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MULTIDIMENSIONAL DESCRIPTION OF SUBGROUP DIFFERENCES

IN MATHEMATICS ACHIEVEMENT DATA FROM THE 1992 NATIONAL

ASSESSMENT OF EDUCATIONAL PROGRESS1

Bengt O. Muthén, Siek-Toon Khoo, and Ginger Nelson Goff

CRESST/University of California, Los Angeles

Abstract

This report investigates the dimensionality of the 1992 NAEP mathematics test in
the context of subgroup differences. A multidimensional model is supported by these
data with dimensions corresponding to both content-specific and format-specific
factors. The analysis approach of this paper utilizes key grouping variables of the
NAEP reports (e.g., gender, ethnicity) but has the advantage that subgroup
comparisons are done not only in a univariate manner, using one grouping variable
at a time, but using the set of grouping variables jointly. This is carried out within a
structural model with latent variables, which relates the information on the test
items to background information via a set of factors. It is found that the different
factors relate differently to the background variables. Multidimensional latent
variable modeling also suggests a new way of reporting results with respect to math
performance in specific content areas. For content-specific performance, the subscores
are related to overall performance, considering content-specific scores conditional on
overall scores. For a given overall score, a subgroup difference is considered with
respect to a certain content area. This conditional approach may be of value for
revealing differences in opportunity to learn or differences in curricular emphases.
Conditional differences may be viewed as “unrealized potential” for performance in a
specific content area.

Introduction

This report examines mathematics achievement data from the National
Assessment of Educational Progress (NAEP). NAEP is a regularly administered,
Congressionally mandated assessment program for the nation and the states.
NAEP test results for Grades 4, 8, and 12 are reported for various subgroups of
the U.S. school population. The most recent mathematics report, NAEP 1992

                                                
1 I am thankful for the research assistance of Li-Chiao Huang, Guanghan Liu, and Todd Franke
and comments from Leigh Burstein, Irene Grohar, and Linda Winfield.
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Mathematics Report Card for the Nation and the States (Mullis, Dossey, Owen, &
Phillips, 1993), includes overall mathematics proficiencies for subgroups based on
region, gender, ethnicity, type of community, parents’ highest level of education,
and type of school. Proficiencies for the entire group are also reported for the
specific content areas of Numbers & Operations; Measurement; Geometry; Data
Analysis, Statistics, and Probability; and Algebra and Functions. Content-specific
subgroup comparisons are given in the NAEP Data Almanacs.

The aim of this report is to investigate the dimensionality of the
mathematics test. This test consists of a large number of items distributed over a
number of test forms to which students are randomly assigned. In analyzing 1990
NAEP math data, it was suggested that the math items are essentially
unidimensional with respect to content areas with the possible exception of
Geometry in Grade 8 (Rock, 1991). Support for unidimensionality is usually based
on finding correlations close to unity among factors representing various aspects
of the items. Rock’s analysis of content areas showed correlations in the range
0.86-0.95 for Grades 4, 8, and 12. Unidimensionality was also indicated in
analyses considering item format (Carlson & Jirele, 1992). Using the 1992 data, a
more detailed analysis with respect to item format was given in Mazzeo,
Yamamoto, and Kulick (1993). The 1992 test included both short constructed-
response items and extended constructed-response items in addition to the
traditional item format of multiple-choice items. The Mazzeo et al. analysis found
an important deviation from unidimensionality only for extended constructed-
response items. In 1992, however, extended constructed-response items made up
less than 4% of the total number of items for Grades 4, 8, and 12.

As mentioned above, NAEP reports subgroup differences with respect to
overall math performance, whereas content-specific performance is typically not
reported for subgroups. Given the indications of unidimensionality, one may in fact
ask whether content-specific reporting is at all necessary, or whether the overall
reporting is sufficient. The idea of simplified reporting has been discussed among
ETS researchers. For example, in analyzing 1990 NAEP math data, Rock (1991)
concluded that “there seems to be little discriminant validity here. In conclusion, it
would seem that we are doing little damage in using a composite score.”

In our view, entertaining the notion of unidimensionality, although useful for
simplified reporting, may leave interesting features of the data unexplored. As
shown in the Appendix, it is not hard to settle for unidimensionality unless a
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special effort is made to find meaningful additional dimensions. This paper argues
that the need for a multidimensional representation of the data is difficult to judge
based on the conventional approach reported above of estimating correlations in
multifactorial models. This paper goes beyond the conventional approach in two
respects. First, it uses a latent variable model that is more sensitive to capturing
deviations from unidimensionality.

Using this model, it is shown that there are several additional dimensions
that are statistically significant. Second, to evaluate the practical significance of
adding these further dimensions, the same subgroups that the NAEP compares
are also compared using the multidimensional model.

NAEP’s estimation of subgroup differences is based on a statistically
complex procedure where proficiencies are estimated based not only on student
performance, but also on background variables (“conditioning variables”) including
those used for subgroups in the reports. The methodology of this paper utilizes the
key grouping variables of the NAEP reports (e.g., gender, ethnicity), but has the
advantage that subgroup comparisons are done not only in a univariate manner
using one grouping variable at a time, but using the set of grouping variables
jointly. This is carried out within a structural model with latent variables, which
relates the information on the test items to background information. In this way,
the structural model is similar to the framework used by NAEP to produce
proficiencies for the subgroups. The results are not, however, arrived at by first
estimating proficiencies using conditioning variables. In this way, our methodology
has the further benefit of providing a validation of the NAEP procedure.

The multidimensional latent variable modeling used here also suggests a new
way of reporting results with respect to math performance in specific content
areas. For content-specific performance, we propose relating the subscores to
overall performance, considering content-specific scores conditional on overall
scores. For a given overall score we ask what the subgroup difference is with
respect to a certain content area. The results may show that two individuals with
the same overall score but belonging to different subgroups are expected to
perform quite differently in a particular content area. This conditional approach
gives a sharper focus in the reporting. It may be of value for revealing differences
in opportunity to learn or differences in curricular emphases. Conditional
differences may be viewed as “unrealized potential” for performance in the specific
content area.
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Method

Samples

Mathematics data from the 1992 NAEP main assessment are used (the
“Main Focused-BIB Assessment”). NAEP is a multistage probability sample with
three stages of selection: primary sampling units (PSU’s) defined by geographical
areas, schools within PSU’s, and students within schools. In the 1992 NAEP main
assessment, 26 different test forms were used, each taken by almost 400
students in each of Grades 4, 8, and 12, resulting in test results for almost 10,000
students per grade. The analyses in this paper will focus on Grade 8 and Grade 12.
Given missing data on some of the background variables used in the present
analyses, the sample sizes are 8,963 for Grade 8 and 8,705 for Grade 12,
corresponding to missing data rates of 13% for Grade 8, and 8% for Grade 12.

Variables

The 1992 NAEP main assessment considered test items from the five
content areas: (1) Numbers and Operations (whole numbers, fractions, decimals,
integers, ratios, proportions, percents, etc.); (2) Measurement (describing real-
world objects using metric, customary, and non-standard units); (3) Geometry
(geometric figures and relationships in one, two and three dimensions); (4) Data
Analysis, Statistics, and Probability (data representation and interpretation); and
(5) Algebra and Functions (algebra, elementary functions, trigonometry, discrete
mathematics).

There are three formats used for the 1992 math items: conventional
multiple-choice items (binary scored), short constructed-response items (binary
scored), and extended constructed-response items. The mix of content and format
for the test items of each grade is shown in Table 1. It is seen that the Grade 8
test is dominated by Numbers & Operations items, whereas the Grade 12 test
has as many Algebra items. About one third of the items are short constructed-
response items, whereas less than 4% of the items are of the extended
constructed-response format.

NAEP results are presented as test scores for each of the five content areas
and an overall composite score, which is a weighted sum of the five content areas.
The determination of the weights is based on what is thought important for
students to know at a certain grade level. For Grade 4, the weights are (using the
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Table 1

Item Content and Format Mix

Format Content
Num &

Op
Measure

-ment Geometry
Data

Analysis Algebra Total

NAEP ’92 grade 12
Multiple choice

Number of items 29 18 20 17 32 116
% of total 16.20% 10.06% 11.17% 9.50% 17.88%
% of content 25.00% 15.52% 17.24% 14.66% 27.59% 100.00%
% of format 65.91% 64.29% 64.52% 58.62% 68.09% 64.80%

Short constructed response
Number of items 15 10 10 11 11 57

% of total 8.38% 5.59% 5.59% 6.15% 6.15%
% of content 26.32% 17.54% 17.54% 19.30% 19.30% 100.00%
% of format 34.09% 35.71% 32.26% 37.93% 23.40% 31.84%

Extended constructed response
Number of items 0 0 1 1 4 6

% of total 0.00% 0.00% 0.56% 0.56% 2.23%
% of content 0.00% 0.00% 16.67% 16.67% 66.67% 100.00%
% of format 0.00% 0.00% 3.23% 3.45% 8.51% 3.35%

Total
Number of items 44 28 31 29 47 179

% of content 24.58% 15.64% 17.32% 16.20% 26.26% 100.00%
% of format 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

NAEP ’92 grade 8
Multiple choice

Number of items 41 19 20 17 21 118
% of total 22.40% 10.38% 10.93% 9.29% 11.48%
% of content 34.75% 16.10% 16.95% 14.41% 17.80% 100.00%
% of format 70.69% 59.38% 55.56% 60.71% 72.41% 64.48%

Short constructed response
Number of items 15 12 15 10 7 59

% of total 8.20% 6.56% 8.20% 5.46% 3.83%
% of content 25.42% 20.34% 25.42% 16.95% 11.86% 100.00%
% of format 25.86% 37.50% 41.67% 35.71% 24.14% 32.24%

Extended constructed response
Number of items 2 1 1 1 1 6

% of total 1.09% 0.55% 0.55% 0.55% 0.55%
% of content 33.33% 16.67% 16.67% 16.67% 16.67% 100.00%
% of format 3.45% 3.13% 2.78% 3.57% 3.45% 3.28%

Total
Number of items 58 32 36 28 29 183

% of content 31.69% 17.49% 19.67% 15.30% 15.85% 100.00%
% of format 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

order of the five content areas given above) 45, 20, 10, 10, 10. For Grade 8, they
are 30, 15, 20, 15, 20. For Grade 12, they are 25, 15, 20, 15, 25. It is seen that
Numbers & Operations obtains diminishing weight over grades, whereas
Geometry and Algebra obtain increasing weights. The weights for Grades 8 and 12
correspond roughly to the item content mix shown in Table 1.

NAEP uses a balanced incomplete block (“Focused-BIB”) design to distribute
the test items across the test forms. There are 13 blocks of items. Each of the 26
test forms (“booklets”) consists of three blocks, each block appears in six booklets,
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and each block appears once with every other block. Tables 2 and 3 show this
design for the 12th- and 8th-grade tests, also showing how many students took
each block in the samples of students used in the present analyses. As is seen
from Table 2, this paper uses each block of items to create a set of testlets. A
testlet is a sum of binary-scored items, where omits are treated as incorrect. The
testlets are specific to content area and item format. The column labeled
“Format” shows whether a testlet consists of multiple-choice items (M) or short
constructed-response items (C). The column labeled “Content” uses the content
area numbering given above. As mentioned earlier, there were very few extended
constructed-response items in mathematics. Dimensionality assessment of so few
items would not be meaningful given our aggregation of items into testlets, and
extended constructed-response items are therefore excluded in the present
analyses.

The use of testlets may be criticized as drawing on arbitrary item groupings.
This is not an important issue here. Given the fact that each testlet is specific to
block, content, and format, it generally consists of only 2-3 items, that is, all items
of a certain content and format within a certain block. In this way, there is most
often only one way to aggregate the items. A few blocks, however, afford the
creation of more than one testlet per content and format and are labeled a, b, c, ....
(see, e.g., testlets 2-5). Items that share the same stem are always put into the
same testlet.

Tables 2 and 3 also show the degree to which the content areas and item
formats are covered by the testlets and the 26 independent samples of students.
For example, in Table 2, Grade 12 constructed-response (C) type Algebra (content
area 5) is represented by three testlets in booklet 4 and is available for 354
students in this booklet. It is seen that each testlet appears in six booklets so
that, for example, the Algebra testlet 48 in Grade 12 has data for a total of 2,051
students. Generally speaking, the content- and format-mix of the testlets is
similar to that of the NAEP test items shown in Table 1. Exceptions are
Measurement in constructed-response format for Grade 12 and Algebra in
constructed-response format for Grade 8, where the items were spread over too
many blocks to be represented by testlets. Therefore, factors corresponding to
these two types of items cannot be identified in the present analyses. Table 2 and
Table 3 will be further referred to below in connection with the description of the
modeling.
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Table 2
NAEP ’92 Grade 12. Layout of Testlets in Booklets Arranged by Response Format Within Content Areas (Entries
Are Number of Students)
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Table 3
NAEP ’92 Grade 8. Layout of Testlets in Booklets Arranged by Response Format Within Content Areas (Entries Are
Number of Students)
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The achievement variables will be related to a set of background variables
shown in Table 4. This set corresponds to the major subgroups used in NAEP
reporting. It is also a key set of variables used in the conditioning procedure used
in NAEP’s estimation of proficiencies in terms of the amount of latent variable
variance explained in the conditioning.

Analyses

Multidimensional Latent Variable Modeling

We consider a latent variable model for the set of observed variables
corresponding to the testlets. A unidimensional model states that a single
continuous latent variable accounts for the associations among these variables.
In our analyses, we will expand on this model and allow a specific dimension
corresponding to each of the five content areas and each of the two formats. We
will call this model a GS model (general-factor, specific-factor model). The model is
a version of the classic “bi-factor” model used in Holzinger and Swineford (1939).
In this way, the variance of a variable is accounted for by up to three different
types of systematic sources of variation. The three sources are taken to be
orthogonal as in conventional variance component estimation. The first dimension
is a general factor representing the general skill required for solving these types of
mathematics problems and may be seen as corresponding conceptually to the
“overall” math score in NAEP reports. The GS model describes specific factors as
residual testlet covariance given the general factor. Deviations from
unidimensionality can be described in terms of the variance component for the
specific factors relative to the sum of variance components for the general and
specific factors. For each variable the model adds a random error component to
the systematic components in order to capture measurement error. Given that
the testlets are computed from a small number of items, this portion of the
observed variable variance is relatively large. However, because the unreliability
is accounted for, this does not cause problems. This error source of variation is a
direct function of how testlets were created and is uninteresting in the context of
our investigation. Discussions of relative size of variance components for
systematic sources will refer to the reliable portion of a variable’s variance. The
Appendix gives a simple example of a GS model and presents some general
formulas related to it. In our analyses, the general-factor loadings will be allowed
to be free, whereas for simplicity the specific-factor loadings are fixed at unity.
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Table 4

Background Variables Used in the Structural Model (NAEP ’92)

Sample size  8963 8705

% in Grade 8 % in Grade 12
1. Gender

*1 Male 51 49
2 Female 49 51

2. Ethnicity
*1 White 67 69
2 Black 16 17
3 Hispanic 14 10
4 Asian 3 4

3. Parents’ Education
(Student Reported) 1 Didn’t Finish High School 9 8

2 Grad From High School 25 22
3 Some Ed After High School 20 26
4 Grad From College 47 44

4. Type of Community
1 Extreme Rural 8 11
2 Disadvantaged Urban 10 13
3 Advantaged Urban 11 12

*4 Other (Non-Extreme) 71 64
5. School Type

*1 Public School 79 80
2 Private School 8 7
3 Catholic School 13 13

6. Algebra
(Course Taking) 1 Pre-Algebra/Algebra 44

*2 No Algebra/Other 56

7. Alg-Calc
(Course Taking) *1 Pre-Algebra/1st-Year

Algebra/Not Studied 44
2 2nd/3rd-Year Algebra 52
3 Calculus 4

8. Geom-Trig
(Course Taking) *1 Not Studied 26

2 Geometry 56
3 Trigonometry 18

9. School Program
*1 General 22
2 Academic/College Prep 26
3 Vocational/Technical 48
4 Other/Omitted 4

Note.  Categories in the background variables are all dummy coded except for Parents’
Education. For dummy-coded variables, effects are interpreted as the category in question
compared to base category (marked *) of the variable.
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Three features of the GS model should be noted. First, ignoring measurement
error, the model implies highly correlated content-specific scores when the
specific-factor variance components are relatively small. In order to compare
these results with the content-factor analysis of 1990 NAEP math data by Rock
(1991) as well as the correlations among the five 1992 NAEP content scores, it is
of interest also to present the correlations among the five content areas as
deduced from the estimated model. As discussed in the Appendix, these are
computed as the correlations among the reliable part of the content variation,
purging the observations of measurement error. The correlations can be very high
even for sizable specific-factor variance components.

Second, the GS model emphasizes that the content-specific scores contain
both general-factor variation and specific-factor variation (cf. Schmid & Leiman,
1957). If the GS model is not used, but subgroup differences are considered with
respect to content-specific observed scores, differences in the underlying
dimensions may be obscured. Subgroups may differ in different ways with respect
to the different dimensions of variation. For example, one subgroup may have a
slightly higher general-factor mean than another subgroup, but a much lower
specific-factor mean. Given that the general factor dominates the variation in the
observed scores, the observed score mean difference may turn out to be zero,
concealing the large specific-factor difference.

Third, the GS model lends itself to viewing observed scores graphically,
separating the general-factor mean differences from specific-factor mean
differences. The idea is to give information corresponding to that of differential
item functioning (“item bias”): For a given general “trait” value on the horizontal
axis, the vertical axis shows subgroup differences for a specific content area. In
line with regression, a conditional expectation function may be plotted for a testlet
score, or its reliable part, given the general factor. When the specific factor is
orthogonal to the general factor, it may be seen as a residual. This residual has
different expectation in different subgroups. When the specific factor is correlated
with the general factor, as in the full model described in the next section, the mean
of the specific factor conditional on the general factor is a function of the general
factor. Assuming a low specific-factor, general-factor correlation and a low
specific-factor to general-factor variance ratio, the variation in this mean across
general-factor values is, however, likely to be small (e.g., if a bivariate normal
distribution is assumed for the general and specific factor). In this way,
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considering the conditional expectation function for two subgroups, the same slope
(or approximately the same slope) but different intercepts are obtained. The
intercept difference is of great substantive interest because it shows how
differently two individuals with the same overall score but belonging to different
subgroups are expected to perform in a particular content or format area.
Because the general-factor score represents general math skills needed to do well
on the overall test, such differences may represent “unrealized potential” (UP) due
to lack of opportunity to learn. Figure 1 shows this idea graphically for two groups
labeled A and B, where group B shows a large UP value relative to the general
factor (or overall) difference.

Figure 1. Conditional representation of multidimensional scores.
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The NAEP data structure provides an important complication in the
modeling. This complication is shown in Tables 2 and 3 above. Each booklet
corresponds to an independent sample of students so that there are 26
independent groups of observations. Although there is a total of 49 distinct
observed variables (testlets) in Grade 12 and 51 in Grade 8, for any given group of
students only a few of these variables are observed. In this way, the data show an
intricate missing data pattern. Theory for structural equation modeling with
missing data patterns of this type has been discussed in Muthén, Kaplan, and
Hollis (1987). The solution is a multiple-group analysis where the 26 groups of
students are analyzed jointly. Because each observed variable occurs in 6 of the
groups, equalities of parameters involving common variables are applied across
groups. Given that the GS model detects specific factors as residual testlet
covariance given the general factor, the modeling is dependent on having at least
two, and preferably more, testlets per content- and format-specific factor. To have
a large enough sample to support stable estimation of specific factors this testlet
requirement should hold for at least two booklets. Tables 2 and 3 show that these
minimum requirements are fulfilled (for multiple-choice testlets there are always
more than two such testlets).

With five content areas and two item formats, ten specific factors can in
principle be included in the GS model. To better define the general factor, however,
the content area of Numbers & Operations in multiple-choice format will not be
represented by a specific factor. These types of items represent central math
topics tested in a conventional way. In this way, the general factor is the only
factor that influences such testlets, and the general factor is therefore defined in
terms of performance on these traditional types of items. Alternative
specifications that include a specific factor for these types of items show that the
results are not sensitive to this choice of “rotation” of the general factor.

A Structural Model for Relating Achievement to Background
(MIMIC Modeling)

The multidimensional latent variable model described above will be
incorporated in a structural equation model that relates the factors to the set of
background variables. This type of analysis is often referred to as MIMIC
(multiple-indicators, multiple-causes) modeling in structural equation language.
For applications to the study of group differences, see, for example, Muthén
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(1989). The multidimensional model for the achievement variables provides the
measurement part of the structural model. In this part, the estimates of key
interest are the percentages of the reliable variance in the observed variables that
is due to the specific factors. As mentioned above, these values will be interpreted
as the amount of deviation from unidimensionality. The linear regression
equations relating the factors to the background variables provide a way to
describe mean differences in the factors with respect to the groupings represented
by the background variables in a way analogous to dummy variable regression.
The MIMIC model is shown in path diagram form in Figure 2 using two
background variables, xl and x2.

The structural regression coefficients of the MIMIC model are interpreted
just as ordinary partial regression coefficients. They are presented in a
standardized form, except for dummy background variables where the coefficients
will represent the expected standard deviation change in the factor when the
dummy variable changes from one category to the other (e.g., from male to
female). In these MIMIC analyses, the achievement variables will be treated as
continuous, normally distributed variables despite their small numbers of scale
steps and possible non-normality. Experience has shown that the estimates are
rather robust to such deviations from normality. In order to decide on the number
of factors that are important in the MIMIC modeling, initial factor analyses were
performed on the achievement variables alone. Specific factors contributing less
than 5% to the reliable variance were dropped before turning to MIMIC analysis.
The MIMIC analyses were carried out in the LISCOMP computer program
(Muthén, 1987).

Subgroup Means Estimated From the MIMIC model

The MIMIC model shows the influence of background variables on the factors
as partial regression coefficients. It is also of interest to use the estimated model
to compute estimated means for the achievement variables. In this way, mean
differences in observed variables can be studied for subgroups corresponding to
key NAEP reporting variables, such as gender and ethnicity, providing a more
direct comparison between the two ways of describing the data.

The subgroup mean differences will be displayed graphically in line with
Figure 1. Each graph corresponds to two subgroups to be compared, for instance,
males and females. On the horizontal axis the estimated mean and variance for
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Figure 2. Path diagram for MIMIC model.
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each of the two subgroups are used to plot an estimated distribution of general-
factor values, using normal approximations. The estimated means and variances
are computed from the estimated model using the sample values for the
background variables. The vertical axis refers to a specific content area, and the
graph displays the estimated regression lines of the content area score on the
general factor, one line for each of the two subgroups. The two lines are determined
by average parameter estimate values across the variables representing the
content area. For simplicity, it is assumed that general and specific factors are
uncorrelated. In this case, the two lines are parallel, and their slope shows the
influence of the general factor on the specific content area scores, whereas the
intercept difference shows a content area’s estimated mean difference between
the two subgroups, conditional on the general factor. This is the same as the
estimated content-specific factor mean difference between the two subgroups. As
discussed above, this difference is of primary interest because it shows the extent
to which individuals in different subgroups differ in performance in a given content
area despite having the same overall (general factor) score. The results will be
presented in the scale of estimated standard deviations of the reliable portions of
the observed variable variances. This standard deviation is obtained from the
conditional variance given the background variables as estimated by the MIMIC
model. Graphs will only be shown if “practically significant” deviations from
unidimensionality are present, that is, if the intercept difference is significant and
exceeds 0.2 of this standard deviation, corresponding to a “small effect size” in
ANOVA terms (a medium effect size is 0.5, and a large effect size is 0.8).

Results

The results of these analyses will be reported in three steps. First, the
percentage variance contributed by the specific factors will be presented. Second,
the structural regression coefficients will be given. Third, graphs for estimated
subgroup means will be presented for content- and format-specific sets of items
conditional on the general factor.

Results for the Measurement Part

The estimates for the measurement part of the structural (MIMIC) modeling
will be described first. The percentages of specific-factor variances are given in
Table 5. It is seen that statistically significant deviations from unidimensionality
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Table 5

Average Percentage Contribution of Specific Factors to Reliable Testlet Variation

Factor Variance  T-value % Contribution

NAEP ’92 grade 12

1. General 0.09 11.00 80.40

2. M-Measurement 0.00 — —

3. M-Geometry 0.05 2.45 10.97

4. M-Data Analysis & Statistics 0.04 1.11 17.40

5. M-Algebra 0.06 4.07 13.27

6. C-Numbers & Operations 0.00 — —

7. C-Geometry 0.03 0.48 5.53

8. C-Data Analysis & Statistics 0.10 2.74 19.30

9. C-Algebra 0.00 — —

NAEP ’92 grade 8

1. General 0.84 21.22 79.05

2. M-Measurement 0.10 4.53 14.78

3. M-Geometry 0.10 3.56 23.47

4. M-Data Analysis & Statistics 0.06 2.13 11.44

5. M-Algebra 0.02 0.69 —

6. C-Numbers & Operations 0.04 1.28 7.35

7. C-Measurement 0.03 0.42 —

8. C-Geometry 0.25 8.49 25.53

9. C-Data Analysis & Statistics 0.00 — —

Note.  M = Multiple choice; C = Constructed response.

are obtained with respect to three specific factors for Grade 12 and four specific
factors for Grade 8. The percentages for these specific factors are in some cases
sizable, ranging from 5% to 26% of the reliable portion of the observed variable
(testlet) variation. For Grade 12, the largest contributions are obtained for Data
Analysis & Statistics in constructed-response format, Algebra in multiple-choice
format, and Data Analysis & Statistics in multiple-choice format. For Grade 8,
the largest percentages of specific-factor variance contributions are obtained for
Geometry in constructed-response format, Geometry in multiple-choice format,
and Measurement in multiple-choice format.
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In order to compare these results with the content-factor analysis of 1990
NAEP math data by Rock (1991) and correlations among the NAEP scores for
content areas, it is of interest to also present the correlations among the five
content areas as deduced from the model (see Appendix). These are given in
Table 6. The correlations are somewhat higher than the values obtained in the
Rock analysis for the 1990 test and are in line with the hypothetical examples
shown at the end of the Appendix. It is noteworthy that even with such high
correlations, differential subgroup differences can be found for the different factors
as seen in the next section.

Results for the Structural Regressions (MIMIC Model)

Table 7 shows the Grade 12 estimated coefficients for the set of regressions
of the factors on the background variables. Many of the background variables
show significant partial effects on several factors. The amount of variance (R2) in
each factor explained by the background variables is shown at the bottom of the
table. The variation in the general factor is reasonably well explained by the
background variables as indicated by the R2 value of 49%.

Table 6

Estimated Content Factor Correlation

NAEP ’92 Grade 12
Numbers & Operations 1.000
Measurement 1.000 1.000
Geometry 0.983 0.983 1.000
Data Analysis & Statistics 0.969 0.969 0.948 1.000
Algebra 0.990 0.980 0.976 0.953 1.000

NAEP ’92 Grade 8
Numbers & Operations 1.000
Measurement .879 1.000
Geometry .945 .844 1.000
Data Analysis & Statistics .985 .878 .943 1.000
Algebra .985 .877 .943 .982 1.000
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Table 7

Standardized Coefficients (and t-Values) From the Structural Model (NAEP ’92 Grade 12)

General M-Geom M-Data M-Algebra C-Geom C-Data

Female -0.140 -0.008 -0.214 0.198 -0.026 0.388
-(6.53) -(0.14) -(1.78) (2.62) -(0.19) (3.30)

Ethnicity
Black -0.705 0.275 -0.977 0.608 -0.275 -0.288

-(16.12) (1.90) -(5.20) (5.23) -(0.95) -(1.69)

 Hispanic -0.402 0.489 0.050 0.302 0.711 -0.362
-(10.06) (3.00) (0.20) (2.25) (2.03) -(1.85)

Asian 0.015 0.673 -0.425 1.099 0.734 -0.537
(0.28) (2.89) -(1.37) (5.79) (1.47) -(1.85)

Parents’ Ed.
 0.107 -0.006 0.050 0.025  0.087  -0.040

 (8.83)  -(0.12) (0.74) (0.61)  (0.80) -(0.64)

TOC
Rural  0.191 0.076 0.021 0.197 -0.048 0.270

(5.53) (0.55) (0.13)  (1.66) -(0.12) (1.48)

 Disadv-Urban  -0.149 0.072 0.547  0.105 -0.054 0.099
-(4.54) (0.48) (2.80) (0.87) -(0.21) (0.50)

Adv-Urban -0.054 -0.226 0.318 -0.054 0.175 0.181
-(1.63) -(1.51) (1.59) -(0.45) (0.56) (0.96)

School-Type
 Catholic -0.135 0.088 -0.144 -0.088 -0.426 0.085

-(4.12) (0.61) -(0.74) -(0.76) -(1.40) (0.45)

 Private 0.097 -0.004 -0.467 0.471 0.284 -0.234
(2.39) -(0.04) -(1.91) (3.15) (0.71) -(1.02)

Alg-Calc
Algebra 0.394 -0.126 -0.594 0.136 -0.604 -0.070

(12.85) -(1.04) -(3.82) (1.53) -(2.42) -(0.40)

Calculus 0.849 0.259 -0.869 0.932 0.342 -0.459
(12.66) (1.08) -(2.54) (4.95) (0.68) -(1.38)

Geom-Trig
Geometry 0.463 1.149 -0.010 0.062 0.938 0.089

(13.25) (9.04) -(0.03) (0.64) (3.48) (0.62)

Trigonometry 0.595 1.218 -0.237 0.420 0.918 -0.068
(12.93) (7.21) -(1.01) (3.08) (2.57) -(0.26)

School-Program
Academic 0.422 0.024 -0.202 0.264 -0.158 -0.358

(12.66) (0.20) -(1.19) (2.62) -(0.58) -(2.25)

Vocational -0.076 -0.228 0.049 0.130 -0.244 0.054
-(1.32) -(0.91) (0.14) (0.62) -(0.47) (0.14)

Other 0.019 0.065 -0.612 -0.155 0.017 -0.044
(0.70) (0.50) -(3.47) -(1.45) (0.04) -(0.27)

 R Square 0.493 0.310 0.346 0.261 0.289 0.122

Note.  M = Multiple choice; C = Constructed response.
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It is interesting to compare the estimates in the general-factor column with
the 1992 NAEP report for overall proficiency. While the Table 7 MIMIC model
refers to partial effects of a background variable given other background
variables, the NAEP report refers to marginal effects for one background variable
at a time. The marginal effect for a background variable is the result of
interactions of this variable with other background variables and is not easily
interpreted. Following are three Table 7 examples of differences in the outcomes of
these two ways of reporting. For gender, the MIMIC model shows a significantly
lower value for females given other background, while the NAEP report does not
show a significant gender effect. It is not clear how the significant gender effect
turns insignificant marginally. For Asian ethnicity, the reverse holds: the MIMIC
model does not show a significant partial effect compared to Whites, whereas the
NAEP report shows a significant marginal effect. In this case, the interpretation
may be that more Asians than Whites take advanced math courses, reducing the
Asian effect when controlling for such course taking in the MIMIC model. In fact,
although about the same percentage of Asians and Whites take second- or third-
year algebra (55%) and geometry (57%), 16% of Asians take calculus courses as
compared to 5% of Whites, and 28% of Asians take trigonometry as compared to
19% of Whites. Finally, for school type, the MIMIC model shows a significant
negative partial effect comparing Catholic schools to public schools, while the
NAEP report shows a significant positive marginal effect. The estimates from the
MIMIC model can also be used to describe marginal effects as described in the
methods section. For example, the MIMIC-estimated marginal effect of Catholic
schools versus public schools is clearly positive as in the NAEP report. This rough
correspondence between the two approaches should hold for all background
variables.

The specific-factor columns of Table 7 have a more complex interpretation
because these factors refer to performance on content- and format-specific test
items controlling for overall test performance (general-factor value). A content-
and format-specific factor may be seen as residual variation that describes a skill
that goes beyond the general math test-taking skill. Such factors may correspond
to content- and format-specific learning of new topics involving definitions, new
concepts, and new procedures, and high values may correlate with high degrees of
opportunity to learn for such specific topics. The specific factors M-Geom and C-
Geom may be seen as validated by the strong specific-factor effects from
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geometry and trigonometry course taking as compared to not taking such courses,
and the specific factor M-Algebra may be seen as validated by the strong specific-
factor effect from calculus course taking. It is true that the students taking such
advanced courses are on the whole more able at math, reflecting a selection
phenomenon. The selection effect is, however, largely accounted for by the strong
general-factor effects seen for these course-taking categories and the specific-
factor effects describe difference beyond such a general advantage.

The estimates in the M-Algebra specific-factor column for the Ethnicity
background variables are noteworthy. They indicate that Blacks, Hispanics and
Asians all have significantly higher M-Algebra values than the reference group of
Whites (see also the Geometry columns for similar results). While Asians are
significantly ahead on the specific M-Algebra factor, they are not significantly
ahead of Whites on the general factor, other background variables held constant.
This is an example of the multidimensional factor model being able to point to
components of subgroup differences that are overlooked in terms of overall
performance. The specific-factor finding is perhaps due to differences in
opportunity to learn as a function of different course-taking choices. This Asian-
White analysis result is relatively easy to describe. For Blacks and Hispanics,
however, the M-Algebra advantage, that is, the White disadvantage, is at first
puzzling given their strong general-factor disadvantage relative to Whites. This
can be understood by describing the situation as the White advantage on the
general factor not leading to a fully comparable M-Algebra performance
advantage, so that the model needs to moderate the White general-factor
advantage by a lesser M-Algebra effect for Whites than for Blacks and Hispanics.
This type of reasoning may also explain the two negative effects in the M-Data
column for Alg-Calc course taking.

The possibility of differential effects of background on the different factors is
an interesting feature of the multidimensional MIMIC model that makes for a
richer representation of the data. Examples of differential and even opposite
effects are found with respect to both content and format factors. For example,
the partial effect of being female is significantly negative for the general factor,
while significantly positive for the Algebra-specific factor in multiple-choice format
and for the Data Analysis-specific factor in constructed-response format. The
partial effect of Asian versus White is small and insignificant for the general
factor but large for the M-Geom and M-Algebra factors. In terms of format
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differences, Data Analysis & Statistics shows format differences for Females and
for Blacks; in both cases, performance in these groups is better on constructed-
response items than multiple-choice items.

Table 8 shows the corresponding Grade 8 MIMIC model estimates. In terms
of differential effects of background on the factors, it is interesting to consider the
background variable Gender. We find that with other background variables held
constant, females are significantly higher than males on the general factor, but
significantly lower on the Measurement-specific factor (in multiple-choice format).
Geometry shows different relationships for the constructed-response format than
for the multiple-choice format for females and for Blacks; here, females do better
on the constructed-response format and Blacks do better on the multiple-choice
format. It is also interesting to note that, as compared to Grade 12, the Asian-
White difference for Geometry has not yet developed. It should be noted, however,
that the amount of variance explained in the specific factors is very low for
Grade 8.

Results for Subgroup Means Estimated From the MIMIC Model

The following graphs show the estimates derived from the MIMIC model for
subgroup mean differences in a given content area conditional on the general-
factor value. To limit space, only results for gender and ethnicity will be presented.
As stated in the Methods section, graphs are only presented if “practically
significant” deviations from unidimensionality are present, requiring specific-
factor mean differences that are significant and at least 0.2 of a standard
deviation of the reliable variation in the observed scores.

Gender comparisons.  Grade 12 gender comparisons show no practically
significant deviations from unidimensionality for any of the specific factors.
Figure 3 shows a Grade 8 gender comparison for the Measurement-specific factor
in multiple-choice format. As shown in Table 5, this specific factor contributed
approximately 20% of the reliable variation in the Measurement content area
scores. The MIMIC results of Table 7 indicated that the partial effect of being
female was positive, although rather small. The general-factor distributions of
Figure 3 also show that the marginal effect of being female is slightly positive.
These results are in line with the 1992 NAEP report (Mullis et al., 1993) for the
overall math score viewing the overall math score in NAEP as a proxy for the
general-factor score. Conditional on the general-factor score, however, males are
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Table 8

Standardized Coefficients (and t-Values) From the Structural Model (NAEP ’92 Grade 8)

General M-Meas M-Geom M-Data C-Number C-Geom

Female 0.048 -0.466 -0.258 -0.130 0.292 -0.014
(2.31) -(6.28) -(3.13) -(1.24) (2.23) -(0.22)

Ethnicity

Black -0.851 -0.404 -0.022 -0.442 0.415 0.401
-(24.64) -(3.47) -(0.16) -(2.67) (2.01) -(3.84)

 Hispanic -0.525 -0.127 -0.087 -0.465 -0.289 -0.130
-(15.76) -(1.07) -(0.66) -(2.79) -(1.39) -(1.23)

Asian 0.229 -0.405 -0.223 -0.681 -0.423 -0.258
(3.71) -(1.84) -(0.90) -(2.17) -(1.09) -(1.31)

Parents’ Ed. 0.194 -0.015 -0.017 0.013 -0.154 -0.026
(16.61) -(0.37) -(0.38) (0.22) -(2.11) -(0.70)

TOC
Rural -0.022 -0.033 0.041 0.037 0.426 -0.030

-(0.60) -(0.24) (0.27) (0.20) (1.71) -(0.23)

 Disadv-Urban -0.287 -0.307 0.213 -0.213 0.010 -0.033
-(7.81) -(2.32) (1.46) -(1.14) (0.05) -(0.27)

Adv-Urban 0.304 -0.117 0.202 -0.155 -0.449 -0.231
(8.44) -(0.90) (1.41) -(0.85) -(1.96) -(1.99)

School-Type
 Catholic 0.129 -0.252 -0.102 0.066 0.258 -0.039

(4.01) -(2.20) -(0.79) (0.40) (1.27) -(0.38)

Private 0.080 0.105 0.058 0.160 0.131 0.098
(1.99) (0.72) (0.35) (0.76) (0.50) (0.76)

Algebra 0.548 -0.103 -0.167 0.159 -0.252 -0.188
(22.69) -(1.24) -(1.82) (1.36) -(1.73) -(2.55)

R Square 0.381 0.102 0.035 0.084 0.166 0.035

Note.  M = Multiple choice; C = Constructed response.

ahead of females in Measurement performance. Had we not conditioned on the
general factor, this gender difference in Measurement performance may not have
been uncovered because the general factor dominates as a source of variation in
the Measurement performance. The NAEP Data Almanac for 1992 math reflects
this in that the gender mean difference is not significant and is only about 0.1 of a
standard deviation. This female Measurement disadvantage may be seen as
“unrealized potential” among females. While females do as well as males on the
overall test, they fall behind in this particular area. It may be noted that the
gender effect for Geometry is smaller than for Measurement (about 0.13 of a
standard deviation as opposed to about 0.20).
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Figure 3. Grade 8 gender comparison for the Measurement specific factor in
multiple-choice format.
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Figures 4 and 5 show the effects of different item formats. These figures
compare male and female Grade 12 performance on Data Analysis & Statistics,
showing that in comparison to males, the constructed-response format suits
females better than the multiple-choice format. While neither graph shows a large
specific-factor difference, the reversal from a male advantage in Figure 4
(multiple-choice) to a female advantage in Figure 5 still makes these two figures
noteworthy.

Ethnicity comparisons.  Figures 6 and 7 show Grade 12 Asian-White
comparisons for Geometry (multiple-choice) and Algebra (multiple-choice). In both
cases, Asians are ahead of Whites on the general factor and, conditional on the
general factor, further ahead on Geometry and Algebra in multiple-choice format.
The general-factor difference in these two cases is rather small, less than 0.2 of a
standard deviation. In contrast, the multidimensional MIMIC model is able to
show that there are strong Asian-White differences with respect to specific
Geometry and Algebra content and format, almost 0.4 and 0.6 of a standard
deviation, respectively. As discussed in connection with Table 7, these differences
may have to do with Asians taking more advanced courses than Whites. These
differences may not show up as strongly in the observed scores because the
specific factors only account for 12% and 16%, respectively of the reliable
variances (see Table 5), the remainder corresponding to the dominant general-
factor variance. In this connection it is interesting to note what this finding says
about the influence of test content on subgroup differences: Had the 12th-grade
math test had more Geometry and Algebra content, the overall Asian-White
difference would have been larger.

Figure 8 shows a Grade 12 Black-White comparison for Data Analysis &
Statistics (multiple-choice) indicating a conditional advantage for Whites. It is
noteworthy that despite such a strong White advantage for the general factor,
this cannot fully explain the White advantage on these types of items. The
specific-factor difference may have to do with lack of opportunity to learn for
Blacks as compared to Whites for Data Analysis & Statistics type items.
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Figure 4.  Grade 12 gender comparison for the Data Analysis & Statistics
specific factor in multiple-choice format.



27

Figure 5.  Grade 12 gender comparison for the Data Analysis & Statistics
specific factor in constructed-response format.
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Figure 6.  Grade 12 Asian-White comparison for Geometry in multiple-choice
format.
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Figure 7.  Grade 12 Asian-White comparison for Algebra in multiple-choice
format.
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Figure 8.  Grade 12 Black-White comparison for Data Analysis & Statistics in
multiple-choice format.
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Figure 9 shows a Grade 12 Black-White comparison for Algebra in multiple-
choice format indicating a reversal in the comparisons of the two subgroups for
the general versus the specific factors. The Black specific-factor advantage was
mentioned in connection with the Table 7 results. The White general-factor
advantage is not realized for these types of items. Perhaps this is due to there
being only a small degree of overlap in the two general-factor distributions, so that
the data supporting the two lines come mostly from high-performing Blacks and
low-performing Whites.

Figures 10, 11, 12 show Grade 12 Black-Asian comparisons for Geometry
(both formats) and Algebra (multiple-choice). In all cases, there is a specific-factor
advantage for Asians that goes beyond the Asian general-factor advantage.
Again, given that the subgroup differences pertain to more advanced topics, these
advantages may have to do with opportunity-to-learn differences.

Figures 13 and 14 show Grade 12 Hispanic-Black comparisons indicating a
conditional Hispanic advantage for Data Analysis & Statistics (multiple-choice)
and Geometry (constructed-response). The specific-factor difference is in both
cases larger than the general-factor difference. One may note that the Data
Analysis & Statistics finding is analogous to the White-Black comparison of
Figure 8.

Figures l5, 16, 17 show Grade 12 Hispanic-Asian comparisons. Figures 15
and 16 indicate a conditional Asian advantage for Geometry (multiple-choice) and
Algebra (multiple-choice) as was the case in the White-Asian comparisons. Figure
17 shows an Asian disadvantage for Data Analysis & Statistics (multiple-choice)
despite an Asian advantage for the general factor. The interpretation of Figure 17
may be similar to that of Figure 5 in that the data supporting the two lines come
mostly from high-performing Hispanics and low-performing Asians.

Figures 18 and 19 show Grade 8 Asian-White comparisons. Figure 18 shows
that for the Measurement-specific factor in multiple-choice format there is a
reversal in the effects for the general and the specific factors: Asians are ahead of
Whites on the general factor, but Whites have conditionally higher values on
Measurement. Figure 19 shows that for Data Analysis & Statistics in multiple-
choice format an analogous reversal is seen. The NAEP Data Almanac shows
that Asians obtain higher means in both content areas, but that the mean
differences are insignificant.
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Figure 9.  Grade 12 Black-White comparison for Algebra in multiple-choice
format.
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Figure 10.  Grade 12 Black-Asian comparison for Geometry in multiple-choice
format.
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Figure 11.  Grade 12 Black-Asian comparison for Geometry in constructed-
response format.
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Figure 12.  Grade 12 Black-Asian comparison for Algebra in multiple-choice
format.
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Figure 13.  Grade 12 Hispanic-Black comparison for Data Analysis & Statistics
in multiple-choice format.
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Figure 14.  Grade 12 Hispanic-Black comparison for Geometry in constructed-
response format.
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Figure 15.  Grade 12 Hispanic-Asian comparison for Geometry in multiple-choice
format.
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Figure 16.  Grade 12 Hispanic-Asian comparison for Algebra in multiple-choice
format.
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Figure 17.  Grade 12 Hispanic-Asian comparison for Data Analysis & Statistics
in multiple-choice format.



41

Figure 18.  Grade 8 Asian-White comparison for the Measurement specific factor
in multiple-choice format.
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Figure 19.  Grade 8 Asian-White comparison for Data Analysis & Statistics in
multiple-choice format.
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Discussion

This paper has found multidimensionality in the 1992 NAEP math items.
This has an impact on the description of subgroup differences. In several
instances, the multidimensional description of subgroup differences was able to
identify subgroup differences in content- and format-specific factors that were
different from overall subgroup differences. This type of description indicates that
the finding of highly correlated content-specific subscores does not necessarily
suggest reporting only subgroup differences with respect to an overall score, but
that reporting of conditional, content-specific scores may be used.

Studying subgroup differences with respect to specific factors may lead to a
more “instructionally sensitive” way to analyze achievement data. Take, for
example, the Asian-White difference with respect to Algebra shown in Figure 7.
The specific-factor difference is almost 0.6 of a standard deviation (of the reliable
part of the Algebra score) while the general-factor difference is less than 0.2 of this
standard deviation. The fact that Asian and White individuals with the same
general-factor value can differ this much with respect to what is specific to
algebra raises the possibility of “unrealized potential” of the White student
subgroup relative to the Asian subgroup. Another example is provided by the
Figure 13 Hispanic-Black comparison for Grade 12 Data Analysis & Statistics,
suggesting that Blacks have unrealized potential relative to Hispanics. Such
differences can reveal important educational process differences related to
curricular emphases, differences in opportunity to learn, and the effects of
differential course choices. It would be of interest to attempt to study such
differences over time and to explain how they arise. As examples of other such
specific-factor differences worthy of further investigations one may also mention
the Male-Female difference with respect to Measurement, the Asian-White
difference with respect to Geometry, and the Black-White difference with respect
to Data Analysis & Statistics. To understand these differences, however, it is
likely that a much richer set of explanatory background variables is needed than
was used here.

The differential subgroup differences for the different factor dimensions also
clearly show how dependent subgroup differences are on the particular mix of
content and format that is used for the test items. For example, in comparison to
males, females appear to do relatively better on constructed-response items than
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multiple-choice items for Data Analysis & Statistics in Grade 12 and Geometry in
Grade 8. This has implications for future developments of NAEP testing and the
comparison of performance over time. One can expect a trend towards using more
constructed-response items, reducing the reliance on the multiple-choice format.
The particular content mix and the content weights may also change over time.
The 1992 math findings reported here replicate in some respects analyses of the
1990 NAEP math data (Muthén, 1991). In both cases, a MIMIC approach was
taken, but analysis procedures were different in three regards. Due to the different
BIB spiraling structures, the two data sets give rise to different ways of creating
testlets. The 1990 data made it possible to analyze a set of testlets in seven
replicate analyses of seven booklets, while in 1992 the analysis needed to be done
simultaneously on all the 26 booklets. In the 1990 analyses no Asian-White or
Black-Hispanic comparisons were made, and no format-specific testlets or factors
were formulated. Despite these differences, it is interesting to note that the 1992
Grade 8 conditional Measurement disadvantage for females was also observed in
analyses of the 1990 NAEP math data. Furthermore, the 1992 Grade 12 Black-
White comparison for Data Analysis & Statistics indicating a conditional
advantage for Whites was also observed in analyses of the 1990 NAEP math
data.

The latent variable technique used in this report provides a general
methodology for data structures of the NAEP type. It gives flexibility for the
researcher in that NAEP items and background variables are used without having
to rely on the particular proficiency scores that are generated for NAEP reports.
Conditioning variables are not used to generate scores. Such background variables
can instead be incorporated in the analysis as done in the MIMIC model. This
approach therefore provides a way to validate findings from regression analyses
based on NAEP proficiency scores.
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Appendix

When data are generated by a single dominant dimension and several minor
dimensions, it is easy to settle for unidimensionality unless a special effort is made
to find the additional dimensions. The following latent variable model is a useful
tool for detecting such deviations from unidimensionality. The model is a classic
“bi-factor” model (see, e.g., Holzinger & Swineford, 1939) with one general factor
and one specific factor for each observed variable. In the classic case, the specific
factors are uncorrelated among themselves and with the general factor. This
latent variable model will be referred to as a GS model (general-factor, specific-
factor model). This model will be modified here to include covariates of the general
and specific factors in which case all factors can be correlated as a function of
their common dependence on the covariates. This modified GS model is the MIMIC
model (multiple-indicators, multiple-causes model) used in the analyses of the
paper. The modified GS model is a good vehicle for illustrating how
multidimensional models may be mistaken for unidimensional models.

Consider the following GS model for ten observed variables y,

(1)

yl = G + el

y2 = G + e2

y3 = G + e3

y4 = G + e4

y5 = G + e5

y6 = G + e6

y7 = G + S + e7

y8 = G + S + e8

y9 = G + S + e9

y10 = G + S + e10 ,

where G and S are the general and specific factors, respectively, and e’s represent
measurement errors. For simplicity the above GS model has unit loadings
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everywhere. Consider next the structural regressions of the factors on a covariate
x,

(2)

G = bg x + rg

S = bs x + rs

where the b’s are regression coefficients and the r’s are residuals. While the
residuals are uncorrelated so that G and S are uncorrelated given x, the marginal
correlation between G and S is not zero. The point of involving a covariate x is the
following. Using information on the y’s alone, the correlation between G and S can
only be identified under very restrictive specifications such as using fixed loadings.
Adding information on x’s, however, makes it possible to identify the structural
regression coefficients and thereby allows G and S to correlate as a function of
their common dependence on x. In such a model, the residual correlation for G and
S is zero and no restrictive specifications are needed for the loadings. This
appendix considers what happens in the conventional approach of analyzing only
the y’s and incorrectly applying a one-factor model when a modified GS model is
the true model.

Assume for example that the first six y variables correspond to NAEP’s
Numbers & Operations items and the last four y variables correspond to Algebra
items. Or, alternatively, that the first six y variables correspond to multiple-choice
items for a certain content area and the last four y variables correspond to
constructed-response items for the same content area. Using the first example, S
corresponds to algebra-specific skills that go beyond the Numbers & Operations
skills needed to solve the Algebra items represented by y variables 7-10. A useful
index of the degree to which the model deviates from unidimensionality is the
specific-factor variance ratio

(3) V(S) / { V(G) + V(S) + 2 Cov (G, S) } ,

where the covariance is zero in the classic GS model but possibly nonzero in the
modified GS model with covariates. This ratio does not involve the variable-
specific amount of measurement error variance. The proportion residual variance,
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or unreliability, in a y variable depends on the number of items used to form the
testlets. It is advantageous that the ratio does not depend on this arbitrary choice.
Here, reliability is defined as

(4) { V(G)  +  V(S)  +  2 Cov (G, S) }  /   ( V(G) + V(S) + 2 Cov (G, S) + V(e) } ,

where for y variables 1-6 the terms V(S) and Cov (G, S) disappear.

The reliable part of the variation in the six Numbers & Operations variables
is G and the reliable part of the four Algebra variables is G + S. The correlation
between these two reliable parts is

(5) { V(G)  +  Cov (G, S) }  /  { Sqrt [ V(G) ] Sqrt [ V(G) + V(S) + 2 Cov (G, S) ] } .

In contrast to this correlation, the correlation between Numbers &
Operations y variables and the Algebra y variables is attenuated because the
measurement error variances add to the denominator of the expression above.
The amount of attenuation depends on the reliability of the variables, which again
depends on the number of items used to form the testlets.

The correlation given in (5) has further meaning. It is also the correlation
that is obtained between the two factors of a two-factor, simple-structure
confirmatory factor analysis model with correlated factors fitted to the y variables
of the modified GS model. This is easily seen from (1) if factor 1 is defined as G and
factor 2 is defined as G + S, letting variables 1-6 load on factor 1 and 7-10 load on
factor 2. The fact that a correlated, two-factor model fits the GS model perfectly
relates to hierarchical factor analysis transformations discussed in Schmid and
Leiman (1957).

Using different choices of specific-factor variance ratio, G-S factor
correlation, and variable reliability, a set of covariance matrices for the ten y
variables were created and analyzed by a one-factor model. The values were
chosen to be close to those seen in the NAEP analyses: the MIMIC-estimated
Grade 8 and 12 specific-factor variance ratios typically ranged from 0.1 to 0.3;
Grade 12 factor correlations for the general factor were 0.19 with the specific
factor of Geometry (multiple-choice) and 0.14 with the specific factor of Algebra
(multiple-choice); a typical value for the testlet reliability was around 0.4, whereas
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in Rock (1991) 0.7 was a more typical value given that more items per testlets
were used (taking the square root of each the three reliability values given in Table
Al shows that they correspond to one-factor standardized loadings of
approximately 0.9, 0.8, and 0.7). The parameter values chosen for Table Al give a
0.85-0.97 range for the two-factor correlation values (using equation 5) which is in
line with the Rock (1991) findings for the five content areas of the 1990 NAEP
math data as well as the corresponding results for the 1992 data given in this
paper. Table Al gives the chi-square values of fit for the misspecified one-factor
model when analyzing a sample of n = 500. The model has 35 df. In Table Al, the
G, S factor correlation varies but for simplicity the specific-factor variance ratio
given in Table Al uses formula (3) with the G, S covariance set to zero.

It is seen that several combinations of parameter values give an acceptable
fit to the incorrect one-factor model, implying that the power to reject this model is
low. This occurs for low specific-factor variance ratio, low G-S factor correlation,
and low variable reliability. One such case, which appears to use typical
parameter values based on the NAEP analyses, has specific-factor variance ratio
of 0.2, G-S factor correlation of 0.2, and reliability of 0.5. The chi-square value is
24.71 in this case (p = 0.902). The chi-square values are linear in the sample size
so that with a sample of 1,000, a value twice as large would be obtained. Looking
up the 5% critical value for 35 df.’s (approximately 49), one can also calculate that
in this case a sample size of 992 would be required to reject the one-factor model
at the 5% level. For this case, the correlation between the reliable parts of the two
types of content variables is 0.91; that is, a two-factor simple-structure
confirmatory factor analysis model would have a factor correlation of 0.91 (this is
independent of the reliability). Had a two-factor model been fitted to these data,
such a high value is likely to also lead an investigator to maintain the one-factor
model. The corresponding factor correlation for a specific-factor variance ratio of
0.1 is 0.96.
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Table Al

Chi-Square Test Values for Misspecified One-Factor Model (35 df, n = 500)

Reliability of y1 to y6 = 0.80

V(G) V(S) V(e1) V(e7) V(S)/[V(G)+V(S)]
0.70 0.30 0.175 0.32 0.30

r(G,S) Cov(G,S) Rel(y7-y10) 2-Fac Corr Chi-sq prob
0.1 0.05 0.77 0.85 435.16 0.000
0.2 0.09 0.79 0.87 404.24 0.000
0.3 0.14 0.80 0.89 364.66 0.000
0.4 0.18 0.81 0.90 320.21 0.000
0.5 0.23 0.82 0.92 261.93 0.000

V(G) V(S) V(e1) V(e7) V(S)/[V(G)+V(S)]
0.80 0.20 0.20 0.40 0.20

r(G,S) Cov(G,S) Rel(y7-y10) 2-Fac Corr Chi-sq prob
0.1 0.04 0.73 0.90 197.31 0.000
0.2 0.08 0.74 0.91 183.61 0.000
0.3 0.12 0.76 0.92 164.91 0.000
0.4 0.16 0.77 0.93 141.87 0.000
0.5 0.20 0.78 0.94 115.42 0.000

V(G) V(S) V(e1) V(e7) V(S)/[V(G)+V(S)]
0.88 0.10 0.22 0.30 0.10

r(G,S) Cov(G,S) Rel(y7-y10) 2-Fac Corr Chi-sq prob
0.1 0.03 0.78 0.95 92.92 0.000
0.2 0.06 0.79 0.96 88.81 0.000
0.3 0.09 0.79 0.96 77.59 0.000
0.4 0.12 0.80 0.96 64.49 0.002
0.5 0.15 0.81 0.97 54.12 0.021

Reliability of y1 to y6 = 0.65

V(G) V(S) V(e1) V(e7) V(S)/[V(G)+V(S)]
0.70 0.30 0.38 0.70 0.30

r(G,S) Cov(G,S) Rel(y7-y10) 2-Fac Corr Chi-sq prob
0.1 0.05 0.61 0.85 150.46 0.000
0.2 0.09 0.63 0.87 136.67 0.000
0.3 0.14 0.65 0.89 120.06 0.000
0.4 0.18 0.66 0.90 102.42 0.000
0.5 0.23 0.68 0.92 80.67 0.000

V(G) V(S) V(e1) V(e7) V(S)/[V(G)+V(S)]
0.80 0.20 0.43 0.70 0.20

r(G,S) Cov(G,S) Rel(y7-y10) 2-Fac Corr Chi-sq prob
0.1 0.04 0.61 0.90 77.77 0.000
0.2 0.08 0.62 0.91 70.98 0.000
0.3 0.12 0.64 0.92 62.29 0.003
0.4 0.16 0.65 0.93 52.16 0.031
0.5 0.20 0.67 0.94 41.13 0.220
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Table Al (continued)

V(G) V(S) V(e1) V(e7) V(S)/[V(G)+V(S)]
0.88 0.10 0.47 0.70 0.10

r(G,S) Cov(G,S) Rel(y7-y10) 2-Fac Corr Chi-sq prob
0.1 0.03 0.60 0.95 23.15 0.938
0.2 0.06 0.61 0.96 22.02 0.957
0.3 0.09 0.62 0.96 18.97 0.988
0.4 0.12 0.63 0.96 15.49 0.998
0.5 0.15 0.65 0.97 12.80 1.000

Reliability of y1 to y6 = 0.50

V(G) V(S) V(e1) V(e7) V(S)/[V(G)+V(S)]
0.70 0.30 0.70 1.20 0.30

r(G,S) Cov(G,S) Rel(y7-y10) 2-Fac Corr Chi-sq prob
0.1 0.05 0.48 0.85 62.10 0.003
0.2 0.09 0.50 0.87 55.48 0.015
0.3 0.14 0.52 0.89 47.84 0.073
0.4 0.18 0.53 0.90 40.01 0.257
0.5 0.23 0.55 0.92 30.75 0.674

V(G) V(S) V(e1) V(e7) V(S)/[V(G)+V(S)]
0.80 0.20 0.80 1.30 0.20

r(G,S) Cov(G,S) Rel(y7-y10) 2-Fac Corr Chi-sq prob
0.1 0.04 0.45 0.90 27.33 0.819
0.2 0.08 0.47 0.91 24.71 0.902
0.3 0.12 0.49 0.92 21.43 0.965
0.4 0.16 0.50 0.93 17.69 0.993
0.5 0.20 0.52 0.94 13.71 1.000

V(G) V(S) V(e1) V(e7) V(S)/[V(G)+V(S)]
0.88 0.10 0.88 1.20 0.10

r(G,S) Cov(G,S) Rel(y7-y10) 2-Fac Corr Chi-sq prob
0.1 0.03 0.46 0.95 8.30 1.000
0.2 0.06 0.48 0.96 7.85 1.000
0.3 0.09 0.49 0.96 6.70 1.000
0.4 0.12 0.50 0.96 5.41 1.000
0.5 0.15 0.52 0.97 4.43 1.000


