and representations. This highlights
another reason for assessing explanations: to determine the level of abstractness
or generality of concepts. On this point it is useful to recall the finding by
developmental psychologists that children taught novel words show a proclivity to
be influenced by the first context in which a word appears, and to have difficulty
abstracting the meaning from this context (Werner & Kaplan, 1963; Vygotsky,
1978). Children tend to fuse the meaning of a word with the first sentence in which
they hear it and to carry this meaning forward into future applications (Kozulin,
1990). Something like this seems to have happened with fractions, where children
fuse the meaning of the term with an image of a colored-in piece of pie, or with a
piece of pie removed or eaten, or with procedures for counting pieces of a pie. Even
students who studied fractions in measurement situations for more than a week,
showed a strong tendency to talk about fractions as parts of pies, and to draw
pictures of “pies.”  We can expect that it will take a considerable amount of time
and effort for students to overcome the limitations of part-whole representations,
and changes in their explanations and representations can give us insight into the
evolution of their understanding.

Assessment Purposes

Assessment tasks can elucidate for teachers and students what the
essential math skills and knowledge are. The tasks and associated rubrics
described here circumscribe a particular concept field in a particular way, making
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clearer what students ought to know and be able to do. Although the investigation
focuses on fractions, and in fact on a particular type of fraction understanding and
its relation to performance on problem-solving and explanation tasks, applications
of the findings should not be limited to this domain. In principle, the method of
building assessment on conceptual analysis should be applicable to other grade
levels and other areas of mathematics, but this is research still to be done. What
the long-term consequences of these assessments on instruction might be is also
an empirical question, bearing on the consequential validity of the tasks.

There is no question that complications arise when one tries to achieve some
integration of assessment for diagnostic and accountability purposes. Teachers
and students need detailed diagnostic information, but at a system level one wants
information on, among other things, the transfer and generalizability of student
performance, or on the validity of inferences one can make about program quality.
Assessment design in this study began with the aim of constructing tasks that
might yield useful diagnostic information, in the hope that assessments designed
and validated for classroom-level purposes could eventually also serve system-
level assessment purposes. An experimental design with randomization was used
in order to permit some degree of generalization about the sensitivity of the
assessments to different types of instruction and about the effectiveness of the
instructional interventions. The essential research has still to be done on how
results from measures such as those studied here might be made useful for large-
scale decision making and curriculum planning.

A broadening of the research in other directions would also be useful. Previous
research and this study show that one can build successful assessment and
instruction activities for children that reflect key mathematical constructs, and
can assess at least some essential aspects of fraction understanding. At least one
construct theory exists that can be used to build systematic instruction and
assessment. What is not yet clear is how, given the complexities of rational
number knowledge, one can design experiences that encompass and unify all
aspects of that knowledge, as well as how one might extend and vary the task
formats to include among other things hands-on performance assessments.

Prospects for Reform

Can new assessments and instruction be integrated to support the
development of conceptual understanding?  There are reasons to believe that they
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can, but to date there have been few concrete examples to show how this might be
done. The study described here limns some of the possibilities, but these
possibilities could not have been explored without the full and committed
participation of teachers, principals, and school district administrators. Given the
current interest in educational reform across the curriculum, it is distinctly
propitious that 23 teachers, nearly half the fifth-grade teachers in the district,
would agree to participate with such enthusiasm in a research study. To further
the aims of the study, teachers in the principle group were willing to try out a new
method for teaching fractions with only minimal training. Activity teachers were
willing to resequence their normal curriculum. Teachers in both groups gave up at
least two-and-a-half class periods for testing, knowing in many cases that their
students would not do well. Teachers were paid only an hourly rate for two hours’
meeting time. They participated, they said, because they wanted to learn more
about new assessments. Their commitment to this collaboration with researchers
is a sign of hope for mathematics education reform.
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Materials:
1 rectangular book or 1 large book and 1 small book
several small objects: e.g., paper clip, pencil, small box

"Can we measure the blackboard with this book?  How?
Does someone want to try it?"

After a volunteer has been recruited to measure the board,
the class should discuss whether the measurement procedure
he or she uses is acceptable.  If the volunteer measures
correctly, propose some possible wrong methods, such as not
starting at one end of the board, failing to measure the whole
board, incorrectly laying down the measuring tool.

Once the measurement has been successfully carried out,
write the result on the board.  If there is something left over
(i.e., if the book does not measure the board evenly) the
result can be written like this: "The blackboard is between 12
and 13 math books long."

The class should also try to estimate the size of the "left-over"
length as a fraction of the original unit, one book-length.  The
new result might be: "The blackboard is about 12 1/2 books
long."  Point out that this result is more precise than the
original measurement.

Say: "Whenever you use an object like this book to measure
something else, the length of that object is called the unit
of measure.  In the measurement we just did, we could say
the blackboard is about 12 or 13 units long."

Now ask: "What would happen if we used the width of this
book, instead of its length, to measure the blackboard?"
Demonstrate how the book would be placed on the board.
"Would we get a larger or smaller answer than we did
before?  Why?"  --if the measuring unit is smaller, the
measurement result is larger

"How long do think the board is, measured by the width of
this book?  Would someone do this measurement, so we can
check?"  Discuss and record results as above.

Key Ideas:
• Any length might be
used as a unit to
measure longer lengths.
• There should no gaps
or overlaps when a
measuring tool is used to
measure a length.
• The whole length must
be measured.
• Lengths shorter than
the measurement unit
can be expressed as a
fraction of the unit.
• The length of an object
may be expressed in
many different ways,
depending on the units
used to measure it.
• If you use a smaller unit
to measure an object,
the measurement
outcome will be larger.

Sample Lesson

Activities:
• Use small objects to
measure larger objects.
• Record measurement
results.

Lesson 1
Measuring  with Non-standard Units
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"You can see we never know for sure how long a line is.  Can
you help us out?  Can you tell us a better way to measure?
Take out Activity Sheet D.  You can use this sheet to write
instructions for us."

"Write down all the steps we need to do to measure a line
correctly."

Give students sufficient time (2-10 minutes?) to record their
ideas.  You may need to assist some students by drawing a
line to measure and telling them to write down what they do
when they measure the line.

After students have written down their instructions, the
whole group should discuss them.  Elicit and write down
ideas on the board one at a time, in each case asking whether
other students have a similar instruction on their list.
Eventually the list on the board might look something like
this (exact wording is not important):
•  Choose a measuring tool with the right units.
•  Align the measuring tool with the line to be measured, like
this:

 not like this:

•  Line up the 0 on the measuring tool with one end of the
line to be      measured.
•  Read the number of units closest to the other end of the
line.

Lesson 1 continued

Ruler

Ruler
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"Now let's look at what happens when you try to measure
something that's smaller than the unit you're using.  This
happened to us in Activity 1.  Sometimes we had leftover
lengths that were smaller than the book we were using to
measure.  We estimated these lengths as fractions of the
book, such as 1/2 or 1/3."

"When you're using a measuring tool, like this book, to
measure something and there is some length left over, you
can try to guess how many of those lengths it would take to
equal the length of the book."

Draw a line segment about 1/2 of the book's length on the
board.  "Let's say we want to estimate how long this line
segment is, compared to this book.  If it takes 2 of these
lengths to equal the length of one book, how long is this
line segment ?"  --1/2 the length of the book

Draw a line segment about 1/3 of the book's length on the
board.  "How many of these lengths do you think it will
take to equal the book?  Then how long is this line
segment, compared to the book?"  --1/3 the length of the
book

Draw a line segment about 1/4 of the book's length on the
board.  "How many of these lengths do you think it will
take to equal the book?  Then how long is this line
segment, compared to the book?"  --1/4 the length of the
book

"What if we had a line segment that was more than 1/2 the
length of the book but not as long as the book?  What are
some fractions we could write?  What are some fractions
that are greater than 1/2 but less than 1 whole?"  -2/3, 3/4,
etc.  (Possible question for advanced groups: "How can you
tell when a fraction is greater than 1/2?")

At this point it is not crucial that students understand the
meaning of fractions such as 3/5, 7/9, etc., only that they
have some experience estimating fractions in a measurement
context.

Key Idea:
• Lengths shorter than
the measurement unit
can be expressed as a
fraction of the unit.

Sample Lesson

Activity:
• Estimating
fractions of a unit length.

Lesson 2
Measuring  with Fractions

"Now let's look at what happens when you try to measure
something that's smaller than the unit you're using.  This
happened to us in Activity 1.  Sometimes we had leftover
lengths that were smaller than the book we were using to
measure.  We estimated these lengths as fractions of the
book, such as 1/2 or 1/3."

"When you're using a measuring tool, like this book, to
measure something and there is some length left over, you
can try to guess how many of those lengths it would take to
equal the length of the book."

Draw a line segment about 1/2 of the book's length on the
board.  "Let's say we want to estimate how long this line
segment is, compared to this book.  If it takes 2 of these
lengths to equal the length of one book, how long is this
line segment ?"  --1/2 the length of the book

Draw a line segment about 1/3 of the book's length on the
board.  "How many of these lengths do you think it will
take to equal the book?  Then how long is this line
segment, compared to the book?"  --1/3 the length of the
book

Draw a line segment about 1/4 of the book's length on the
board.  "How many of these lengths do you think it will
take to equal the book?  Then how long is this line
segment, compared to the book?"  --1/4 the length of the
book

"What if we had a line segment that was more than 1/2 the
length of the book but not as long as the book?  What are
some fractions we could write?  What are some fractions
that are greater than 1/2 but less than 1 whole?"  -2/3, 3/4,
etc.  (Possible question for advanced groups: "How can you
tell when a fraction is greater than 1/2?")

At this point it is not crucial that students understand the
meaning of fractions such as 3/5, 7/9, etc., only that they
have some experience estimating fractions in a measurement
context.

Key Idea:
• Lengths shorter than
the measurement unit
can be expressed as a
fraction of the unit.

Sample Lesson

Activity:
• Estimating
fractions of a unit length.

Lesson 2
Measuring  with Fractions



89

Lesson 2 continued

Now have students work individually, in pairs, or in small
groups on Activity Sheets A and B.  Read the directions at
the top of Activity Sheet A aloud.  Students may cut out the
gray measuring strips, but you should discuss first whether
there is any way to do the activity without actually cutting
out the strips.
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"In the last few activities we've been using things like
books and pencils to measure objects.  People don't usually
use these kinds of things for measuring.  Why not?"
-- books, pencils, etc., aren't all the same size, so
measurements would not be reliable; books are too heavy,
and so forth.

"What kinds of things are used for measuring?"  -- rulers,
yardsticks, meter sticks, measuring cups, scales, etc.   For
each example offered, discuss what it measures and what the
measurement units are.

Then have students take out and try Activity Sheet C.

Key Idea:
• Why we use standard
units and measuring
tools.

Sample Lesson

Activity:
• Using a ruler to measure
line segments.

Lesson 3
Standard Measuring  Units

"In the last few activities we've been using things like
books and pencils to measure objects.  People don't usually
use these kinds of things for measuring.  Why not?"
-- books, pencils, etc., aren't all the same size, so
measurements would not be reliable; books are too heavy,
and so forth.

"What kinds of things are used for measuring?"  -- rulers,
yardsticks, meter sticks, measuring cups, scales, etc.   For
each example offered, discuss what it measures and what the
measurement units are.

Then have students take out and try Activity Sheet C.

Key Idea:
• Why we use standard
units and measuring
tools.

Sample Lesson

Activity:
• Using a ruler to measure
line segments.

Lesson 3
Standard Measuring  Units
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Materials:
You will need:
 Ruler
Each student will need:
 Activity Sheets D and E

Begin by saying: "Imagine a person from another planet
suddenly appeared in our classroom and said this:" (or you
could say: "Imagine I'm someone who has just landed here
from another planet.")

"I want to learn about measuring.  On my planet, we have a
problem when we try to measure things.  No one can ever
agree on how long anything is.  We can't tell how far away
anything is either.  I thought it was only going to take me 2
years to get to Earth, but it took me 200 years."

"Can you help us figure out what we're doing wrong?  Here
are some of the ways we measure line segments."

Draw a line segment about 12'' long on the blackboard.
Demonstrate several incorrect ways to measure the 12 inch
segment you have drawn, such as those shown below.
Record the results of each measurement, e.g., 10 inches, 5
inches, 11 inches, 6 1/2 inches etc.  Ask students to suggest
what might be wrong about each method.

Key Ideas:
• Measurement
principles described in
earlier lessons.

Sample Lesson

Activity:
• Explaining measurement
procedures and
principles.
• Recognizing "bad"
rulers.

Lesson 4
Measurement Principles

Ruler

R
ul

er

Ruler

Ruler
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Other rules may be offered, and the class should discuss and
decide whether each new rule is necessary or not.  The class
should also discuss whether the list is complete and as clear
as possible.  The goal in this discussion is to make sure that
all students understand and can explain how to use a ruler to
measure lengths, and that what they know is stated as clearly
and comprehensively as possible.

If students have trouble describing how to measure, you
might want to demonstrate some of the wrong ways of
measuring a line segment again, in each case asking: "Will
this work?  Why or why not?"  Answers to these questions
can be turned into measuring rules.

After all important instructions have been listed, students
should add any they forgot to their own lists.  Then collect all
sheets.

Follow-up activity, or possible homework: Activity Sheet E.
Read directions aloud and discuss them with the class.
Students may complete the sheet in small groups or
individually.

Lesson 4 continued
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Materials:
Ruler

Preparation:
Draw two line segments on the board, one 12" long, the other
24."  Label them as shown below:

Begin by saying: "Here's a new way to think about fractions.
We can write a fraction to show how long line segment A
is, compared to line segment B."

"Is line segment A longer or shorter than segment B?  How
long do you think line segment A is, compared to segment
B?"  (Other possible questions: "Can you guess what fraction
it would be?  Why do you think it's that fraction?")

"Let's write your guesses on the board."  (After several
guesses have been recorded, you may ask whether anyone
else has a guess, then ask how many students agree with
each guess and record the total.  Try to elicit an explanation
for each guess, and if possible elicit evaluations of the
possible correctness of each guess.)

"When you guess, you're making an 'estimate.'  'Estimate' is
another word for 'guess.'  Estimates are usually not exact.
We can get a more exact idea about how long one line
segment is, compared to another segment, by measuring
both segments."

"How can we measure these two line segments?"  Recruit
one or two volunteers to come to the board and measure the
segments.  The segments may be measured in feet or inches.
Write the results on the board.

"Now that we have measured both line segments with the
same units, we can write the length of line segment A as
the top part of a fraction, and the length of line segment B
as the bottom part."

Key Ideas:
•  Fractions are
numbers that can show
the relation between
two quantities (in this
case, two lengths).
•  If two lengths are
measured by the same
unit, either length can
be expressed as a
fraction of the other.
•  The length of an
object may be
expressed in many
different ways,
depending on the units
used to measure it.

Sample Lesson

Activities:
• Measuring two line
segments.
• Writing a fraction to
express the comparison
between two measured
quantiities.

Lesson 5
Measuring and Comparing Lengths

A

B
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Add the labels shown below to your diagram on the board
(assuming students have measured the line segments in feet;
otherwise write the number of inches):

"This shows how long segment A is, compared to B.  Line
segment A is 1/2 the length of line segment B."

"These measurements use feet as the unit of measurement.
Is there any other unit we could use to measure the
segments?"  (If there's no response, ask: "What do these
numbers on the ruler stand for?"   --inches.)  "Can we
measure these segments in inches?"  Recruit volunteers.

If the line segments are measured in inches first, prompt
students to try other units, e.g., feet.  Ultimately both
segments should be measured in both feet and inches, and
you should have the following diagram on the board
(students may also suggest other units, and these may be
added to the diagram):

"The two fractions we've written show the same thing.
Line  segment A is 1/2 as long as line segment B.  Or you
could say line A is 12/24 as long as line B.  Both fractions
are the same."

Lesson 5 continued

A

B

1 foot

2 feet

1
2

A

B

1 foot

2 feet

12 inches

24 inches

1 2
2 4

1
2
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Write on the board:

"1/2 and 12/24 are equivalent fractions."

This is a preliminary illustration.  It is not necessary for
students to understand the concept of equivalent fractions
fully at this point.

Repeat this activity with several other pairs of line segments,
such as those shown below.  Be sure to include some
instances where A is longer than B.

 A  B

 12" 36"

 6" 12"

 18" 12"

 9" 6"

Discuss with students other quantities that might be
compared using fractions, such as money, heights or weights
of different persons, etc.  Write some fractions on the board
that illustrate these comparisons.

Students might want to try writing a fraction that shows how
tall they are, compared to a 7 feet tall basketball player.   The
numerator and denominator of such fractions may be in feet
or inches.

Be sure students understand that both quantities shown in a
fraction must be measured in the same units: you can't show
how large 6" is, compared to 1 foot, by writing 6/1 (this
would be a ratio, not a fraction according to our definition).

Lesson 5 continued

1
2

= 1 2
2 4
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Instructions for Student Activity Sheets F and G

Read directions for Activity Sheet F aloud.  Work out the first
problem or two with the class.  For example, ask how many
units long A and B are, as measured by the grid.  If
necessary, recall previous activities in which fractions were
used to compare one line segment to another.  Then have
students complete sheets F and G individually or in small
groups.

The final task is an assessment which may be completed
individually or in small groups.  Instruct students to draw
two line segments on a sheet of paper.  Each segment should
be labeled in some way.  Then students should measure both
segments, record the results, and write a fraction expressing
how long one segment is, compared to the other.  They may
use any available rulers or may cut out the rulers provided
on the "Measuring Tools" sheet.  This activity may be
repeated if you wish.

Lesson 5 continued
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Materials:
Yardstick or ruler

Preparation:
Draw a 36" line segment on the blackboard, starting on the
left side of the board.

"Let's say this is a piece of gold wire.  Some children are
going to cut it up to make things.  What could you make
out of gold wire?"

Alternatively, you could suggest that the line segment is a
piece of yarn or string, or some similar object.  You could
even give students pieces of string or yarn to cut.

"Ok, let's say 2 children want to share this wire equally.
Where should they cut the wire so each gets the same-sized
piece?  Can someone come up and mark where they  should
cut the wire?"

After a volunteer has marked where the wire should be cut,
the class should discuss whether the two pieces are equal.  If
the class agrees the pieces are not equal, other volunteers
should try to mark the line segment, until all or most
students agree on where the cut should be made.  Then
proceed.

"If both of these pieces are equal, how much of the wire
will one student get?"  -- one half
"If you divide anything into two equal pieces, how much
will each piece be, compared to the whole thing?"  -- one
half

Label one half of the line segment.

Note: The half-way mark needs to be large enough so that
smaller marks can be added to the line segment, as shown on
the next page.

Key Ideas:
• To find a fraction of a
line segment, the line
segment must be
partitioned into equal-
sized intervals.
• A line segment can be
partitioned into any
number or equal pieces.
• The size of the pieces
is inversely proportional
to their number.
• No matter how small a
line segment you have,
you can always partition
it into smaller segments.

Sample Lesson

Activities:
• Partitioning a line
segment into equal-size
segments.
• Labeling segments with
fractions.

Lesson 6
Partitioning Line Segments

1
2
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"Now let's imagine that 2 more children come and all four
children decide to share the wire.  How should they cut the
wire now?"

As before, volunteers should mark the line.

"If all four of these pieces are equal, how much of the wire
will one student get?"  -- one fourth

Label 1/4 of the line.

"If you divide anything into four equal pieces, how much
will each piece be, compared to the whole thing?"  -- one
fourth

"If two people divide the wire, each gets 1/2.  If four people
divide it, each gets 1/4.  Which is more, 1/4 or 1/2?  Why?"

"Now what would happen if 4 more people came?  That
would be 8 people all together.  How would they divide
this wire?"

Mark and label the line segment as before.  The diagram
should now show 1/2, 1/4, and 1/8.  Then ask students to
compare several fractions, e.g.: "Which is more, 1/8 or 1/4?
2/8 or 1/4?  2/4 or 1/2?"  It will be easier for students to make
these comparisons if you label all fourth and eighth marks:
1/4, 2/4, 3/4, 1/8, 2/8, 3/8, etc.  Discuss the fact that some
marks can be labeled by two or three different fractions: these
fractions are "equivalent"-- they have the same value.

"OK, let's draw a new gold wire.  See how easy it is to make
a gold wire?"  Erase the old line and draw a new one.  "Now
let's make up our own story.  How many children could
divide up this wire?"  --e.g., five

"How should they cut the wire?  How much of this wire
does one child get?"
-- one  fifth
Repeat this with several other numbers.

Key Ideas:
• Equal-sized segments
of a line segment can
be expressed as
fractions; e.g., if you
divide a line segment
into four equal
segments, each
segment is 1/4 the
length of the original
line segment.
• The size of the pieces
is inversely proportional
to their number.

Activities:
• Partitioning a line
segment into equal-size
segments.
• Comparing fractions.

Lesson 6 continued
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"What's the largest number of equal pieces you could
divide this wire into?"

Write guesses on the board.  Point to some of the guesses,
asking, "If this many  children (e.g., 500) divided up the
wire, how much would one child get?"  --1/500  "Can
anyone write that fraction?"

Keep asking for larger numbers until students realize that the
number could be infinitely large.  Students should also
understand that as the number of pieces increases, the size of
each piece decreases.

Write several fractions on the board and ask students which
is the largest and which is the smallest.  For example,

Repeat with other fractions until all students understand
how to compare these "unit fractions."

Key Idea:
• You can divide any
line segment into as
many equal pieces as
you want.
• The size of the pieces
is inversely proportional
to their number.

Activity:
• Comparing fractions.

Lesson 6 continued

1
6

1
5

1
7
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Draw a new line segment.
"Let's make this into a number line.  It looks a lot like the
gold wire, doesn't it?  What should this segment have, to
make it a number line?"  ....numbers

"OK, how about this?"
Draw and discuss:

  3 1 7 4 0

"Or how about this?"
Draw and discuss:

 10                20 30 40            50

Draw some other wrong examples if you wish.
Students should recognize that the numbers should be
ordered and equidistant.  If students do not propose this in
discussion, you may have to tell them that these are number
line conventions.
"On a number line, each number shows how far that point
is from 0.  3 is three times farther from 0 than 1 is, and so
on.  Number lines also extend to infinity in both
directions."

Then draw and discuss the following:

"On this number line, 20 is twice as far from 0 as 10 is.
Why?"

"What numbers could you write between these numbers?
For example, what might go between 10 and 20?"
Students should add numbers such as 17, 42, etc., to the
number line, discussing the placement of each number.

Key Ideas:
• Each point on a
measuring strip or
number line represents
a distance from a
reference point, 0.
• Between any two
numbers you can
always find another
number.

Sample Lesson

Activities:
• Placing numbers on
number lines.
• Discussing number line
conventions.

Lesson 7
Fractions on Number Lines

0 10 20 30 40
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"Here's another kind of number line: "

"What numbers could you write between these numbers?"
To help students think about numbers such as 2 1/2 and
3 1/4, you might talk about ages: "How old is someone
who's more than 2 but not yet 3 years old?  Where would
we put that on the number line?"

Also ask, "If these numbers represented dollars, where
would $2.00, $2.50, $.50, $3.75, etc., go on this number line?"
Note: Cents must be converted to fractions of a dollar.  If
students try to write a number like 75 on the number line,
remind them that the numbers show dollars.  You could
draw a separate number line showing cents and have
students place numbers like 275 on it:

"Next let's talk about this number line:"

"Are there numbers between 0 and 1?  What are some
examples?"

Draw guesses on the board.  Discuss whether each guess is
sensible.  If there are no guesses refer to earlier discussions
about dividing up a wire.

“How many numbers are there between 0 and 1?"  Try to
elicit the possiblity that any line segment can be divided into
any number of pieces--between any two numbers, there are
an infinite number of numbers.

Key Ideas:
• Each point on a
measuring strip or
number line represents
a distance from a
reference point, 0.
• Between any two
numbers you can
always find another
number.

Activities:
• Placing numbers on
number lines.
• Discussing number line
conventions.

Lesson 7 continued - 1

0 1 2 3 4

0        100      200      300      400

0     1
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Draw the following on the board:

Then discuss this question with the group: "How many
numbers are there between 3 and 4?"  (Fractions and mixed
numbers are numbers.)
Write several guesses on the board.

Have students mark some mixed numbers between 3 and 4
and have the class discuss which numbers are closer to 4 and
which are closer to 3.  Students should explain their answers.

It might be useful during this discussion to place 1/2-unit
and 1/4-unit marks along the number line and discuss the
fact that numbers like 3 1/2 can be expressed as 7/2 or 14/4.

"Now we'll work with partners (or in small groups) to see if
you can find some fractions."
Hand out Activity Sheet H (graph paper).

Write this problem on the board: "Find a fraction between 0
and 1/2.  Draw a number line on the Activity Sheet to show
your answer."
Students sitting next to each other may work in pairs, or you
may want to create other groupings.  After students work for
several minutes on the problem, the whole group should
discuss solutions that have been found.

Then try another problem in the same way:  "Find a fraction
between 1/2 and 1.  Make a picture to show what you do."

Also have students try problems like these:
"Find a fraction between 5 and 6."
"Show hwere 2 1/2 pizzas would go on a number line."
"Show $5.50 on a number line."
"Show where 3 1/4 feet would go on a number line."
Explain to students that measuring units are usually not
shown on a number line, only numbers.

Write all problems on the board.  Students may use Activity
Sheets I and J to draw additional number lines if necessary.

Key Ideas:
• Understanding how to
represent fractions and
mixed numbers on a
number line.

Activity:
• Placing numbers on
number lines.

Lesson 7 continued - 2

0 1 2 3 4
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Materials:
5 different-colored paper strips for each student.
Note: Debbie used 18" by 4 1/2" strips of colored
construction paper, but white 14" x 1 1/2" strips will also
work.  If you don't have construction paper, 8 1/2" x 14"
sheets of paper are enclosed; students may cut fraction strips
and game boards from these sheets.
Scissors, felt pens, wooden cubes labeled with fractions.

Preparation:
One strip will serve as the game board.
Other strips should be cut as follows:
Ask each student to hold up a strip and show how to fold it
in half.  If the folds are correct, students should cut on the
fold and label each piece 1/2.  Do this with each strip so
students have 1/4s, 1/8s, and 1/16s.

Label the six sides of the cube 1/2, 1/4, 1/8, 1/8, 1/16, 1/16.

Object of Game:
Be the first to cover the game board.

Playing the Game:
Each student has a game board.
Students take turns rolling the cube, putting the correct
fraction piece on their own game board after each roll.

Related Discussion:
Either  before or after playing the game, have students use
their fraction pieces to answer questions you ask, such as:
"How many sixteenths equal one whole?  How many
fourths equal 1/2? How many eighths equal one-fourth,
etc.?"

Then have students work on Activity Sheet K individually or
in small groups.

Key Ideas:
• Equivalence of
fractions.

Fraction Game

Activities:
• Fraction Game from
Debbie Brewer.
• Identifying equivalent
fractions.

Lesson 8
Fraction Equivalence
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Key Ideas:
•
Key Ideas:
• The fundamental
property of fractions:
- If the numerator and
denominator of a
fraction are multiplied
by the same number, a
new fraction is
generated that is
equivalent or equal in
value to the original
fraction.

Activities:
• Recognizing and finding
equivalent fractions
• Illustrating equivalent
fractions

�

Equivalent Fractions

Possible Lessons:

You might introduce the idea of equivalent fractions by
asking questions like this:
"Which would you rather have, 1/2 of a dollar, or 2/4 of a
dollar?  Why?"
"Which would you rather have, 2/3 of a pizza, or 4/6 of a
pizza?  Why?"

The goal is for students to discuss the idea that 2 fractions
can have the same value, even though they do not look the
same.

After the idea of equivalence has been introduced, students
can try Activity Sheets L, M, N, and O.  It might be helpful to
make overheads of sheets M, N, and O.  The directions,
examples, and first question or two can be covered by the
whole class, then students can complete the remaining
questions individually or in small groups.

Lesson 9
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Key Ideas:
• Representing fraction
addition on a number
line.

Possible Lessons:

Adding Fractions
  Lesson 10

You might  introduce the idea of fraction addition by asking
questions like this:

"If you had 1/2 of one dollar, and someone gave you
another half dollar,  how much would you have altogether?"

"We can show what happened in this situation by drawing
a number line like this."
Draw a diagram similar to the left of the diagram at the
top of Student Activity Sheet P.

After you discuss other examples of fraction addition,
students can try Activity Sheet P and Q.  It might be helpful
to make overheads of these sheets.  The directions, examples,
and first question or two can be covered by the whole class,
then students can complete the remaining questions
individually or in small groups.  Sheet R (graph paper) may
be used to draw more number lines to illustrate addition
problems, or if you wish, to give additional practice in
placing fractions on number lines.

Activities:
• Adding fractions
• Placing fractions on
number lines



106

Student Activity Sheets
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 Most of the time we measure lengths in units such as feet, inches,
meters, or centimeters.  These are standard units of measurement, but any
length can be used as a unit to measure other lengths.

 Below you see 3 different strips of gray paper (A, B, and C) that could
be used to measure the length of line segment D.  When you use one of the
strips to measure, the length of that strip is "1 unit."

Answer these questions:

Measurement Units

A

B

C

line segment D

NAME:           New Student Activity Sheet A

If the length of strip A is 1 measuring unit, how long is line segment D?

If the length of strip B is 1 measuring unit, how long is line segment D?

If the length of strip C is 1 measuring unit, how long is line segment D?
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Answer each of the questions below.

Units of Measurement

A

B

C

line segment G

D

E

F

NAME:           New Student Activity Sheet B

If the length of strip A is 1 unit, how long is line segment G?

If the length of strip B is 1 unit, how long is line segment G?

If the length of strip C is 1 unit, how long is line segment G?

If the length of strip D is 1 unit, how long is line segment G?

If the length of strip E is 1 unit, how long is line segment G?

If the length of strip F is 1 unit, how long is line segment G?
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0 6

6 Inch Ruler

1 2 3 4 5

NAME:          New Student Activity Sheet C

Above each line segment, write it s length.
The first line segment is an example.

1 inch
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NAME:          New Student Activity Sheet D

Instructions for Measuring Line Segments

Write your instructions on the lines below.
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0

Ruler 5

line segment  M

0 6

Ruler 6

0 6

Ruler 7

Can rulers 5, 6 and 7 be used to measure line segment  M?
For each ruler, explain your answer:

Can Ruler 5 be used to measure line segment M?
Explain your answer:

Can Ruler 6 be used to measure line segment M?
Explain your answer:

Can Ruler 7 be used to measure line segment M?
Explain your answer:

1 2 3 4 5 6

1 2 3 4 5

NAME:         New Student Activity Sheet E
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A

B

How long is line segment A, compared to line segment B?

C

D

How long is line segment C, compared t o line segment D?
( This is a t ricky one.)

E

F

How long is line segment E, compared to line segment F?

In th is act ivity , you will compare the lengths of two  line segments.
You can use the gray grid t o help you measure the line segments.

NAME:           New Student Activity Sheet F
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A

B

C

D

E

F

In th is act ivity , you will compare the lengths of two  line segments.
You can use the gray grid t o help you measure the line segments.
Hint : You don' t have to  use the length  of 1 square as your measuring
unit.   Your unit could be 2 or more squares long.

How long is line segment A, compared to line segment B?

How long is line segment C, compared t o line segment D?

How long is line segment E, compared to line segment F?

NAME:          New Student Activity Sheet G
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NAME:         New Student Activity Sheet J

Graph Paper
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How many halves equal one whole?
How many fourths equal one whole?
How many t enths equal one whole?
How many f ift eenths equal one whole?

How many fourt hs equal one-half?
Draw a pict ure to  show that your answer is correct .

How many eight hs equal one-half?
Draw a pict ure to  show that your answer is correct .

How many eighths equal one-fourt h?
Draw a pict ure to  show that your answer is correct .

How many sixt eent hs equal one-eight h?

How many sixteenths equal one-half?

How many sixteenths equal one-fourt h?

In the space below, write  at least  3 fracti ons equal to
one-f ourt h.

NAME:         New Student Activity Sheet K
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     NAME:                                                                                                 New Student Activity Sh        eet L    

How many fractions are equal to 1
2

   ?

All the line segments below are the same length, 1 unit long.  Each line segment has been
divided into equal-sized intervals.

0 1

0 1

0 1

0 1

0 1

1
2

2
4

3
6

4
8

What do the pictures above show?

Use the pictures above to find some fractions that are equal to  1
2

   .

Write these fractions in the space below.

Use the pictures above to find some fractions that are equal to  1
4

   .

Write these fractions in the space below.
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     NAME:                                                                                         New Student Activity Sheet M      

Finding Equivalent Fractions

All fractions that are equal to one-half are called equivalent fractions.

How can you find fractions that are equivalent to  
1
2   ?

Write numbers above or below each fraction line to make fractions equivalent to  
1
2  :

10
6
   

16
1 0
   

100
2 2
   

15
50
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     NAME:                                                                                                        New Student Activity Sheet N     

Finding Equivalent Fractions - Advanced

Write numbers above or below each fraction line to make fractions equivalent to  
2
3  :

6
6

12
1 0
   

Write numbers above or below each fraction line to make fractions equivalent to  
5
4  :

8
1 0
   

16
1 5
   

100 200

100
   

28



119

      NAME:                                                                                                 New Student Activity Sheet P

The diagram below shows that  
1
2   +  

1
2   =  1.

0 1 2
1
2

0 1 2
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Appendix B

Sample Activity Group Lesson



122



123

Appendix C

Pretest
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1) For each picture below, write a fraction to show what part is gray:

a.___________ b.__________ c.__________ d.__________

e.__________ f.___________ g.__________ h.__________

i.__________ j.___________ k.__________ l.__________



125

2) For each picture below, circle the fraction that shows what part of
 the picture is gray:

a)
1
9 

1
3 

3
5 b)

1
4 

9
10 

3
5 

  

b)
1
10 

1
3 

2
4 d)

9
10 

3
4 

2
5 

c)
11
12 

2
5 

5
8 d)

2
10 

2
5 

2
3 
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Add or subtract the fractions below:

3)
3
5 

    +
1
5 

              _ _ _ _ _ _ _ _ _ _    

4)
2

10 

    +
2
5 

    _ _ _ _ _ _ _ _ _ _    

5)
1
3 

    +
1
2 

              _ _ _ _ _ _ _ _ _ _    

6) 7
5
8 

    + 4
1
2 

    _ _ _ _ _ _ _ _ _ _    

7)
7
10 

    -
1
10 

              _ _ _ _ _ _ _ _ _ _    

8)
5
6 

    -
1
3 

    _ _ _ _ _ _ _ _ _ _    

9)
2
3 

    -
1
2 

              _ _ _ _ _ _ _ _ _ _    

10) 2
1
2 

    - 2
    _ _ _ _ _ _ _ _ _ _    
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11) a. What fraction of the cards is gray? ______

b. What fraction of the marbles is gray? ______

12) Circle all the pictures below that show 
1
2 .
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13) a. Mark with an arrow (  ) where 4 goes on the number line 
below.

 0                       1                       2                      3
 

b. Mark with an arrow (  ) where 2
1
4  goes on the number line 

below.

 0                       1                       2                      3    

c. Mark with an arrow (  ) where 
1
2  goes on the number line 

below.

          
0 1

d. Mark with an arrow (  ) where 
4
6  goes on the number line 

below.

           
0 1

e. Mark with an arrow (  ) where 
2
3  goes on the number line 

below.

 0                       1                       2                      3
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14) Write one fraction that  is the same as each fraction below.

Example:
1
2  = 

2
4 

a.
2
6  = b.

1
5  =

c.
12
16  = d.

7
6  =

15) a.     Four    people are going to share these two pizzas equally.  Color in     one    
person's part.

b. Write a fraction that shows how much     one     person
gets     _________    .
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16) a.     Three     people are going to share these pizzas equally.  Color in     one           person's
part.

b. Write a fraction that shows how much     one     person gets    _ _ _ _ _ _ _ _ _ _ _    .

17) a.     Six     people are going to share these five chocolate bars equally.  Color in
    one     person's part.

        

b. Write a fraction that shows how much     one     person gets    _ _ _ _ _ _ _ _ _ _    .
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18) Fill in the missing numbers:

a.
  
1

5
=  

      10
b.

  
3

4
= 

        8

c. 2
  
1

2
= 

        2
d. 3

  
1

4
= 

        8

19) For each row of fractions below, show which fraction is the greatest
and which fraction is the least:

a.
2
7 

5
7 

4
7    Greatest?     _ _ _ _ _ _ _ _ _      Least?    _______

b.
1
8 

1
7 

1
6    Greatest?     _ _ _ _ _ _ _ _ _      Least?    _______

c.
4
7 

3
8 

1
2    Greatest?     _ _ _ _ _ _ _ _ _      Least?    _______
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20) Circle a, b, c, or d below to show what part of this circle is gray:

a.
1
2  + 

1
3 b.

3
6  + 

1
6 c. 1 + 

1
3 d.        4

21) John ran 
2
5  of a mile on Thursday and 

3
5  of a mile on Friday.

How far did he run altogether on the two days?      _ _ _ _ _ _ _ _ _ _    

Draw a picture to show your work:
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22) a. How many fractions are equal to 
1
2 ?        _ _ _ _ _ _ _ _    

b. Write some examples in
                        the box:

c. Explain your answer:

    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _    

    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _    

    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _    

    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _    

    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _    

    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _    

    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _    

    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _    

    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _    

    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _    

    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _    

    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _    

    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _    

    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _    

    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _    

    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _    

    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _    

    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _    
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Appendix D

Posttests:
Representational Knowledge

Computation
Declarative/Conceptual Knowledge

Problems and Justifications
Extended Explanation

Administration Directions
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Representational Knowledge
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Understanding Fractions

Name________________________________________________________________

Age_________________________

Teacher______________________________________________________________

School_______________________________________________________________

Please circle one of these:         Boy Girl

Below are some examples of items you will see on the next
several pages.  You do not have to mark anything on this page.

The items below show the same amount as         :1

 4

Please turn the page and follow the directions.
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0 1 2

3 40 21

210

0 1 2

Circle the items below that show the same amount as      :1
2
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840 2 6

2
4

0 1 2 0 1 2

3 40 21

Circle the items below that show the same amount as      :
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840 2 6

0 1 2

0 21

210

Circle the items below that show the same amount as      :2
3
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840 2 6

0 1
2 0 1 2 210

4
6

Circle the items below that show the same amount as      :
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0 1 2

0 1 2 43

0 1 2

0 1 2 43

Circle the items below that show the same amount as      :3
2
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Computation
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Add or subtract the fractions.        Circle the answer:
1)

                       
3
7   +  

2
7   =                                

5
7            

5
14            

7
14           

14
21 

2)

                     5 
1
6   +  

4
6   =                           5 

5
12            5 

5
6            5 

6
24           5 

1
2 

3)

                       
2
3   +  

1
3   =                                 

3
6              3              

2
9              1

4)

                       
5
8   -  

3
8   =                                  2            

2
16             

2
8             

4
5 

5)

                       
10
12   -  

5
12   =                             

5
24            

5
12            

7
12            5

6)

                      8 
1
3   -  

1
3   =                                8            7 

2
3              7           7 

1
6 
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Equivalent fractions.                   Circle the answer:
7)

                    
1
2   equals  =                                

2
3             

3
6             

2
5             

4
9 

8)

                    
6
8   equals  =                                

3
9             

2
6             

3
4             

5
7 

9)

                    
2
3   equals  =                              

8
12             

3
4             

3
9              

5
6 

10)
               What does N equal?

                       
3
8   =  

6
N   =                                12          11            16            24

11)
                What does N equal?

                       
2
7   = 

N
21   =                                  3            16             7             6



146

Declarative/Conceptual Knowledge
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1 ) Above each line segment, write its length.  The first line segment
is an example.

0 6

6 Inch Ruler

1 2 3 4 5

1 inch
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2 )

a. Mark with an arrow (    ) where 
  
1

3
 goes on the number line below.

    

0 1

b. Mark with an arrow (    ) where 
  
2

3
 goes on the number line below.

    0 1 2 3

c. Mark with an arrow (    ) where 
  
3

2
 goes on the number line below.

    0 1 2 3

3. Write the correct numbers under each of the arrows below.
You might have to estimate.

0 21

0 1

0 1 2 3
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1 )

a. Four people are going to share these two pizzas equally.
Color in    one    person's part.

b. Write a fraction that shows how much    one    person gets                     

2 )

a. Three people are going to share these five chocolate bars equally.
Color in    one    person's part.

b. Write a fraction that shows how much    one    person gets                     
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3)

a. What is  
1
2   of 6 sandwiches?

b. What is  
1
3   of 12 sandwiches?

c. What is  
1
2   of 3 sandwiches?

d. What is  
1
3   of 9 dollars?

e. What is  
3
4   of 8 sandwiches?

f. What is  
4
3   of 9 dollars?

4) Three children were sharing a pizza.  The cut the pizza into 12 equal
slices.  Maria ate 4 slices, Bob ate 3 slices and Sharon ate 6 slices.

a.  What part of the pizza did Maria eat?

b.  What part of the pizza did Bob eat?

c.  What part of the pizza did Sharon eat?

d.  What part of the pizza was left over?



151

Additional Declarative/Conceptual Knowledge

Problems and Justifications
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1) How many ninths equal one whole?

2) How many fifths equal two wholes?

3) How many fourths equal  3 
1
4  ?

Show your work.

4) How many thirds equal  2 
2
3  ?

Show your work.

5) In the space below, draw at least 4 different kinds of pictures

that show the fraction  
3
6   .  Then explain why the

pictures show  
3
6   .
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Some problems on the next few pages ask you to explain how to solve the problem.  Or
you might be asked to explain a math idea.  When you are asked to explain, be sure to put
down everything you know.  Imagine that you are explaining to someone who doesn't
know anything about math.  Your explanations should be very clear and complete.

6) Which is larger 
2
5   of a pizza or 

2
4   of a pizza?

Draw a picture that shows your answer is correct.
Explain your picture.

7) Ana sliced a pie into 5 equal pieces.  She ate two pieces.
How much of the pie did she eat?

8) Carlos and Lee Ann sliced a pizza into 8 equal pieces.
Carlos ate 3 pieces.  Lee Ann ate 2 pieces.  How much did
Carlos eat, compared to Lee Ann?
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9) Which is greater, 
3
5   of a mile or 

1
2   of a mile?

Draw a picture that shows your answer is correct.
Explain your picture.

1 0 )

A

B

How long is line segment A, compared to line segment B?

1 1 )

A

B

How long is line segment A, compared to line segment B?

12) Lug is 4 feet tall.  Mab is 5 feet tall.  How tall is Lug, compared to Mab?

13) Bek is 6 feet tall.  Ruf is 4 feet tall.  How tall is Bek, compared to Ruf?
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14) Find a fraction between 
1
2    and  

3
4 

Explain how you find the answer to this problem.
Draw a picture that shows your answer is correct.

15) Find a fraction between  2 
1
2    and  2 

3
4 

Explain how you find the answer to this problem.
Draw a picture that shows your answer is correct.

16) Draw a picture to show whether this is true or not:
1
2  + 

1
6  = 

4
6     

Explain how your picture shows the answer.
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17) Draw a picture to show whether this is true or not:
3
4  = 

6
8 

Explain how your picture shows the answer.

18) Draw a picture to show whether this is true or not:
4
3  = 1 

2
6  

Explain how your picture shows the answer.

19) Draw a picture to show which of these two fractions is larger:

 
2
3   or  

3
4 

Explain how your picture shows the answer is correct.

STOP
Wait for your teacher to tell you
when to go on to the next page.
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Extended Explanation
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Explanation Task

Imagine a person from a television station has asked you to give a
demonstration
on TV.  You will be on a show to help other students learn about math.  You are asked
to explain everything fifth grade students should know about fractions.

Below are some questions you should try to answer.  These are questions that
students in the TV audience will ask you.

For each question you should draw as many pictures as you can to show what
you
mean.  Then write down what you would say about your pictures on TV.  Use as
many
words and pictures as you need.

What is a fraction?

Why are there two numbers in a fraction?
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How many fractions are there between 0 and 1?

How many fractions are equal to 1/2?

What other important ideas should students know about fractions?  Show how you
would explain these ideas.  Use as many pictures and words as you need.  If you need

more space,
continue on to the next page.
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Administration Directions
and

Teacher Log
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   INSTRUCTIONS
    FOR FIRST DAY OF

    FINAL ASSESSMENTS

This package contains materials for the first day of testing.

     GENERAL NOTES

Estimated time for the enclosed assessments is one 40 minute period.  If your
class periods are shorter than this, testing may have to be extended to the next
day.  If any students are absent on a testing day, please have them complete
any tests they miss when they return.
Instructions in boldface type are to be read aloud to the students.  Directions
for administering the test are in plain type.
Students will complete three sets of papers on the first day.  If all students
finish working on a given set before the allotted time has passed, you may
introduce the next set.  If there is not enough time in the period left to
complete a new set of papers, save that set for your next testing period.  Just
make sure to administer the sets in the prescribed sequence, even if it takes
more than two days to do it.

     Distributing the papers:

In this package there are three separate piles: 1) "Understanding Fractions," 2)
"Add or subtract fractions," and 3) Conceptual Items.  Within some piles, test
forms are not identical.  For technical reasons, it is extremely important  that
you distribute papers according to the following plan.  The papers need to be
distributed in the same order as your class roster.  The easiest way to do this
(without having to do any prior work) is to set out the three different piles,
then call out names in order from your roster.  Each student should come up
and take one stapled set (the top one) from each pile.  Use this plan at the
point shown below.

Begin: "For the next two days you'll be working on fraction tasks.  Some of the
tasks will be like the ones you've been doing this week and last week, and
some of the tasks are different.  These items will show what you know about
fractions.  There are a lot of different items, so you'll have a lot of chances to
show what you know.  Don't worry if you can't do all the items.  Just skip the
ones you can't do or try to guess what the answer might be.  Some of the tasks
may be easy for you and some unfamiliar.  But it is important that you try
your best to show what you know.  I'll be looking at your papers, and some
people at UCLA who are studying fractions, will look at your papers also."

Before distributing the tests, say, "Don't start working on the items until
everyone has their papers.  I will tell you when to start."

DISTRIBUTE PAPERS ACCORDING TO ABOVE PLAN.
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After all tests have been distributed, say:

"The first thing you should do is print your name on the first page of each set
of papers."

Check to see that this happens.

"Now take the set that says 'Understanding Fractions' at the top; put the other
sets aside.  On the page that says 'Understanding Fractions,' fill in your age,
my name, and the name of this school, on the lines.  Then circle whether you
are a boy or girl."

When everyone has done this, continue:

"Now I'll read what it says at the bottom.  Follow along with me."

Read these lines:

Below are some examples of items you will see on the next several pages.
You do not have to mark anything on this page.

The items below show the same amount as  
1
4   :

                

          Please turn the page and follow the directions.

Say: "Now turn to the next page.  On this page, look at each item and circle the
ones that show the same amount as the fraction at the top.  Then go on to the
next page.  Does everyone understand?"

"Now you may begin to work on the items.  Be sure to make your circles dark
enough to see.  You have about 20 minutes to complete the sheets.  If you
need help, raise your hand to ask for help."

If students ask for help, it is permissible to assist them in reading and
understanding the directions.  For example, you can point out where the
answers should be written.  It is not acceptable to discuss the mathematical



163

content of the items.  You should     not    say, for instance: "This picture shows 4
parts shaded out of 8.  What fraction is that?"

After 15 minutes, say:

"You have five more minutes to finish the task."

After 5 more minutes:

"Time is up.  Please stop now and turn in your sheets."

Collect these papers.

"Next we'll do the set that says 'Add or subtract the fractions' near the top.
Make sure your name is on this page.  Read the directions to yourself and
make sure you know what to do.  If you know what to do, begin working.  If
you have a question, raise your hand.  When you're done with this page,
continue onto the next page.  You have 8 minutes."

After 6 minutes, say:

"You have two more minutes to finish the task."

After 2 more minutes:

"Time is up.  Please stop now and turn in your sheets."

Collect these papers.

"Next we'll do the final set of papers.  Your set might not look exactly like
everyone else's.  Make sure your name is on the top of the first page.  Read
the directions to yourself and make sure you know what to do.  If you know
what to do, begin working.  If you have a question, raise your hand.  Keep
working until you've finished all the pages.  If you have time left over, you
can check your answers.  You have 12 minutes for this part."

After 9 minutes, say:

"You have three more minutes to finish the task."

After 3 more minutes:

"Time is up.  Please stop now and turn in your sheets."

Collect these papers.

This is the end of the first day's assessment.
Keep all papers and return them to us in a Federal Express box with the
second day's papers.  (This box will be sent with the second-day assessments.)
Thank you for your help.
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   INSTRUCTIONS
    FOR

    FINAL ASSESSMENTS

This package contains materials for the final day of testing, plus a short
Teacher Log we need to have you fill out.  It may be possible to complete this
log during the first 25-minute testing period (described below).  We are adding
some additional paid time for everyone in case you cannot complete this
form during the school day.

     GENERAL NOTES

Estimated time for the enclosed assessments is one 40-45 minute period.  If
your class period is shorter than this, testing may have to extend to the next
day.  If any students are absent, please have them complete any tests they miss
when they return.
Instructions in boldface type should be read aloud to the students.
Administrative directions are in plain type.
Two main types of assessments will be given during this period: 1) problem
solving and short explanation tasks, and 2) an extended explanation task.  It
will take about 25 minutes to complete the first group of tasks, and 15 minutes
to do the extended explanation.  All tasks have been assembled into one
package.

Begin: "Today we'll continue with the fraction assessments we started
yesterday.  There are a lot of different items, so you'll have a lot of chances to
show what you know about fractions.  Don't worry if you can't do all the
items.  Some of these items are hard even for adults.  Just skip the ones you
can't do or try to guess what the answer might be.  Remember, it is important
that you try your best to show what you know.  I'll look at your papers, and
some people at UCLA who are studying fractions, will look at them also."

Before distributing the tests, say, "Don't start working on the items until
everyone has a package.  I will tell you when to start."

Distribute papers as follows:

Each student will receive one assessment package.  The packages must be
distributed in the same order as your class roster.  The top paper in the pile
should go to the first student on your roster, and so on.

After all tests have been distributed, say:

"The first thing you should do is print your name and the date on the first
page.  Write your first and last name."

Check to see that this happens.
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"Wait until I tell everyone to begin.  After you begin, you may continue
working until you see the word 'Stop'"  At that point you can go back to any
problems you skipped, or you can check your answers.  When you are asked
to explain something, imagine you are writing for someone who doesn't
know anything.  Write as much as you can, even if it seems obvious.  Are
there any questions?"

"Now you may begin to work on the problems.  You have about 25 minutes
to complete the sheets.  If you have a question, raise your hand to ask for
help."

If students ask for help, it is permissible to assist them in reading and
understanding the directions.  For example, you can point out where the
answers should be written.  It is not acceptable to discuss the mathematical
content of the items.

After 20 minutes, say:

"You have five more minutes to finish the task."

(Note:  If all students complete the first set of problems and stop working
before the allotted time has passed, you may take a short break and go on to
the next task.)

After 5 more minutes:

"Time is up.  Please stop now and close up your package."

It is highly advisable that you take a short break at this time (at least a few
minutes).

The final task will take 15 minutes.  If there is not enough time remaining in
the period to complete this task, postpone it until the next day.

     Administering the Extended Explanation Task    

"Turn to page 7 of your assessment package.  Page numbers are in the bottom
left corner.  The page you want looks like this:"

Hold up page 7.  (A copy is attached; the heading is "Explanation Task.")

"Now I'll read the directions.  Follow along with me."

Read the three short paragraphs at the top of the page.

"You may begin writing.  Remember to be as clear and complete as you can."

After 12 minutes, say:
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"You have three more minutes to finish the task."

After 3 more minutes:

"Time is up.  Please stop now and turn in your papers."

Collect all papers.

"We've finished this fractions project but you'll be learning more about them
later.  Fractions are very important in mathematics and everything you have
learned about them will help you in school and outside of school.  You'll see
fractions many times again in the future."

This is the end of the final assessments.
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Teacher Log

Name:    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _    

Please give a brief description of activities during each day of the
instructional and assessment periods.  "Principles" teachers may list lessons
or activities completed; "Activity" teachers may provide page numbers from
the text or brief descriptions of activities.  Don't worry if you can't remember
everything with 100% accuracy--we just want to see whether there were any
big discrepancies between teachers.  Do not include days when nothing
happened--e.g., you were out sick, there was an assembly, etc.

Day Date Instructional Activities

1

2

3

4

5

6

7

8
Assessment Activities

9

10

11
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Appendix E

Classroom Observation Form
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172



173

Example of observer notes.
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Appendix F

Explanation Scoring Rubric
Anchor Papers

Examples of Principles, Facts, and
Misconceptions
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Mathematics Explanation Scoring Rubric

1.  General Impression of Content Quality (GICQ)
How much does the student know about this mathematical topic?
(1-5 point global rating:  1 = no knowledge, 5 = highest level of
understanding)

2.  Number of Principles or Concepts (PN)
Record number of principles or concepts that the student uses with
comprehension.  Principles and concepts are general, abstract ideas.  To
be counted, the idea must be clearly and explicitly stated; you should not
have to guess whether the student knows what s/he is talking about.

  Examples related to fractions include the following ideas:
• Between any two numbers, you can find an infinite number of
fractions.
• For any fraction you can find an infinite number of equivalent
fractions.
• When you partition or measure some object in order to find a
fraction of it, the partitions or measurement units must be equal
in size.
• You can partition any quantity into as many equal-sized parts as
you want; to get more parts, you just have to make them smaller.
• A fraction is a number that shows a relation between two other
numbers.
• See attached examples.

Note:  The definition of a fraction as a part of a whole is
conceptually limited and will not be counted as a concept in
this rubric.  A fraction    can     be a part of a whole but there are also
many other types of fractions, such as 7/4, which cannot be
considered a part of a single whole.  A fraction can also express
a relation between two quantities where neither is part of the
other.
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3.  Number of Facts and Procedures (Facts)
Record number of facts and/or procedures related to the problem or
topic.

Count one point for each piece of information or each procedure that
the student demonstrates or explains.  "Facts" include defininitions
(such as the definition of a fraction as part of a whole) and other
statements from memory such as "6 is half of 12."  Typical procedures
include: adding two fractions, finding equivalent fractions, drawing a
circular representation of a fraction.

• Do not give additional points for multiple instances of the same
procedure; e. g., if the student computes 20 different fractions
equivalent to 1/2, this still counts as knowing one procedure.  Or if
the student draws 20 different circle and rectangle representations
of the same fraction, this would count as knowledge about two
procedures:  knowing how to draw an area and a circle
representation.  A number line representation would count as an
extra point.
• See attached examples.

4. Misconceptions/Errors (MIS)
Award score points according to this scheme:
1 - one or more serious misconceptions
2 - one or more factual or procedural errors
3 - no errors or misconceptions

A serious misconception is a conceptual error such as believing that
there are only a few fractions between 0 and 1.
Factual errors are mistakes in definitions or in descriptions of
procedures.
Procedural errors are mistakes in carrying out procedures.

• See attached examples.

5.  Integration/Argumentation (INT)
How well does the student integrate facts, procedures, principles, and
concepts to develop a coherent problem solving strategy or conceptual
argument?
(1-5 point global rating:  1 = no integration, 5 = highest level of
integration)
For example, students who successfully integrate graphics and text to
make a point should receive at least a "2."  Review anchor papers to
determine other score points.
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General Impression of Quality Content (GICQ)

Anchor Papers
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Integration (INT)/Argumentation (ARG)

Anchor Papers
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Appendix G

Classroom Observation Data
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Tables G1 and G2 show the number of each type of student and teacher action

observed, and report each action as a percentage of total observed behaviors.

Nine classrooms in each instruction group were observed for one or two class

periods.

Table G1
Classroom Observations of Teacher Roles

Principles Activity

Count
Percent
of Total Count

Percent of
Total

Teacher Role 422 448
Explain 59 13.98 53 11.83
Question 95 22.51 76 16.94
Answer 20 4.74 28 6.25
Goal Relevance 114 27.01 107 23.88
Direct Ongoing Work 16 3.79 18 4.02
Correct/Grade 2 0.47 9 2.01
Test 0 0.00 5 1.12
Reflect Dialogue 5 1.19 3 0.67
Facilitate Discussion 23 5.45 19 4.24
Feedback/Monitor/Help 31 7.35 47 10.49
Confer/Diagnose 2 0.47 7 1.56
Joint Problem-solve 0 0.00 4 0.89
Read to Students 0 0.00 3 0.67
Manage/Oversee 22 5.21 17 3.80
Control/Discipline 20 4.74 10 2.23
Review 12 2.84 39 8.71

Total 422 100.00 422 100.00
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Table G2
Classroom Observations of Student Behaviors

Principles Activity

Count
Percent
of Total Count

Percent of
Total

How Working
Teacher-led 115 63.19 112 59.89
Small Group or Independent   67 36.81   75 40.11
Total 182 100 187 100
Quality of Student Responses
Level of Processing
Low/Rote   37 26.06   37 28.24
Medium   88 61.97   82 62.60
High/Elaborate   17 11.97   12   9.16
Total 142 100 131 100
Product Type
Repeat/Copy   8 11.43   9 11.54
Select   0   0.00   7   8.97
Construct 62 88.57 62 79.49
Total 70 100 78 100
Student Focus
Very High   38 25.00   53 35.33
High   63 41.45   55 36.67
Some   37 24.34   39 26.00
Low   14   9.21     3   2.00
Total 152 150
Appropriate Behavior
Almost All Appropriate   96 63.16 102 67.55
75% Are   21 13.82   36 23.84
50% Are   21 13.82   11   7.29
25% Are   10   6.58     2   1.33
Almost None Appropriate     4   2.63     0   0.00
Total 152 100 151 100
Difficulty with the Task
75% Have Difficulty     3   1.97     1   0.69
50% Have Difficulty   23 15.13   15 10.27
25% Have Difficulty   42 27.63   46 31.51
Almost No Difficulty   84 55.26   84 57.53
Total 152 100 146 100
Resources in Use
Textual 141 195
Teacher-Made   18 12.76   10 5.13
Hands-On   58   35
Teacher-Made   13 22.41     3 8.57


