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Executive Summary

This research was conducted at the Center for Research on Evaluation, Standards,
and Student Testing (CRESST). CRESSTÕs idea of an integrated simulation combines
project-based learning (Savery & Duffy, 1995) and networked computers to measure the
five components of the CRESST model of learning (Baker, 1995). CRESST envisions
integrated simulation as a test bed where task demands require students to engage in a
broad range of cognitive activities. The project-based scenario is designed to evoke a
range of complex cognitive processing; the networked computers serve as the delivery
system. Central to the integrated simulations are networked computers that provide
the capability to implement the project-based scenario and an efficient means of
capturing student processes and products throughout the project.

This report first presents a working definition of cognitive demands analysis and
describes the rationale for using such a technique. Next, we put this analysis into
context by presenting in detail the CRESST model of learning. The third section
analyzes five innovative technologies, using the families of learning as a basis for this
approach. Finally, we document the domain specifications for our integrated
simulation, paving the way for assessment of the learning that these innovative
technologies demand of their users.
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What Is a Cognitive Demands Analysis and Why Is It Important?

As technology becomes more integrated into general classroom instruction
and as assessment draws learning closer to instruction, it becomes increasingly
important to find ways of evaluating what students are learning via these
technologies. By ÒtechnologiesÓ we refer not only to the actual machines, but also
to the learning environments (e.g., software products) that afford students the
opportunity to learn. We need to understand what a particular software product
does and how students learn from using it. Whereas cognitive task analysis
attempts to identify the cognitive skills an individual uses or needs to perform a
task proficiently (Klein, 1995; Means & Gott, 1988; Roth & Mumaw, 1995), a
cognitive demands analysis seeks to describe the types of cognitive learning
expected of the individual by the technology. Clearly, this learning is dependent
upon a number of factors, including both the context in which the technology is
used and the individual characteristics of the learner. However, within a given
learning situation, we can attempt to understand what is expectedÑor
demandedÑof the learner.

Information regarding the cognitive demands placed on students using the
technology can simplify the assessment process by allowing the alignment of
student assessments with the technology. Students are not expected merely to
learn the content being presented to them; learning demands may also include
the types of activities and instructional opportunities in which students are
expected to engage. By identifying these types of expected learning, we can create
a suite of performance assessments integrated into a real-world, problem-solving
environment that can assess varied student learning and understanding.

Context: The Five Families of Learning

In order to carry out a cognitive demands analysis, we must examine the
types of learning that a particular technology targets. In the CRESST model of
learning, Baker (1995) posits five families of cognitive learning: content
understanding, collaboration, communication, problem solving, and
metacognition (Figure 1). These cognitive types of learning owe their intellectual
listing to Gagn� (Gagn�, Briggs, & Wager, 1992), Mayer (Mayer & Wittrock, 1996),
Merrill (1983, 1993a, 1993b), and Salas (Salas, Dickinson, Converse, &
Tannenbaum, 1992). The five families describe the range of cognitive learning in
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Figure 1. The CRESST model of learning.

which students engage; they are seen as working together to influence overall
learning. Once we determine the types of learning in which students engage, we
can create assessments to evaluate each learning family.

Content understanding. The first type of learning is the understanding of
subject matter content. Whereas the other types of learning involve relatively
context-free materialÑthat is, learning that could occur within any number of
varied contextsÑcontent understanding refers to the learning of domain-specific
material. For instance, students engaged in learning astronomy via the use of an
innovative technology will learn particular facts, concepts, procedures, and
principles related to astronomy.

Assessment of content understanding should evaluate not only basic factual
knowledge, but also a deeper level of understanding of the subject area (Herman,
1992; Linn, Baker, & Dunbar, 1991). There are many approaches to this
assessment: explanations or essays, representational tasks (e.g., concept mapping),
multiple-choice questions, and so on. The CRESST content understanding model
(Baker, Aschbacher, Niemi, & Sato, 1992) uses student explanations to assess
comprehension; this model has been used successfully for assessing deep
understanding in history, geography, mathematics, science, and interdisciplinary
tasks at the elementary, middle school, and high school levels (Aschbacher, 1995;
Baker, 1994; Baker, Aschbacher, et al., 1992; Baker et al., 1995; Herl, Baker, &
Niemi, 1996; Niemi, 1996). This assessment model includes the following
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activities: stimulating prior content area knowledge, reading primary source
documents containing new information, and writing an explanation of
important issues that integrates new concepts with prior knowledge.
Understanding is assessed by examining overall content quality, prior
knowledge, principles, and use of resources.

Another approach to the assessment of content understanding is to evaluate
studentsÕ underlying knowledge structures. Research on memory suggests that
knowledge is organized in complex semantic networks (Jonassen, Beissner, &
Yacci, 1993; Rumelhart & Ortony, 1977). Ausubel (1968) posited a hierarchical
memory model in which new concepts are integrated hierarchically into existing
cognitive structures and relationships generated accordingly. Rather than
constraining cognitive structures in a hierarchical arrangement, DeeseÕs (1965)
associationist memory model allowed for various types of cognitive structures.
Expert-novice research has provided additional information regarding
individualsÕ knowledge structures, indicating that expert knowledge is organized
in a qualitatively different way than novice knowledge is (Chase & Simon, 1973;
Chi, Feltovich, & Glaser, 1981; Chi, Glaser, & Farr, 1988; Gentner & Stevens,
1983). As novices become more expert, a restructuring of their knowledge occurs
(Royer, Cisero, & Carlo, 1993). Whatever the exact nature of studentsÕ knowledge
structures, by eliciting specific information from students we can attempt to
assess these cognitive structures.

A concept map  is a graphical representation of information consisting of
nodes and links (or labeled links). Nodes correspond to concepts within a
particular subject area or domain; links indicate relationships between pairs of
concepts (or nodes), and labels on each link explain how two concepts are related
(refer to Jonassen et al., 1993, for more in-depth coverage of concept mapping).
Students create concept maps by identifying important concepts and generating
and appropriately labeling the links between those concepts. This approach
assumes that a deep understanding in a subject domain allows an individual to
conceive a rich set of interrelationships among important concepts within that
domain (Heinze-Fry & Novak, 1990; Novak & Gowin, 1984). Asking students to
show relationships between important concepts by creating these maps, we can
evaluate their content understanding (Baker, Niemi, Novak, & Herl, 1992; Herl
et al., 1996; Jonassen et al., 1993; Ruiz-Primo & Shavelson, 1995). Concept
mapping relies less on verbal ability and is less dependent upon language skills
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than an actual essay writing task, but still requires other skills involved in such a
task. Thus, using a concept mapping approach allows us to separate the
assessment of content understanding from the assessment of communication
skills.

Collaboration. The second type of learning, collaboration, involves learning
how to cooperate with members of a team. Students learn to work together, each
contributing to the group in his or her own way. Collaborative learning in the
classroom can foster student learning and deeper understanding, as well as
higher levels of self-esteem, attitudes towards others, and social skills (Webb,
1995; Webb & Palincsar, 1996). In addition, teamwork has been studied from a
workplace readiness perspective: Interpersonal and teamwork skills are now
recognized as essential for future job preparedness (OÕNeil, Allred, & Baker,
1997). Researchers in education, industry, and the military all recognize that
collaboration can enhance learning, task performance, work productivity, and
product quality. In a workplace environment in which teams are believed to
offer the potential for greater competitiveness, employees are increasingly being
asked to work in teams. For all these reason, organizations at the national, state,
and local levels have begun calling for the use of collaborative group work in the
classroom (for example, California State Department of Education, 1992b;
Mathematical Sciences Education Board, National Research Council, 1989;
National Council of Teachers of Mathematics, 1989; OÕNeil, 1997).

Teamwork is thought to be composed of two sets of skills: taskwork skills
and teamwork skills (Morgan, Salas, & Glickman, 1993). Taskwork skills

influence how well a team performs on a particular task. Teamwork skills

influence how effective an individual member will be as part of a team. Further
defining teamwork skills, OÕNeil, Chung, and Brown (1997) identify six factors
that affect collaboration. Adaptability refers to a team memberÕs ability to
recognize problems within the team and respond appropriately. Communicat ion

involves the clear and accurate exchange of information among team members.
Coordination refers to how team members organize their activities to complete a
task on time. Decision making  involves using available information to make
appropriate decisions for the team. Interpersonal skills affect the cooperative
interaction of the individuals within a team. Finally, leadership is a team
memberÕs ability to provide direction and coordinate activities for the team. In



6

combination, skill in these factors determines how well a student collaborates
with his or her teammates.

One way to assess studentsÕ collaborative skills is through observation of
group work; factors affecting collaboration can be thus be evaluated for each team
member. Although observational methods are generally difficult and time-
consuming, evaluation of collaborative activity becomes easier through the use
of technology. If teammates communicate via computer, online messages sent
back and forth between them can be saved for subsequent coding as process
measures. Collaborative environments that present a set of constrained messages
from which to choose (rather than allowing any message to be sent) can further
simplify the coding process (OÕNeil, Chung, & Brown, 1997). By examining
online messages, we can better understand the process by which a collaborative
group arrived at its final product, as well as the contribution of each member of
the group to that final product.

Communication. A third type of learning involves the communication of
ideas. Communication is the ability to express oneself clearly and effectivelyÑ
both orally and through writingÑfor various audiences and purposes. A more
team-oriented definition sees communication as the process by which
information is clearly and accurately exchanged between people, often in a
prescribed manner using proper terminology (OÕNeil, Chung, & Brown, 1997).
Throughout their lives, students will benefit from the ability to convey their
beliefs. Whether by an oral presentation, through some form of writing, or by
using some multimode approach, students must learn how to express
themselves to others. This expression can take many formsÑpersuasive,
narrative, expository, explanatory, prose, and even questioning.

Much has been documented about the writing process, and scoring rubrics
created to assess writing ability abound (e.g., Baker, Aschbacher, et al., 1992;
California State Department of Education, 1992a; Koretz, Stecher, Klein,
McCaffrey, & Deibert, 1994; Novak, Herman, & Gearhart, 1996; Wolf & Gearhart,
1993). Argumentation, organization, focus, development, mechanics, audience
awareness, style, and tone are all part of good communication (Gearhart,
Herman, Baker, & Whittaker, 1992; Wolf & Gearhart, 1993).

As with collaboration, communication skills are content-independent; if a
student can communicate well, he or she should be able to do so across various
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content areas. However, prior knowledge plays heavily into this ability: It is
difficult to write about something you know nothing about. Thus, we suggest
assessing communication skills within a particular content area. By
incorporating both a concept mapping task (assessing content understanding)
and an explanation essay task (assessing content understanding and
communication skillsÑsee Baker, Aschbacher, et al., 1992) in our performance
assessment package, we can evaluate studentsÕ communication skills i n
conjunction with (and controlling for) content understanding. We have
developed and validated a procedure for reliably scoring the essays students
generate; this manner of assessing content understanding implicitly includes
within it an assessment of communication skills as well (i.e., mechanics and
argumentation). That is, students who communicate well are better able to
explain their content understanding.

Problem solving. A fourth type of learning involves problem-solving skills.
Whether termed problem solving or critical thinking, it is clear thatÑas schools
cannot possibly teach students everything they will need to know for the
futureÑproblem-solving skills fill the gap by allowing students to use what they
have  learned to successfully solve new problems or learn new skills. Industry
has complained that high school graduates are unable to function well in the
workplace because they lack the problem-solving skills necessary for success
(OÕNeil, 1997). Moreover, conditions of employment are now likely to change
several times during oneÕs life (Resnick, 1987; Resnick & Resnick, 1992). In such
environments, it is clear that problem-solving skills can significantly affect an
individualÕs likelihood of success in the workforce.

Problem solving is defined as Òcognitive processing directed at achieving a
goal when no solution method is obvious to the problem solverÓ (Mayer &
Wittrock, 1996, p. 47). The CRESST model of problem solving is adapted from the
problem-solving models of Glaser, Raghavan, and Baxter (1992) and Sugrue
(1995). It includes four scored elements: (a) content understanding, (b)
metacognition, (c) motivation (self-efficacy and effort), and (d) domain-specific
problem-solving strategies. The elements are scored separately and are reported
as a profile of problem solving. CRESST has created reliable and valid measures
for all of these constructs except problem-solving strategies. To assess content
understanding, CRESST has used both essay-based explanation tasks (e.g., Baker
et al., 1995) and paper-and-pencil concept mapping tasks (Herl et al., 1996). W e
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have also created measures of metacognition (OÕNeil & Abedi, 1996) and
motivation (Malpass, 1994, measuring self-efficacy; Huang, 1996, measuring
effort). In our case, the CRESST domain-specific problem-solving strategies are
measured on a search task by looking at search behavior and the use of the
information found. We believe that content understanding and problem-solving
strategies are best assessed domain-specifically whereas metacognition and
motivation are best assessed as domain-independent constructs. However, we
realize that all domain-independent constructs need to be instantiated in a
particular domain.

Problem-solving assessment depends greatly on the distance of transfer
(Salomon & Perkins, 1989) desired. Researchers distinguish between near
transfer and far transfer (Brown & Campione, 1984). Near transfer is defined as
the use of knowledge acquired from one domain in a second, similar domain.
Far transfer involves relating knowledge to a very different domain. Because
problem solving can be considered in itself a domain-independent activity, we
argue that assessment using far transfer tasks is preferable. However, researchers
also argue that although there are general cognitive skills, they function i n
contextualized ways (Perkins & Salomon, 1989; Stasz et al., 1993; Stasz, Ramsey,
Eden, Melamid, & Kaganoff, 1996). For example, Perkins and Salomon (1989)
suggest that Ògeneral cognitive skills can be thought of as general gripping
devices for retrieving and wielding domain-specific knowledgeÓ (p. 23). Thus,
assessment of problem-solving ability necessitates grounding in some content
domain.

One way to assess studentsÕ problem-solving skills is by having them search
for information on concepts about which they are uncertain. This uncertainty
principle for information seeking is described by Kuhlthau (1993) as bringing a
personÕs knowledge of a content domain from an affective state of uncertainty
(also known as Òanomalous state of knowledgeÓ or ASK; Belkin, Oddy, & Brooks,
1982) to one of understanding. Searching involves determining the information
need; choosing topics to pursue; exploring and finding general information to
increase overall understanding; formulating a search based on the information
found during exploration; collecting and gathering relevant information; and,
finally, presenting and resolving the problem (that is, finding answers or
solutions to meet the initial information need). The search process involves the
affective, cognitive, and physical realms of humansÕ experience and is often
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iterative; the search queries are reformulated repeatedly as the information need
changes (Marchionini, 1995).

The two main threads that run through the search literature are those of
analytic search and browsing (Bates, 1989; Marchionini, 1995). Analytic search
incorporates the use of Boolean operators, proximity operators (e.g., find Òrain
forestÓ within 5 words of ÒconservationÓ), and truncation characters (e.g.,
photosynthe* will find words including photosynthesis and photosynthetic; for a
more detailed description of 29 search tactics see Bates, 1979). Browsing is defined
as moving about in a data base, usually in a goal-directed manner (although
sometimes more freely). Browsing is especially well facilitated in hypertext
environments (such as World Wide Web browsers) where the click of a mouse
on an underlined or highlighted word sends the user to a related section, either
on the same page or on another page. Bates (1989) combines analytic search and
browsing and describes information seeking as Òberrypicking,Ó where searchers
mix both analytic searching and browsing techniques in order to find the
information in which they are interested.

Once relevant information is found, students must integrate this newly
learned material into their existing knowledge base. Thus, assessment of
problem solving in the context of searching can include both evaluation of the
search itself and evaluation of this knowledge integration. For instance, we can
assess student search behavior by giving students the task of improving their
existing representational maps (i.e., concept maps). By monitoring their online
search, we can determine whether (a) students search well enough to access rich
information sources to support the ÒweakÓ concept areas in their maps (as
determined from initial concept maps), and (b) students understand enough to
define the problem well through their search behavior. This approach allows us
to examine both the searching process (through analysis of student search
strategies) and the final integrated product (the updated concept map).

Thus, in our technical approach, we have created both process and outcome
measures of problem-solving strategies. Our context is a combination of search
and browsing, both which are facilitated in our software. The process measures
are quality of search behaviors and efficiency. Quality is assessed by the richness
of information found (that is, based on the level of breadth and depth of
information in each page, as indicated by a student-selected bookmark). Efficiency
is assessed by how quickly relevant pages are found. The problem-solving
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outcome measure is the improvement in studentsÕ concept maps within the
particular content area addressed.

Metacognition. The fifth and final type of cognitive learning is
metacognition. Metacognition is defined as Òknowledge or cognition that takes as
its object or regulates any aspect of any cognitive endeavorÓ (Flavell, 1981, p. 37),
or as knowledge about, awareness of, and control over oneÕs thoughts,
motivations, and feelings (Wittrock, in press). Thus, students who think about
their thought processes, or monitor their progress, or are aware of the cognitive
strategies they use to solve a problem are engaging in metacognitive activity.

The term metacognition encompasses a wide variety of components; some
researchers make a distinction between metacognitive knowledge  and
metacognitive activity. Metacognitive knowledge is defined as information
students have about their cognition. Students may be aware of (i.e., possess
metacognitive knowledge about) what they know, individual differences i n
problem solving, strategies that are appropriate in given situations, and the
difficulties associated with different learning situations (Bransford et al., 1982;
Slife, Weiss, & Bell, 1985; Swanson, 1992). Metacognitive activities are the
techniques students use to help them learn. Students use their awareness of their
cognition (i.e., metacognitive knowledge) in order to engage in activities that
foster learning (i.e., metacognitive activities). In particular, students can play a
more active role in their learning, process new information more effectively,
relate new information to previous information, use elaboration techniques to
better understand new material, organize and transform presented material, set
goals for themselves, plan their strategies, and self-monitor their performance
(Bransford et al., 1982; Puntambekar, 1995; Slife et al., 1985; Zimmerman &
Martinez-Pons, 1990).

In our Computer Aided Education and Training Initiative (CAETI) work,
we characterize metacognition as consisting of four components: (a) awareness,
(b) knowledge of cognitive strategies, (c) planning, and (d) self-monitoring or
self-checking (OÕNeil & Abedi, 1996). The second component, knowledge of
cognitive strategies, falls into the category of metacognitive knowledge;
awareness, planning, and self-checking are considered metacognitive activities.
Metacognitive activities are assumed to be resident in working memory or
consciousness (Dembo, 1994).
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Research on metacognitive processes suggests that students who plan and
monitor their learning and are aware of when to use which strategies often
become more active in their own information processing, create more complex
and efficient representations, and abstract information better than do students
who do not engage in self-monitoring activities. These types of results in turn
lead to greater transfer (Belmont, Butterfield, & Ferretti, 1982; Berardi-Coletta,
Buyer, Dominowski, & Rellinger, 1995; Wittrock, in press). Research has also
shown that students can be taught metacognitive techniques, which in turn can
enhance their performance and foster transfer (Berardi-Coletta et al., 1995;
Brown, Campione, & Day, 1981; Lodico, Ghatala, Levin, Pressley, & Bell, 1983;
Salomon, Globerson, & Guterman, 1989).

Assessment of metacognition in empirical work can be categorized as
domain-dependent  or domain-independent  (OÕNeil & Abedi, 1996). Many
domain-dependent studies use think-aloud protocols in order to elicit insights
into studentsÕ underlying thought processes (see Royer et al., 1993, for a review of
mainly domain-dependent metacognitive assessments). Domain-independent
studies generally gather information about studentsÕ metacognition via self-
report measures (see, for example, OÕNeil & Abedi, 1996; OÕNeil & Brown, i n
press; Pintrich & DeGroot, 1990; Weinstein, Palmer, & Schultz, 1987;
Zimmerman & Martinez-Pons, 1990). These self-report measures have been
found to be reliable; in addition, they are clearly a much more efficient way to
collect data than are think-aloud interviews.

Finally, researchers in the area of alternative assessment suggest that the
nature of alternative assessmentÑits authenticity, relevance, and inherent
interest to studentsÑwill foster more metacognitive activity in students than
standardized testing (OÕNeil & Abedi, 1996). Including a measure of
metacognition in our assessment package allows us not only to assess student
learning of metacognitive techniques, but also to directly address a possible
benefit of alternative assessment.

Analyses of Innovative Technologies

The cognitive demands analyses described below began with a large list of
possible CAETI innovative technologies to be explored. Thus, we collected
information on these CAETI technologies, using West EdÕs descriptions,
technical reports (as available), information requested directly from the
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developers, and face-to-face interviews. Our decision of which innovative
technologies to include for analysis was driven by which technologies would be
in place for CAETIÕs School Technology Study 1 (STS1) in September 1996, and by
our desire to focus on student-level (rather than teacher-level) assessment. After
reviewing all the information and investigating the current state of each
technology, the following five technologies were selected for inclusion in this
report: Algebra Tutor (1996), Hands-On Universe (HOU) (1996), Modeling And
Simulation Technologies for Education ReformÕs (MASTERÕs) Galaxy software
package (1996), WebCaMILE (1996), and Function Machines (1996).

For each technology, we then requested further information from the
developers, as available. Not only did we want access to the software itself, but
we needed to gain a better understanding of how the program was being used for
STS1. Because many of the technologies are relatively context-free or domain-
independent (that is, they can be used in a variety different contexts with varied
student populations), how precisely a technology is integrated into the classroom
curriculum will affect its impact on students. Thus, we asked developers to
supply us with STS1-specific information regarding the expected student
population using their product, the content area in which the product was to be
used, and as much curriculum material as was currently available. Equipped
with all this information, we then reviewed each technology or learning
environment again, in order to analyze the types of learning afforded by each
technology to its STS1 users.  This matching of technologies with the five types
of learning is shown in Table 1.

Table 1

Matching Technologies With the Five Types of Learning: The Cognitive Demands of Five
Technologies

Technologies
Content

knowledge
Collabo-

ration
 Communi-

cation
Problem
solving

Metacog-
nition

Algebra Tutor XX X XX

Hands-On Universe XX X XX

MASTER (Galaxy) XX X XX

WebCaMILE XX X X

Function Machines XX X XX

Note.  XX = primary goals.  X = secondary goals.
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Table 1 indicates for each of the technologies what kind of learning is
expected and, thus, what kind of assessment will be scheduled for STS1. The
distinction of primary versus secondary goals was derived from the cognitive
demands analysis. For each technology listed in Table 1, the next section of this
report first includes a brief explanation of the technologyÕs purpose, intended
audience, and intended use within CAETIÕs STS1 phase. This information is
essential to the analysis of these innovative technologies because, as explained
above, many of the products are usable in a variety of ways, in a variety of
content domains. Following these descriptions, a cognitive demands analysis is
presented for each technology.

Algebra Tutor

Purpose. The stated purpose of this technology is to Òhelp students to
develop algebraic skills which they can use in the context of real-life problem
situationsÓ (Anderson, Mark, Pelletier, et al., 1992). This intelligent tutoring
system encourages a hands-on, learning-by-doing approach in which studentsÑ
individually and in groupsÑattempt to solve real-world problems online, rather
than through the use of a textbook in the classroom. Algebra Tutor focuses on
multiple representations of information, teaching students how to use,
understand, and interpret various types of representations (e.g., text, tables,
graphs) in order to solve real-world algebraic problems.

Intended audience and use. The intended audience for STS1 is ninth-grade
algebra students, both individually and in groups. Although some of the
innovative technologies being reviewed here are relatively context-free, the
Algebra Tutor is very domain-specific: This product tutors high school students
in mathematics and algebra. Curriculum materials include problems in real-
world mathematical applications, stressing the relevance of mathematicsÑand
algebra in particularÑto everyday life.

Analysis. Students using Algebra Tutor go through a series of steps i n
solving each problem. For example, students fill in tables by identifying
important aspects of the problem and labeling table columns, select appropriate
units of measurement, create graphs, solve equations, and write formulas.
Algebra Tutor encourages students to become actively involved in the learning
process. Whether used individually, in student pairs, or in collaborative groups,
this intelligent tutor fosters learning and deep understanding of its algebra
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content via its interactive nature. Discussion (between team members),
interaction (both between team members and between individual students and
the tutor), and individualized feedback (from the tutor to the team or the
individual student) are the key components of this system. Problem-solving and
reasoning skills are fostered by the technologyÕs emphasis on representations of
real-world problems, andÑin particularÑits use of word problems.

Three types of learning are expected of students using Algebra Tutor. First,
students are clearly expected to gain an understanding of the algebra content
presented by the program. Second, it is anticipated that students will improve
their problem-solving skills by using this technology. Finally, when used in a
collaborative environment, collaborative skills as well as enhanced
understanding of the content domain should be fostered.

Hands-On Universe, MASTER, and WebCaMILE

Although Hands-On Universe (HOU), Modeling and Simulation
Technologies for Education Reform (MASTER), and WebCaMILE (Collaborative
and Multimedia Interactive Learning Environment) are three separate and
distinct technologies, they can be used in combination in order to create a real-
world scientific environment. Since the plan is to use all three technologies
together for STS1, for the purposes of this report they will be analyzed as one
unit.

Purposes. Hands-On UniverseÕs primary goal is to enable high school
students to perform genuine, real-world astronomical research in their
classrooms. MASTERÕs purpose is Òreal science done by real students in real
classrooms.Ó This purpose is achieved in the Galaxy software package by allowing
students to model or simulate interactions between fundamental astronomical
components (such as gravity, rotation, dark matter, and so on) using authentic
tools. WebCaMILE is a collaborative tool which encourages information-sharing
between individuals. When used together, these three innovative tools are
expected to facilitate a deeper understanding of astronomy and to make clear to
students how mathematics and science are applied to real-life scientific
investigations.

Intended audience and use. The intended audience for STS1 is high school
science students. While Hands-On Universe and MASTERÕs Galaxy target a
particular content area (i.e., astronomy), the WebCaMILE tool is completely
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context-free. The plan, however, is to have students use WebCaMILE to
communicate with each other regarding their astronomical investigations,
analyses, and findings.

Analysis. Hands-On Universe includes four components: the HOU
Telescopes (which capture the actual images), the HOU Telecommunications
Interface (World-Wide Web pages used to request and retrieve images, obtain
weather information, etc.), the HOU Image Processing Software (PC- or
Macintosh-based software used for data analysis), and the HOU Curriculum
(which includes real-world applications of math and science). Students use
information available on the Web and in the curriculum materials to request
images from one of several participating telescopes. They can then use the image
processing software to analyze their images. All four HOU components are
considered research tools to facilitate scientific investigations, which in turn
foster content understanding and problem-solving skills.

The Galaxy software package of MASTER allows students access to the same
scientific computing resources and environments used by scientists to study and
test their theories. Galaxy simulates and models the formation of a galaxy.
Students supply the initial galaxy parameters and use the package to design
experiments to explore possible patterns in galaxy formation. By simulating
galaxies, students can better understand underlying content and can learn
problem-solving skills.

WebCaMILE is a collaborative tool. At first glance, it looks like a nice e-mail
system that allows for attachments (including uploaded files) and formats
communication in such a way that related comments are automatically linked
together in easy-to-trace Òthreads.Ó Although fairly open-ended, WebCaMILE
does give users guidance in the areas of collaboration and communication.
WebCaMILE prompts users to identify the kind of communication they are
sending to other members of their team (e.g., new idea, rebuttal, question). The
software also suggests possible comments applicable to a variety of note types
(e.g., ÒI disagree with . . . because . . . Ó). These constraints encourage well
thought-out communications and facilitate better back-and-forth collaboration.
In a sense, they teach students what ÒgoodÓ messages should look like. In
addition, WebCaMILEÕs developers suggest that its use may encourage
metacognitive activity (i.e., by encouraging students to ask themselves questions
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such as: Did I appropriately respond to a message? Did I include relevant
information? Did I label the message correctly?).

Combining Hands-On Universe, MASTER, and WebCaMILE in the
classroom creates a powerful set of tools. Used collectively, students learn about
astronomy while using the same types of toolsÑand engaging in the same types
of collaborative activityÑthat real scientists and engineers are currently using i n
the field. Learning expected from students using these three technologies can be
found in all five families of learning. First, students are expected to gain a deeper
understanding of the astronomy content being studied. This will include both an
understanding of the content itself and an awareness of the importance and
relevance of this material to real-world science. Second, by using these three
technologies as research tools to answer pertinent scientific questions, students
will enhance their critical thinking skills. Third, it is hypothesized that using
WebCaMILE to discuss scientific findings will foster studentsÕ communication
skills. Fourth, WebCaMILEÕs message constraints are posited to foster student
metacognition. Lastly, the combination of these three technologies is expected to
improve studentsÕ collaborative skills. By using a collaborative environment i n
which working together is expected and rewarded, students should become better
at cooperating with other student Òscientists.Ó

Function Machines

Purpose. Function Machines is an application for a visual programming
language expressly designed for mathematics and science education. This
productÕs intended outcomes are to engage students in mathematical
investigations and to foster mathematical thinking and scientific inquiry.

Intended audience and use. Function Machines can be used in a variety of
ways, with a broad class of students, to study a wide range of topics. For STS1, the
intended audience is fifth-grade students; the content area to be explored is
mathematics and, in particular, the Department of Defense Education Activity
(DoDEA) MathLand curriculum. Developers plan to have students use Function
Machines in collaborative teams.

Analysis. Function Machines uses graphical representations, which makes
learning how to program easier and more straightforward. Using a simple
metaphor of a mathematical function as a ÒmachineÓ that takes something as
input and produces something as output, Function Machines simplifies the
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mathematics it teaches by making everything visual. Students can literally s e e

how functions work, by watching the machines in action, either step-by-step
(ÒstepÓ command) or in one uninterrupted sequence (ÒgoÓ command). Creating
machines (i.e., programming) in Function Machines is also visual; students
construct machines using a tools palette, connecting machines together with
drawn lines, called Òpipes.Ó

Machines (or programs) in Function Machines are actually sets of simpler
machines, the lowest level machines being predefined as primitive functions
(e.g., arithmetic functions, graphics, logic). Students can construct machines that
are either primitives or composites; composite machines are made up of
primitives and/or other composite machines. A machine can also be defined i n
terms of itself, as can its input, which can come from any machine, including
itself. Thus, iteration and the complex concept of recursion are both seen more
clearly through the use of this visual programming language. The programÕs
beauty and flexibility lies in its allowing students to create anything from a very
simple adding machine (e.g., input1 + input2 ==> output) to a complex series
(and/or encapsulated package) of machines to solve complex real-life
mathematical problems (e.g., planning a school dance). During the construction
and running of these programs, students can always see what is really going on
by ÒX-rayingÓ a composite machine to reveal its interior contents.

Three types of learning are expected of students using Function Machines.
First, students will better comprehend the specific mathematical topics (i.e.,
content understanding) presented to them while using Function Machines.
Because of its visual nature, Function Machines is also expected to foster an
inquiry-based mathematical environment in which students can engage i n
explorations and investigations. Thus, we expect studentsÕ problem-solving skills
to be enhanced via this software. Lastly, because Function Machines lends itself
to use in collaborative environments (e.g., groups of students working together
to solve multiple-step, complex mathematical problems), students using the
program in this manner should gain collaborative skills.

Assessment Specifications for Our Integrated Simulation

Because we can map the types of learning we expect from students onto
specific assessment tasks, we have assembled a suite of performance assessment
tasks (our integrated simulation) that includes both individual and collaborative
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concept mapping tasks, a problem-solving search task, an explanation task, and a
metacognitive questionnaire. The next section documents the domain
specifications for our integrated simulation.

Explanation task. Using the CRESST model, students will first complete a
short, paper-and-pencil prior knowledge measure, in order to activate relevant
prior knowledge. Then, students will be presented with the paper-and-pencil
explanation task. An interesting, relevant context will help to frame studentsÕ
written responses, and the explanation prompt will require students to
demonstrate deep understanding of the content area.

Individual concept mapping task. After completing the explanation task,
students are asked to construct a concept map using an online mapping tool. The
specific concepts and link labels for this task are provided to the students, and
students work alone during this task. The individual student concept maps are
scored online, by comparing them to a criterion (i.e., expert-constructed) map.

Problem-solving task. Once students receive feedback on their concept
maps, they are directed to use a constrained subset of Netscape to search for
information that will justify improving their maps. Students are instructed to
ÒbookmarkÓ Web pages that they believe support the modifications they make to
their concept maps, and to send those bookmarks to specific terms on the concept
map. For instance, a student who finds a page with relevant new information
about photosynthesis would bookmark the page and send that bookmark to the
ÒphotosynthesisÓ concept on his or her map.

The information space being searched by students has been designed
specifically for the concept mapping content area. This information space is a
series of Web pages that have been gathered from the Internet, edited, and re-
purposed for assessment use. The information space includes a glossary of
important terms, a search engine interface, and an index. In addition, each page
has been coded on various dimensions of relevance such that we can evaluate
each studentÕs information-seeking behavior as a problem-solving strategy
aimed at improving an existing concept map.

Collaborative concept mapping task. In this portion of the integrated
assessment, a three-member team collaborates on constructing a concept map.
One member is initially cast as the leader; however, each member of a group has
an opportunity to assume this pivotal role. The leader is the only team member
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that has the ability to actually change the group concept map; the other two
members have only visual access to the map. Any changes made by the current
leader to the group map are automatically updated to the screens of all members
in a group. Communication between group members takes place online, using
either predefined messages or an open messaging system. As in OÕNeil, Chung,
and Brown (1997), type of message usage is utilized as an index of specific group
processes. The product of each groupÑa collaborative concept mapÑreflects the
shared mental model of the group with respect to the relevant and important
connections between and among the concepts given. Using the individual and
group maps combined, we can gauge each studentÕs relative contribution to the
group map.

Metacognition questionnaire. A Likert-scale trait questionnaire will query
students on their general metacognitive activities during the integrated
simulation tasks. Items will target the four aspects of metacognition described
above: awareness (e.g., ÒI am aware of my own thinkingÓ), knowledge of
cognitive strategies (e.g., ÒI select and organize relevant information to solve a
taskÓ), planning (e.g., ÒI try to determine what the task requiresÓ), and self-
monitoring (e.g., ÒI check my work while I am doing itÓ).

Conclusion

By combining all of the tasks described in the previous section, we create an
integrated simulation for students. This assessment environment is integrated
both across grade levels and within content areas. In addition, we refer to this as
an integrated assessment because it blends real-world, meaningful tasks with a
project-based scenario that captures the many types of cognitive learning. The
assessment is simulated in the sense that we have incorporated real-world
activities, collaborative environments, and an Internet-like information space
within a closed assessment. Also, the environment simulates the types of
learning activities that CAETI technologies afford in a controlled environment,
which allows us to make inferences regarding student learning.

Within our integrated simulation, students move from one activity to the
next, the core content area flowing through all the tasks. Each task builds on the
prior task. The explanation task allows students to synthesize their previous
experiences and knowledge into a connected whole by explaining complex
concepts in a meaningful way. Team maps are helped by the previous creation of
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individual maps; searching for new information helps students enhance their
individual maps. Finally, the metacognitive questionnaire asks students to
reflect on their experiences to assess their awareness, planning, self-monitoring,
and cognitive strategy skills. In combination, these tasks form an interesting,
relevant, and motivating environment that allows students to show their
knowledge and understanding of a content area.

There is increasing use of technology in our schools. Such use has added to
the complexity of evaluating what students are learning. The technique we have
developed offers a partial solution and can be validated by expert review. Our
cognitive demands analyses describe the learning expected by these technologies
of students, andÑmost importantlyÑthey specify a class of assessment tools that
will tell students, teachers, and parents what has been learned. Such diagnostic
information will then allow for better understanding of individual studentsÕ
strengths and weaknesses for the customization of instruction.
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