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EXPLORING THE DYNAMICS OF COMPLEX PROBLEM-SOLVING
WITH ARTIFICIAL NEURAL NETWORK-BASED

ASSESSMENT SYSTEMS1

Karen C. Hurst2,3, Adrian M. Casillas3,4, and Ronald H. Stevens3,5

Abstract

Assessment of cognitive models developed by students in complex scientific
disciplines ideally captures the progressive and dynamic nature of learning. We have
developed a computer-based performance assessment system based on the
production-system model of problem solving (Newell & Simon, 1972) in order to
explore assessment of medical student problem-solving skills. We are able to track
student data acquisition within groups of related concepts (concept domains) through
a process called Òsearch path mapping,Ó which reveals differences between
successfully executed performances and unsuccessful strategies. We were able to
identify both changes in the overall strategic approach (i.e., selecting the correct
concept domain) and refinements in problem-solving strategies (i.e., more efficient
use of concepts within a domain).

While search path mapping allows for the assessment of student strategies, it is
also time-consuming and potentially subject to reviewer bias. We therefore
automated the search path map analysis by using supervised back-propagation
artificial neural networks (ANNs), trained with data from previous medical student
performances. These artificial neural networks could discriminate strategy
improvement as well as hypothesis utilization in problem solving. To provide an
indicator of learning, we compared the number of hypotheses utilized by students on
practice and examination problems in the same concept domain. We found that
medical students used information more efficiently during the examination, resulting
in fewer hypotheses generated. Although the overall utility of ANN-based analysis
was seen, this supervised network did not identify certain specific cases determined
by search path mapping to be more ÒexpertÓ than the training data set. Our ANN
also misinterpreted rare cases of irrelevant concept usage. These studies
demonstrate the utility of ANN-based assessments as an adjunct to traditional
forms of assessment and suggest additional studies needed for this approach to
become part of a comprehensive evaluation system.
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Introduction

In the development of science education technology, authenticity and validity
of content must be assessed in conjunction with cognitive models developed by
students. Ideally, such models are dynamic, continuously combining information
and understanding into a framework where a hypothesis can be formulated,
tested, and modified (Alexander & Judy, 1988; Groen & Patel, 1988; Peverly,
1991). Traditional studies of studentsÕ mental models, such as protocol analysis,
have provided fundamental information about the nature and structure of mental
models in novices and experts (Simon, 1995). However, this information has had
relatively little impact on everyday instruction and evaluation in the classroom.
This may be due to the lack of timely, informative feedback provided to teachers
based on these in-depth cognitive research studies.

We have been exploring the use of computer-based assessment technologies
in order to bridge this gap, and to provide a dynamic and generalizable tool for large
numbers of students across various domains. These technologies provide the
opportunity for assessment to be consistent with learning as a continuous
process. The understanding of isolated concepts does not comprise comprehensive
domain knowledge, yet it is the basis for successful problem solving. Concepts and
principles are linked to form structures called Òconcept domainsÓ or Òknowledge
structuresÓ (Glaser 1984, 1990, 1992). Concept domains can be linked into larger
and often overlapping groups in disciplines such as immunology. Proficiency in a
specific discipline results from a mental representation or model of the field
containing not only information, but also the skills necessary to organize and
utilize this information. Relevant usage of concept domains reflects a cognitive
ability that allows adaptation and generalization of knowledge in solving
unfamiliar problems (Brown, Bransford, Ferrara, & Campione, 1983; Chi &
Glaser, 1984), leading to what is known as Òexpertise.Ó Reasoning and appropriate
usage of information within concept domains allows for the formulation and
modification of hypotheses during thoughtful problem solving, identification of
analogous problems, and self-monitoring during testing of the hypothesis
(Campione, 1990; Sugrue, 1994).

Diagnostically useful assessments should accurately identify the spectrum of
student performances. Several levels of student performance in problem solving
can demonstrate the varying degrees in understanding of experimental data and
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underlying principles (reviewed in Sugrue, 1994). The lowest level of student
performance lacks concept-unifying principles, which is seen as disorganized
searching of data. The next level shows an understanding of basic concepts, but
without an organized reasoning process, such as hypothesis generation. Other
students form hypotheses that may be inappropriate to the presented problem,
where hypotheses are formed in irrelevant domains, or where experimental data
are incorrectly interpreted despite a correct hypothesis. Finally, students with an
effective problem-solving strategy show both an understanding of concept-
unifying principles and the ability to focus this information by making an
appropriate hypothesis. Ultimately, a good problem solver equipped with
information from a specific concept domain should be able to formulate and verify
a hypothesis within that concept domain.

Prior to pursuing an analysis of student problem-solving skills, the problem
itself should be carefully assessed. The content must be relevant to the concept
domain (Millman & Greene, 1989) and be designed at an appropriate level for the
intended audience (Sugrue, 1994). The test items, at a minimum, should contain
sufficient information to solve the problem. The problem structure must be
flexible enough to allow application of forward reasoning (i.e., planning and
executing a strategy) and domain-specific activity (i.e., hypothesis formation) to
distinguish stronger, Òmore expertÓ performances from weaker, Òless expertÓ
performances (Glaser, Raghavan, & Baxter, 1992).

Once the learning task or problem is established, how is student performance
measured? A sequence of individual test item selections, often based on a mental
model, can develop into a coherent strategy (Simon, 1995). Furthermore, the use
of certain key concepts may be used to ascertain pivotal areas of understanding.
Although the selection of informative concepts cannot be used as the sole
parameter in performance assessment, it may offer insight into specific search
strategies. Whether the student solves or does not solve the problem is useful as
an outcome measure, but this also fails to give insight into the problem-solving
process. Likewise, a studentÕs score becomes a useful assessment tool only when
used in the context of a strategic approach. Examination of hypothesis generation
through strategic choice of domain-specific test items is a reliable way to identify
student performance on a specific problem, or development of general problem-
solving skills (Sugrue, 1994). A truly dynamic performance standard
accommodates the process of transition across levels of student understanding.



4

This becomes the challenge for developing computer-based learning assessments.
Standards that truly allow the assessment of transition from novice to expert and
that incorporate other assessment parameters would enrich the performance
standard setting. For this reason, we have explored using artificial neural
networks (ANNs) to identify patterns in student problem-solving performance.

Artificial neural networks allow for rapid and continual assessment in areas
that are categorically ill-defined, or where performance patterns are hidden within
the data (Reggie, 1993; Weinstein et al., 1992). Previous studies aimed at
recognizing and understanding expert strategies in medical student problem-
solving performances have revealed the utility of ANNs (Stevens & Lopo, 1994).
Supervised back-propagation ANNs trained with medical student performances
on immunology or infectious disease problems correctly identified the problem-
solving outcomes of other students in over 85% of cases (Stevens & Najafi, 1993).
These studies did not, however, explore the use of ANNs (a) for documenting the
dynamics of studentsÕ hypothesis formation and rejection within a problem, or (b)
for measuring student progress. This report specifically addresses these two
issues.

Methods

Problem Design and Implementation

We have developed a computer-based performance assessment system
based on the production-system model of problem solving and have used it to
evaluate medical student diagnostic skills in multiple clinical disciplines (Stevens,
1991; Stevens, Kwak, & McCoy, 1989). These problems are clinically relevant and
require an understanding of basic science concepts in the medical microbiology and
immunology course at the UCLA School of Medicine. Each problem consists of a
patient history (starting condition) and approximately 75 items of patient data,
which the students can access in an uncued manner. A student has the option to
solve the problem at any point by selecting from a list of over 40 possible solutions
(goal condition). While this study focuses on a medical discipline, it is important to
note that search, and the cognitive paradigm of a starting condition, a goal
condition, and resources to transit these two states are general components of
problem solving (Newell, 1990) and can be applied to many disciplines. In this
regard, we are conducting similar studies in a variety of different disciplines and
across broad levels of education (Stevens, 1995).
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In this study, two forms of a problem were created that were identical except
for the opening scenario (patient case history). These problems were designed to
test the studentsÕ knowledge of T-cell receptor signaling (specifically CD3 zeta
chain), an important regulatory step of most successful immune responses. One
of the problems was contained in a set of 8 practice problems that were performed
by students in the six weeks prior to the midterm examination. The second
problem was contained in a set of 6 problems, 2 of which had to be solved by each
student for a portion of his or her grade. The subjects in this study were the 21
students who both completed the practice problem and received the same problem
on the examination.

Seven concept domains relevant to the identification of a specific
immunological defect (Figure 1A) can be spatially oriented in related groups:
a.Êintegrins, b.Êimmunoglobulin recombination, c.Êantibody production,
d.Êhistocompatibility, e. interleukin production, f. signaling, and g. T-cell receptor
complex (Figure 1A). These domains collectively define the problem space and
contain all of the necessary information required to solve a problem. For example,
a problem with a defect in interleukin 2 (IL-2) production requires specific
information from test items in the interleukin production domain (Figure 1A,
domain e). Students who correctly identify the type of problem should focus their
choice selections within that domain. It should be noted however that the
information in other concept domains will often provide some indirect evidence of
the problem solution and (limited) broad search not only is justified but may be
desirable.

Search Path Map Analysis

The problem space represents the authorÕs model of a test platform, and
conscious efforts are made during the problem design to make the problem space
as broad as possible to encompass a multitude of student strategies. The student
selects data from a menu structure where test items are presented by type of
test; for example, flow cytometry studies, antibody tests, western blots, etc. Each
test item ÒcostsÓ the student 50 points from a starting score of 3000. Every test
item selected, the order of selection and the time interval between selections are
automatically recorded into a database during problem solving (Stevens et al.,
1989). Using IMMEX::Analysis (Stevens, 1991) the pattern of selections chosen
by the student can be recreated as a search path map (Figure 1B) and visually
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Figure 1. Search path mapping. Chart of concept domains (A), with each box
representing a test item that can be chosen by students. The concept domains are
labeled: a. integrins, b. recombination, c. immunoglobulin production, d.
histocompatibility, e. cytokines, f. signaling, and g. T-cell immunity. Choices in the
relevant domain for these problems are shown in white. Sample search path map (B)
shows the order of tests in a single student performance. A line connects the top left
corner of the first test (ÒSTARTÓ) and the center of the second test (ÒIL-2
PRODUCTIONÓ), etc.
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compared to the entire problem space (Figure 1A). Each test item selected is
linked by a line connecting the upper left-hand corner of the first test item box to
the center of the subsequent selection item box. For example, in Figure 1B, the
studentÕs first choice is ÒIL-2 PRODUCTIONÓ followed by ÒFACS MHCÓ then
ÒCD3 COMPLEX,Ó etc. The final selection is the solution, labeled ÒDEFECTÓ in our
immunology problem set. An additional feature of the software is the identification
of students who utilized any particular data item. The search path map can also
be used to analyze students grouped by score, problem number, solution
(solved/not solved) or a combination of these parameters.

Artificial Neural Network Analysis

The neural network for this study was trained to recognize six major concept
areas in immunology with more than 200 high-scoring student performances from
one medical school second-year class. Outputs were generated for each step in
student performance in this study. High output weights (approaching 1.0) indicate
a close match of the student performance to those in the training set.

The neural network architecture used was a back-propagation supervised
learning network. In supervised learning, pairs of inputs (student data) and
outputs (solutions) are presented to the network.  The network takes each input
and produces its own output, which it compares to the correct output. The
network learns by making corrections to the connections between input and
output based on the error between the two outputs. As training progresses, the
amount of error is minimized (Lawrence, 1993).

Results

Characteristics of Successful Strategies

Students who solve these problems correctly access information within a
relevant concept domain and minimize searches in unrelated concept domains.
Search path maps from successful strategies of one exemplary student during the
practice (Figure 2, thin lines) and the examination (Figure 2, thick lines) revealed a
focused set of test item choices within one domain. The student begins the
practice performance by choosing T CELL PROLIFERATION followed by other
tests in the correct domain, leading to the DEFECT (solution), where the correct
answer (defect in the CD3 zeta chain) was chosen. A search strategy focused on
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Figure 2. Two performances by the same student. The test
items chosen on the practice test are connected by thin lines,
and order of tests on the exam are connected by thick lines.

the correct domain indicates that the student had an understanding of the
problem. In addition, the variation in the order of test items selected between
performances reflects the use of a slightly different strategy in each case and
suggests that this studentÕs domain and problem understanding was quite rich.  Of
the six test selections chosen on the practice problem and the four chosen on the
examination, only three items were common to both performances. This
observation that different but conceptually related strategies can result in the
same successful outcome is not unusual. In fact, of 1153 successful problem
performances obtained from students at three medical schools, only 10 were
duplicates, indicating that a wide range of successful strategies exists (Stevens et
al., unpublished data).

There Are Identifiable Unsuccessful Strategies

Search path mapping revealed two general approaches pursued in
unsuccessful problem-solving performances. The first, which accounts for
approximately 50% of the missed problems, shows the inability of a student to
develop a focused search strategy within the problem space, resulting in a great
deal of test selections from nonrelevant concept domains (Figure 3A). This
unfocused problem-solving strategy suggests that the student did not have a
general understanding of the case and was conducting an exhaustive search in
unrelated concept areas. During this search, the student did select important
information from the relevant T-cell domain (Figure 3A, white boxes) but was
unable to realize that this information was crucial.
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Figure 3. Two strategies leading to incorrect solutions. (A) Unfocused problem-
solving strategy. This student chooses many items, including those in the correct
domain (shown in white), but does not group choices by concept domain. (B)
Focused problem-solving strategy. Student J9 chooses six tests in one (irrelevant)
domain before choosing an incorrect solution.

In a second approach, students who missed the problems seem to have
coherent yet inappropriate strategies. Such students conducted a thorough
exploration of an inappropriate, although often closely related, domain before
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leaving it for the next domain or choosing an incorrect solution. Although they
misinterpreted the nature of the problem, they were able to execute a focused,
domain-specific search (Figure 3B). Here, a thorough search is initiated in the
interleukin 2 (IL-2) concept domain. Although the solution to this problem is not
an IL-2 defect, it is clear that the student tested this possibility extensively by
choosing five of six IL-2-specific test items within the interleukin domain (compare
Figure 3B with domain e in Figure 1A). After completing this search, the student
proceeded to choose an incorrect solution. Both student performances presented
(Figures 3A and B) resulted in an incorrect solution, but whereas the second
student showed a lack of thorough understanding of the concept domains, the first
student demonstrated essentially no understanding by misinterpreting the
appropriate test data.

Documenting Student Progress

Search path mapping can be most revealing of student progress when
students demonstrate a focused strategy in the relevant domain on one problem
after previously attempting to solve a similar problem by diffuse searching or
incorrect concept domains. By comparing practice and examination
performances, we noted strategic improvement for a number of students similar
to that of student A1 (Figure 4). Here, the practice performance (Figure 4, thin
lines) was an incomplete exploration of at least three concept domains.
Exploration of the pertinent domain is also incomplete, and student A1 chose an
incorrect solution. By contrast, the examination performance of student A1
(Figure 4, thick lines) shows a strategy transition with early recognition of the
problem. This recognition leads the student to search within the relevant domain
and choose the correct solution. In this example, search path mapping of practice
and exam performances documents a significant change in this studentÕs
approach to this problem.

The recognition of the nature of the problem is one aspect of learning
achievement, but the recognition of more subtle improvements within generally
good strategies is equally important. What, if any, improvement can be detected
where the relevant domain has already been identified by the student or where
many choices within the correct domain are used by the same student with
different outcomes? In the search path maps for student G3 (Figure 5A), there are
areas of overlap between the practice and exam performances. In both cases, an
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Figure 4. Transition from incorrect hypothesis to correct hypothesis. On
the practice test (thin lines), student A1 develops a strategy, choosing
tests from two irrelevant domains, but is not able to solve the problem.
On the exam (thick lines), A1 uses a more focused strategy, choosing
tests from the correct domain only and solving the problem.

irrelevant domain was sought out first, and other non-informative test items were
selected. Upon analysis of the relevant test items selected (T-cell receptor/CD3
complex), two groups of test items can be identified for the practice and exam
performances (Figure 5B). The practice performance included items from the
relevant domain that are not as closely related conceptually as the items selected
in the examination performance. This search path map data shows that even
within the relevant domain, there are still notable improvements, which are
evidently the result of an improved focus. In this example, the transition from a
good strategy to a better strategy is seen as the student recognizes a distinctive
group of relevant tests (Figure 5B).

While it is important to note this type of student progress, there are certain
drawbacks. The major problem to this approach for analysis and assessment is
that it is an enormously time-consuming process. Subtle changes in domain-
specific activity may be difficult to discern, especially where the test selections
are closely related.
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Figure 5. Transition from unfocused strategy to more focused strategy. This student
chose many of the same test items on the practice (thin lines) and exam (thick
lines), but follows a more organized and domain-specific search for relevant
information on the exam.

Automation of Analysis Using Artificial Neural Networks

The above limitations of search path map analysis, namely time constraints,
low objectivity, and difficulty in quantification of results, prompted our exploration
of applying ANNs for assessing patterns of student performance. We have
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previously used neural network analysis to identify patterns in student hypothesis
generation and problem solving (Stevens & Najafi, 1993) and have shown the
sensitivity (86%) and specificity (100%) of this approach to be high.

We first considered performances where changes in strategic approach were
apparent by search path map analysis and where a student was unable to solve
the practice problem, but was successful on the exam. Differences between
practice and exam performances showing a transition from incorrect concept
domain searches to relevant concept domain search activity were analyzed.
Revisiting student A1Õs performance, an unsuccessful practice performance
(Figure 4, thin lines) is followed by a focused, successful strategy (Figure 4, thick
lines). Our ANN then assessed these search paths, and the outputs were charted
(Figure 6A and B). In the practice performance (Figure 6A), the ANN detected the
highest outputs at OUTPUT 1 (cell signaling domain) and OUTPUT 5 (interleukin
domain). This indicates that the student solved the problem with a pattern of test
selections, which the trained ANN recognized. There was an initial hypothesis of a
cell signaling defect at OUTPUT 1 (ANN output ~0.58), and next, a hypothesis of
an interleukin production defect at OUTPUT 5 (ANN output ~0.56). As the
correct domain is represented by OUTPUT 3, neither of the hypotheses was
correct. On the examination performance (Figure 6B), this student utilized one
correct hypothesis. The ANN recognized this as a single strategy highly
resembling the successful strategies of the ANN training set for this problem
where the final weight at OUTPUT 3 was 0.95.

We also wished to determine whether the ANN could discriminate among
more subtle changes in strategy within a relevant concept domain. In the
performance of student G3, we used search path mapping to see a change in focus
within the relevant concept domain (Figure 5). The ANN then analyzed these
search paths and outputs were charted (Figure 6C and D). In the practice and
exam performances, the ANN outputs in the correct domain (OUTPUT 3) were
0.38 and 1.0, respectively. This change in final output weight suggested the
possibility that the ANN could detect the subtle changes in strategy occurring
within a concept domain. We also noted that exam performances by both student
A1 and student G3 refined their hypothesis utilization, since each student used
two working hypotheses in practice performances and only one during the exam.
In addition, in both cases, the practice performances were unsuccessful.
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Figure 6. Artificial neural network output showing strategy formation. Each output number
represents a concept domain within the immunology problem set. The relative weight indicates the
match between this student performance and performances in the training set. Each bar
represents one test item. In these problems, a high relative weight in output 3 indicates a
hypothesis or strategy using the relevant test items in an order recognized by the neural network
as Òideal.Ó During the practice session (A), student A1 chooses tests recognized by the neural
network as outputs 2 and 5 (not correct). On the exam (B), the student chooses tests recognized as
output 3 (correct). Similarly, student G3 has a practice performance (C) recognized by the neural
network as output 1 (incorrect) shifting to output 3 (correct), but an exam performance (D) with
only one hypothesis at output 3 (correct).

Evidence for Hypothesis Utilization and Refinement in Successful
Strategies

In order to gain a more complete sense of refinement in hypothesis
utilization, we looked for examples of student performances where the practice
and exam problems were both solved, regardless of score. The ANN profiles were
compared to their respective search path maps. For student J2, the practice
performance (Figure 7B) revealed ANN results initially high at OUTPUT 4
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Figure 7. Shift from two-hypothesis strategy to one-hypothesis strategy. (A) Student J2 chooses test
items from a domain initially recognized as output 4, then recognizes the correct domain, which is
indicated by a higher relative weight in output 3. When J2 performs the similar problem on the
exam (B), the correct domain is recognized earlier, and the neural network recognizes the
performance as output 3 only.

followed by a subsequent decline in this output with a corresponding increase in
OUTPUT 3 (correct domain). This indicated that the ANN recognized the first
hypothesis, which corresponds to OUTPUT 4 (histocompatibility domain), the
studentÕs rejection of this hypothesis, and the subsequent development of a new
hypothesis characterized by increasing values at OUTPUT 3. The search path
map associated with this performance (Figure 7A) illustrates the fact that the
student sampled the correct domain, but quickly went on to another domain
(histocompatibility) before developing a strategy within the correct domain (T-cell
receptor/CD3 complex). On analysis of the studentÕs examination performance
(Figure 7D), the ANN output occurs only in the area of OUTPUT 3 without the
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development of other hypotheses by the student. The search path map for this
performance (Figure 7C) reveals that the student focused on the relevant domain
and chose items that specifically dealt with the CD3 complex. This differs from the
relevant searching in the practice performance where the student used T-cell
receptor data, which is closely related but not the focus of the problem. The
improvements in test item selection are also reflected in the ANN output, which
assigns a nearly perfect output weight (~1.0) to the exam performance compared
to the lower weight (<0.65) assigned in the practice performance. These
observations indicate that refinement of hypothesis utilization as well as the
improvement in the execution of these hypotheses can be detected and quantified
by our ANN.

A Caution: The Need to Correlate Some ANN Outputs With Search Path
Maps

The use of ANNs to automate the analysis of search path maps can yield
rich information about the utility and refinement of hypothesis formation in
student performances.  It must be kept in mind that supervised ANNs assign
outputs as a function of the training set of performances that created the
network, and if sufficient diversity is not included in the training set, then the
ability of the neural network to ÒgeneralizeÓ will be reduced.  We were able to
identify certain performances where an ANN did not predict what is evident from
the search path map.  This mismatched ANN output was seen in two settings
where either inappropriately high or low output was generated for irrelevant
domain searches or where an unusually low number of tests were required by the
student to solve the problem. The first case is illustrated by student J11, who
solved the problem, yet conducted a search strategy within an irrelevant domain
(Figure 8A). Here, the student searched only within the (incorrect) interleukin
domain, but chose the correct solution.  The ANN output suggests the possibility
that two distinct hypotheses were formulated by the student since OUTPUT 2 is
high initially followed by an eventual decline in output and an increase in OUTPUT
3 (Figure 8B). We believe that in this case the ANN recognized the jump to the
correct solution as a separate strategy. This type of misinterpretation is not
representative of a large number of student performances.  

At the other extreme is the case where a low ANN output for the relevant
problem results despite a search path with specific focus within the pertinent
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Figure 8. Weak correlation between search path mapping and neural network output. This
search path map (A) shows the student exploring an irrelevant domain, correlating to high
relative weight in output 2 (B). The jump from output 2 to output 3 is not detected on the search
path map, as it resulted from a student choosing the correct solution (ÒDEFECTÓ) only on the
second attempt.

domain. In the practice and exam performance by student W2 (Figure 9A and C),
it is obvious that the student needed very few test items within the pertinent
domain to solve the problem correctly. The solution was correct in both cases,
suggesting an extraordinary understanding of the problem compared to the
majority of high-scoring medical students whose performances actually trained
the network. The ANN output of student W2Õs performances is low in both the
practice and exam setting with values of <0.3 and <0.1, respectively (Figure 9B
and D). Including performances such as those of student W2 in the training set for
the ANN could increase the predictive value of the ANN in such cases, as would
the inclusion of expert performances. These examples illustrate the possible
discrepancy that may exist when comparing ANN output to the actual search
path maps.

A Proposed Scoring Rubric Based on ANN-Analyzed Search Path Maps

Our rubric for scoring these student performances is based on a combination
of search path map data and the corresponding ANN outputs (Figure 10). We are
able to demonstrate at least four types of performance based on the following
criteria: (a) solved/not solved, (b) domain-specific activity (choice of test items
within concept domains), and (c) relevant ANN output related to hypothetical
construct within a given concept domain (quality of domain-specific activity). The
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Figure 9. Expert performances are not represented in the training set for this neural network.
Student W2 showed expert-like performance both on the practice (A, B) and exam (C, D), choosing
a minimum of tests in the correct domain. As the neural network was trained on student
performances only, it was unable to recognize this excellent problem-solving strategy as output 3
on either the practice (B) or exam (D).

highest quality performance on this scale results from a focused search within one
relevant domain and is recognized by the ANN as highly related to the strategy
used by the performances in the ANN training set (Figure 10A and B). This
performance could arbitrarily be given a score of 4 (solved, with one hypothesis).
Another successful strategy shown is where the student solves the problem after
using one or more hypotheses, resulting in at least two distinct areas of significant
ANN output (Figure 10C and D). Such a performance is assigned a score of 3 in
our model. Another level could be predicted where students solve the problem
without a discernible strategy, but there are no examples of this level in the
student performances in this study. Unsuccessful strategies can similarly be
categorized. A performance where the student does not solve the problem
correctly, but formulates one or more irrelevant hypotheses can be scored as a 2
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Figure 10. Hypothesis formation model. Search path maps (A, C, E, G) are paired
with neural network outputs (B, D, F, H) to demonstrate levels of hypothesis
formation. Level 1 (A, B): Solved, one hypothesis in the correct domain. Level 2 (C,
D): Solved, more than one hypothesis, with the final hypothesis in the correct
domain. Level 3 (not shown): Solved, no discernible hypothesis. Level 4 (E, F): Not
solved, one or more hypotheses. Level 5 (G, H): Not solved, no discernible hypothesis.
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(Figure 10E and F). Finally, where the student does not solve the problem and does
not utilize hypotheses, a score of 1 is assigned (Figure 10G and H). By using this
rating scale, we have shown an improvement in medical student performances
from an indexed score of 2.48 ± 1.1 on the practice problem to a score of 3.38 ± .97
on the examination (N = 21, p < 0.001).

This proposed model favors solutions obtained through domain-specific
activity and forward reasoning resulting in hypothesis utilization.  It also de-
emphasizes strict scoring based on the number of test items selected, although we
have shown instances where score is clearly a useful adjunct to this analysis of
strategy formation.  

Discussion

We have described the development of an educational assessment tool that is
generalizable, dynamic, and diagnostically functional. Within the problem space of
applied immunology, we have analyzed student performance in response to a
specific problem of immune deficiency due to defects in the T-cell CD3 complex.
Student progress has been documented by a number of criteria including score,
problem-solving strategy by search path mapping, and finally by supervised ANN
analysis of the performance strategy to assess the utilization and refinement of
hypotheses.

The number of test items chosen (equivalent to their raw score) probably has
the least utility as a performance measure on both a theoretical and a practical
level. A student might choose few tests, leading to an artificially inflated score as
compared to a student with a more coherent strategy who chooses more test
items. On other occasions it might be preferableÑin medicine, for exampleÑto
perform a more expensive imaging procedure than to order multiple, less
expensive, and less conclusive diagnostic procedures.

In our study, the studentsÕ raw scores on the examination were in fact lower
than the scores of the practice performances (averaging 2340 vs. 2190,
respectively) although strategic approaches documented by search path mapping
improved. One (likely) explanation for this occurrence is the greater care or
thoroughness that an examination evokes in students.

Through search path mapping, contrasting approaches to problem solving
were apparent. In unsolved performances, two major patterns emerged, one
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lacking focus, the other focused in an irrelevant area. Although both of these
examples would be categorized as unsuccessful in terms of the ability to solve the
problem, it is clear on visual inspection that the second category shows more
rationale or strategy.  This may reflect formation of a hypothesis, albeit the wrong
one, in a specific concept domain.

Between the practice and the examination performances there was
significant improvement in student performances, reflected by an improved focus
on the pertinent concept domain.  This improvement often coincided with the
ability to solve the problem.  This is exemplified by the performance of student A1
(Figure 4) where an unfocused search during practice improved on the exam.

As mentioned earlier, there are several limitations when assessing student
strategies by search path mapping.  First, this analysis requires expert review,
making it difficult to scale from small groups of students.  Second, the procedure is
not quantitative. The previous examples demonstrate that, although a scale of
performances can be identified, and a rubric for ordering these performances may
be possible to develop, nevertheless assigning a numeric value to each
performance would be difficult.  Lastly, it is difficult to factor in the dynamics of
the formation and refinement of hypotheses during the problem-solving process,
which are demonstratively complex.  To address these problems, we have applied
the pattern recognition capabilities of ANNs, which are useful for the analysis of
the patterns of performance that are not obvious based on search path mapping
alone.

Artificial neural networks can begin to recognize when a strategy is being
applied within a concept domain and can indicate by generated output the relative
ÒstrengthÓ of the studentÕs performance compared to those of peers or experts.
Our studies indicate how ANNs can be used to monitor student improvement
through the number and quality of the formulated hypotheses.  It is also clear
from our data that some students fail to progress, since their performance on the
practice session was similarly poor on the examination. In this data set, 2 of 21
students did not improve their hypothesis formation from the practice to the
exam.  It is difficult to predict which students will do poorly on the examination
because many students use improved strategies on the exam.  This provides an
argument for repeated testing to monitor student performance as a dynamic
function of the learning process.  By monitoring students over time, it is likely that
variations in performance patterns will emerge. Students who are beginning to
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understand a problem may shift from multiple hypotheses to a single hypothesis
during problem solving, while others may be able to learn to recognize the correct
domain earlier.  Following this approach, instructors could easily identify student
progress, as well as problematic concepts.  

As a result of one of the limitations of this studyÑthat is, the occasional
inability to correctly identify ÒexpertÓ performanceÑwe are applying ANN
technologies to better map the strategic nature of the transition from novice to
competent to expert problem solving. These attempts have led to an increased
ability to identify not only the proportion of a population performing at a high level,
but also the differential strategic approaches leading to this higher level of
performance (Stevens, Lopo, & Wang, 1996). Because both novice and expert
performances may be deemed successful by simple solved/not solved rubrics, it is
the subtle features within these performances that allow discrimination of the
transition between the two states. These features may be embedded within
student performance data and difficult to discern using many assessment tools,
but can be approached through our ANN-based analysis.

We are also beginning to address the psychometrics of output weights. For
simply optimizing the sensitivity and specificity of neural network decision
thresholds, receiver operating characteristics (ROC) analysis has been very
useful (Eberhart, Dobbins, & Hutton, 1990).  However, the differences in strategy
that result in a student performance receiving a final output weight of 0.7 (for
example) instead of a final output weight of 1.0 are more subtle, and further
studies are in progress to identify the nature of these differences over several
types of immunology problems and several neural network raters (K. Hurst & R.
Stevens, unpublished data).

The approach to educational assessment presented in this study serves to
illustrate how the spectrum of student performance strategies can be practically
assessed with supervised ANNs. These networks can accurately reflect relevant
and sometimes subtle associations between concepts needed to solve problems.
Furthermore, the method allows for dynamic assessment of a large number of
performances, freeing valuable instructor time for modifying curricula to reach a
maximum number of students in specific areas.  This approach can be applied to
many subject areas, provided that the problem sets are designed appropriately.
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