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GRAPHICAL MODELS AND
COMPUTERIZED ADAPTIVE TESTING

Robert J. Mislevy and Russell G. Almond
CRESST/Educational Testing Service

Abstract

This paper synthesizes ideas from the fields of graphical modeling and
educational testing, particularly item response theory (IRT) applied to
computerized adaptive testing (CAT). Graphical modeling can offer IRT a
language for describing multifaceted skills and knowledge, and disentangling
evidence from complex performances. IRT-CAT can offer graphical modelers
several ways of treating sources of variability other than including more variables
in the model. In particular, variables can enter into the modeling process at
several levels: (a) in validity studies (but not in the ordinarily used model); (b) i n
task construction (in particular, in defining link parameters); (c) in test or model
assembly (blocking and randomization constraints in selecting tasks or other
model pieces); (d) in response characterization (i.e., as part of task models which
characterize a response); or (e) in the main (student) model. The Graduate Record
Examination (GRE) is used to illustrate ideas in the context of IRT-CAT, and
extensions are discussed in the context of language proficiency testing.

1.0 Introduction

Computerized adaptive testing (CAT; Wainer et al., 1990) is one of the
most significant practical advances in educational testing in the past two
decades. Using the information in their unfolding patterns of responses to
adaptively select items for examinees, CAT can improve motivation, cut
testing time, and require fewer items per examinee, all without sacrificing the
accuracy of measurement. The inferential underpinning of modern CAT is
item response theory (IRT; Hambleton, 1989). Successful large-scale
applications of IRT-CAT include the Graduate Record Examination (GRE) and
the National Council Licensure Examination (NCLEX) for assessing nurses.
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As useful as IRT-CAT has been, two constraints have blocked its
extension to wider varieties of applications. These constraints are the limited
scope of tasks that can be used without seriously violating IRT’s conditional
independence assumptions, and IRT’s limited capabilities to deal jointly with
multiple, interacting aspects of knowledge or skill. Graphical models (GMs;
Almond, 1995, Lauritzen, 1996; they are often called Bayesian Inference
Networks, or BINs, when used predictively; Pearl, 1988) provide a language for
describing complex multivariate dependencies. A graphical modeling
perspective extends the IRT-CAT inferential framework to accommodate
richer tasks and more complex student models.

Despite the simplistic nature and strong independence assumptions of the
IRT-CAT model, its users have developed sophisticated techniques to ensure
its success in practical applications. Many variables seemingly ignored by the
IRT model actually enter into the task creation and test assembly processes—
often informally. These techniques could be adapted to other applications of
graphical modeling as well, as graphical modelers move away from the idea of
an all-encompassing model and toward collections of model fragments, which
can be assembled on the fly to meet specific task demands (knowledge-based
model construction; Breese, Goldman, & Wellman, 1994).

This paper synthesizes a number of ideas from graphical modeling and
educational testing. To this end, Section 2 reviews the basic ideas of IRT and
CAT, and Section 3 casts them as a special case of probability-based inference
with graphical models. We then see that the simplicity of IRT as a GM is
deceiving. Section 4 describes how many variables are handled informally or
implicitly play crucial roles in practical applications of IRT-CAT, even though
they do not appear in the IRT model. We sketch more complex GMs to reveal
the significance of some of these hidden extra-measurement considerations.
Section 5 outlines graphical-model-based assessment, adaptive if desired, with
models that explicitly incorporate such considerations in order to handle more
complex tasks or student models. Section 6 sketches two ways this approach
might be employed in language proficiency assessments that employ complex,
integrative tasks. (For an illustration of their use in a fielded application, see
Mislevy & Gitomer, 1996, and Steinberg & Gitomer, 1996, on HYDRIVE, an
intelligent tutoring system for learning to troubleshoot aircraft hydraulics
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systems.) Section 7 lists some technical issues that must be explored in
developing graphical-model-based assessment.

2.0 Item Response Theory and Computerized Adaptive Testing

An IRT model expresses an examinee’s propensity to make correct

responses or receive high ratings on a collection of test items in terms of an

unobservable proficiency variable q . The responses are posited to be

independent, conditional on q  and parameters that express characteristics of

the items such as their difficulty or sensitivity to proficiency. A simple

example is the Rasch model for n dichotomous test items:

P x1,¼, xn |q,b1,¼,bn( ) = P x j |q,b j( )
j=1

n

Õ , (1)

where x j  is the response to Item j (1 for right, 0 for wrong), b j  is the “difficulty

parameter” of Item j, and P x j |q,b j( ) = exp x j q - b j( )[ ] 1 + exp q - b j( )[ ]. For

selecting items and scoring examinees in typical applications, point estimates

of the item parameters b1,¼,bn( ) , or B for short, are obtained from large

samples of examinee responses and treated as known. Section 4.2 below will

discuss modeling alternative sources of information, and remaining

uncertainty, about B.

Once a response vector x = x1,¼, xn( ) is observed, (1) is interpreted as a

likelihood function for q , say L q x,B( ). The MLE q̂  maximizes L q x,B( ); its

asymptotic variance can be approximated by the reciprocal of the Fisher

information function, or the expectation of second derivative of - L q x,B( ),
evaluated at q̂ . Bayesian inference is based on the posterior distribution

p q x,B( ) µ L q x,B( )p q( ), which can be summarized in terms of the posterior

mean q  and the posterior variance Var q x,B( ).

Fixed test forms have differing accuracy for different values of q , with

greater precision when q  lies in the neighborhood of the items’ difficulties.

CAT provides the opportunity to adjust the level of difficulty to each examinee.

Testing proceeds sequentially, with each successive item k+1 selected to be in-

formative about the examinee’s q  in light of the responses to the first k items,

or x k( )  (Wainer et al., 1990, chapter 5). One common approach evaluates q̂  after
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each response, then selects the next item from the pool that provides a large

value of Fisher information in the neighborhood of q̂ . A Bayesian approach

determines the next item as the one that minimizes expected posterior

variance, or Ex j
Var q x(k ) , x j ,B

(k ) ,b j( ) x(k ) ,B(k )[ ] (Owen, 1975). Additional

constraints on item selection, such as item content and format, are addressed

below in Section 4.3. Testing ends when a desired measurement accuracy has

been attained or a predetermined number of items has been presented.

3.0 IRT Computerized Adaptive Testing as a Graphical Model

Probability-based inference in complex networks of interdependent

variables is an active topic in statistical research, spurred by such diverse

applications as forecasting, pedigree analysis, troubleshooting, and medical

diagnosis. The structure of the relationships among the variables can be

depicted in an acyclic directed graph (commonly called a DAG), in which

nodes represent variables and edges represent conditional dependence

relationships. Corresponding to the DAG is a recursive representation of the

joint distribution of the variables of interest, generically denoted Z1,¼,Zm{ }:

p Z1,¼,Zm( ) = p Zj "parents" of Zj{ }( )
j=1

m

Õ , (2)

where the "parents" of Zj{ } is the subset of  Zj-1,¼,Z1{ } upon which Zj  is directly

dependent. In educational applications, for example, we posit unobservable

variables that characterize aspects of students’ knowledge and skill as parents

of observable variables that characterize what they say and do in assessment

situations. Spiegelhalter, David, Lauritzen, & Cowell (1993) review recent

statistical developments in graphical modeling.

Figure 1 shows the DAG that corresponds to IRT. The generic Z variables

specialize to q  and the item responses  X1,¼,Xn{ }. The first panel suppresses

the dependence on item parameters, while the second makes the dependence

explicit by indicating that the conditional probability distribution of each Xj

given q  is a function of b j . Such a structure, which posits conditional

independence of item responses given a single unobserved variable, is often
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called a “naive Bayes” model since it rarely captures the subtle

relationships found in real-world

X1

X2

Xn

q

X1

X2

Xn

q

b1

b2

bn

: :

Figure 1. DAGs for an IRT model. Item parameters that determine
conditional distributions of Xs given q  are implicit in the left panel and
explicit in the right panel.

problems (Spiegelhalter & Knill-Jones, 1984). This depreciative term is

undeserved in thoughtful implementations of IRT-CAT, however, because

many variables that do not appear in the simple model have been handled

behind the scenes, expressly to ensure that its simple structure will suffice for

the task at hand.

One way to describe IRT-CAT from the perspective of graphical models is

through the DAG with q  as the single parent of all items in the test pool, as in

Figure 1. At the beginning of testing, the marginal distribution of the q  node is

p q( ). Each item is checked to find one that minimizes expected posterior

variance; it is administered, and the process repeats after the response, now

starting from p(q |x 1( ) ). The process continues with each successive p(q |x k( ) )

until testing is terminated. At each step, the observed value of the

administered variable is fixed, the distribution of q  is updated, and

expectations for items as-yet-unadministered are revised for calculating the

expected posterior variance of q  if each of the items were presented next.

A second way to describe IRT-CAT is statistically equivalent, but

highlights the modularity of reasoning that can be achieved with graphical

models. Figure 2 depicts the situation in terms of graphical model fragments:

the student-model variable q  and a library of nodes corresponding to test

items, any of which can be “docked” with the q  node to produce a dyadic DAG
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as shown in the right-hand panel of the figure. This small DAG is temporarily

assembled to absorb evidence about q  from the response to a given Item j. It is

disassembled after the response is observed and the distribution of q  updated

accordingly. The new status of knowledge about q  either guides a search of

the item library for the next item to

X1

Xn

:

b1

bn

X2b2

Student 
model 
variable Task Library

q q X2b2

Item 2 "docked" with q

Figure 2. CAT as knowledge-based model construction. Left panel
shows q  node and task-node library. Right panel shows Item 2
“docked” with q  to create a dyadic DAG.

administer or provides the grounds to terminate testing. This process is an
example of knowledge-based model construction (Breese et al., 1994).

4.0 Roles of Variables in IRT-CAT

A first glance at the IRT models used in current tests such as the GRE’s
Verbal, Quantitative, and Analytic subtests or the Test of English as a Foreign
Language (TOEFL) measures of Reading, Listening, and Structure gives the
misleading impression that everything that is happening can be understood in
terms of simple, one-variable student models—the overall proficiencies in each
scoring area—and corresponding task pools. But many more variables are
being managed behind the scenes, some to effectively define the variable being
measured, others to ensure that the simple analytic model will adequately
characterize the information being gathered.

Every real-world problem has its own unique mix of features and de-
mands, and every person has a unique approach to its demands. This is true
in particular of assessment tasks, and accordingly, examinees will vary in
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their degree of success with each of them. Educational and psychological
measurement, as it has evolved over the past century, defines domains of tasks
so that differences among examinees with respect to some features tend to
accumulate over tasks, while differences with respect to other features don’t
tend to accumulate (Green, 1978). The variance that accumulates becomes
“what the test measures,” or the operationally defined “construct.” Other
sources of variance constitute uncertainty about an examinee’s standing on
that construct.

What practices have evolved to guide testing practice under this
perspective? This section discusses roles that variables serve to this end in
IRT-CAT.

1. Variables can limit the scope of the assessment, and never appear in
the analytic model.

2. Variables can describe task features, for constructing tasks and
modeling item parameters.

3. Variables can control test assembly.

4. Variables can characterize responses (observables).

5. Variables can characterize aspects of proficiency (collectively, the
student model).

A given variable can play different roles in different tests, according to the
purposes and operational definitions of those tests. Only variables playing the
last role in the list appear explicitly in the measurement model—in the case of
IRT-CAT, q . q  is usefully thought of as a summary of evidence about a
construct brought about through choices about, and manipulation of, many
other “hidden” variables through the first four roles listed above.

4.1 Variables That Limit the Scope of the Assessment

This section shows how two kinds of studies usually thought of as validity
analyses help ensure that the simple structure of IRT is adequate. In both
cases, variables that might generate interactions among item responses
beyond those accounted for by an overall proficiency variable are the focus of
the study, and actions are taken so that these variables need not be included in
the analytic model. Results in the first case lead one to constrain testing
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contexts and methods, so that the operationally defined q  effectively conditions
on specified values of these variables. Results in the second case can lead one
to eliminate items that would engender strong interactions with unmodeled
student characteristics, so that one can effectively marginalize over those
characteristics.

Delimiting the domain and the testing methods. Myriad aspects of
examinees’ skills, knowledge, and experience affect their performance in any
learning domain, not all of which can be, nor should be, encompassed in any
particular test. We must consider which aspects of the universe of potential
assessment tasks are salient to the job at hand and determine which of them to
address in the test and which to exclude. In a test of academic language
proficiency, for example, do we want to include scenarios that span all of
college life in a test of English proficiency, from doing the laundry to
interacting with campus police, or shall we limit attention to academic and
classroom interactions? Should we assess listening skills with closed-form
items based on taped segments, or with tasks that combine listening with
speaking in a conversation with a human examiner? The way we elicit
performance in language tests has a significant effect on performance; some
examinees are relatively better at one kind of task than another, perform better
in some settings than others, or are more familiar with some contexts than
others. There will thus tend to be stronger associations among some tasks
than others related to testing contexts and methods—interactions that
invalidate the structure of the DAG in Figure 1. If we want to use IRT models,
studying sources of variability in tasks (e.g., Bachman, Lynch, & Mason, 1995)
helps us determine when we can ignore such interactions, and when they are
so large we should consider scaling within more homogeneous subsets of
tasks.

Differential item functioning (DIF). DIF occurs when, for reasons
unrelated to the skills and knowledge of interest, certain task content or format
features tend to be relatively harder for members of identifiable
subpopulations, as defined for example by gender or ethnic background.
Reading comprehension questions about baseball might be more difficult for
girls than boys, who would perform similarly on items with the same
language and use characteristics, but about other topics. The DAG in Figure
3 depicts this unwelcome situation. DIF
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X1

X2

Xn

q

Sex

:

Figure 3. A DAG illustrating Differential Item Functioning
(DIF). Response probabilities of Items 2-n are conditionally
independent of sex given q . Response probabilities for Item 1
are dependent on sex as well as q .

analyses explore pretest data for its presence. Some potential causes of DIF
can be avoided by defining variables that identify problematic features of tasks,
and excluding any tasks that have these features from the domain. (In
contrast, an instructional application might purposely seek out items for
which personal interest is very high for certain students, in order to better
motivate them to engage the underlying concepts.)

4.2 Variables That Describe Task Features

Individual tasks in a test can be described in terms of many variables.
They concern such things as format, content, modality, situation, purpose,
vocabulary load, grammatical structure, mathematical knowledge required,
cognitive processing demands, and so on. Some of these variables appear
formally in test specifications, but test developers employ far more when they
create the tasks. Without formally naming or coding this information in terms
of variables, writers of tasks draw upon such sources as past results with
similar items, experience with how students learn the concepts, awareness of
common misconceptions, and cognitive research about learning and problem
solving in the domain. Studies have shown that these kinds of variables can be
strong predictors of item difficulty (see, for example, Freedle & Kostin, 1993, on
TOEFL listening comprehension tasks, and Chalifour & Powers, 1989, on GRE
analytical reasoning tasks).

One way to use this collateral information about tasks is to supplement,
perhaps supplant, data from pretest examinee samples as the source of
information about the IRT item parameters B (Mislevy, Sheehan, &
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Wingersky, 1993). In effect, one creates a second-order DAG for modeling item
parameters (Figure 4).

Y 21

q X2b2

Y 22 Y 23

Figure 4. A portion of a two-level DAG, which posits a model for the
item parameter b  that in turn gives the conditional probabilities of
the response to Item 2 given q. Y21-Y23 are coded features of Item 2.

A second way to use the normally hidden variables that characterize test

items is to erect a more principled framework for item construction. Such

variables would be the basis of “item schemas” or “item shells,” for developing

families of tasks with characteristics and properties that are both fairly well

understood and demonstrably grounded in a theoretical framework of the

knowledge and skills the test is meant to elicit. Features of schemas and

features of the elements that fill in schemas could then be used to model IRT

parameters, as discussed above. The intimate connection between task

construction and difficulty from a cognitive point of view is illustrated in Bejar

(1990). See Hively, Patterson, and Page (1968) for a proposal along these lines

before the days of IRT, and Embretson (1993) for a more recent investigation

using contemporary cognitive and measurement theory.

A third way to use variables that characterize task requirements is to link

values of student-model variables to expected observable behaviors. With the

Rasch model, for example, knowing b j  allows us to calculate the probability of

a correct response from a student with any given q . Conversely, we can give

meaning to a value of q  by describing the kinds of items a student at that level

is likely to succeed with, and those he is not. To the extent that item features

account for b s, then, we can describe the student’s proficiency in terms of task

characteristics and/or cognitively relevant skills (see Sheehan & Mislevy, 1990,

for an example with document literacy tasks, and McNamara, 1996, chapter 7,

for an example concerning Chinese language reading proficiency).
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4.3 Variables That Control Test Assembly

Once a domain of items has been determined, test specifications constrain
the mix of items that constitute a given examinee’s test. We observe neither the
whole of the task domain nor an uncontrolled sample, but a composite
carefully assembled under prespecified rules for “blocking” and “overlap.”

Blocking constraints ensure that even though different examinees are
administered different items, generally of different difficulties in a CAT, they
nevertheless get similar mixes of content, format, modalities, skill demands,
and so on. Stocking and Swanson (1993) list 41 constraints used in a prototype
for the GRE CAT, including, for example, the constraint that one or two
aesthetic/philosophical topics be included in the Antonym subsection. Since it
is not generally possible to satisfy all constraints simultaneously, these
authors employed integer programming methods to optimize item selection,
with item-variable blocking constraints in addition to IRT-based information-
maximizing constraints.

Overlap constraints concern the innumerable idiosyncratic features of
items that cannot be exhaustively coded and catalogued. Sets of items are
specified that must not appear in the same test because they share incidental
features, give away answers to each other, or test the same concept. Overlap
constraints evolved through substantive rather than statistical lines, from the
intuition that overlapping items reduce information about examinees. The
graphical modeling formalism allows us to explicate why, how, and how
much is lost. Each item is acceptable in its own right, but their joint
appearance would introduce an unacceptably strong conditional dependence—
”double counting” evidence (Schum, 1994, p. 129) under the simple conditional
independence model.

Figure 5 illustrates the impact of test assembly constraints with a simple
example. The item pool has just four items; Items 1 and 2 both use the
unfamiliar word “ubiquitous,” and Items 3 and 4 both concern right triangles.
Overlap constraints would say a given examinee’s test should not contain both
Items 1 and 2, and not both Items 3 and 4. A blocking constraint would say that
one item from each pair should appear in each examinee’s test. The first and
second panels in Figure 5 are alternative DAGs for the entire pool, one
showing conditional dependencies among overlap sets and the other
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introducing additional student-model variables. The third panel is the
standard IRT-CAT DAG with overlap and

X1

X2

X4

q
X3

X1

X2

X4

q
X3

f1

f2

X2

q
X3

Figure 5. Three DAGs related to overlap and blocking constraints. The first panel shows
conditional dependencies among item sets. The second shows conditional independence
achieved by adding student-model variables. The third shows conditional independence
achieved within the IRT model by constraining what can be observed.

blocking constraints in place—its simplicity is appropriate only because the
inflow of evidence has been restricted so as to avoid some particularly
egregious violations of its strong conditional independence structure.

Many other variables could be defined to characterize test items according
to features not controlled by blocking or overlap constraints. These include the
item-level variables discussed in Section 4.2 that can be used to model item
parameters, as well as the many incidental and idiosyncratic features that
make each item unique. These variables are dealt with by randomization; the
particular values they take in any given examinee’s test are a random sample
from the pool, subject to blocking, overlap, and measurement constraints. The
GRE Verbal CAT, for example, may require that each examinee receive one
passage on a topic in science and another in literature. There are many topics
within both areas, and one may be selected from each area in accordance with
other constraints but ignoring the specific identification of topics within areas.
Whether an examinee happens to be familiar or unfamiliar with a given topic
undeniably affects her performance, but this interaction is not modeled;
having randomized, the examiner leans on large sample theory to average
over these effects.

4.4 Variables That Characterize Responses (Observables)

Characterizing student responses is straightforward with multiple-choice

items in IRT-CAT: Did the student indicate the option prespecified to be
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correct, or a different one? Open-ended responses can also be analyzed with

dichotomous IRT models, but more judgment is required to distill

“correctness” from unique performances. In these latter cases, variables can

be defined to describe qualities of the products or performances students

produce, and rules can be devised for mapping values of these variables into

the correct/incorrect dichotomy.

More generally, salient characteristics of examinee responses can be

coded in terms of fully or partially ordered rating categories. For example,

Bachman and Palmer (1996, p. 214) offer a variable for coding “knowledge of

syntax” as displayed in specific tasks by means of a five-point rating scale. The

fourth point, “evidence of extensive knowledge of syntax,” is marked by a large

range with few limitations, and good accuracy with few errors. IRT models

have been extended beyond dichotomous data to deal with these ordered

response categories (see Thissen & Steinberg, 1986, for a taxonomy of models).

In this case, Xj  is multinomial, and item parameters give the probabilities of

response in the possible categories conditional on q . Dodd, De Ayala, and Koch

(1995) describe IRT-CAT with such models. As with dichotomous models, the

value of Xj  may either be immediate because of restrictions on possible

response behavior, or it may require a further step of evaluation in terms of

abstracted properties of less constrained response behaviors. When nontrivial

differences may occur among qualified observers, IRT models that include

effects for raters and diagnostic information for monitoring their work can be

employed (e.g., Linacre, 1989; see McNamara, 1996, on the use of these models

in language proficiency assessment).

4.5 Variables That Characterize Aspects of Proficiency

(the Student Model)

Student-model variables integrate information across distinct pieces of

evidence to support inference about examinees’ skills and knowledge at a

higher level of abstraction than the particulars of any of the specific tasks—a

level consonant for instruction, documentation, or decision making, as the

application demands. The nature of student-model variables should be driven

by the purpose of the test, but also be consistent with empirical response
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patterns and theories of performance in the domain. As further discussed in

the following sections, it is neither possible nor desirable to include in the

model variables for all conceivable aspects of proficiency. The choice is

determined by utilitarian purposes, such as distinctions that will be important

for reporting or decision making, as opposed to complete psychological and

sociological explication of responses.

For example, the current TOEFL has three student-model variables—

listening, reading, and grammatical structure, or L, R, and S—and each is

evidenced by discrete tasks of its type only, with disjoint item domains and

associated domain proficiency variables qL , qR , and qS , each as depicted in

Figure 1. These variables are used for infrequent but consequential decisions

such as admitting non-native English speakers into undergraduate and

graduate academic programs. In contrast, an intelligent tutoring system (ITS)

must define student-model variables at a finer grain-size in order to provide

instruction frequently and specifically. The guiding principle for ITSs is that

student models should be specified at the level at which instructional decisions

are made (Ohlsson, 1987).

Standard IRT-CAT is based on univariate student models. Multivariate
student models become important when observations contain information
about more than one aspect of proficiency, for which it is desirable to
accumulate evidence. Segall (1996) describes CAT with multivariate normal
student-model variables and logit-linear models linking their values to the
probability of item responses. Sections 5 and 6 discuss multidimensional
student models further, with some examples motivated by the TOEFL
program’s TOEFL 2000 project.

5.0 Graphical-Model-Based Computerized Adaptive Testing

(GM-CAT)

Experts differ from novices, not merely by commanding more facts and
concepts, but also by forging and exploiting richer interconnections among
them (e.g., Chi, Feltovich, & Glaser, 1981). Direct assessment of increasing
expertise, therefore, requires (a) complex tasks, in order to elicit evidence that
draws upon multiple and interrelated aspects of skill and knowledge, and (b)
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multivariate student models, in order to capture, integrate, and accumulate
the import of students’ performances across such tasks. The fact that standard
IRT is not up to the task does not require abandoning its underlying inferential
principles, but rather extending them. We can build on the same ideas of
defining unobservable variables to “explain” patterns of observable responses,
and “some sources of variation accumulating and others not”—and of using
probability-based inference to manage accumulating knowledge and
remaining uncertainty about student proficiency as assessment proceeds. This
section sketches out an approach in general terms, noting how it addresses
issues discussed above in the context of IRT-CAT. The following section
illustrates the ideas with two examples from language proficiency
assessment. Mislevy and Gitomer (1996) and Steinberg and Gitomer (1996)
describe a simplified application of the approach in a fielded system, the
HYDRIVE intelligent tutoring system for troubleshooting aircraft hydraulics
systems.

Figure 6 illustrates one possible implementation of a GM-CAT. It is

presented here to provide a visual reference for the discussion of the

mathematical properties. Section 6.2 presents the language-testing

motivation

qR

qW

qS

qL

Student Model Task Model Library

R X1

X2R

X3
W

R

W
R

W
S
L

X4

X5

X6
S
L

Task 1

Task 2

Task 3 Task 4

Figure 6. A “task-oriented” DAG. Information about examinee performance is
accumulated in variables associated with the four traditional “skills.” Conditional
probabilities of task responses are modeled in terms of cognitively-relevant task
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features (not depicted). Items 1 and 2 are conditionally independent, and each
depends on only a single student-model variable. Item 3, a small “integrated” task,
has two skill parents. Items 4, 5, and 6 are multiple aspects of response to a single
complex task; each has multiple skills as parents, and conditional dependencies
among items are further indicated to deal with context effects.

for this example, and Section 6.3 discusses an alternative approach. (It may be

noted that some of the variables—in particular, qR , qW , qS , and qL—seem

evocative of the concepts Reading, Writing, Speaking, and Listening. Whatever

meaning was intended by placing those variables in the model, their

operational meaning is an average over performance on tasks related to those

modalities. Thus the true meaning of the variables in the model is controlled

by variables that do not appear at all in Figure 6: that is, variables controlling

the scope of the exam [Section 4.1] and the selection of tasks [Section 4.3].)

The model in the GM-CAT framework is spread among two sources. To
the left is the student model, which is fixed across all administrations of the
exams. To the right is a collection of task/evidence models, or DAG fragments,
corresponding to a pool of tasks. A given examinee will see a subset of the tasks
according to a task selection algorithm, which balances value of information
considerations with content and overlap constraints. When an examinee is
assigned a task, the evidence model associated with that task is attached to the
student model (according to the pattern of stub variables in the evidence
model). The evidence from the examinee’s response to that task is then
absorbed into the main student model, and the task/evidence model can be
detached, leaving the updated student model ready for the next task. Thus, the
GM-CAT framework is another application of knowledge-based model
construction (Breese et al., 1994).

The nodes in the student model are unobservable variables related to
examinee proficiency—a multivariate generalization of the role of IRT q . The
student-model variables represent aspects of skill and knowledge and are
included in the model either because they will be used to report students’
performance, to accumulate supplementary patterns across task situations for
diagnostic feedback, or to account for incidental dependencies across tasks.
Their nature and number should be consistent with, but are not uniquely
determined by, an understanding of performance in the domain. The final
determination of the number and granularity of variables belonging in the
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student model is governed by the requirements for reporting and diagnosis in
the examination. Thus a pass/fail licensure exam will use a much coarser
student model than an intelligent tutoring system.

The nodes in the task evidence models are observable variables that
correspond to salient aspects of examinees’ behaviors in specified task
situations—a generalization of the IRT item responses. Generally, these will
correspond to features of a task response. They could be as simple as “did the
examinee give the correct response to a multiple-choice question” or as
complex as dimensions of a multi-attribute rating produced by a human judge
or by running a parser on a transcript of examinee actions in a simulator.

There are three kinds of associations among the student-model and
observable nodes.

The first kind of association is the most important: Student-model
variables are parents of observables. In this way, skills and knowledge
“explain” patterns in observable behavior in the tasks at hand, and when
responses are observed, belief about student-model variables is updated. The
associations take the form of conditional probabilities of values of the
observable variables, given the values of student-model variables—a
generalization of IRT item parameters. When multiple aspects of skill and
knowledge are posited as parents of a given observable, relationships such as
conjunction, disjunction, and compensation may be proposed. Task designers
indicate the structure of these associations (indicated by item stubs in Figure 6)
and provide initial estimates of the conditional probabilities based on task-
feature variables, response-feature variables, and expectations of the latter
given the former at various levels of the student-model variables. These
conditional probabilities may be further modeled as functions of task-
characteristic variables, as a generalization of the IRT technique depicted in
Figure 4.

A second kind of association is that among observables, over and above the
associations induced by student-model variables. These occur when multiple
aspects of a performance in the same task situation are captured as
observables, and including them in the DAG is a way to model the effects of
shared contexts, similarities in response methods, or incidental connections
that overlap constraints would disallow in IRT-CAT. A task/evidence model
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for a complex task would comprise multiple observables, perhaps with
associations engendered by the commonalities induced by shared context, but
probably with different student-model parents according to their particular
demands. These associations are illustrated in Figure 6 by the arrows
connecting observables X4, X5, and X6.

A third kind of association is that among various student-model variables:
that is, some student-model variables may appear as parents of other student-
model variables in order to express such relationships as prerequisition,
empirical correlation, or logical relationships such as conjunction and
disjunction. These associations appear in Figure 6 as arrows connecting
student-model variables to one another. In this way, direct evidence about one
student-model variable can provide indirect evidence about another, thereby
exploiting associations among skills or competences to improve the accuracy of
reports.

Adaptive testing with a graphical model would use the current state of the
student model as part of the item selection algorithm. Just as in the IRT-CAT,
the GM-CAT selects tasks from a task pool to maximize some information
metric. Value of information (Heckerman, Horvitz, & Middleton, 1993) and
weight of evidence (Madigan & Almond, 1996) seem promising candidates. The
GM-CAT attaches the task/evidence model to the student model and absorbs
the evidence provided by the examinee’s responses. The algorithm can then
discard the task item, or maintain it in the model if it is needed to deal with
dependence effects between tasks (i.e., overlap considerations addressed by
modeling, as opposed to avoidance). The algorithm will still need to balance
tasks’ contexts, content, task types, and so on within examinees, since these
specifications operationally define the student-model variables in the same
sense that item pools and test assembly rules define q in IRT.

The status of the student model is also used for reporting, or, in
interactive applications, triggering feedback. If a single-number summary of
performance is desired, one can project the current state of the student model
onto a particular dimension such as expected performance on a market basket
of typical tasks. Validity studies increase in importance, because validity
internal to the model must now be monitored as well as relationships to
variables outside the model.
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6.0 Examples From Language Proficiency Assessment

This section illustrates the ideas of graphical-model-based assessment in
the context of language proficiency testing. The TOEFL 2000 project and key
language testing issues are introduced, then two approaches to modeling
complex tasks are described.

6.1 Background

The current TOEFL described above is widely considered to be a discrete-
point test built on the structuralist behaviorist model of language learning and
testing. Both users and the language learning and testing communities have
called for a new TOEFL test that more closely targets language use in the
academic environment, as opposed to knowledge of vocabulary and surface
linguistic features. The TOEFL 2000 project was thus initiated, with the goal of
measuring communicative English-language competence that focuses on
situations and tasks that reflect university life in North America. It is
anticipated that the resulting assessment will (a) incorporate speaking and
writing; (b) include more performance-based tasks; (c) include tasks that are
integrated across modalities, such as writing based on listening to a
conversation or speaking in response to a reading passage; and (d) provide
reports that go beyond norm-referenced scores (Carol Taylor, personal
communication, January 1997).

These aims reflect Hymes’ (1972) “communicative competence”
perspective. “[U]nlike the Chomskyan notion of linguistic competence, which
is a property of the mind, communicative competence is a product of the
psychological and social characteristics of situations on which language is
used for communication” (Waters, 1996, p. 54). From this point of view,
assessing communicative language proficiency requires both an analysis of
the targeted language use situations and the kinds of knowledge that are
needed to use language in those situations. McNamara (1996, chapter 3)
provides an integrative review of recent models of communicative language
proficiency, including Bachman’s (1990) model comprising the components
summarized in Figure 7.

TOEFL 2000 has made progress on several fronts. Integrative reviews,
field surveys, and empirical research have addressed the issues of relevant
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situations and language uses (e.g., Hudson, 1996; Waters, 1996), and
linguistic, cognitive, and sociolinguistic features that influence language use
task difficulty (e.g., Freedle & Kostin, 1993; Nissan, DeVicenzi, & Tang, 1996).
The “Committee of Examiners Model” (Chapelle, Grabe, & Berns, in press)
lays out considerations for task contexts, situations, and performances; it
relates these task features to the processing required to negotiate them
successfully; and it draws implications for task development and test
validation. TOEFL test developers have created prototypes of integrated tasks
that exhibit the integration of modalities and the context-embedding features
that are called for (e.g., the “dinosaur task” mentioned below). And, as of this
writing, a draft of a TOEFL 2000 test framework is circulating for comment
and review. The framework takes steps to further specify the aspects of
situations, materials, and uses of tasks that would constitute the assessment
(Table 1) and begins to model relationships between these aspects and
examinee performance. In sum, a number of relevant variables have been
identified, which can be considered for various of the roles discussed above in
Sections 4.1-4.4.

LANGUAGE COMPETENCE

Organizational Competence Pragmatic Competence

Grammatical
Competence

Textual
Competence

Illocutionary
Competence

Sociolinguistic
Competence

Vocab Morph. Syntax Phon./
Graph.

Cohesion Rhetorical
Organ.

Ideational
Functs.

Manip.
Functs.

Hueristic
Functs.

Imag.
Functs

Sens. to 
Dial. or 
Variety

Sens. to 
Register

Sens. to 
Natural-

ness

Sens. to 
Refs & 
Figs of 
Speech

Figure 7. A schematic summary of Bachman’s (1990) model. The components of
“organizational competence,” the foci of language tests with a structural perspective, are
viewed as enabling skills that must be integrated with an understanding of situation and
purpose for successful communication. The components of these latter capabilities are
subsumed under “pragmatic competence.”
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Table 1

Further Breakdown of Aspects of Language Use Tasks

Situation
Characteristics of

input material Types of questions

Setting Grammatical features Different types of questions

Participants and their roles Pragmatic features Type of information requested

Register Discourse features Type of match

Purpose Text structure properties Additional processing
conditions

Content Documents Plausibility of distractorsa

Prose

Interactions

a In constructed responses and open-ended tasks, this term refers to the fineness of
distinctions that must be made in order to negotiate the task successfully.

Less progress has been made in specifying a set of student-model
variables (Section 4.5) and delineating evidentiary relationships between them
and task performances. This charge has proved difficult for several reasons.
There are vast numbers of plausible candidates for student-model variables.
Richards (1983), for example, lists 33 “micro-skills” required for just for
conversational listening and 18 for academic listening. Different authorities,
writing from different theoretical perspectives or having different purposes in
mind, offer proposals that are in some cases overlapping, in other cases
orthogonal, and in still others, contradictory. It is generally acknowledged that
skills and knowledge, however defined, always interact in use. Student-model
variables cannot be decided upon in isolation, but are roles co-defined with all
the other roles discussed above in light of the intended use of the assessment.
Any descriptor of tasks, for example, can induce a student-model variable if
multiple observations are made that share a feature while differing in other
aspects.

This presentation is not intended to offer a definitive resolution to TOEFL
2000’s student-model question. Its focus is rather to illustrate the concepts and
tools that are available to carry out principled inference, regardless of which
model is used. While the determination of the student model remains at issue,
the kinds of tasks that are envisaged force us to deal with more complex
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relationships among student-model variables and observable task performance
variables. The following sections highlight inferential issues by illustrating
how they arise under two rather different perspectives found in the language
testing literature, namely, a task-centered view and a competence-centered
view. The former can be viewed as extension of the inferential approach
employed in the current TOEFL, to accommodate the reconception of language
proficiency implied by integrative and contextualized tasks. The latter departs
more radically from current procedures, incorporating student-model
variables motivated by the Bachman model. It goes without saying that any of
these approaches would need to be tested, criticized, and revised in light of
empirical data before operational use.

6.2 Task-Centered Student Modeling

One approach to accumulating and reporting examinees’ proficiencies in
a TOEFL 2000 test would be to retain skill-based scores, but now for Reading,
Writing, Speaking, and Listening (R, W, S, and L). There is a long tradition of
reporting language proficiency in these terms, some of which evolved under
the structuralist view of language competence (e.g., the current TOEFL), but
some of which evolved to summarize performance in more authentic
proficiency contexts that implicitly honor the tenets of communicative
competence. Bachman and Palmer (1996, pp. 75 ff.) argue that “it is not useful
to think in terms of ‘skills,’ but to think in terms of specific activities or tasks
in which language is used purposefully. Thus rather than attempting to define
‘speaking’ as an abstract skill, we believe it is more useful to identify a specific
language use task that involves the activity of speaking, and describe it in
terms of its task characteristics and the areas of language ability it engages.”
This approach is taken directly in the following section. This section describes
an indirect approach to the same end: A TOEFL 2000 assessment that reported
R, W, S, and L scores would need to do so in a way that explicates the
relationship between those scores and the behaviors observed (and expected) in
specifiable language use situations.

An important step in this direction can be accomplished with tasks that
focus on a modality, as in the document literacy scale of the Survey of Young
Adult Literacy (SYAL; Kirsch & Jungeblut, 1986). After carefully delineating
situations and uses to define a proficiency domain (re Sections 4.1 and 4.3),
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cognitively relevant features that characterize tasks were used to describe
expected outcomes of persons on a single proficiency variable (re Sections 4.2,
4.4, and 4.5). An examinee with an IRT q of 1, for example, might be expected
to manage unfamiliar tasks that require matching information across two
organizing categories of a document, but have only even odds on tasks with
requiring three matches (Sheehan & Mislevy, 1990; see McNamara, 1996,
chapter 7, for further discussion and examples of exploring the meaning of
IRT scales through task features).

To date, such applications have been limited to collections of tasks that tap
a single student-model variable and are conditionally independent. Extension
to the integrated and contextualized tasks proposed for TOEFL might be
carried out in the manner depicted in Figure 6. Certain features are worth
mentioning:

• The student model contains the four reporting variables qR , qW , qS ,
and qL . The relationships among them are empirical associations in
the target population, specific to performance on tasks possessing the
characteristics, and being assembled under the constraints, specified
in the assessment design.

• The observables associated with tasks indicate their parents with
“stubs” that represent where student-model and task-model BIN
fragments must be connected when the task is administered.

• Some conditionally independent tasks addressing a single modality are
included in the assessment to ground the definition of qR , qW , qS , and
qL  (e.g., X1 and X2, associated with Tasks 1 and 2, both depend on qR

only). As with the SYAL (also see Mosenthal & Kirsch, 1991), the
conditional probabilities of response to these items, given their single q
parent, can be modeled in terms of selected cognitively-relevant
features that influence difficulty, as in Figure 4 (the higher level DAGs
are not shown in Figure 6 to save space). These features establish an
interpretation of the q s beyond norm-referenced information. Other
asks’ features are used to control task selection, to balance content,
situation, context, and other features of tasks across examinees.

• Some observables have multiple q s as parents (e.g., X3, associated
with Task 3, and X4-X6, associated with Task 4). Certain dinosaur
items, for example, have a student read a passage about one theory for
the extinction of dinosaurs, then ask her to write a response with
specified features. Both qR  and qW  are parents of such an item; their
relationship is conjunctive, and values of conditional probabilities
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depend on both the reading-demand features and the writing-demand
features, as they are defined and used for the single q  items.

• Some tasks generate multiple observable variables (e.g., observables
X4-X6, all associated with Task 4). The dinosaur task requires several
responses, with different mixes of parent q s and different values of
variables that drive conditional probabilities, but all share the subject
matter of dinosaurs.

With only four variables included in the student model, it is clear that
many aspects of examinee skills and knowledge are confounded, and others
are neglected. Some, such as general cognitive skills, grammatical
competence, and aspects of illocutionary and sociolinguistic competence, will
influence performance to some degree in all tasks; they account in part for the
associations among q s. Others, such as motivation and affective response, are
confounded with levels of performance; this model cannot distinguish low
motivation or discomfort with the testing situation, for example, from lack of
competence. Still others, such as examinees’ differing profiles of skills and
knowledge within the broadly-defined q s and their felicitous or debilitating
interactions with particular contexts and task methods, will constitute sources
of uncertainty about the q s so defined.

6.3 Competence-Centered Student Modeling

The approach illustrated in this section could use many of the same task
variables and test assembly rules described in the preceding approach, but
would accumulate evidence in terms of performance in variables motivated by
Bachman’s model of communicative competence. We should emphasize that
competence variables could be defined at lower or higher levels of his model, or
derived from a different or competing model. This choice is meant merely to
illustrate inferential issues with some degree of complexity, without becoming
notationally or graphically overwhelming. The diagramming conventions in
Figure 8 are the same as those in Figure 6 above. The following points concern
differences with respect to student-model variables:

• Student-model variables now appear for Grammatical Competence,
qGC; Sociolinguistic Competence, qSC ; and Conversational and
Correspondence Competence, qCVC  and qCRC , which correspond to
Discourse Competence in the Bachman model but distinguish between
the forms and skills associated with Speaking/Listening and
Reading/Writing (Bachman & Palmer, 1996, p. 128, attribute these
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terms to Widdowson, 1978). These variables can serve as parents for
observable variables that tap different modalities—qGC or qSC  allowable
for observables associated with any of the four traditional skills, to the
degree they demand these competences, qCVC  for observables involving
speaking and/or listening, and qCRC  for observables involving reading
and/or writing. Conditional probabilities for observable variables with
these parents will be functions of the degree and nature of demand on
the given competence a task demands, as implied by task-feature
variables again as in Figure 4.

Student Model
Task Model Library

R* X1

X2
GC

R*

qR
*

qW
*

qL
*

q S*

q GC

q SC

qCVC

q
CRC

GC

SC

CRC

W*
R*

S*
GC

CRC

X4

X 5

X6

S*

L*

GC

R*

CVC

CVC

SC

CRC

SC

X3
GC

W*

R*

CRC

Task 1

Task 2

Task 4
Task 3

Figure 8. A “competence-oriented” DAG. Information about examinee
performance is accumulated in variables associated with the four
competences suggested by models of “communicative competence,” with
simple “selector” variables associated with skill modalities included to
indicate the degree to which the examinee is able to exhibit those
competences in performances that require functioning within the
indicated modalities. Conditional probabilities of task responses are
modeled in terms of cognitively-relevant task features (not depicted).

• Student-model variables also appear for Reading, Writing, Speaking,
and Listening, but their operational definitions depart radically from
the preceding example (the star notation emphasizes the distinction).
These modality variables now serve primarily as “selector” variables,
indicating which modalities are involved in a given observable. In this
way they account for the common observation of examinees’ differing
profiles of strength in different modalities, above and beyond the cross-
modality competencies discussed above. An observable would have a
given q * as a parent if the modality was required in its negotiation. A
given examinee’s q * values would indicate the degree to which her
cross-modality competences were either enabled or prohibited when
carrying out tasks requiring that modality. The relationship among
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these variables and the competences, for any given observable in which
they were parents, would thus be conjunctive; e.g., a “fuzzy AND” gate.

In this approach, an examinee’s performance across the balance of task
types (specified as to characteristics of situation, materials, and use, as per
Section 4.3) would be summarized in terms of cross-modality competencies
and a profile of strengths and limitations associated with the modalities that
must be employed to evidence those competences. For reporting purposes,
projections could be made from these multivariate profiles to “scores” on
designated sets of tasks of different types—one market basket of tasks related
to, say, classroom interactions, and a different market basket representing
interactions that teaching assistants have with students.

Figure 9 presents a simpler version of the student model, achieved
through graphical-modeling approximation strategies. A “communicative
competence” variable has been incorporated to model associations among the
more narrowly defined cross-modality competences. No observables would
have this variable as a parent, and its function is strictly utilitarian; its values
might never be used for score reports or decision making, as market basket
projections would give a better indication of students’ communicative
competence as it is currently construed. The anticipated strong associations
between the Correspondence Competence variable and the Reading and
Writing variables, and between Conversational Competence and Listening and
Speaking variables, have been modeled explicitly. But other associations
among the modality variables and the competences have been dropped,
following the rationale in Patz and Mislevy (1995): With this simplification, one
gains computing efficiency and retains consistent estimates of student-model
variables, although trading away some precision in estimation.

7.0 Next Steps

A clear understanding of just what is involved in successful applications
of IRT-CAT is a useful first step toward extending the approach to more
complex settings. Probability-based inference with graphical models offers a
framework for expressing, then confronting, the problems that will arise.
Despite preliminary successes, there are still a large number of issues that
must be addressed to develop a theory of graphical-model-based assessment,
with fixed tests as well as



27

qR

*

qW
*

qL
*

q S
*

q GC

q SC

q CVC

qCRC
qCC

Figure 9. A simplified approximation for the “competence-oriented” DAG.

CAT. We have noted above the importance of the cognitive foundation of an
application. Among the attendant technical challenges we have begun to
address are the following.

Knowledge-Based Model Construction (KBMC). KBMC (Breese et al., 1994)
concerns the dynamic construction and manipulation of graphical models,
adapting to changes in knowledge status but in importance of the questions
being asked; that is, revising models to reflect changing frames of
discernment, to use Shafer’s (1976) phrase, as well as changing states of
knowledge and changing external situations. IRT-CAT adapts to changing
knowledge states within a static frame of discernment—the question is always
“What is q ?”—and uses information formulas and task-based blocking and
overlap constraints to select items. Generalizations of these rules are required
for more complex models, in which different subparts of the model may shift
into and out of attention.

Task induced dependencies. A task/evidence model could provide
common descendants of two conditionally independent variables in the student
model. Collapsing over tasks will produce new edges in the student model. The
theory of GM-CAT will require both approximation techniques for determining
when these edges can be observed and techniques for dynamic recompilation of
the junction tree. Jaakkola and Jordon (in press) present a promising
approach to this problem using variational techniques.

Continuous variables in student models. The most common graphical
model with both continuous and discrete variables is the Conditional Gaussian
(CG) model (Lauritzen & Wermuth, 1989). These models all have continuous
(normal) variables conditioned on the discrete variables. In educational
testing, however, it seems more natural to have the discrete item responses
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conditioned on the continuous student proficiencies. Perhaps the multivariate
IRT of Segall (1996) (a multivariate extension of the Rasch model) can be
pressed into service here, but the lack of a closed form solution will require
numerical solutions that can fit the dynamic requirements of CAT. The
difficulty is that there are no closed form solutions when continuous variables
are parents of discrete items; however, Jaakkola and Jordon (1997) present a
possible approximation technique.

Model fit. More complex student models and task performance variables
increase the analyst’s burden in fitting, checking, and improving models. A
particular advantage of using probability-based inference is that standard
statistical techniques can be brought to bear on many of these questions, as
Spiegelhalter et al. (1993) discuss in connection with the use of Bayes nets in
expert systems more generally. In addition, more specialized diagnostics for
models with unobservable variables can be adapted from the psychometric
literature; see, for example, Stout (1987) on assessing dimensionality in IRT,
and Levine and Rubin (1979) on detecting aberrant response patterns.
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