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Abstract

The generality of latent variable growth modeling is demonstrated with a particular
emphasis on randomized intervention studies. A multiple-population analysis
approach is proposed for the estimation of treatment effects and the estimation of
power to detect such effects. The approach allows for interactions between treatment
and initial status in their effects on growth. Illustrations of power calculations are
carried out with artificial data, varying the sample sizes, number of timepoints, and
treatment effect sizes. Real data are used to illustrate analysis strategies and power

calculations. Modeling extensions are discussed.

1 Introduction

Growth analysis of longitudinal data responds to the need in many research
areas for describing individual differences in development over time. Recently, a
host of methodological contributions have been made, and the implications for
applications of this new technology have not been clearly spelled out. The broad
aim of this paper is to contribute to this process by discussing new types of

growth models and the power of detecting various effects by such models.
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paper were presented at the Workshop on a Scientific Structure for the Emerging Field of
Prevention Research, co-hosted by the Johns Hopkins University Prevention Research Center
and the Prevention Research Branch, National Institute of Mental Health, December 5-6, 1994
and at the Fifth Biennial Conference on Community Research and Action, June 14, 1995.



Growth analysis draws on several different methodological traditions with
their own specific analysis focus, terminology, and software. This complexity may
have impeded dissemination of new research methods in the growth area. Three
traditions appear especially important: biostatistics, education, and
psychometrics. In the biostatistics tradition, the keywords include repeated
measurement, random effects ANOVA, the mixed model, and random coefficient
modeling. Key references include Rao (1958), Laird and Ware (1982), and Diggle,
Liang, and Zeger (1994). Key software products include BMDP5V, SAS PROC
MIXED, MIXED, and MIXOR. The education tradition started out relatively
independent of the biostatistics tradition but is now beginning to merge with it.
Here, keywords include slopes-as-outcomes, multilevel modeling, and hierarchical
linear modeling (HLM). Key references include Cronbach (1976), Burstein (1980),
Goldstein (1987, 1995), Bock (1989), Bryk and Raudenbush (1992), and Longford
(1993). Key software products include MLn, HLM, and VARCL. A largely
independent tradition is found in psychometrics with keywords such as latent
growth curves (LGC) and latent variable structural equation modeling. Key
references include Tucker (1958), Meredith and Tisak (1990), and McArdle and
Epstein (1987). Key software products include CALIS, EQS, LISREL, and
LISCOMP.

In the biostatistics and education traditions, the individual differences in
growth over time are captured by random coefficients. Because these coefficients
are unknown quantities that vary across individuals, the psychometric tradition
views them as latent variables. Linkages between the traditions have been
described in Browne and Du Toit (1991), Muthén (1983, 1991, 1993), Rogosa
(1988), Rogosa and Willett (1985), and Willett and Sayer (1994).

The currently available techniques in the biostatistics and education growth
analysis traditions have both strengths and weaknesses. A strength is that they
draw on statistical estimation procedures that have been thoroughly studied over
many years. A weakness is that the modeling in these traditions has been largely
limited to a single response variable, which does not accommodate the general
analysis needs of developmental theories (see, however, Goldstein, 1995;
Raudenbush, Rowan, & Kang, 1991). The psychometric latent variable tradition
can essentially be characterized in the opposite way. While the estimation

procedures are currently not well developed for sufficiently general cases, the



modeling framework has much more of the generality that is needed to answer

researchers’ questions.

The latent variable framework is advantageous for several reasons. When
translating the random coefficient model of the biostatistical tradition into the
latent variable framework, one finds that the standard growth model corresponds
to a very limited latent variable model. The latent variables are not introduced to
represent latent variable constructs in the traditional psychometric sense of being
measured by multiple indicators at a single timepoint. Instead, observations at
multiple timepoints of the same outcome variable are used to determine latent
variables which represent the shapes of the individual growth curves. Formally,
the corresponding latent variable model is a confirmatory factor analysis model
with unusually restrictive factor loading constraints. Once the random coefficient
growth model has been put into the latent variable framework, many general
forms of growth analysis can be studied, including mediational variables
influencing the growth process; ultimate (distal) outcome variables influenced by
the growth process; multiple growth processes for more than one outcome
variable; sequential-cohort and treatment-control multiple-population studies; and
growth analysis for latent variable constructs in the traditional psychometric
sense of factor analytic measurement models for multiple indicators. The latent
variable framework also accommodates missing data (see, e.g., Muthén, Kaplan,
& Hollis, 1987), categorical and other non-normal variable outcomes (see, e.g.,
Muthén, 1984; Muthén, 1996), and techniques for clustered (multilevel) data
(Muthén, 1994a, 1994b; Muthén & Satorra, 1995), but these features will not be
discussed here.

The full potential of the more general growth modeling that can be carried out
within the latent variable framework has not yet been realized in terms of real-
data analyses of substantive research questions. One aim of this paper is to
speed up this process by outlining some nonstandard, prototypical models within
the latent variable framework. Emphasis will be placed on a growth model in an
especially challenging area, the case of growth modeling within a true
experimental design. These types of designs are often encountered in behavioral
research in the form of prevention studies or intervention programs in mental
health or evaluations of educational programs. Intervention programs are often
characterized by community-based subject recruitment (e.g., schools, courts,

government agencies), and the dissemination of treatment is through a field



setting (e.g., classrooms, afterschool groups, etc.; see Brown & Liao, 1996, for an
overview). Growth studies with randomized interventions make particularly good
use of the longitudinal research design and warrant further methodological

attention.

It is expensive and time-consuming to carry out longitudinal studies and
particularly so with a large number of subjects. It is therefore important to know
the minimum number of subjects and timepoints that can be used to answer the
research questions. In planning a longitudinal study, it is critical to estimate the
power to detect certain effects, such as treatment effects in intervention studies.
Little is known, however, about power issues for growth modeling in general and
intervention effects in particular, especially in the more general settings outlined
above. A second aim of this paper is therefore to present some relevant power
results for growth modeling in intervention studies. This paper uses the general
latent variable framework to consider power estimation using a method developed

for latent variable models by Satorra and Saris (1985).

While the paper focuses on multiple-population growth studies as motivated
by an intervention context, it should be pointed out that the proposed growth
analysis and power estimation techniques are generally applicable to multiple-
population settings. Such settings may, for example, involve gender differences
and differences among populations varying in their risk for problematic
development. The power estimation approach is also of interest in single-

population settings involving questions of power to detect certain growth patterns.

Section 2 describes the latent variable growth modeling framework and
shows examples of it in the form of a series of path diagrams. Section 3 discusses
the power estimation procedure. Section 4.1 presents graphs of power curves for
various artificial-data growth model settings relevant to intervention studies.
Section 4.2 analyzes data from a preventive intervention study of aggressive
behavior in a classroom setting, which illustrates the use of a general growth
model that allows for an interaction between the effect of the treatment and the
initial level of the student’s aggressive behavior. The concluding section discusses

extensions of the proposed techniques.



2 Latent Variable Growth Modeling

2.1 A Conventional Random Coefficient Model

Using a simple random coefficient growth model as a starting point, a
translation into latent variable modeling will be made to show the key features of
the latent variable growth model. The generalizations of this growth model will
then be shown both in terms of the formulas for a general latent variable model
and in terms of path diagrams. Throughout this paper, we will simplify the
discussion by focusing on continuous-normal outcome variables. It is clear,
however, that methodology for categorical and other non-normal variables both is
very much needed in practice and has seen recent methodological advances.

Consider growth for a single outcome variable Yy observed for individual i at
timepoint t as related to a time-varying covariate V, and a time-invariant
covariate W. For simplicity, only one time-varying and one time-invariant
covariate are considered. The key idea is that each individual has his/her own
growth trajectory. Growth will be expressed in terms of a random coefficient model

described as a two-level model. Level one is written as
yit=a1'+b|xit+cltvit+Qt (1)

where g is an intercept, X, is a time-related variable (such as age or grade), b

and C, are slopes, V, is a time-varying covariate, and €, is a residual. Level two is

written as
a=a+dw +e,
b =b+dw +e, (2)
G =G
where a,b,d,, and d, are (fixed) intercept and slope parameters, W is a time-

invariant covariate, and €,,6, are residuals. It is assumed that the €, are
uncorrelated with €, and g,, whereas the latter two residuals may be correlated.

This random coefficient model may, for example, describe linear growth over
time by using the X, coefficients 0, 1, 2... in (1), so that a represents the initial
status of individual 1 on his/her growth trajectory and b represents his/her linear

growth rate on this trajectory. It is straightforward to add nonlinear growth by



adding terms that are nonlinear in X,. The time-invariant covariate W explains
part of the variation in each individual’s growth trajectory by (2). Each individual’s

growth trajectory is also influenced by the time-varying covariate Vv as seen in (1).

The specific random coefficient model that is considered here is a
conventional model for growth modeling in biostatistics with two exceptions. First,
as indicated above, C, = C, so that the coefficients for the time-varying covariates
are not allowed to vary across individuals. This restriction is necessary to fit the
random coefficient model into the conventional latent variable modeling
framework given that this framework cannot handle products of random variables
such as C,V,. Second, for the same reason, it is necessary to assume that X, =X,
which means that all individuals are observed at the same timepoints. Neither

specification seems very restrictive in most practical applications (see, e.g.,
Muthén, 1991).

In the psychometric latent variable tradition, the random coefficients @ and
b in the model of (1) and (2) are reconceptualized as latent variables, that is,

factors. For a pedagogical description of such a conventional latent variable
growth model, see e.g., McArdle (1988), Willet and Sayer (1994), and Muthén
(1995); this description will be only briefly restated here, and readers new to the
area are referred to those papers for more detail. It is convenient to view the
model in terms of conventional latent variable modeling path diagrams. Figure 1
shows this particular model for five timepoints and a time-varying covariate Vv
that influences only the last three timepoints. In this and subsequent growth
model figures, the subscript | denoting variation across individuals is suppressed

for both manifest and latent variables, but should be understood.

It is clear from Figure 1 that the growth model can be easily translated into
input for existing latent variable modeling software. The C coefficients of (1) are
the slopes for the v covariate at the different timepoints and the d coefficients of
(2) are slopes for the W covariate. At the different timepoints, the outcome
variable Y, is related to the two factors with slopes of unity for the g factor and X
for the b factor. It should be noted that the X scores need not be predetermined,
fixed values. The latent variable framework makes it clear that these values are
slopes that can be estimated, allowing for a flexible model to represent nonlinear
growth. For example, the scores 0, 1, X;,X,,X; may be used, where X,,X, and X
are parameters to be estimated. Estimates of these parameters can be compared

to the unit step from the first to the second timepoint.



Figure 1. Latent variable growth model for five timepoints with a time-invariant
and a time-varying covariate.

Further details of the model in Figure 1 are as follows. The intercept (or
mean, if there is no time-invariant covariate) for the @ factor is a, and the
intercept (mean) for the b factor is b. Allowing an intercept (mean) parameter a
for the @ factor, the intercepts in the regressions of each of the five Y, variables



on the factors and the time-varying covariate should be held fixed at zero. An
alternative that will be used in this paper is to set the a mean of the a factor at
zero in (2) and instead let there be a common intercept in the Y, regression (1).
The common intercept is obtained by restricting the intercepts for each of the five
y, regressions to be equal across time. This alternative parameterization is
equivalent to the original, but generalizes in a more straightforward fashion to
multiple-indicator models and models with interactions between treatment and

initial status.

Further parameters are the two residual variances and the residual
covariance for the two factors (these parameters constitute the factor covariance
matrix elements if there is no time-invariant covariate). The residuals in (1) may
be allowed to have different variances across time and to have certain patterns of
correlation across time. They are uncorrelated with the residuals in (2).
Identification issues are discussed in Muthén (1995). The model imposes a
structure on both the mean vector and covariance matrix for the observed
variables. The model specification is discussed further below within a general
framework. Input for the LISCOMP program (Muthén, 1984, 1987, 1989) used in
this paper is given in Part 1 of a technical appendix, which is available from either

author.

2.2 General Latent Variable Growth Modeling

The latent variable growth model described above fits into the following
general latent variable framework (cf. Joreskog & Sorbom, 1979; Bollen, 1989).
For population (group) g, consider a p-dimensional observed variable vector Y°
related to an m-dimensional latent variable vector 1° through a factor-analytic

measurement model,
yo=vi+ A'n% + £° (3)

where VY is a vector of measurement intercepts, A’ is a px M-dimensional matrix
of measurement slopes (factor loadings), and ¢€° is a p-dimensional vector of
measurement residuals. Here, V(&°)=0©° The latent variables have the

structural relations

n°=a’+Bn%+¢° (4)



where a?is an m-dimensional vector of structural intercepts (for endogenous 7)s)
or means (for exogenous 7S), B’is an mx m-dimensional matrix of structural
slopes, and ° is an m-dimensional vector of structural residuals. Here,
V(&%) = W9, a residual (for endogenous 7)S) or latent variable (for exogenous 1s)
covariance matrix.

Under regular assumptions on the residuals, we have the mean and
covariance structure

E(y)=u’=v"+A°(I -B%) "' a* (5)
V(y9) =39 = A(I - BY)'W9(I - B%)" AY + ©F ©)

This is the standard multiple-population structural equation modeling formulation
used in LISREL-type modeling. With the customary assumption of iid sampling
from each of the G populations, a simultaneous, multiple-population analysis is
commonly achieved by minimizing the fitting function F,

F= g§=1{N9[1n|29|+t|r(29‘Tg) —InlSI-pl/ (N =1), 7

where N is the total sample size and
T9 =S+ (¥ -u”)(¥° -u) (8)

which gives maximum-likelihood estimation under multivariate normality for y°
(see, e.g., Joreskog & Sorbom, 1979; Sorbom, 1982). At the optimal value of F,
(N -=1)F is asymptotically distributed as a chi-square variable.

The simple example in Figure 1 of the previous subsection may be fitted into
this modeling framework by letting Yy in (3) contain all nine observed variables and
1 contain the two growth factors as well as one factor corresponding to each
observed variable, where the latter factors are measured without error. This
specification is explicated in Part 1 of the technical appendix (available from either
author). Note that this specification prepares for multiple indicators of latent
variable constructs, both among the outcome variables and among the
covariates. In the Figure 1 example, the parameters of (5) and (6) are as follows:



vV =0, A contains Os and 1s, ©® = 0, B contains the coefficients (1X,), a contains
the equal intercepts in the regressions of each dependent-variable ns and the
means of the covariates, and W contains the residual covariance matrix for the

dependent-variable 17s and the covariance matrix for the covariates.

2.3 Some Nonstandard, Prototypical Growth Models

Following are some potential applications of the general latent variable
framework given above that generalize the conventional growth model discussed
in section 2.1. These are given as examples of model types which are likely to play
important roles in future growth analyses. Each of these examples can be further
extended to include latent variable constructs 77 measured by multiple indicators
as in (3), where these constructs assume the role of outcome variables,
covariates, mediators, and ultimate outcomes. All constitute examples that can
be fit into existing software technology and illustrate that the latent variable
approach to growth modeling currently appears to be more flexible than random
coefficient modeling techniques.

Figure 2 shows a growth model where the influence of the time-invariant
covariate W is mediated by a variable Z. It is of interest to study to what extent
the influence of W on the two growth factors is indirect via Z and to what extent
there is a direct influence. This has practical importance when the mediator can
be manipulated whereas the covariate cannot. In this case, the extent to which
there is an indirect influence via the mediator indicates the extent to which an
intervention aimed at manipulating the mediator can have an influence on the

growth process.

Figure 3 shows a growth model where an ultimate outcome variable Y, is

influenced by the two growth factors of a previously observed outcome variable. In
this model, the growth trajectory of an individual, not his/her scores on the

outcome variable, is the predictor of the ultimate outcome variable.

Figure 4 shows a growth model that may be seen as a generalization of that
in Figure 3. Here, one growth process precedes and predicts the course of a second,
later occurring, growth process. Stoolmiller (1994), Curran, Harford, and Muthén
(1996), Curran, Stice, and Chassin (1997), and Muthén (1994a) used variations of
this model where the two growth processes were concurrent and where the initial
status factor of each process was hypothesized to influence the growth-rate factor

of the other process.
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Figure 2. Growth model with a mediating variable.

24 A Nonstandard, Prototypical Growth Model for Intervention Studies

The types of growth models shown in Figures 14 can all be generalized to the
simultaneous analysis of data from several populations, that is, multiple-
population analysis. To a limited extent, population differences can be captured in
single-population analysis by representing the groups as dummy variables used
as time-invariant covariates. While this enables population differences in location
for the growth factors, other parameters are not allowed population differences

11
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Figure 3. Growth model with a distal outcome variable.

(we note in passing that representing groups by time-varying dummy variables
does not describe population differences among individuals but changes in group
membership for the same individual). To achieve more generality in the modeling,
however, there is a need to use a multiple-population approach instead of a
dummy-variable approach, and this is particularly beneficial in the setting of

intervention studies.

24.1 A Two-Group Formulation

Consider an intervention study where individuals are measured before being
randomized into a treatment or a control group and then measured repeatedly
thereafter. In line with Joreskog and Sorbom (1979), this may be viewed as data

from two different populations. The control group population represents the
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Figure 4. One growth process influencing a later growth process.

normative set of individual growth trajectories which would have been observed
also in the treatment group had they not been chosen for treatment. The effect of
treatment is assessed by comparing the set of growth trajectories in the
treatment population with those in the control population.

This two-group setting may be described in path diagram form as shown in
Figure 5. This is readily generalized to the case where there are several treatment
groups. In Figure 5, the top graph represents the control group, where for
simplicity we may assume linear growth, using an initial status factor and a linear

growth rate factor. Also, for simplicity, no covariates are included.

13






The bottom graph in Figure 5 represents the treatment group. In line with
conventional multiple-population latent variable analysis, we could also specify a
two-factor growth model and test for equality of parameters across the two
populations. Lack of equality would then be taken as evidence of effects of
treatment. There is, however, a better alternative, which offers a more useful
growth analysis with respect to treatment effects. This alternative is shown in
Figure 5. Here, an additional growth factor is introduced for the treatment
population. While the first two factors are the same as for the control group, the
third factor represents incremental/decremental growth that is specific to the

treatment group. We will call this factor the added growth factor due to treatment.

The interpretation of the three factors in the treatment group can be
described as follows. For simplicity, the intervention is assumed to take place
after the initial timepoint. Using the X scoring of 0, 1, 2, 3, 4, only the first factor
influences Yy,. At subsequent timepoints, the second factor gives additional
contributions. The first factor can therefore be interpreted as the individual’s
initial status before the intervention started, while the second factor represents
the growth rate. This is the growth rate at which the individual would progress

according to whether he/she had not received the treatment.

The temporal ordering of initial status preceding growth rate becomes
important when treatment interactions are discussed below. In this regard, it
might seem contradictory that the initial status factor is not only measured by Y,
but also by later ys given that later ys are partly due to the initial status factor.
Although the initial status factor is measured in part by later ys, this is because
the model assumes that initial status has a lasting effect and does not alter the

temporal ordering of initial status preceding the growth rate (and later ys).

The parameters for the first and second growth factors in the treatment
population are constrained to be equal to those of the control population. Thereby,
the added growth factor captures the incremental or decremental growth beyond
that of the control population. The treatment effect is thereby expressed in this
added, third growth factor, which is specific to the treatment population. The
treatment effect can be characterized by the mean of the added growth factor,
adding or subtracting to the control growth rate. It can, however, also be
characterized by the variance of the added growth factor, where an increased
variance represents a treatment effect that makes growth more heterogeneous

among individuals. Note that a treatment effect inducing a smaller variance in the

15



outcome variable can also be represented in this model. This is achieved by a

negative covariance between the first and the third growth factors.

Restricting the parameters of the first two growth factors to be equal across
the control and treatment populations is warranted in a randomized intervention
study. Often, however, the randomization breaks down during the course of the
study and the two groups do differ significantly at the pre-intervention timepoint
(cf. Cook & Campbell, 1979). In such cases, the equality constraints related to the
initial status factor should be relaxed. First of all, this involves relaxing the mean
of zero for the initial status factor in the treatment population. The intercepts in
the Y regressions are still held equal over time and across populations, but the
treatment initial-status mean is thereby allowed to be different from the zero
value of the control population. Second, this involves relaxing the across-
population equality constraint for the initial status variance. The above approach
can still be used as long as it is realistic to assume invariance across the two
populations for the parameters of the second growth factor. As usual in non-
experimental studies, the realism of the modeling can be improved by using time-
invariant covariates so that the equality constraints are instead applied to
parameters describing the conditional means and (co-)variances of the two growth

factors.

The effect of treatment may be more complex than merely changing the
growth rate of a process that has the same functional form as that of the control
group, that is, a line in the above example. For example, the control group may
follow linear trajectories whereas the treatment group may follow nonlinear

trajectories. The third factor may in this case be represented for example by a
quadratic growth term, using X, scoring of 0, 1, 4, 9, 16. Another solution, offering

more flexibility, is to use estimated X, scores as discussed earlier.

The above discussion focuses on treatment effects that are permanent in the
sense that the differences between the two average trajectories keep increasing
over time. It is also important to be able to capture temporary treatment effects
given that such effects are probably more common in intervention studies. The
approach of estimating X scores is useful here given that these scores are allowed
to first increase and then decrease. If there is a specific hypothesis for when a
treatment effect begins or ends, one can instead use piece-wise growth factors
that influence the outcomes only at certain timepoints (for piece-wise linear
modeling, see, e.g., Bryk & Raudenbush, 1992; Seltzer, Frank, & Bryk, 1994).

16



2.4.2 Treatment-Initial Status Interactions

We will describe an extension of the above two-group growth model that
responds to a central concern of intervention studies, namely trying to understand
for whom an intervention is effective. It is frequently the case that individuals at
different pre-intervention (baseline) levels on the outcome variable benefit
differently from the intervention (see, e.g., Cronbach & Snow, 1977). In ANCOVA
studies using pre- and post-intervention measures, this is often studied in terms of
an interaction between the baseline and the treatment, using the baseline as a
covariate. In growth modeling, the initial status factor provides a more relevant
covariate. The baseline variable may in fact be seen as a fallible indicator of this
factor. These concerns lead to growth modeling of interactions involving the

treatment and the initial status in their influence on the growth rate.

In terms of the Figure 5 growth model, the interaction may be expressed by
letting the initial status factor influence the added growth factor in the treatment
population. For example, in a remedial reading program, a negative influence may
be viewed as lower initial status individuals having larger incremental growth rate
effects from the treatment. In the latent variable framework, the influence is
expressed in terms of a structural regression with the added growth factor as the
dependent variable and the initial status factor as the independent variable. This
is a logical formulation given that the initial status factor has temporal
precedence over the added growth factor as discussed above. Including this
structural regression in the model, the treatment effect can be described in an
even richer way. The mean and variance of the added growth factor is then
expressed as a function of the initial status mean and variance, the structural

regression intercept and slope, and the residual variance in that regression.

It may seem paradoxical that an interaction can be described by a structural
regression that is a linear function of initial status, but it should be kept in mind
that the regression is formulated within a simultaneous analysis of the control and
treatment groups, where the control group does not include this regression,
thereby inducing the interaction. The multiple-group approach of linear structural
equation modeling thus enables interaction modeling for a continuous latent
variable when the other variable involved is an observed categorical grouping
variable as with the treatment/control dichotomy. Interactions among continuous

latent variables, however, require special techniques (see, e.g., Bollen, 1995).
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The intercept and slope in the added structural regression have clear
interpretations in terms of main effect and interaction effect of treatment. If the
slope is zero, the intercept represents the mean of the added growth factor given
that the initial status factor mean is zero. The intercept therefore represents the
main effect of treatment. With a non-zero slope, the conditional mean of the added
growth factor given the initial status factor at its mean value of zero is still equal
to the intercept (the main effect). The slope value indicates to what extent
changes away from the mean of the initial status factor influences the added
growth factor beyond its main effect (intercept) value. The slope therefore

represents the interaction effect that the treatment induces.

It may be noted that a negative slope value represents a treatment which
produces a more homogeneous outcome. The negative slope serves to reduce the
variance of the outcome variable in the treatment group because individuals with
high initial values tend to get lower growth rates and individuals with low initial
values tend to get higher growth rates.

It is also possible to include a more complex interaction using this two-group
framework. In the treatment population we may allow not only the first but also
the second growth factor to influence the added growth. The second factor
represents the normative growth rate the individual would have had without
treatment. For example, if the normative growth rate is low for the individual, the
added treatment growth rate may be high, representing a negative influence from
the second factor to the added growth factor.

It is worth pointing out two methodological issues about this approach to
treatment interactions. First, it is made possible by the specification of an added
growth factor specific to the treatment population so that the treatment effect is
separated from normative growth. Second, the approach of regressions among
growth factors is unique to the latent variable formulation of the growth model.
For example, it is not possible in the conventional random effects specification of
(1) and (2) to represent a treatment-initial status interaction by including @ on
the right-hand side of the equation for b .

2.4.3 Analysis Strategies

Given the complexity of the proposed approach to intervention growth
analysis, a careful analysis strategy is required. Five analysis steps are discussed

here.
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As a first step, the normative growth can be studied by a separate analysis
of the control group. Previous research may have established a priori hypotheses
about the form of the growth trajectories. Inspection of individual and overall
growth patterns may also contribute to choosing the models attempted in the
analyses. In this single-group analysis, it is valuable to rule out that the control
population exhibits any of the post-intervention changes in trajectories that are
hypothesized to be due to treatment. In this way, if such trajectory changes are
found for the treatment population, they are more clearly attributable to the

treatment.

As a second step, the treatment group can be analyzed separately. Here, the
basic growth model form (linear, nonlinear) may be investigated. The treatment

may induce growth shapes different from those in the control group.

As a third step, a two-group analysis is performed where the growth factors
found for the control group are repeated in the treatment group. For all control
factors but the initial status factor, one may specify an added treatment factor.
For example, the control population may have both a linear and a quadratic
growth factor beyond the initial status factor. In this case, the treatment
population may have added factors for both linear and quadratic growth. Or, the
control population may have only linear growth, in which case it may suffice to

have an added quadratic factor in the treatment population.

As a fourth step, treatment interaction is tested for in the two-group
analysis. Here, the initial status factor in the treatment group is allowed to

influence the treatment group growth factors.

As a fifth and final step, a sensitivity analysis is carried out of the two-group
model from step four. First, the model is scrutinized in terms of successful
randomization. Deviations from perfect randomization can be allowed for by
relaxing the equality restrictions with respect to the initial status factor. Second,
tests of overall treatment effect are carried out with treatment effect parameters
set to zero. The assessment of treatment effects can thereby be expressed as a
chi-square difference test for the models of steps three and four. There are several
treatment effect parameters: interactions, main effects, and variance effects. For
example, if an interaction is captured by the initial status influencing the added
linear growth factor, the interaction parameter is the slope in this structural

regression, the main effect is the intercept, and the residual variance represents
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the variance effect. Using this example, the testing may be done in stages, first
restricting the slope to zero, and second, if this is found tenable, restricting the

intercept to zero.

3 Power Estimation in the Latent Variable Framework

The estimation of power to detect misspecified latent variable models has
been discussed in Satorra and Saris (1985) and Saris and Satorra (1993); see also
Saris and Stronkhorst (1984). In principle, power can be estimated for any model
by carrying out a Monte Carlo study that records the proportion of replications in
which the incorrect model is rejected. Satorra and Saris propose a method which
gives a tremendous simplification over such a brute force approach. A key
technique is based on the likelihood-ratio chi-square test for maximum-likelihood
estimation of mean and covariance structure models such as the one in (5) and
(6). Here, we will use this technique to estimate the power to detect intervention
effects in the two-group growth model discussed above. The Satorra-Saris
approach is particularly suitable for the intervention setting given that power
estimates are desired for very specific model misspecifications concerning the
absence of treatment effects. MacCallum, Browne, and Sugawara (1996) discuss
power estimation techniques that concern overall model fit, but that will not be

considered here.

Under multivariate normality for y°, (N —1)F win, where F min is the optimal
value in (7), is distributed asymptotically as a chi-square variate when the model
in (5) and (6) is correct. Satorra and Saris show that when the model is incorrect
but not highly misspecified, (N-1)Fumn is asymptotically distributed as a
noncentral chi-square variate with a certain noncentrality parameter which can
be approximated by a two-step procedure. This procedure involves two models,
one more general that is assumed correctly specified and one more restrictive

which is misspecified.

In our intervention setting, we are interested in the power to detect
intervention effects and the more restrictive model sets the corresponding
parameter(s) to zero. As a first step, the more general two-group growth model is
estimated including the treatment effect(s). In a second step, the estimated mean
vectors and covariance matrices from step one are used in place of the
corresponding sample statistics and analyzed by the more restrictive model that

sets the treatment effect parameter(s) to zero. The value of (N —1)F min in this
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second step represents an approximation to the noncentrality parameter. Once
this parameter has been obtained, the power can be obtained from tables for
noncentral chi-square distributions as a function of the degrees of freedom and the
o level of the test (see, e.g., Saris & Stronkhorst, 1984). Part 2 of the technical
appendix (available from the authors) gives a short SAS IML program which
computes the power in this way. The degrees of freedom refers to the number of

treatment effect parameters.

Saris and Satorra (1993) point to simulation studies which indicate that this
procedure for estimating power can be sufficiently accurate for practical purposes
at small sample sizes. A simulation study by Curran (1994) found very good
results at sample sizes of 100. To verify the accuracy for the present two-group
growth model, a limited simulation study was carried out. Data were generated
over 1,000 replications from the Figure 5 linear growth model with a certain
sample size and treatment main effect size (defined below). The proportion of the
replications for which the t value of the treatment effect exceeded its 5% critical
value was recorded. This t value refers to the incorrect hypothesis of zero
treatment effect. The study focused on power values close to 0.80, varying the
sample size. For a treatment effect size of 0.30 and a total sample of 200 divided
equally among control and treatment group observations, the Satorra-Saris
method obtained a power of 0.734 (this is the result shown below in Figure 9, curve
C) as compared to 0.755 from the simulation. An even better agreement was
obtained at the higher total sample size of 500 with a treatment effect size of 0.20
where the Satorra-Saris method obtained a power of 0.783 (see Figure 6, curve B)

while the simulation resulted in 0.780.

In this paper, the Satorra-Saris method for estimating power will be used to
compute power curves as a function of sample size for a variety of hypothetical
two-group growth models of the type shown in Figure 5. Here, parameter values
will be chosen to represent various treatment effect sizes. These values generate
the mean vectors and covariance matrices that are used in the second step of the
power method. The method will also be used in connection with the real-data
analysis. Here, the parameter estimates obtained from an analysis of the real
data are used to generate the mean vectors and covariance matrices for the

second step of the power method.

21



4 Analysis of Examples

The general analytic and power estimation framework will now be illustrated.
First, power curves will be calculated for various artificial models, including models
with an interaction between treatment and initial status. Second, a real-data
example with this type of interaction is analyzed and the power to detect the

intervention effects is estimated.

4.1 Artificial Data: Power Curves

In this section, a set of power curves will be shown for different cases of the
two-group intervention linear growth model of Figure 5. Many different situations
are in principle of interest: We may have an experimental study with individuals
randomized into treatment and control groups, or the study may be non-
experimental with pre-existing differences measured by covariates; the study may
have a balanced design or not; the treatment effect may be permanent or
temporary; and there may be interactions between the treatment and the initial
status, or not. To limit space, non-experimental studies with covariates and
temporary treatment effects will not be considered here.

The calculation of power curves calls for a consideration of effect size (Cohen,
1988). In a traditional two-group t test setting, effect size is typically defined as
the treatment and control group difference in outcome means, divided by a
standard deviation based on the pooled outcome variance. A small effect size is
typically taken to be 0.20, a medium effect size 0.50, and a large effect size 0.80
(Cohen, 1988). In the growth model setting, the definition of effect size is not as
straightforward. First, while Cohen-type definitions concern manifest variables,
treatment effects in growth models can also be expressed in terms of latent
variables. For example, in the Figure 5 model, the treatment effect may be
expressed in terms of the mean difference for y at the last timepoint or in terms of
the increase in the growth factor mean due to the added growth factor in the
treatment group. Second, if reporting Cohen-like effect sizes for manifest
variables, the standard deviation could be based on the control group rather than
pooling over the treatment and control groups. The control group provides the
normative value while the treatment group variance in part reflects the
treatment effect. In this paper, we will report effect sizes in several of these

metrics.
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The power calculations to be illustrated below raise the issue of how low the
sample size can be for trustworthy analysis results. Here, it should be noted that
considerations of power may suggest sample sizes that are smaller than what can
be recommended for obtaining good estimates of parameters and standard errors.
For example, the simple artificial growth model of Figure 5 has 10 parameters in
the control group. A conventional requirement in the latent variable literature is 5-
10 observations per parameter (see, e.g., Bentler & Chou, 1988), leading to a
minimum of 50 and preferrably 100 control group observations. While the
treatment group contributes information to the estimation of parameters
describing the normative growth in the two-group analysis, the risk of model
misspecifications can be reduced by determining normative growth from control
group observations alone. With a balanced design, a total of 100-200 control and
treatment group observations is therefore desired for this particular growth model.
This total sample size requirement may exceed the number required for a power of
at least 0.80, and this should be kept in mind when studying the power figures
below.

4.1.1 No Treatment Interactions

Consider the two-group intervention growth model of Figure 5. The means
and variances are the same in the control and treatment group at the first
timepoint due to randomization, and there is linear growth in both groups. In line
with what is commonly seen in practice, the control group variance of the growth
rate is set at 20% of the variance of its initial status factor. For the control group
growth, the parameter values are chosen so that the growth over the five
timepoints corresponds to one standard deviation at the fifth timepoint. The
treatment group increase over the five timepoints is chosen to produce various
effect sizes in the sense of Cohen (1988). The effect size is here calculated as the
difference in treatment and control group means for y at the fifth timepoint
divided by the square root of the variance at the fifth timepoint pooled across the
control and treatment groups. This treatment effect is achieved by a non-zero
mean and variance for the added growth factor (the third factor) in the treatment
population. The added growth rate variance is taken to be the same as the control
group growth rate variance. For a small effect size of 0.20 (Cohen, 1988), this
means that in standard deviation units of the control group growth factor, the
treatment group growth rate mean corresponds to an increase of .23 over the

control group growth rate mean. The residuals are specified to have equal
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variances across time and to be uncorrelated across time. The parameter values,
mean vectors, and covariance matrices for this case are given in Part 3 of the

technical appendix (available from the authors).

In this setting, power may refer to the detection of different parts of the
treatment-control population differences: (1) the detection of a growth rate mean
difference; (2) the detection of a growth rate mean and/or variance difference; and
(3) the detection of a growth rate mean and/or variance difference and/or growth
residual variance differences. Using the Satorra-Saris method, power is estimated
for the three cases by using the misspecified model that restricts the
corresponding parameters to be equal across the two populations. For (1) and (2),
this equality constraint amounts to fixing the mean and variance to zero for the
third, added growth factor in the treatment population. In most intervention
studies, it is probably of central interest to focus only on the growth rate mean
effect as in (1). This says that an intervention is successful only if the mean of the
growth rate changes and not successful if only the variance of the growth rate
changes. In (2), the variance of the growth rate is an additional concern, and in
some studies this may be the only treatment effect. While for a given sample size,
it will be seen that the power is considerably larger for (2) than for (1), it would
seem that the design should strive for a sample size that gives sufficient power
already for (1). The added concern of residual variances in (3) is probably of little
interest in most studies because seldom can randomization be expected to work
out well enough for residual variance differences to be attributed to treatment
effects.

Treatment effects and ANCOVA. Figure 6 gives power curves for the five-
timepoint linear growth model with effect size 0.20 and sample sizes ranging from
100 to 1,000. Here, sample size refers to the total number of individuals in the

control and the treatment group, divided equally (balanced case).

The top curve of Figure 6, curve A, corresponds to the power of detecting both
a growth rate mean and variance effect, while curves B and C correspond to the
power to detect a growth rate mean effect only and a growth rate variance effect
only, respectively. It is seen that curves B and C do not differ greatly, while curve
A shows considerably larger power. In this paper, we will focus on curves of type B
concerning mean growth rate. For this linear growth model, curve B shows that a

rather large total sample size of about 525 is needed to achieve a power of 0.80 for
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Figure 6. Power to detect a main effect of ES = .20 assessed at Time 5.

this small effect size. (Figure 8 below shows the corresponding curves for larger
effect sizes.)
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For comparison, Figure 6 also gives the power curve, curve D, for detecting a
treatment effect using conventional ANCOVA. Here, the Y measurement at the
last timepoint is the outcome variable and the Yy at the first timepoint is the
covariate. The Satorra-Saris method in a two-group setting is used also here with
the standard ANCOVA specification of equal slopes across groups for the
covariate. Analogous to the growth model, the means and variances of the
covariate are also held equal across groups while the residual variances are
allowed to be different. The ANCOVA results are in this case very close to what
would be obtained from a t test given that the correlation between the outcome
variable and the covariate is only 0.28. Comparison of curve D with curve B
shows the growth modeling advantage of using information from all timepoints
versus using only the first and last timepoint as in ANCOVA. The sample size
needed to achieve a power of 0.80 is about 725 for the ANCOVA model versus
only 525 for the growth model.

From a design point of view, power curves such as these can be used for cost
considerations. For example, the increased cost of the study due to a need for a
larger sample size with ANCOVA than with growth modeling for a given power
level can be weighed against the decreased cost due to needing only two
measurement occasions with ANCOVA. Although a more costly design is used, it
should be noted that apart from the power advantage, growth modeling has
distinct analysis advantages over ANCOVA in that the latter cannot capture the
form of the growth from the first to the last timepoint or discover any limitations

in duration of treatment effects.

Study length and number of measurement occasions. The comparison
of growth modeling with ANCOVA raises the issue of how the number of
timepoints affects power. There are three key aspects of this: the length of the
study; the number of measurement occasions for a given study length; and the
study length for a given number of measurement occasions. These three aspects

will be illustrated in turn.

In Figure 7, the length of the study is varied as three, four, five, and seven
timepoints. The figure considers only the power to detect the growth rate mean
difference, corresponding to curve B in Figure 6. As in Figure 6, a small effect size
of .20 at timepoint five is considered. It is seen that the required sample size for
obtaining a power of 0.80 drops sharply when extending the study length from

three to four timepoints, with smaller drops when extending to five or seven
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timepoints. Given that effect size is defined at timepoint five, study length and
effect size are to some extent confounded because effect size grows over time. The
effect size does not, however, vary greatly over time because the variances
increase over time. With a small effect size of .20 at timepoint five, effect sizes at
timepoints 3, 4, 6, and 7 are .159, .186, .209, and .214, respectively.

Figure 7 also illustrates the effect of number of measurement occasions for a
given study length. Power curve C corresponds to using only three measurement
occasions over the five timepoints, skipping timepoints two and four. This curve
may be compared to that of the five-timepoint model for the same study length
(curve B). Here, there is no confounding in the sense that the two curves have the
same effect size at timepoint five. The gain in using three versus five
measurements is measured by the drop from 600 to 525 observations when
requiring a power of .80. As noted above, ANCOVA at timepoint five requires a
sample of 725 for a power of .80. For a given study length, this shows that the
largest gain is obtained by moving from the two-timepoint ANCOVA to the three-
timepoint growth modeling, whereas using more measurement occasions in the
growth modeling gives diminishing returns. There are, however, clear advantages
to using more than three timepoints in growth modeling from the perspective of

distinguishing between alternative growth forms (see, e.g., Muthén, 1995).
Figure 7 also shows the effect of study length for a given number of

measurement occasions. Curve C and curve E both correspond to a three-
timepoint growth model. While curve C has measurements at timepoints one,
three, and five, curve E has measurements at timepoints one, two, and three. The
shorter study length for curve E requires a sample size of 950 for a power of .80,

as compared to a sample size of 600 for curve C.

Treatment effect size. Figure 8 considers different effect sizes, ranging
from small to medium: 0.20, 0.30, 0.40, and 0.50. In standard deviation units of
the control group growth factor, the corresponding treatment group growth rate
mean increases over the control group growth rate mean correspond to .41, .61,
.82, and 1.02, respectively. The power curves again correspond to the detection of
the growth rate mean difference in the five-timepoint growth model. For example,
it is seen that the sample size needed for a power of 0.80 decreases from 525 to
130 as the effect size increases from 0.20 to 0.40.
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Figure 9 and Figure 10 give curves corresponding to those of Figure 8, but
when using only three and four timepoints, respectively. As before, the effect

sizes refer to timepoint five.
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4.1.2 Treatment Interactions

The final set of power curves is given for the case where there is an
interaction between the treatment and the level of the initial status factor in their
influence on the added growth rate factor in the treatment population. The same
linear growth model as above is considered except that for the treatment
population, the added growth rate factor is regressed on the initial status factor.
The intercept and residual variance parameters of this regression are chosen so
that the mean and variance of the added growth rate factor is the same as above.
In line with the no-interaction cases above, the effect size for the interaction is
considered in terms of the manifest variables at timepoint five (see also Aiken &
West, 1991). The slope is chosen so that an initial status factor value of one
standard deviation away from its zero mean results in a certain timepoint five
effect size for y. These effect sizes will also be expressed in latent variable terms
of how much an initial status factor value of one standard deviation away from its
zero mean changes the conditional mean of the added growth factor in standard
deviation units of this added growth factor. The parameter values, mean vectors,
and covariance matrices for this case are given in Part 4 of the technical appendix

(available from the authors).

In terms of the conceptualization of the treatment-initial status interaction,
power can refer to several aspects of the treatment effect. As discussed earlier,
we may consider effects expressed by one or more of the three parameters in the
regression of the added growth rate factor on the initial status factor in the
treatment population. The intercept represents the overall (main) treatment-
control difference, the slope represents the interaction of treatment and initial
status, and the residual variance represents the treatment variance increment in
the growth rate that is unrelated to the interaction. Here, we will limit attention to
the power of detecting a non-zero slope representing the interaction. This means
that we are assessing the power of detecting an interaction while allowing for a

possible overall (main) treatment effect.

Figure 11 shows the power curves for the interaction effect for the five-
timepoint linear growth model with manifest-variable effect sizes 0.20, 0.25, 0.30,
0.35, and 0.40 (an effect size larger than .40 was not possible given the previous
choice of variance for the added growth factor). Using the above definition of
latent-variable effect size, this corresponds to effect sizes .14, .18, .22, .26, and

.30. While a manifest-variable interaction effect size of .40 requires a total sample
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Figure 11. Power to detect an interaction given a main effect of ES = .20 assessed
at Time 5.

size of about 275 (see curve A), a small manifest-variable interaction effect size of
.20 requires over 1000 observations (see curve E). It is seen that considerably
larger sample sizes are needed to obtain a power of 0.80 than in the corresponding
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no-interaction models of Figure 8. This finding is in line with the case of
interactions in multiple regression (Aiken & West, 1991).

4.1.3 Balanced Versus Unbalanced Data

We finally consider effects on power of deviations from balanced data. Here,
we will return to the no-interaction case considered earlier. Figure 12 shows how
the power varies as a function of the proportion of treatment group observations
for a given total sample size of 250, 500, 750, and 1000. The five timepoint model
with no interaction effect and a small effect size is considered. It is seen that the
power curves are not completely symmetric around the balanced case where the
proportion is .5. Choosing an unbalanced design in favor of more treatment
observations is better than choosing an unbalanced design in favor of more control
observations. This is because the present growth model has larger variances in
the treatment group than in the control group, whereas the reverse would hold if
the treatment group variances were smaller. The reverse situation was verified by
using a growth model with a negative interaction slope that induced lower
treatment group variances after treatment. Figure 12 also shows that the
importance of a nearly balanced design is more critical when the sample size, and

therefore the power, is lower.

Figure 13 shows how the power varies as a function of the number of control
group observations for a given number of treatment group observations and vice
versa. Again, the no-interaction, five-timepoint model with a small effect size is
considered. Holding the treatment group sample size fixed at 250, it is seen that
the power increases rapidly as the control group sample size approaches the
treatment group sample size, but that further increases in the control group
sample size give quickly diminishing returns. Oversampling the treatment group

has a better payoff in terms of power.

Power curves related to the proportion of treatment and control group cases
are useful in terms of cost considerations. Treatment group observations are
presumably considerably more expensive than control group observations. The
power calculations can, for example, be used to answer the question If we attempt
to reduce cost by reducing the treatment group sample size from 250 to 200, how
much does the control group sample size have to increase to maintain the same

power? The answer from the above model is that the control group sample size has
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to increase by 200 from 250 to 450, implying that treatment observations are in

this case four times more valuable from the point of view of power.

4.2 Real Data: Analysis and Power Estimation

A school-based preventive intervention study will be used to illustrate the
general growth modeling and power estimation capabilities of the latent variable
framework. The data are from a longitudinal study of Baltimore public school
children in Grades 1 through 6 (see, e.g., Kellam, Rebok, Ialongo, & Mayer, 1994).
The outcome variable that we will consider corresponds to teacher-reported
behavioral assessments of aggressiveness for each child in his/her class. Teacher
ratings of aggression were made using the Teacher Observation of Classroom
Behavior-Revised (TOCA-R) instrument. The TOCA-R measures the frequency of
18 types of aggressive behavior, each measured on a 6-point scale ranging from
almost never to almost always. The intervention involved a classroom team-based
behavior management strategy promoting good behavior, the good behavior game
(GBQG). After an initial assessment in fall of first grade, the interventions were
administered during the first two grades. Assessments were made fall and spring

for the first two grades and every spring thereafter through Grade 6.

Kellam et al. (1994) concluded that males who were found more aggressive at
the initial measurement occasion in the fall of Grade 1 benefitted more from the
GBG treatment in terms of the Grade 6 outcome. This finding was obtained by
ANCOVA and subsetting of the sample with respect to the initial level of
aggression. We will reanalyze these data using the latent variable growth model
and allowing for an interaction between the treatment and the initial status
factor. The maximum-likelihood estimator of (7) will be used. This analysis differs
in two important respects from the Kellam et al. analyses: using all eight
timepoints instead of only the first and last, and using the growth model initial

status factor as covariate instead of the first timepoint measure.

We will use data from the 186 male children who were in the same
intervention condition for two years. The 75 children of the GBG group are viewed
as our treatment group, whereas the remaining 111 children are viewed as our
control group. The data are therefore unbalanced. As is typical in longitudinal
studies, there are missing data for many individuals at several of the eight
timepoints. For simplicity in the present growth analyses, the missing data issue

will be avoided here by using imputed values. The resulting data do, however, show
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the same essential features and analysis results as those of Kellam et al. (1994).
The clustering of individual observations within classrooms and schools will also be
ignored here. For these reasons, the inferences given below should be viewed only

as illustrative, although having realistic features.

To serve as a comparison with the growth model analyses, ANCOVA using
the last timepoint as outcome and the first timepoint as the baseline covariate
was also carried out. This analysis indicated a significant interaction between

treatment and baseline (the t value for the interaction was -2.03, i.e., F(1,182) =
4.12, with p= 0.044).

4.2.1 Growth Analysis

Plots of the means of aggression over the eight timepoints are shown in
Figure 14 a and b for the control (CON) group and the treatment (GBG) group,
overall and based on low, medium, and high values at baseline (timepoint one). For
the control group, there is an approximate linear progression over time overall,
and there are no apparent differences in this trend among the three groups based
on baseline values. For the treatment group, a linear trend is also indicated, except
for the boys with high baseline values, where a downturn is seen after spring of
third grade. The overall linear trend in the treatment group appears similar to that

of the control group. Plots of individual values show similar trends.

Step 1: Control group analysis. In line with our proposed analysis
strategy, the control group was analyzed in a first step. A two-factor, linear
growth model was chosen using the X scores 0, 1, 3,5, 7, 9, 11 to capture the fact
that only spring measures were collected after the first two grades. The residuals
were allowed to have unequal variances and be correlated at adjacent timepoints.
This resulted in a well-fitting model with a chi-square value of 31.9 with 24 degrees
of freedom (p= 0.13). Here, the positive growth rate factor mean and variance
are both significantly different from zero at the .01 level. Evidence of nonlinear
growth was also investigated. A quadratic factor was added using squared X
scores 0, 1, ..., 121. It should be recognized that the use of a quadratic function is
only relevant for a limited time period of the development. The quadratic factor
showed no significant variation across individuals but did obtain a negative mean
which was significant at the 1% level (the chi-square value for this model was
24.97 with 23 d.f., p= 0.35). In summary, the final, nonlinear control group model
indicates a linear increase in the aggression score over grades with a slight

decrease at the later grades.
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Step 2: Treatment group analysis. As a second step, the treatment group
was analyzed separately. The quadratic model found in the control group obtained
a good fit here also (the chi-square value for this model was 30.66 with 23 d.f., p=
0.13). Attempts to allow for a non-zero variance in the quadratic factor failed due
to nonconvergence. The analysis shows a quadratic factor mean that is not
significantly different from zero at the 5% level (the t value is -1.60). This implies
that a linear growth model fits well in the treatment group. The estimated mean
for the quadratic factor, while insignificant, is the same as in the control group.
Given the low treatment group sample size of 75, the power to detect a non-zero
quadratic mean at the estimated parameter values is only .34 as estimated by
the Satorra-Saris method (a treatment group sample size of 220 would be required

for a power of .80).
Step 3: Two-group analysis without interactions. As a third step, the

control and treatment groups were analyzed simultaneously in a two-group
analysis. Here, the above quadratic growth model was used for the control group
and the parameters for these three factors were held equal across the two groups.
Although there is not statistically significant evidence of a quadratic factor in the
growth analysis of the treatment group, the two-group approach includes this
factor. In the absence of a priori theory, the added effects of treatment are
modeled based on the impressions of the plots above. In the treatment group, the
added growth factor is chosen to be linear with no variation across individuals. As
a first analysis, no interaction is allowed for. This two-group model fit the data
reasonably well (chi-square of 75.00 with 51 degrees of freedom, p= .02). The
treatment effect is here described by the mean of the added linear factor. The

estimate of this mean is, however, not significant even at the 10% level.

Step 4: Two-group analysis with interactions. As a second two-group
analysis, the initial status factor in the treatment group is allowed to influence the
added linear factor, thereby accommodating a possible interaction between
treatment and initial status. Adding a single slope parameter to represent this
interaction, this two-group analysis resulted in a well-fitting model with a chi-
square of 64.56 with 50 degrees of freedom ( p= 0.08). The interaction is strongly
significant (the one-degree of freedom chi-square difference value is 10.44 with p=
.002). It is noteworthy that no treatment effect would have been discovered if the
interaction effect had not been included.
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Step 5: Checking the two-group model. In order to test for deviations
from successful randomization into treatment and control groups, the above two-
group (50-degree-of-freedom) model was relaxed to allow for the initial status
factor mean of the treatment group to deviate from the zero value of the initial
status factor in the control group. This test indicated that the treatment group
mean was marginally higher than zero (the chi-square difference with one degree
of freedom was 4.41 with p= 0.04). Even when allowing for this pre-existing
difference, however, the interaction effect remained significant at the same level

and the more parsimonious model of no pre-existing differences was maintained.

Finally, the overall effect of treatment on the growth factors was tested.
Here, the two treatment effect parameters were set at zero, resulting in a highly
significant worsening of the fit relative to the 50-degree-of-freedom model (the chi-
square difference test value with two degrees of freedom was 12.01 with p< 0.01).

The hypothesis of no treatment effect is therefore strongly rejected.

Estimated two-group model. Table 1 presents the estimates of the two-
group treatment interaction model with 50 degrees of freedom. The model
specification is given in Part 5 of the technical appendix (available from the
authors). The variances for the initial status and linear growth rate factors are
significantly different from zero indicating across-student heterogeneity in the
across-grade trajectories of aggressive behavior. There is a significant treatment
effect on growth which interacts with initial status. The interaction is expressed in
terms of the regression of the added linear growth factor on the initial status
factor which has a significant negative estimate of the slope. The negative slope
indicates an interaction of the expected kind: Initially more aggressive boys
benefit more from the intervention. Given that the residual variance is zero in this
regression, the variation in the added linear growth factor of the treatment group
is solely due to the variation in initial status. The negative intercept is not
significant indicating that there is no overall treatment effect. It is interesting to
compare the t value for the two-group growth model interaction slope with that of
the ANCOVA interaction. While the former is -3.35 with p= .003, the latter is
only -2.03 with p=.044. This gives an indication of the benefit of using

information from timepoints between the first and last.

Figure 15 displays the estimated model in terms of the model-implied means
for the outcome variables. Here, graphs are given for the control and treatment

groups at three different levels of the initial status factor: at the mean and half a
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Table 1
Final Two-Group Growth Model for Aggression Data

%2(50) = 64.56, P= 0.08
Control Group Treatment Group
n=111 n="75

Growth Factors

Initial status

Mean
Variance
Linear growth rate
Mean
Variance
Quadratic growth rate
Mean

Residual Variance

Added linear growth rate
regressed on initial status
Intercept
Slope
Residual Variance

Growth Factor Covariances

Initial-status-Linear growth rate

Residual Variances for Outcome Variables

Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8

Residual Covariances for Outcome Variables

Time 1 - Time 2
Time 2 - Time 3
Time 3 - Time 4
Time 4 - Time 5
Time 5 - Time 6
Time 6 - Time 7
Time 7 - Time 8

Common intercept for the outcome variables

*

0.
0.80 (0.11)F

0.086 (0.020)
0.0045 (0.0012)

-0.0051 (0.0016)
0 *

-0.016 (0.013)
-0.052 (0.015)

ES

0.

-0.0015 (0.0089)

Control Group

0.44 (.088) 0.53 (.14)
0.45 (.079) 0.44 (.12)
0.41 (.069) 0.50 (.11)
0.52 (.080) 0.70 (.13)
0.51 (.079) 0.74 (.13)
0.42 (.074) 0.80 (.15)
0.26 (.083) 0.24 (.10)
0.29 (.094) 0.61 (.18)
0.29  (.071) 0.070 (.100)
0.077 (.031) 0.031 (.061)
0.25  (.058) 0.032 (.097)
0.13  (.047) 0.099 (.069)
-0.0059 (.049) 0.031 (.11 )
0.055 (.058) 0.021 (.072)
-0.11  (.066) -0.032 (.11 )
2.04 (0.023)

* Parameter is fixed in this model.
T Standard errors are given in parentheses.

42

Treatment Group



29

~

27

25

23

TOCA-R

21

1 2 3 4 5 6 7 8 9 10 1" 12

Time

—O—Control group: 1/2 sd above mean
—&—Treatment group: 1/2 sd above mean
—O—Control group: At the mean
—@—Treatment group: At the mean
—B—Treatment group: 1/2 sd below mean
—0O—Control group: 1/2 sd below mean

Figure 15. Model implied growth trajectories of TOCA-R scores as a function of
initial status. Each timepoint represents one 6-month interval.
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standard deviation below and above the mean. The figure shows the effect of the
interaction so that only individuals at higher initial status values benefit clearly
from the treatment. At the last timepoint, the mean difference between the
control and treatment group individuals in the highest initial status category of

the figure is about one third of a standard deviation.

It is interesting to note that the treatment effect findings were made possible
by using a two-group approach with an added growth factor to capture treatment
effects. A quadratic growth factor could not be found in the separate analysis of
the treatment group. In contrast, the two-group analysis revealed an interaction
such that a nonlinear trajectory with a stronger downward trend at later grades is
realized for the more aggressive subset of boys. Furthermore, a conventional two-
group growth analysis does not give an equally clear-cut analysis. A conventional
two-group analysis would use the same three growth factors in both groups and
study differences between the parameter estimates of the linear and quadratic
growth factors. A covariance between the initial status factor and the quadratic
factor would not be included if the latter does not have a significant variance,
which is the case here. This means that the same quadratic model as was found
above for the control group is applied in both groups. This two-group model fits the
data well (the chi-square value is 59.44 with 47 d.f., p= .11). It does not, however,
show significant group differences in terms of t values for either the linear or

quadratic means, and the linear mean estimate is in fact higher for the treatment

group.
4.2.2 Power Estimation

We will finally consider power estimation for the final two-group model of
Table 1. Based on this estimated model, the effect size for the interaction is .38
using the same definition as given earlier for the artificial data. Figure 16 gives the
power of detecting a non-zero interaction slope parameter in a model with
parameter values equal to the estimated values in Table 1. The three curves in
this figure indicate how small the combined sample size could have been while still
making it possible to find the treatment interaction effect. Curve A gives the
power as a function of total sample size with balanced data. Curves B and C show
the power with the treatment group sample size fixed at its actual value while
varying the control group sample size and with the control group sample size fixed

at its actual value while varying the treatment group sample size, respectively.
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Figure 16. Power to detect the interaction treatment effect from the Kellam et al.
(1994) aggressive behavior intervention.
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With the actual sample of 75/111 in the treatment/control group, the power
to detect the interaction is .90. This shows that an interaction can be detected
with high power even for a total sample size of only 186 when the interaction
effect size is moderate (.38 in this case). For balanced data, curve A shows that a
total sample size of 130 instead of the original 186 observations would have been
sufficient to detect the interaction with a power of .80. If instead a balanced design
had been used with the original total sample size of 186, the power would have
been .92 instead of .90.

5 Conclusions

The analyses of this paper indicate some of the generality of the latent
variable approach to growth modeling. In the specific application of multiple-
population analysis of intervention effects, it is possible to separate normative
growth in a control group from the additional growth due to treatment. Added
growth due to the interaction between treatment and initial status can be
captured by structural regressions between latent growth variables. Power
estimation is readily available through standard latent variable techniques. The
generality of the latent variable approach to growth modeling and power
estimation is particularly exciting when considering that the multiple-population
study of interventions can be put into the framework of either one of the growth
modeling generalizations shown in Figures 2—4. To this may also be added the
generalization of multiple indicators of latent variable constructs. The general
modeling potential is largely unexplored, and it is hoped that this paper can

stimulate new types of analyses.

The paper focuses on multiple-population growth studies as motivated by an
intervention context. It is clear, however, that these growth analysis and power
estimation techniques are more generally applicable. The multiple-population
settings may, for example, involve gender differences or differences among
different risk populations. Single-population settings also benefit from power

estimation for detection of certain growth patterns.

The artificial data studies of power show the importance of going beyond the
ANCOVA approach and use more than two timepoints in assessing intervention
effects. They also illustrate the tradeoffs between using more timepoints or larger
samples. They show that interaction effects can be detected without unduly large

sample sizes if the interaction effects are sizable. Furthermore, the power

46



calculations show that designs that have a balance between control and

treatment group sizes are not always the most powerful.

It is clear that power estimation is directly related to the parameter values of
a specific model, and therefore the above power curves are only illustrative. The
importance of the approach is, however, that the researcher can compute his/her
own power curves for a model with parameter values that he/she hypothesizes.
Many different scenarios can be easily assessed and can give important guidance

for design decisions.

The real-data analyses of aggressive behavior among elementary school
children showed the complexities of a real intervention analysis. The intervention
effect is seen here only for initially more aggressive students so that an

interaction effect is present with no overall, main effect.

While complex, the approaches discussed above rely on strongly simplified
assumptions. A central issue of growth modeling, which has been ignored here, is
missing data—in particular, attrition over time. Attrition should also play a key
role in design decisions. While the use of many timepoints increases power, this
benefit is reduced by an increasing attrition rate. Also, the above discussion
focuses on normally distributed data for the outcome variables, while many
intervention studies have strongly non-normal and categorical outcome variables.
Recent research (Curran, West, & Finch, 1996; Satorra & Neudecker, 1995)
shows that there is a strong reduction in power when variables clearly deviate
from normality. Furthermore, longitudinal data are often obtained through cluster
sampling giving rise to multilevel data. This fact has also been ignored above, and
analysis methods and power calculation need to be studied also for such

situations.
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