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THE ROLE OF PROBABILITY-BASED INFERENCE
IN AN INTELLIGENT TUTORING SYSTEM

Robert J. Mislevy and Drew H. Gitomer

Educational Testing Service

Abstract

Probability-based inference in complex networks of interdependent variables is an active
topic in statistical research, spurred by such diverse applications as forecasting, pedigree
analysis, troubleshooting, and medical diagnosis. This paper concerns the role of
Bayesian inference networks for updating student models in intelligent tutoring systems
(ITSs). Basic concepts of the approach are briefly reviewed, but the emphasis is on the
considerations that arise when one attempts to operationalize the abstract framework of
probability-based reasoning in a practical ITS context. The discussion revolves around
HYDRIVE, an ITS for learning to troubleshoot an aircraft hydraulics system. HYDRIVE
supports generalized claims about aspects of student proficiency through probability-
based combination of rule-based evaluations of specific actions. The paper highlights the
interplay among inferential issues, the psychology of learning in the domain, and the
instructional approach upon which the ITS is based.

Key words: Bayesian inference networks, cognitive diagnosis, HYDRIVE, intelligent
tutoring systems, probability-based inference, student models

Overview

Intelligent tutoring systems (ITSs) depend on some form of student modeling to
guide tutor behavior. Inferences about a student’s current skills, knowledge, and
strategy usage can affect the presentation and pacing of problems, the quality of
feedback and instruction, and the determination of when a student has completed
some set of tutorial objectives. But we cannot directly observe what a student does
and does not know; this we must infer, imperfectly, from what a student does and
does not do. This paper discusses an integration of principles of cognitive diagnosis
and principles of probability-based inference in a framework for student modeling in
intelligent tutoring systems.

Central to the development is the notion of the “student model,” a set of
variables corresponding to aspects of skill and knowledge that are important in the
domain. Configurations of values of student-model variables approximate the
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multifarious skill and knowledge configurations of real students. There could be one or
hundreds of variables in a student model. They could be categorical, qualitative, or
numerical; they might concern tendencies in behavior, conceptions of phenomena,
availability of strategies, or levels of aspects of developing expertise; they might be
conceived as persisting over time or apt to change at the next problem step. The
factors determining the form of the student model in a particular application are the
nature and acquisition of competence in the domain, and the goals and philosophy of
the instructional component of the system. The student model mediates between
students’ unique actions in specific situations, and the more abstract level of theory
about the development of competence and the design of instruction.

Probability theory provides powerful mechanisms for explicating relationships,
criticizing and improving models, and handling evidentiary subtleties, when it is
possible to construct a joint distribution of variables whose modeled interrelationships
approximate beliefs about the interrelated aspects of the real-world situation of
interest—in this case, students’ competencies and actions. Due to the recent
developments sketched below, this requirement is not as constraining as is often
believed. Discussions of the advantages of the probabilistic approach, compared to
alternatives such as fuzzy logic and rule-based reasoning, appear in Cheeseman
(1986), Pearl (1988), Schum (1979, 1994), and Spiegelhalter (1989). Two appealing
features of probability-based reasoning for ITSs are its capabilities for principled
synthesis of information from multiple, complex-structured observations, and for
projecting beliefs about student-model variables to expectations for future
observations, which can then be used for instructional decisions and, when compared
with actual observations, for model improvement. The viability of probability-based
reasoning for expert systems in general sets the stage for investigating the scope and
the limitations of the learning domains, student models, and instructional approaches
for which probability-based reasoning can be profitably employed in the ITS context.

To this end, this paper discusses the implementation of probability-based
reasoning in the HYDRIVE tutoring/assessment system for developing
troubleshooting skills for the F-15 aircraft’s hydraulics systems (Gitomer, Steinberg,
& Mislevy, 1995). In the course of implementing principles of cognitive diagnosis,
HYDRIVE uses a Bayesian inference network to express and update student-model
variables—even as rule-based inference plays a complementary role in the system.
Our objective is to share our experiences to date in exploring the ways that
probability’s conceptual and practical tools can be exploited in this context. We begin
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with an introduction to HYDRIVE that concentrates on its cognitive underpinnings
and then review the basic elements of probability-based reasoning. Discussion of
further developments in probability-based reasoning and the considerations they
entail in HYDRIVE are interleaved in the presentation.

An Introduction to HYDRIVE

The hydraulics systems of the F-15 aircraft are involved in the operation of flight
controls, landing gear, the canopy, the jet fuel starter, and aerial refueling. HYDRIVE
simulates many important cognitive and contextual features of troubleshooting the
F-15 hydraulics systems on the flightline. A problem starts with a video sequence in
which a pilot, who is about to take off or has just landed, describes some aircraft
malfunction to the hydraulics technician; for example, the rudders do not move during
preflight checks. HYDRIVE’s interface allows the student to perform troubleshooting
procedures by accessing video images of aircraft components and acting on those
components; to review on-line technical support materials, including hierarchically
organized schematic diagrams; and to make instructional selections at any time
during troubleshooting, in addition to or in place of instruction the system itself
recommends. HYDRIVE’s system model tracks the state of the aircraft system,
including the fault to be isolated and any changes brought about by user actions. In a
manner described below, the student’s performance is monitored by evaluating how
he or she uses available information about the system to direct troubleshooting
actions. Components of HYDRIVE’s student model diagnose the quality of specific
troubleshooting actions and characterize student understanding in terms of more
general constructs such as knowledge of the systems, strategies, and procedures.

The rationale for HYDRIVE’s design was established through the application of
the PARI cognitive task analysis methodology (Gitomer et al., 1992; Means & Gott,
1988). These analyses were intended to reveal critical cognitive attributes that
differentiate proficient from less proficient performers in the domain of
troubleshooting aircraft hydraulics systems. PARI tracing is a structured protocol
analysis in which technicians are asked to solve a problem mentally, at each step
detailing the reasons (Precursor) for the Action that they would take. They are
presented a hypothetical Result and asked to Interpret how the result modifies their
understanding of the problem. They are also asked to represent their understanding of
the specific aircraft system by drawing a block diagram of the suspect system.
Differences appeared in three fundamental and interdependent areas, all of which
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seem necessary for an effective mental model for troubleshooting: system
understanding, strategic understanding, and procedural understanding (Kieras, 1988).

System Understanding

System understanding consists of how-it-works knowledge about the
components of the system, knowledge of component inputs and outputs, and
understanding of system topology, all at a level of detail necessary to accomplish
necessary tasks. Novices’ block diagrams did not evidence appropriate mental models
of any hydraulics system sufficient to direct troubleshooting behavior. Experts
evidenced a fuller understanding of how individual components operated within any
given system (even though they did not understand the internal workings of these
same components, which they had only to replace). Experts also demonstrated a
principled sense of hydraulics system functioning beyond the specifics of the F-15,
and they organized their knowledge hierarchically according to the functional
boundaries of the system. They understood the individual and shared characteristics
of flight control and other hydraulics-related aircraft systems. An important
consequence of this type of understanding is that, in the absence of a completely
prespecified mental model of a system, experts can construct a mental model using
schematic diagrams. They can flesh out the particulars from their basic functional
understanding of how hydraulics systems work in aircraft.

Strategic Understanding

Novices did not employ effective troubleshooting strategies. That is, they
demonstrated little ability to perform actions that would allow them to draw
inferences about the problem from the behavior of the system. In many cases, the
only strategy available to these individuals was to follow designated procedures in
technical materials (Fault Isolation Guides, or FIs), even when it wasn’t clear that
the symptom matched the conditions described therein. While FIs can be useful tools,
novices often fail to understand what information about the system a particular FI
procedure provides or how it serves to constrain the problem space. Even in those
cases where they exhibit some system understanding, they frequently use a serial
elimination strategy, wherein adjacent components are operated on in order. This
strategy allows the technician to make claims only about a single component at a
time. Experts try to use space-splitting strategies, isolating problems to a subsystem
by using relatively few and inexpensive procedures that can rule out large sections of
the problem area. When experts consult the FI guide, they do so as a reference to
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check whether they may be overlooking a particular problem source, and any FI
action is immediately interpreted in terms of, and integrated with, their mental model
of the system. Technicians with intermediate skills are quite variable in their use of
strategies. When such individuals have fairly good system understanding for a
specific situation, they frequently evidence effective troubleshooting strategies. When
their system understanding is weak, they default to FI and serial elimination
strategies.

Procedural Understanding

Every component can be acted upon through a variety of procedures that
provide information about some subset of the aircraft. Information about some types
of components can only be gained by removing and replacing (R&R) them. Others can
be acted upon by inspecting inputs and outputs (electrical, mechanical, and/or
hydraulic), and by changing states (e.g., switches on or off, increasing mechanical
input, charging an accumulator). Some actions, including most R&R procedures,
provide information only about the component being acted upon, while other actions
can provide information about larger pieces of the problem area under certain states
of the system model. Novices are generally limited to R&R actions and the
procedures specified in the FI. They often fail to spontaneously use the information
that can be provided from studying gauges and indicators and conventional test
equipment procedures. As individuals gain expertise, they develop a repertoire of
procedures that can be applied during troubleshooting. Experts are particularly adept
at partially disabling aircraft systems and isolating major portions of the problem
area as functional or problematic.

The Relationship Between System, Strategic, and Procedural Understanding

A mental model includes information not only about the inputs and outputs of
components, but also about available actions that can be performed on components.
The tendency to engage in certain procedures or strategies is often a function of the
structure and completeness of system understanding, rather than the understanding
of strategies or procedures in the abstract. A student’s failure to execute a space-
splitting action may appear at first to be a strategic failure, but the difficulty may lie
with an impoverished understanding of the subsystem—a distinct possibility if the
student has exhibited strong strategic practice on other problems for which good
system understanding exists. This view of troubleshooting expertise has implications
for instruction as well as for inference. HYDRIVE’s instruction focuses on effective
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system understanding and troubleshooting strategies rather than on optimizing
actions to take at a given point in a problem. The instructional approach is to develop
an understanding of the system as an hierarchy of interrelated models, a critical
feature of expert knowledge, along with the general strategy of space-splitting in this
system. HYDRIVE attempts to make this structure explicit through the use of
hierarchical diagrams and similarly-organized verbal information.

Probability-Based Inference

When we reason from what we know and observe to explanations, conclusions,
or predictions, the information we work with is typically incomplete, inconclusive, and
amenable to more than one explanation (Schum, 1994). We attempt to establish the
weight and coverage of evidence, as it informs the inferences and decisions we wish to
make. While workers in every field address these questions as they arise with the
kinds of inferences and the kinds of evidence they customarily address, interest in
principles of inference at a level that might transcend the particulars of fields and
problems has been keenest in the fields of statistics, philosophy, and jurisprudence.
We focus on the concepts and the uses of mathematical or Pascalian probability-
based reasoning, from what is usually called a subjectivist or personalist perspective
(de Finetti, 1974; Savage, 1961).

A friend’s request for advice on games of chance sparked Blaise Pascal’s
trailblazing application of the tools of mathematics to reasoning under uncertainty.
He, followed by Bernoulli, Laplace, and others, laid out a framework for reasoning in
such contexts. A “random variable” X is defined in terms of a collection of possible
outcomes (the sample space), and a mapping from events (subsets of the sample
space) to numbers that correspond to how likely they are to occur (probabilities). We
will denote by p(x) the mapping from a particular value x of X onto a probability.
Probabilities satisfy the following requirements: (a) an event’s probability is greater
than or equal to 0, (b) the probability of the event that includes all possible outcomes
is 1, and (c) the probability of an event defined as the union of two disjoint events is
the sum of their individual probabilities. These simple axioms lead to consistent
inference even for very complex situations, such as games with unknown
probabilities linked in complicated ways or with events whose probabilities depend on
the outcomes of earlier observations (a form of “conditional” probabilities, or the
probability of x given that another variable Z takes the value z, denoted p(x|z))—all of
which can be verified empirically in repeatable chance situations such as games.
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The applicability of mathematical probability for these aleatory, or chance,
situations, is unquestioned. However, “there has been lingering controversy . . . about
the extent to which we should accept the Pascalian system . . . as guides to life in
probabilistic inference, especially when our evidence and hypotheses refer to singular
or unique events whose probability can rest on no overt enumerative process”
(Schum, 1994, p. 222). The personalistic Bayesian position is that if one’s beliefs
about a real-world situation are represented in the form of probability distributions,
the axioms of mathematical probability ensure that all aspects of the individual
beliefs are consistent with one another, or “coherent.” This is particularly important
when one must revise beliefs in response to new information—which is, after all, what
student modeling in an ITS is all about. The real question is not whether probability-
based reasoning is permissible in applications that lie outside the realm of repeatable
chance situations, but the degree to which the salient aspects and relationships in a
given real-world problem can be satisfactorily approximated in this framework. The
following sections address issues encountered in defining variables, expressing their
interrelationships, constructing suitable probability distributions, and carrying out
inference, as they arise in the context of HYDRIVE.

Defining Variables in HYDRIVE

Unlike bridge hands and coin flips, few real-world problems present themselves
to us in terms of natural “random variables.” Random variables are not features of
the world, but features of the patterns through which we organize our thinking about
the world. From unique events, we must create abstractions that capture aspects we
believe are salient but neglect infinitely many others. We must choose the level of
detail at which variables will be defined, relationships will be modeled, and analyses
will be carried out. Although probability and statistics textbooks start with predefined
random variables, conceptualizing our problem in terms of variables amenable to
probabilistic inference (particularly “observable variables”) was one of the toughest
challenges we faced!

Wenger (1987) describes three levels of information that student modeling might
address in an ITS, and therefore at which variables can be defined. The behavioral
level is often concerned with the correctness of student behaviors as compared with a
model of expert performance (e.g., Brown, Burton, and Bell’s [1975] SOPHIE-I
contrasted student behaviors with domain performance simulations in order to
provide corrective feedback). The epistemic level is concerned with particular
knowledge states of individuals (Lesgold, Eggan, Katz, and Rao’s [1992] SHERLOCK
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makes inferences about the goals and plans students are using to guide their actions
during problem solving, and feedback is meant to respond to “what the student is
thinking”; also see Appelt and Pollack [1992] and Bauer [1996]). The individual level
addresses broader assertions about the individual that transcend particular problem
states. Whereas the epistemic level of analysis might lead to the inference that “the
student has a faulty plan for procedure X,” the individual level of information might
include the assertion that “the student is poor at planning in contexts that have
properties A and B.”

HYDRIVE aims to support generalized claims about aspects of student
troubleshooting proficiency on the basis of detailed epistemic analysis of specific
actions within the system. By bridging the gap between the individual and epistemic
levels of information, the ITS is designed to have both the specificity to provide
immediate feedback in a problem-solving situation, and the generality to help
sequence problems, adapt instruction, and track proficiency in broad terms.

“Strategic knowledge,” for example, is an abstraction that instructors use to
summarize patterns of trainees’ behavior—in conversations and classroom activities,
as well as in their troubleshooting actions. We might therefore propose a variable
called “strategic knowledge” for our student model, with possible values that
represent increasing levels of expertise. Figure 1 depicts three possible states of belief
about a student’s “strategic knowledge.” The first panel represents belief about a new
student entering our course, reflecting our experience that most entering students are
relatively weak in troubleshooting strategies. The second panel represents strong
belief that a student is fairly good at troubleshooting strategies, a belief acquired
perhaps from studying his transcript, reading his supervisor’s recommendation, or
observing expert-level troubleshooting actions. The third panel represents certainty
that the student’s level of expertise is “weak.” Although a student’s state of
knowledge is never known with certainty, we shall see its role for reasoning in a “what
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Figure 1. Three configurations representing possible belief about “Strategic
Knowledge.”
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if?” manner when structuring our knowledge about a domain. Later, we will pin down
the meaning of “strategic knowledge” by specifying the tendencies of actions we
expect in various troubleshooting situations from a student at each level, moderated
by other student-model variables such as subsystem and procedural knowledge.
These specifications represent deductive reasoning, from individual-level variables in
the student model to probabilities of interpretations of observable actions (see de
Rosis, Pizzutilo, Russo, Berry, and Molina [1992] and Jameson [1992] for probability-
based reasoning in similarly structured systems of person-level and observable
variables).

As a student works through a HYDRIVE problem, the inferential task is to
reason from the student’s actions to implications in the student-model space. This
problem is harder than the one faced in traditional educational assessment, since
there predetermined observational settings with predetermined response categories
(i.e., test items) can be devised and presented to students. Constraining observations
in this manner limits what can be learned about students, but it is easy to know how
to “score” their responses. In a relatively unconstrained ITS such as HYDRIVE,
however, students can take an unlimited number of routes through a problem. There
are no clearly defined and replicable “items” to score and calibrate. Different students
carry out different sequences of action under different system-model configurations;
each action depends on multiple aspects of competence, intertwined throughout the
diverse situations students lead themselves through. We must, in some fashion,
attempt to capture key aspects of their performance in terms consonant with the
theory of performance that emerged from the cognitive analysis.

As an example, we may define a variable at a lower level of abstraction than
“strategic knowledge”: an “interpreted action” in a given problem situation.
Interpreted actions lie at the epistemic level, taking the form of “plan recognition.”
Action sequences are not predetermined and uniquely defined in the manner of usual
assessment items, since a student could follow a virtually infinite number of paths
through the problem. Rather than attempting to model all possible system states and
specific possible actions within them, HYDRIVE posits equivalence classes of states,
or scenarios, each of which could arise many times or not at all as a given student
works through a problem. The values of interpreted action variables are produced by
HYDRIVE’s system model, action evaluator, and strategy interpreter. The student
activates the system model by providing input to the components; it processes the
actions of the student and propagates sets of inputs and outputs throughout the
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system; the student can then examine the results for any other component of the
system. The action evaluator calculates the action sequence’s effects on the active
problem area, so that a student’s actions can be evaluated in terms of the
information they yield in light of the previous actions.

For a given equivalence class of situations in which power-path splitting is
possible, the potential values of interpreted action might be “power-path split,” “serial
elimination,” “redundant action,” “irrelevant action,” and “remove and replace”—the
value to be determined by the relationship of the effect of the action sequence on the
problem area, as defined through information available to the student up through the
time the action is taken. If, having supplied inputs, a student observes the output of a
certain component that the system model “knows” is normal, then it is possible for
the student to infer that all components on the activated path are functioning
correctly and remove them from the problem area. If the student makes this
interpretation and draws the appropriate inferences, then the problem areas that the
student and HYDRIVE’s system model hold will correspond and troubleshooting will
continue with acceptable actions such as serial elimination and R&R, or expert
actions, such as space-splitting, predominating. If the student incorrectly concludes
that the observed component output was unexpected, then, in the student’s mind, all
the components in the active path remain in the problem area, others might be
spuriously eliminated, and the problem area in the student’s mind would begin to
diverge from the one maintained by HYDRIVE; irrelevant and redundant actions
become more likely.

The strategy interpreter employs a relatively small number of strategy
interpretation rules (~25) to characterize the student’s apparent strategy usage on
the basis of the nature and the span of problem area reduction. An example of a
student strategy rule is:

IF an active path which includes the failure has not been created and the
student creates an active path which does not include the failure and the
edges removed from the problem area are of one power class, THEN the
student strategy is splitting the power path.

We note that these rules can be generalized to other troubleshooting domains. The
generalizability resides in explicitly defining strategies in terms of an action’s effect on
the active problem area. While other domains may require different strategy
definitions from HYDRIVE’s, generalization is straightforward as long as these
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strategies can be referred to changes in the state of the problem area, or some similar
representation.

Interpreted actions are examples of what are called “virtual evidence” in the
expert systems literature; since students’ plans are not actually observed, but are
fallible judgments from the rule-based parsing of students’ behaviors, there can be
discrepancies between students’ actual and interpreted reasons for actions. Plan
recognition is most successful when both tasks and user actions are constrained, and
plausible hypotheses about the space of potential plans are predetermined (e.g.,
Corbett & Anderson, 1995; Desmarais, Giroux, & Larochelle, 1993), because these
factors reduce the uncertainty about students’ plans given their actions. The
uncertainty increases as constraints are relaxed, and as less can be anticipated
about likely plans. At the limit, uncertainty in inferences about students’ reasoning
from single action sequences can render an ITS’s feedback meaningless and its
decisions misguided. For this reason, HYDRIVE’s main instructional actions lie not at
the level of plan recognition, but at the level of accumulating patterns of interpreted
actions. HYDRIVE uses a simpler rule-based logic to scan raw behavior for
meaningful features without attempting the daunting and, for its purposes, pointless
task of comprehensively explaining each one; it uses the more complex probability-
based reasoning, as described below, to synthesize their meaning for more important
instructional decisions.

Interrelationships Among Variables

While the terms “deductive,” “inductive,” and “abductive” inference have been
used in somewhat different ways by different writers, Schum (1994) proposes
definitions that are particularly useful for discussing the construction, utilization, and
evolution of probability-based inference networks. Deductive reasoning flows from
generals to particulars, within an established framework of relationships among
variables—from causes to effects, from diseases to symptoms, from a student’s
knowledge and skills to observable behavior. Inductive reasoning, as Schum uses the
term, flows in the opposite direction, also within an established framework of
relationships—from effects to possible causes, from symptoms to probable diseases,
from students’ solutions or patterns of solutions to likely configurations of knowledge
and skill; abductive reasoning proceeds from observations to new hypotheses, new
variables, or new relationships among variables. Using this terminology, it may be
said that Bayesian inference networks erect a reasoning structure in terms of
deductive relationships, which, since the mathematical probability axioms are
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satisfied, supports coherent inductive inference. Model construction (developing a
theory from which to posit variables and their interrelationships) and model
improvement (modifying the network in response to unexpected or unsatisfactory
outcomes) require abductive reasoning.

The theories and explanations of a field suggest the structure through which
deductive reasoning flows. The requisite structure for deductive reasoning in
HYDRIVE’s student modeling emanates from the cognitive analyses: If a student is
fairly familiar with troubleshooting strategies and the hydraulics system, but hazy
about the workings of the landing gear system, what are the chances of various
possible actions for a given state of a canopy failure? Inductive reasoning (in Schum’s
sense) flows through this same structure, but in the opposite direction: If a student
makes a redundant action in a given state of a canopy failure, what does this imply
about his familiarity with troubleshooting strategies, the hydraulics system, and the
workings of the landing gear system? We will now render precise a simple exemplar
relationship between a student-model variable and an interpreted-action variable,
and use it to illustrate probability-based deductive and inductive inference. Bayes’
theorem and the concepts of conditional dependence and independence are introduced
in this connection. This will be followed by a discussion of how more complex
interrelationships among many variables are represented in Bayesian inference
networks.

Suppose that a student in question has strong knowledge of the problematic
subsystem and relevant procedures, so that only strategic knowledge is at issue. In a
situation near the problem solution, where space-splitting is no longer an option, what
are our expectations that a student at each level of strategic knowledge might
perform action sequences interpreted as “serial elimination,” “redundant action,”
“irrelevant action,” and “remove and replace?” Serial elimination is the best strategy
available; remove and replace is useful but inefficient; both redundant and irrelevant
actions are undesirable. Table 1 gives illustrative numerical values for probabilities of
these actions at the different levels of proficiency. Figure 2 illustrates this flow of
deductive reasoning. Each panel depicts the conditional probabilities of the various
action categories, given level of strategic knowledge. We see increasing likelihood for
serial elimination and decreasing likelihood of redundant and irrelevant actions as
level of knowledge increases—although even experts sometimes make redundant
moves, and novices sometimes make what appear to be expert moves, if not always
for the same reasons experts make them.



13

Table 1

Numerical Values of Conditional Probabilities of Interpreted Action
Sequences, Given Strategic Knowledge

Conditional probability of interpreted action sequence

Strategic
knowledge

Serial
elimination

Redundant
action

Irrelevant
action

Remove and
replace

Expert .75 .10 .05 .10
Good .50 .10 .10 .30
Okay .30 .15 .15 .40
Weak .20 .20 .30 .30

1.00

Strategic Knowledge Evaluation of a Canopy Action
(No Split Possible)

1.00

Strategic Knowledge Evaluation of a Canopy Action
(No Split Possible)

expert
good
okay
weak

1.00
.00

.00

.00

Strategic Knowledge Evaluation of a Canopy Action
(No Split Possible)

expert
good
okay
weak

elim

irrel
redun

r and r

Strategic Knowledge Evaluation of a Canopy Action
(No Split Possible)

expert
good
okay
weak

expert
good
okay
weak

elim

irrel
redun

r and r

elim

irrel
redun

r and r

elim

irrel
redun

r and r

1.00
.00

.00

.00

.00

.00

.00

.00

.00

.00

.20

.20

.30

.30

.50

.10

.10

.30

.30

.15

.15

.40

.75

.10

.05

.10

Note.  Bars represent probabilities, summing to one for all the possible values of a
variable. A shaded bar extending the full width of a node represents certainty, due to
having observed the value of that variable; i.e., a student’s actual responses to tasks.

Figure 2. Conditional probabilities of interpreted action sequences, given Strategic
Knowledge.
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Where do these probabilities come from? Initial values were set on the basis of
qualitative input from expert instructors, patterns observed in PARI traces, and
modifications based on “reasonableness checks” from simulated inputs and outputs
(see von Winterfeldt and Edwards [1986] on techniques of eliciting conditional
probability distributions from subject matter experts). Current research in
probability-based reasoning addresses modeling sources of information about these
conditional probabilities, and the sensitivity of inferences to errors or misspecification
in them. The probability framework also allows conditional probabilities to be
characterized as unknown parameters—another level of modeling to represent our
beliefs about the structures of relationships among observable and student-model
variables—which can capture the “vagueness” of our beliefs about them, yet be
coherently updated and made more precise as experience accumulates (Spiegelhalter,
Dawid, Lauritzen, & Cowell, 1993). Whereas Table 1 simply provided numerical
values for the conditional probabilities, a more complete representation of belief would
take the form of a probability distribution for these conditional probabilities, which
would itself depend on other aspects of knowledge and information.

In practice, we reason in the reverse direction; in ITSs, from interpreted actions
to updated beliefs about students’ strategic knowledge. This is accomplished in
probability-based reasoning by means of Bayes’ theorem. Let X be a variable whose
probability distribution p(x|z) depends on the variable Z. Suppose also that prior to
observing X, belief about the value of Z can be expressed in terms of a probability
distribution p(z). For example, we may consider all possible values of Z equally likely,
or we may have an empirical distribution based on values observed in the past.
Bayes’ theorem says

p(z|x) = p(x|z)p(z) p(x), (1)

where p(x) is the expected value of p(x|z) over all possible values of Z—a normalizing
constant required by the axiom that belief about Z after having learned x must be
represented by a probability distribution that sums to one. Suppose we start from
the initial new-student beliefs about strategic knowledge from the first panel in
Figure 1, and observe one action in the scenario that has the expectations depicted in
Figure 2. The first panel in Figure 3 shows expectations for an action before it is
observed; probabilities for the action variable are the average over the possible
values of Strategic Knowledge, weighted by the initial belief probabilities for those
possibilities. If we observe an action sequence interpreted as serial elimination and
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apply Bayes’ theorem, we obtain the results in the second panel of Figure 3. Because
serial elimination is more likely to be carried out by students at higher levels of
Strategic Knowledge, belief has shifted upwards from the first panel. Similar
calculations would lead to the results in the remaining panels if we had observed any
of the other possible interpretations.

This sequence illustrates the essence of the characterization of belief and of
weight of evidence under the paradigm of mathematical probability (Good, 1950):

• Before observing a datum x, belief about possible values of a variable Z is
expressed as a probability distribution, the prior distribution p(z). The “prior”
distribution can be conditional on other previous observations, and belief
about Z may have been revised many times previously; the focus here is just
on change in belief associated with observing x, ceteris paribus.

• After observing x, belief about possible values of Z is expressed in terms of
another probability distribution, the posterior distribution p(z|x).

• The evidential value of the observation x is conveyed by the likelihood
function p(x|z), the factor that revises the prior to the posterior for all possible
values of Z. One can examine the direction by which beliefs associated with
any given z change in response to observing x (is a particular value of z now
more probable or less probable than before?) and the extent to which they
change (by a little or by a lot?).

Bayesian Inference Networks

HYDRIVE moves from the space of unique observations to a space of random
variables by interpreting action sequences in terms of equivalence classes. The
challenge is to synthesize, in terms of belief about student-model variables, the
import of many such actions—some in equivalent scenarios and others not, perhaps
involving different subsystems and aspects of strategic understanding, each allowing
for the possibility that the interpreter’s evaluation does not match the student’s
thinking. Mathematical probability provides tools for combining evidence within a
substantively determined structure—provided that the crucial elements of the
situation can be satisfactorily mapped into the probability framework. The first
requirement is to express the things we wish to talk about in terms of variables, as
discussed above in the context of HYDRIVE. The second is to express the
substantive, theoretical, or empirical relationships we perceive among them in terms
of structural relationships among probability distributions.
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Applying Bayes’ theorem in its textbook form (Eq. 1) quickly becomes unwieldy
as the number of variables in a problem increases. Research on probability-based
inference in complex networks of interdependent variables, or Bayes nets, has been
spurred by applications in such diverse areas as forecasting, pedigree analysis, and
medical diagnosis. Interest centers on obtaining the distributions of selected variables
conditional on observed values of other variables, such as likely characteristics of
offspring of selected animals given characteristics of their ancestors, probabilities of
disease states given symptoms and test results, or, in the case of an ITS, values of
student model variables given observed behaviors (see Martin & VanLehn, 1995;
Mislevy, 1994a, 1995; Villano, 1992).

The notions of conditional independence and dependence are critical in this
regard. Two random variables X and Y are independent if their joint probability
distribution p x,y( )  is simply the product of their individual distributions, or
p x,y( ) = p x( )p y( ) ; equivalently, p x|y( ) = p x( ) and p y|x( ) = p y( ) . Knowing the value of

one provides no information about the value of the other. X is dependent on Z if belief
about values of X varies with values of Z, as denoted by the conditional distribution
p x|z( ). For example, the troubleshooting action (X) we expect depends on a student’s

level of strategic knowledge (Z). This notion is important because the evidential value
of an observation may depend in complex ways upon the other items of evidence
(Schum, 1994, p. 208). Random variables X and Y are conditionally independent given
Z if beliefs about X and Y are unrelated once the value of Z is known, even if
they would have been related otherwise; that is, p x,y( ) ≠ p x( )p y( )  but
p x,y|z( ) = p x|z( )p y|z( ) . The troubleshooting action we observe in one scenario certainly

influences what we expect in the next, but we might posit it would not if we knew the
values of all the relevant skill and knowledge variables.

Structuring a Bayes net begins with a recursive representation of the joint
distribution of a set of random variables x1,…,xn, or

  
p(x1,…,xn) = p(xn|xn−1,…,x1)p(xn−1|xn−2,…,x1)Lp(x2|x1)p(x1) = p(xj |xj −1,…,x1)

j =1

n

∏ , (2)

where the term for j=1 is defined as simply p(x1). A recursive representation can be
written for any ordering of the variables, but one that exploits conditional
independence relationships is useful because variables drop out of the conditioning
lists. For example, if X3 is conditionally independent of X2 given X1, then p X3|X2,X1( )
simplifies to p X3|X1( ). A graphical representation of (2), or a directed acyclic graph
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(DAG), depicts each variable as a node; each variable has an arrow drawn to it from
any variables on which it is directly dependent (its “parents”). Conditional
independence corresponds to omitting arrows (“edges”) from the DAG, thus
simplifying the topology of the network. In the example just given, the arrow from X2

to X3 can be omitted, leaving only the arrow from X1 to X3.

The conditional independence relationships suggested by substantive theory and
discovered empirically determine the topology of the network of interrelationships in a
system of variables. If it is favorable, the calculations required for probability-based
reasoning can be carried out efficiently even in very large systems, by means of
strictly local operations (implicit applications of Bayes’ theorem) on small subsets of
interrelated variables (“cliques”) and their intersections. Discussions of construction
and computation in Bayesian inference networks are found in Lauritzen and
Spiegelhalter (1988), Neapolitan (1990), and Pearl (1988).

A Simplified HYDRIVE Bayesian Inference Network

Figure 4 is a DAG expressing the dependence relationships in a simplified version
of the inference network for the HYDRIVE student model. The direction of the arrows
represents the deductive flow of reasoning used to construct probability distributions
that incorporate the depicted dependence structure. A joint probability distribution
for all these variables can be constructed by first assigning a probability distribution
to each variable that has no parents (in this example, there is only one: “overall
proficiency”); then for each successive variable, assigning a conditional probability
distribution to its possible values for each possible combination of the values of its
parents. The values expressed in these assignments incorporate such patterns as
conjunctive or disjunctive relationships, incompatibilities, and interactions among
diverse influences. The probabilities depicted in Figure 4 correspond to the initial
status of belief about all variables in the network, or before any actions are observed
from a student. They are determined by the initial distribution for “overall
proficiency” and the posited conditional probabilities for all other variables in the
network given their parents.

Four groups of variables can be distinguished in Figure 4: (a) The rightmost
nodes are the “interpreted actions,” the results of rule-driven epistemic analyses of
students’ actions in a given situation. Two prototypical sets appear, each
corresponding to an equivalence class of potential observables in a given scenario:
canopy situations in which space-splitting is not possible, and landing-gear situations
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Figure 4.  Initial status of student model (i.e., before observing any actions).
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in which space-splitting is possible. Three members are represented from each class.
(A virtual storage algorithm allows the full network to absorb information from an
indefinite number of variables in such a class while storing and manipulating only two
copies of representative class members; see Mislevy, 1994b.) (b) The immediate
parents of the interpreted action variables are the knowledge and strategy
requirements that in each case define the class. The possible values are all
combinations of the values of the system and strategic knowledge variables that play
a role in the scenario class, as indicated by the directed arrows into these nodes.
There are too many to depict, so the node is left blank rather than showing all the
probability bars. (c) The long column of variables in the middle concerns aspects of
subsystem and strategic knowledge, which correspond to instructional options. We
see that canopy actions in which space-splitting is not possible are conditionally
independent of space-splitting proficiency, given the proficiencies that are directly
relevant. (d) To the left are summary characterizations of more generally construed
proficiencies.

 Serial elimination is the best strategy in a canopy/no-split situation, and, as
expressed in conditional probabilities that embody deductive reasoning in the
network, is likely when the student has strong knowledge of this strategy and all
relevant subsystems. Remove-and-replace is most likely when a student possesses
some subsystem knowledge but lacks familiarity with serial elimination, whereas
weak subsystem knowledge increases chances of irrelevant and redundant actions.
Figure 5 depicts belief after observing, in three separate situations in the canopy/no-
split class, one redundant and one irrelevant action (both ineffectual troubleshooting
moves) and one remove-and-replace (serviceable but inefficient).

Subsystem and strategy variables serve to summarize tendencies in interpreted
behaviors at a level addressed by instruction, and to disambiguate patterns of actions
in light of the fact that inexpert actions can have several causes. Figure 5, which is
posterior to three inexpert canopy actions, shows belief shifted from values in Figure
4, toward lower values for serial elimination and all subsystem variables directly
involved in the situation (mechanical, hydraulic, and canopy knowledge). Any or all
could be the source of the student’s difficulty, since all are required for high likelihoods
for expert actions. Belief about the student’s level knowledge of subsystems not
directly involved in these situations is also lower, because students unfamiliar with
one subsystem tend to be unfamiliar with others; also, to a lesser extent, students
unfamiliar with subsystems tend to be unfamiliar with troubleshooting strategies.
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Figure 5.  Status of student model after observing three inexpert actions in canopy situations.
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These relationships are expressed through the more general system and strategic
knowledge variables at the left of the figure. These variables serve to exploit the
indirect information about aspects of knowledge not directly tapped in a given
scenario, and to summarize broadly construed aspects of proficiency for purposes of
evaluation and problem selection.

Figures 6 and 7 represent the state of belief that would result after further
observing two different sets of actions in situations involving the landing gear in which
space-splitting is possible. Figure 6 shows the results of three more inexpert action
sequences. Status on all subsystem and strategy variables is further downgraded,
and reflected in the more generalized summary variables. Figure 7 shows the results
that would obtain if, instead, one observed three good actions: two space-splits and
one serial elimination. Belief about strategic skill has shifted toward higher levels, as
have beliefs about subsystems involved in the landing gear situations. Weakness in
mechanical, hydraulic, and/or canopy subsystem knowledge are now the most
plausible explanations of the three inexpert canopy situation actions. The diffuse
belief at the generalized proficiency level results from the uneven profile of subsystem
knowledge. In this network, diffuse belief at higher levels in the student model can
result either from lack of information about finer-grained aspects of the student’s
knowledge, or, as in this situation, from fairly accurate but conflicting information
about them.

We did not have the luxury of large numbers of solutions from acknowledged
experts and novices of various configurations, from which to determine the conditional
probabilities of observable variables given student-model variables. Initial values
were set on the basis of expert opinion and checked by means of data obtained in
PARI traces. We have recently acquired traces of forty students working through ten
problems each, from which we may empirically improve the original conditional
probability specifications in the manner described by Spiegelhalter and Cowell (1992).
With larger amounts of empirical data, we can capitalize on the probability
framework to carry out formal statistical model-checking procedures. After two-
thirds of a student’s actions have been entered, for example, updated student-model
parameters and conditional distributions yield predictive distributions for subsequent
actions. These model-based predictive distributions can be compared with the actual
remaining third of the observations to verify model calibration, or to provide clues for
improving the model.
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Figure 6. Status of student model after observing three inexpert actions in canopy situations and
three inexpert actions in landing gear situations
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Figure 7. Status of student model after observing three inexpert actions in canopy situations and
three expert actions in landing gear situations.
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Additional Grounds for Revising Belief

In the preceding discussion and examples, observations obtained sequentially
over time are presumed to simply provide additional information about unchanging
values of student-model variables. The whole point of an ITS, however, is to help
students change over time; in particular, to improve their proficiencies. This section
concerns two additional reasons for modifying belief about student-model variables:
change due to explicit instruction, and change due to implicit learning. In both cases,
the requirement under a probabilistic approach is to do so in a manner that
maintains coherence. We discuss an approach to accomplishing this end while
avoiding the construction and maintenance of a full dynamic model.

Updating Based on Direct Instruction

While HYDRIVE’s system model functions as a discovery world for system and
procedural understanding from the student’s point of view, the evaluations its
student-modeling components make are based on an implicit strategic goal structure
observed in expert troubleshooting. This structure is made explicit in HYDRIVE’s
instruction. The student is given great latitude in pursuing the problem solution, with
prompts or reminders given only when an action violates important rules associated
with the strategic goal structure. HYDRIVE recommends direct instruction only
when information that accumulates across scenarios shifts belief about, say,
knowledge of a subsystem or strategy, sufficiently downward to merit more
specifically focused feedback, review, and exercises. In light of the compatibility of
probability-based inference and decision theory, a natural extension of the system we
have not yet undertaken would be to incorporate decision-theoretic reasoning to
manage these interventions.

We expect direct instruction to change students’ understanding. The change in
our belief about the values of a student-model variable due to instruction differs from
the previously discussed updating of belief about presumably static student-model
variables due to observed actions. The change due to instruction might be modeled as
dependent on the student’s previous level of understanding and the expected effects of
instruction, perhaps additionally informed by a posttest following the instruction. A
fully specified dynamic model is schematized in the first panel of Figure 8, in which
multiple time points, with corresponding multiple copies of student-model variables,
are jointly modeled and maintained. Multiple copies of observable variables are also
shown, with expectations that correspond to belief about possibly different values of
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student-model variables. As proficiency increases with instruction, for example,
expectations for expert actions in classes of relevant situations increase.

A more parsimonious alternative to jointly modeling all variables before and
after instruction employs a small stand-alone Bayesian network to account for
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change due to instruction. A single time-point network for the full set of student-model
and observable variables is maintained, but variables affected by direct instruction
are modified in accordance with this stand-alone network, replaced in the appropriate
nodes, and implications propagated in the same manner as are changes effected by
observations. The result is the “virtual” dynamic network schematized in the second
panel of Figure 8. Figure 9 is an example of the stand-alone network. Table 2 gives the
corresponding conditional probabilities; these can be refined over time, starting with
expert opinion and limited experience but honed as experience accumulates.
Conditional independence with respect to other student-model and observable
variables is implied by the use of the stand-alone network. The probability
distribution for the relevant student-model variable before instruction and the
outcome of an instructional posttest exercise are entered, and the distribution
posterior to instruction is obtained. The resulting posterior distribution for the
student-model variable is replaced into the full network in a manner that assures
coherence will be maintained,1 and the consequences of this change are propagated
through the network in the usual manner in order to revise accordingly beliefs about
other student-model variables and expectations about future observations.

Updating Based on Learning While Problem-Solving

Even without direct instruction, students can be expected to improve their
troubleshooting skills as a result of practicing them and thinking through the
problems. Although this probably occurs incrementally throughout a problem, we
follow Kimball’s (1982) expedient of revising belief due to implicit learning only at
problem boundaries. Kimball’s tutor, like Anderson’s LISP tutor (Corbett & Anderson,

                                                
1 For a single affected student-model variable X, this revision is accomplished as follows: Suppose
that belief about X before instruction is expressed by probabilities (b1,b2,...,bm) for its m possible
values. These are initializing values in the stand-alone network. Instruction is provided and the
posttest is administered; in accordance with the conditional probabilities in the stand-alone
network, a revised vector of beliefs about X is obtained, say (c1,c2,...,cm). The columns in the
potential table in the full network into which evidence about X is absorbed are reweighted by the
factors (c1/b1,c2/b2,...,cm/bm,), so the resulting beliefs about X take the desired values (c1,c2,...,cm).
The consequences of entering this so-called “virtual evidence” are propagated throughout the rest of
the network. This scheme can be extended to cases in which instruction directly affects multiple
student-model variables. Coherent revision of joint beliefs is accomplished through the use of a new
variable defined as the joint product of all pertinent individual student-model variables. This
extended variable serves as the interface between the full and stand-alone nets in the manner
described above for a single variable.
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Figure 9. A stand-alone network for updating belief about
strategic knowledge due to direct instruction.

Table 2

Conditional Probability Tables Concerning Strategic Knowledge
After Instruction

Status before
instruction

Conditional probability of status after instruction
———————————————————————–

Expert Good Okay Weak

Expert .95 .05 .00 .00

Good .30 .65 .05 .00

Okay .10 .40 .45 .05

Weak .05 .30 .45 .20

Status after
instruction

Conditional probability of posttest performance
after instruction

———————————————————————–
High Medium Low

Expert .90 .10 .00

Good .75 .25 .00

Okay .25 .50 .25

Weak .00 .25 .75
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1995), revises belief in a manner consistent with probability axioms through an
explicit learning model. That is, a particular functional form for change is presumed,
and degree of learning is also assumed or estimated. We employ a more conservative
and less model-bound approach: The ITS accommodates the student’s learning by
gradually discounting information from past actions that were determined by earlier,
presumably lower, levels of understanding. The student learns; to account for this, the
system that models his knowledge forgets.

The idea is to enter each problem with student-model variable distributions that
generally agree with the final values from the previous problem as to direction and
central tendency, but are more diffuse and thus easier to change in light of new
actions driven by possibly different (presumably improved) values. Two strategies for
accomplishing this end are (a) downweighting the influence of actions as they recede
in time, and (b) between problem sessions, mixing then-current posterior distributions
with non-informative distributions and propagating the revised versions through the
network as described above for instructional revisions. These “decaying-information
estimators” are less efficient than full-information estimators if there is no change
over time, or if there is change and it is modeled accurately; but, when trends do exist,
they can provide better approximations than either ignoring it or modeling it
incorrectly.

Discussion

Mathematical probability provides powerful machinery for coherent reasoning
about complex and subtle interrelationships—to the extent that one can capture
within its framework the key aspects of a real-world situation. If this can be
accomplished, advantages both conceptual and practical accrue. A Bayes net built
around the generating principles of the domain makes interrelationships explicit and
public, so one can not only monitor what one believes, but communicate why one
believes it. A model can be refined over time in light of new information, as when
initial subjective conditional probability specifications are updated in light of
accumulating data. Able to calculate predictive distributions of any subset of
variables given values of any others, one can investigate a modeled structure by
entering hypothetical data to check for fidelity to what one believes, or entering real
data to check for fidelity to what one observes (see the review by Spiegelhalter et al.,
[1993] on model-checking tools for complex networks). It may be painstaking and
difficult work to carry out the requisite modeling tasks, but recent progress in
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calculation, model-building, and model-checking has been explosive (again, see
Spiegelhalter et al., 1993).

The challenge most significant in any application of probability-based reasoning
is channeling one’s scope of vision from an open-ended universe of human experience
to a closed universe of variables and probability distributions. We experienced this
constraint in HYDRIVE first in having to interpret observations in terms of variables
over which probabilities sum to one. Just how to do this was not immediately obvious
in HYDRIVE’s unconstrained observational setting. We eventually cast interpreted
actions as members of exhaustive and mutually exclusive classes, so that the
updating that occurs when a space-split did occur depends intimately on the fact
that an R&R (remove & replace), serial elimination, or redundant or irrelevant action
could have, but did not occur. HYDRIVE’s progenitor, SHERLOCK (Lesgold et al.,
1992), also interprets action sequences in terms of inferred plans, but it changes
values of student-model variables according to action-specific rules that address only
inference from evaluated actions to student-model variables. These rules are easier to
construct than HYDRIVE’s conditional probability structures, because the rules
triggered by any observation can be specified without regard to rules for other
potential observations. But since no provision is made for reasoning from student-
model values to future actions, claims of student proficiency are difficult to check
conceptually or empirically. An interpreted action in SHERLOCK may be an “event”
in the everyday sense of the word, but it is not in the sense of mathematical
probability.

The constraints of mathematical probability also pinch in the presumption that
all potential states of the real-world situation can be satisfactorily approximated
under the model, relative to the purpose at hand. Shafer (1976) calls modeling the
possibilities one will explore “defining the frame of discernment.” But what if a
particular student’s conception differs from any of the postulated models? The
probabilities that result from the use of Bayes’ theorem depend on the posited
structure. Only possibilities built into the model can end up with positive probabilities!
Apparently precise numerical statements of belief prove misleading or downright
embarrassing when it is later determined that the true state of affairs could not even
be approximated in the analytic model.

Two strategies help address this problem in applied settings. One approach is to
augment theoretically-expected unobservable states with one or more “catch-all”
states which increase in probability when unexpected patterns arise in observable
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data (e.g., the class associated with flat likelihood for all symptom patterns in the
MUNIN expert system for neuromuscular diseases, described in Andreassen,
Woldbye, Falck, and Andersen (1987); its posterior probability increases when
symptoms appear that fail to match any of the patterns typical of the diseases built
into the model). Another approach is to calculate indices of model misfit or “surprise”
(e.g., Good, 1971). While carrying out inference within a given probabilistic structure,
one calculates indices of how usual or unusual the observed data are under that
structure. Both of these approaches can flag patterns of evidence that are not likely
under any of the possibilities built into the model, calling for model revision (further
abductive reasoning, in Schum’s sense).

Conclusion

Probability-based reasoning has emerged as a viable approach to structuring
and managing knowledge in the presence of uncertainty, due partly to computational
advances such as rapid local updating (Spiegelhalter et al., 1993), but more to
conceptual progress—a confluence of ideas about personal probability (e.g., de Finetti,
1974; Savage, 1961) and the structuring of inference (e.g., Schum, 1994). This
progress was spurred by the emergence of alternative frameworks for reasoning in
the presence of uncertainty, such as fuzzy logic (Zadeh, 1965) and the Dempster-
Shafer theory of evidence (Shafer, 1976). Whether mathematical probability couldn’t
be used to deal with the problems that promoters of alternative approaches advanced
was fiercely contested, but clearly it wasn’t. We can safely predict continued rapid
progress along statistical lines, increasing prospects for the usefulness of probability-
based reasoning in intelligent tutoring systems.

Perhaps the main lesson we take from HYDRIVE is the importance of cognitive
grounding. Arguing in the abstract about advantages and disadvantages of
approaches to managing uncertainty is well and good, and quite necessary—but in
the final analysis, the success of a given application will depend on identifying the key
concepts and interrelationships in the domain. Ad hoc reasoning with sound
substance beats coherent reasoning with inadequate substance, if you must choose
between them—but coherent reasoning around sound substance dominates!
Especially germane to the ITS context are (a) understanding principles of the target
domain and how people learn those principles, so as to structure the student model
efficaciously, and (b) determining what one needs to observe, and how it depends on
students’ possible understandings, so as to structure observable variables and their
relationship to student-model variables.
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Concepts from statistics, cognitive psychology, and instructional science must
come together for a successful ITS. Over time, prototypical approaches for
developing ITSs consonant with the principles of these domains must evolve, in the
form of examples, effective approaches to common problems, knowledge elicitation
schemes aligned to the anticipated model, and expedients that strike good balances
among competing properties such as fidelity and computability. Our experiences with
HYDRIVE persuade us that the quest will be arduous, but worthwhile.
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