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ASSESSING PROGRAM EFFECTS IN THE PRESENCE OF TREATMENT-

BASELINE INTERACTIONS: A LATENT CURVE APPROACH1

Siek-Toon Khoo and Bengt Muth�n

CRESST/Graduate School of Education & Information Studies

University of California, Los Angeles

ABSTRACT

The aim of this paper is to explore methods for evaluating the effects of randomized
interventions in a longitudinal design. The focus is on methods for modeling the possibly
nonlinear relationship between treatment effect and baseline and evaluating the
treatment effect taking this nonlinear relationship into account. A control/treatment
growth model formulation based on Muth�n and Curran (in press) was used as the
framework to assess treatment effects. Piecewise linear growth modeling was chosen to
study the treatment effects during the different periods of development. A multistage
analysis procedure was proposed for assessing treatment effects in the presence of
nonlinear treatment-baseline interactions. To avoid biasing effects of measurement
errors in the observed baseline scores, initial status factor score estimates from a latent
growth model were used in this analysis. Subsets of subjects, based on the form of the
nonlinear treatment-initial status interaction, were then used for treatment-control,
multiple-group latent growth modeling to assess treatment effects. Standard errors of
the estimates from this multistage procedure were obtained by a bootstrap approach.
The methods were illustrated using data from the Prevention Research Center at the
Johns Hopkins University involving an intervention aimed at improving classroom
behavior, the Good Behavior Game (GBG).

1 Introduction

Preventive interventions have the potential to reduce antisocial behavior,
minimize substance abuse, and enhance student learning. There is a need for
proactive preventive approaches and effective programs for identifying high-risk
children and for early preventive intervention.

The focus in the evaluation of program effectiveness is essentially to assess
the change that has taken place in the intervention group compared with the

                                                
1 We thank Sheppard Kellam and the Johns Hopkins Prevention Research Center for providing
data for illustrations.
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change that would have taken place had there been no intervention. Researchers
would want to know whether a program has an impact, how strong the impact
is, whether the impact is lasting and what the short-term and long-term effects
are. In terms of intervention design improvement and future implementation,
it would also be useful to know under what conditions the program would be
effective, for whom the program is effective, and what interaction effects there
are between treatment and the individual background characteristics and
experiences.

Intervention effects can be more effectively assessed when subjects are
randomized into treatment and control groups to ensure that the control group
is as similar to the treatment group as possible. Randomized interventions are
costly and not easy to design, arrange, or control. Very often they show small
main effects. Instead, effects often appear as interactions due to differential
response to the intervention (Brown & Liao, 1996). Interactions between
treatment and individual characteristics are common. If a treatment is delivered
in groups, then certain group characteristics may influence program effectiveness
as well, especially if the treatment involves interactions among the group
members. If a meaningful interaction effect exists, then it is important to detect it
and to investigate its nature during the intervention trials in order to identify
the subgroups that will benefit most from a program and the conditions under
which a program works best.

Treatment-baseline interactions represent systematic differences among
individuals at different baseline levels in the benefit they reap as a result of
intervention. For example, high-risk children may benefit more from an
intervention than children at low risk. Children at different baseline levels may
require different levels of intervention, and an intervention program that is
targeted for all children may not be vigorous enough for those with high-
baseline and may be irrelevant for those in the low-risk group. When this
happens, the treatment is only effective for individuals in the moderate baseline
range. The treatment-baseline interaction in this case is relative to baseline
ranges rather than individual baseline levels.

Appropriately targeted programs are more efficient and more cost effective.
Interaction effects that describe differential treatment impact need to be
examined carefully in order to improve program implementation and design
and also to better understand the change in the underlying developmental
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processes as a result of the intervention. But before a program can be
appropriately targeted, program effectiveness needs to be evaluated in terms of
impact and in terms of interactions with individual characteristics and
conditions of implementations.

Much of the research on studying change, especially in the education field,
has been based on the two-time-point, pretest-posttest design. Data with only two
time points generally do not provide enough information for studying change
(Bryk & Weisberg, 1977; Rogosa, Brandt, & Zimowski, 1982). It is advantageous to
study change in developmental processes over extended periods. A longitudinal
design with several outcome measurements collected over extended periods,
ideally covering the pre-intervention period, the period during intervention,
and the post-intervention period, would be more appropriate for studying
developmental changes. Longitudinal designs provide information about
individual patterns of change over time and make it possible to evaluate
program effectiveness in terms of growth trajectories.

Recent developments in the statistical theory of random effects modeling
(Bock, 1989; Bryk & Raudenbush, 1987, 1992; Goldstein, 1986; Laird & Ware, 1982;
Strenio, Weisberg, & Bryk, 1983) enable more integrated and flexible approaches
for the study of individual differences in change and the modeling of individual
growth. Growth modeling techniques in the context of latent variable modeling
(McArdle & Epstein, 1987; Meredith & Tisak, 1984, 1990; Muth�n, 1991, 1993, 1997;
Muth�n & Curran, in press; Willett & Sayer, 1994), which combine random effect
modeling with the flexibility of latent variable modeling, lend powerful tools to
the study of developmental changes. Latent growth modeling can be used to
model treatment effects of randomized preventive interventions in a flexible
way.

In research studies where there are distinct developmental periods, it may
be advantageous to model them as several stages of growth. The different periods
may have different growth patterns. Intervention programs with distinct phases
such as the pre-intervention period, the intervention period and the post-
intervention period are examples of these. Different factors may be relevant for
influencing growth in the different phases, or the influence of a covariate may
vary in the different phases. Modeling the similarities and differences of the
phases would provide more insightful analyses.
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In studying treatment-baseline interaction, the most relevant relationship is
that between the initial status and the change due to intervention. The treatment
effect is the added growth over and above the growth due to natural maturation.
Muth�n and Curran (in press) tested a linear relationship between the treatment
effect and the initial status within the growth model. When an intervention
program primarily benefits individuals in a certain baseline range, then the
relationship between treatment effect and baseline may not be linear for the
entire range. For one thing, it is unlikely that there is treatment-baseline
interaction in the group where there is no treatment effect.

The purpose of this paper is to investigate longitudinal methods for
modeling the possibly nonlinear relationship between treatment effect and
baseline and evaluating the treatment effect taking this nonlinear relationship
into account. The Muth�n-Curran method (Muth�n & Curran, in press) for
program evaluation will be used as the framework for assessing treatment
effects. A multistage analysis procedure is proposed for assessing the treatment
effects in the presence of nonlinear treatment-baseline interactions with respect
to baseline groups.

The methods are investigated and illustrated using data from a randomized
intervention program carried out by the Prevention Research Center at Johns
Hopkins University. The Good Behavior Game is a classroom-based
intervention program that was designed to reduce aggressive behavior i n
classrooms for elementary and middle school children. The illustration will
examine the treatment effects in two developmental stages of growth.
Differential treatment effects will be investigated with respect to baseline groups.

2 The Latent Curve Framework

Recent methods used in the study of individual change over time draw on
statistical techniques which have been given several different terms, for
example, random effects models or mixed effects models (Laird & Ware, 1982),
and hierarchical linear models (HLM; Bock, 1989; Bryk & Raudenbush, 1987,
1992; Goldstein, 1986, 1995; Strenio et al., 1983).

Use of random effects models for growth modeling has been extended and
applied in the context of latent variable modeling (McArdle & Epstein, 1987;
Meredith & Tisak, 1984, 1990; Muth�n, 1991, 1993, 1997; Willett & Sayer, 1994).
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This development goes beyond the conventional auto-regressive models of
structural equation modeling (see, e.g., Wheaton, Muth�n, Alwin, & Summers,
1977) and offers great flexibility in dealing with multivariate outcomes, multiple
processes, measurement models in the covariates, and modeling of mediational
effects.

In random coefficient growth modeling, level-1 gives the within-subject
model and level-2 gives the between-subject model. At level-1, the observed
status Yit  of an individual i at time t is expressed as the sum of the individualÕs
growth trajectory plus a residual term (eit )  representing random error at time t.

A basic model with linear growth can be expressed as

Yit = ai + bixit + eit , t =  1, 2, ..., T (1)

where ai  and bi  are the random growth parameters, the initial status and
growth rate that vary over individuals, and xit  is age, time points or other time-
related variables. In educational data, xit  usually denotes grade or testing

occasion and does not vary across individuals for a given t. At level-2, each of the
growth parameters from level-1 becomes an outcome variable, varying from the
group mean values, a  and b , as a function of some individual background
variables Zi :

ai = a + g a Zi + dai

bi = b + g b Zi + dbi (2)

where dai  and dbi  are the residuals associated with ai  and bi  respectively, and
g a  and g b  are the regression coefficients.

It is possible to model the growth process within the existing latent variable
framework for situations where xit  does not vary across individuals for a given

tÑfor example, in educational data where all the individuals under study share
the same testing occasions or grade. When the time-related variable does not
vary across individuals, it allows ai  and bi  to be treated as latent variables and xt

as a path coefficient.  Equation (1) above can be written as

Yit = ai + xt bi + zit , t =  1, 2, ..., T (3)
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where zit  is the individual specific residual at time t. This essentially sets the
stage for modeling growth using latent variable modeling. With xt=1 set to 0, ai

is an individualÕs initial status factor and bi  the growth rate factor. In order to

achieve this formulation in the latent variable context, the path coefficients for
the initial status factor ai  are all set to 1. In conventional latent variable

notation, the measurement part of this model is given by

Yi = Lh + ei (4)

where Yi  is a T x 1 vector of observed outcomes for the T time points, L  a T x 2

matrix of factor loadings, h  a 2 x 1 vector of latent variables representing the
growth parameters and ei  a T x 1 vector of error terms.  If we take T to be 4, we

have

Yi =
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In this formulation, the Yit Õs are strung out as a multivariate vector, and we

have a regular single-level latent variable model where all the flexibilities of
structural equation modeling can be applied. As latent variables, ai  and bi  can be

modeled as endogenous or exogenous variables as in the usual latent variable
modeling. To realize the full flexibilities of latent variable modeling, the y-
intercept vector n can be added to the above equation to set the stage for growth
modeling with multiple indicators at each time-point or multiple-group
modeling,

Yi = n + Lh + ei (5)

In a single group growth analysis with single measurement at each time point, n

can be set at zero while estimating the mean of ai . Alternatively, the same end

can be achieved by having a common intercept across time, while fixing the
mean of ai  at zero. The use of the intercept n in a multiple-group setting will be

described in section 2.2.
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2.1 Evaluation of Longitudinal Program Effects

Evaluation of treatment effects in the growth modeling context has been
made very accessible with the general availability of sophisticated multilevel
modeling software.  The methodology advances in latent growth modeling using
available structural equation modeling software add modeling flexibility.

In longitudinal studies with at least three waves of data, longitudinal
program effects can be evaluated using growth modeling by estimating the effects
of the dichotomous treatment/control variable on the growth rate. In (2) above,
if Zi is the dichotomous treatment variable, then the coefficient ga gives the

difference of the initial status means between the control and the treatment
group, while the coefficient gb gives the mean shift in the growth rate due to
treatment. The same applies in the latent growth framework. In this way, the
treatment effect is modeled as a fixed effect.

Within the latent variable growth modeling framework, Muth�n and
Curran (in press) describe a general formulation for evaluating randomized
intervention studies. They propose a multiple-population analysis approach for
the evaluation of treatment effects by introducing an extra factor in the treatment
group that captures the added growth rate due to treatment. This approach,
which treats the treatment effect as random rather than fixed and allows it to
vary across individuals, is described in the next section.

2.2 The Two-Group (Control/Treatment) Formulation

In a randomized intervention setting, the control group acts as a proxy for
the treatment group with the assumption that the treatment group would
display the same growth patterns as the control group if there had not been an
intervention. The treatment effect is evaluated by comparing the growth patterns
of the treatment group to the normative growth patterns of the control group.
The control and treatment groups are analyzed in a two-group setting. The two-
group formulation treats the control group and the treatment group as two
different populations analyzed in a multiple-group latent variable analysis i n
line with J�reskog and S�rbom (1979). The control group is used to establish the
normative growth parameters (the initial status factor and the normative growth
rate factor); the treatment group has an added growth rate factor that captures
treatment effect in addition to these normative growth factors.  This is realized
by constraining the normative growth factors ( ai , bNi ) in the treatment group to
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be equal to those in the control group.  The added growth rate factor (bEi ) that
captures the treatment effect is omitted in the control group.  The basic growth
model can be expressed as

Control group:

Yit = n + ai + xt bNi + zit , t =  1, 2, ..., T (6)

Treatment group:

Yit = n + ai + xt bNi + xEt bEi + zit , t =  1, 2, ..., T (7)

A nice feature of this formulation is that it models the treatment effect as a
random variable that varies across individuals in the treatment group.
Covariates can be introduced into the model to explain the variation in this
variable (bEi ), thus modeling the influence of individual characteristics in the

degree of response to treatment. This is in effect modeling interaction effects
between the treatment and the covariates. By virtue of the latent variable
framework, it also allows the regression of the treatment effect on the initial
status factor, thus modeling the treatment-baseline interaction. With the
flexibility of multiple-group modeling in the latent variable framework, non-
equivalent groups can be allowed to have different initial status and the
difference tested for significance. This can be achieved by using the y-intercept to
capture the initial status mean of the first group by having a common y-intercept
across time and across groups while holding the initial status mean of the first
group at zero. The initial status mean of the second group then represents the
mean difference that can be tested for significance.

The Òadded growth due to treatmentÓ factor bEi  can be regressed on the
initial status factor or other covariates to capture the interaction effects. bEi  can

be expressed as a function of initial status and possibly other covariates:

bEi = g aai + g1Z1 + g 2Z2 + di (8)

Here, g a  captures the linear interaction between the initial status and the

treatment effect on the growth rate. This is possible because the regression only
pertains to the treatment group, thus achieving the same aim as using a
dichotomous treatment/control variable. Furthermore, nonlinear interactions
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with the covariates can be dealt with in the observed covariates. Nonlinear
interaction between the initial status and the treatment effect cannot be easily
modeled as yet using available structural equation modeling (SEM) software.
This is because conventional SEM does not allow nonlinear relations involving
latent variables. A multistage procedure for evaluating treatment effects in the
presence of nonlinear treatment-baseline interactions is described in the next
section.

3 A Multistage Procedure

Figure 1 displays four plots depicting four hypothetical situations to
illustrate four possible types of treatment-baseline interactions. In all the panels,
the treatment is one that is designed to bring about a decrease in the outcome
variable y.

In each of these plots, for a given baseline value, it is possible to compare
the y values of two individuals, one from the treatment group and one from the
control group. If we take the y value on the control curve as the normative value
without an intervention, the difference between the two yÕs will be the
Òtreatment effectÓ or the Òy dropÓ for an individual in the treatment group at
that baseline level. If there is no treatment-baseline interaction, the two lines
would have been running parallel, as in plot A. Here, the treatment effect is
nearly the same at all baseline levels. Plot B shows that the treatment effect
increases along the baseline and the increase varies linearly with baseline,
indicating a linear treatment-baseline interaction. Plot C shows a treatment effect
that first increases with baseline and then decreases after a certain baseline level,
showing a nonlinear relationship in the interactions.  

Plot D shows an interesting situation, where there is hardly any treatment
effect for an individual with baseline level below the value of 2. The treatment is
only effective for individuals with higher baseline, and for these individuals, the
treatment effect is quite uniform. This also shows a nonlinear baseline
interaction; the treatment is effective for a certain baseline range and not for the
other with no treatment-baseline interactions within each range. In this case, the
treatment effects would be underestimated if the treatment-baseline interaction
is ignored and overestimated if the interaction is assumed linear.

Because conventional SEM does not allow nonlinear relations involving
latent variables, the nonlinear interaction between the initial status and the
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Figure 1.  Treatment-baseline interactions.
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treatment effect cannot be expressed in terms of a single functional form.
However, most nonlinear relationships can be approximated using piecewise
linear forms if the general form of the nonlinear relationship is known. A
possible approach for modeling nonlinear treatment-baseline interactions would
be to subset the sample along the baseline continuum into subgroups such that
the interaction is linear within each subgroup. The challenge to this method is to
find the appropriate cutpoints.  

It is proposed here that a multistage procedure be carried out. First, a better
estimation of individual baseline levels is obtained to better assess the nature of
the interactions. Next, the nature of the interactions is assessed, and in the
presence of nonlinear treatment-baseline interactions, the baseline groups with
differential treatment effects are identified. Lastly, the treatment effect within
each baseline group is evaluated.

3.1 Estimation of Baseline and Assessing the Nature of the Interactions

A class of nonparametric regression procedures called generalized additive
models (GAM; Hastie & Tibshirani, 1990) can be a useful tool for exploring the
presence of nonlinear relationship and its shape, for example, in identifying the
nature and direction of treatment-baseline interactions.  It may also be useful i n
the determination of cutpoints. Brown (1993) describes how GAM can be used for
examining intervention effects and for assessing the potential interactions
between the intervention and individual characteristics including baseline.
Generalized additive models allow a dependent variable Y to change in a
nonlinear fashion with each predictor Xr  with

E(Y) = f r (å Xr ) ,       r = 1, 2, ..., R (9)

where the f r  are individual smooth functions of Xr .  

GAM can be used to explore the nature of the treatment-baseline interaction
in preliminary analysis to study the relationship between later measurements
and baseline. The outcome variable at a later time point can be used as a
dependent variable fitted to a smooth function of the baseline used as the
predictor as those shown in Figure 1. An advantage of using GAM is that the
shape of the function in a certain baseline range is not much affected by the
shape along other parts of the baseline, therefore the effects of outliers are mainly
local.
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Using the fallible first measurement as a covariate can, however, produce
biased results as in using a single pretest measure in an ANCOVA analysis
(Reichardt, 1979). The initial status as captured in a growth model would make a
better proxy for baseline than a single premeasure. It is more reliable because a
series of measurements across time provide more information on the initial
status of an individual than just a single measurement.  If the status across time
is growing at a certain rate, then each of the observed outcomes across time is a
function of the initial status and the growth rate. Each outcome provides
information for and contributes to the estimation of the initial status and the
growth rate. This is analogous to having multiple indicators contributing to the
estimation of a factor in a confirmatory factor analysis, thus purging the
measurement errors.

The initial status is a unobserved latent variable and cannot be used in the
GAM analysis directly. The value of the initial status factor in the growth model
can, however, be estimated for each individual based on the growth model using
factor score estimation and then used in the GAM exploration.

Consider a vector of observed outcomesYi , let n  be the vector of y-
intercepts, L  the matrix of factor loadings, hi  the vector of latent variables, and
ei  the vector of error terms. In a factor analysis model with mean structure,
Yi = n + Lhi + ei , the estimation of factor scores Ãhi  by the regression method is
given by Lawley and Maxwell (1971) as a function of observed outcome Yi :

Ãhi = a + Y ¢L (LY ¢L + Q)-1 (Yi - n - La ) (10)

where a = E(h), Y = V(h), and Q = V(e ) .

This formula can be applied to estimating factor scores for the growth
parameters in a growth model. The latent growth model is in effect a
confirmatory factor model with a mean structure, where the Yi 's are repeated

measurements of the same variable across time and L  is structured in such a
way that the factors capture the initial status and the growth rate.

How well the factor scores can be estimated is indicated by the correlations
between the estimated factor scores and the true factor values. These correlations
are called the factor score determinacies and can be calculated from the
covariance matrix between the true and the estimated factor scores. The
covariance matrix is given by
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Cov( Ãh ,h) = W = Y ¢L (LY ¢L + Q)-1 L Y (11)

Let  w jj   be the jth diagonal elements of W .  Then for latent variable h j  ,

w jj  = Cov( Ãh j ,h j ) = V( Ãh j ) , (12)

and the factor score determinacy is therefore given by

w jj / SQRT [V( Ãh j )V(h j )]  = SQRT [w jj / V(h j )]. (13)

The regression method for estimating factor scores is equivalent to the
customary empirical Bayes (EB) estimator in growth modeling (e.g., Bock, 1989).
Factor scores can also be estimated with covariate information in addition to the
observed outcome. Using the regression method factor score estimate as a
covariate gives regression coefficients that are consistent and unbiased (Muth�n
& Hsu, 1993; Tucker, 1971).  

For valid comparisons of the control group and the treatment group, the
estimated factor scores for both groups need to be on the same metric, that is, on
the same interval scale. This is achieved when the parameter values for use i n
the calculation of factor scores are estimated using equal measurement structure
in line with multiple-group CFA theory (J�reskog & S�rbom, 1979; S�rbom,
1982). The measurement parameters that need to be equal across groups are the
factor loadings, L , and the y-intercepts, n. This is the so-called measurement
invariance condition. In the growth modeling framework, this condition means
that the initial status factor and the growth rate factor need to have the same
meaning in both groups.  In general, this condition can be achieved by using the
multiple-group approach, analyzing the two groups simultaneously. The L  is set
to be the same across groups and the y-intercepts fixed at zero across time and
across groups, while estimating the factor means without constraints. A n
alternative is to estimate the y-intercepts but constrain them to be equal across
time and across groups, while holding the initial status factor mean of one
group, usually the control group, to zero and estimating the initial status factor
mean of the treatment group. The advantage of the second method is that the
initial status factor mean of the treatment group gives the difference between the
means of initial status of the two groups.
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3.2 Subsetting the Sample and Multiple-Group Comparisons

If the sample can be subsetted along the baseline continuum into subgroups
such that the relationship between initial status and treatment effect is linear
within each subgroup, then latent growth modeling can be carried out in a
multiple-group setting so that each subgroup treatment/control pair can have its
within-group interaction effects modeled. For example, plot D in Figure 1 would
motivate subsetting the control and treatment group by dividing at baseline
value 2.

Within each pair, there are the control group and the treatment group with
comparable baseline. Full growth modeling utilizing all time points can then be
carried out to evaluate treatment effects comparing growth patterns of the low-
baseline treatment group with the low-baseline control group, and the high-
baseline treatment group with the high-baseline control group. With the growth
modeling, it is then possible to see how the growth trajectories of control and
treatment group individuals compare over an extended period for the different
baseline ranges.

The GAM exploration can help in deciding the cutpoints in the subsetting of
the sample to be used in this paired multiple-group analysis. The decision on the
cutpoint may not be clearcut. Given that the GAM analysis is based on snapshots
at two time points, results may depend on which time point is chosen as the
dependent variable. Sensitivity analysis using different time points may need to
be carried out unless the choice is substantiated by good research reasons.  

The uncertainty involved in the multistage procedure, including the
subjective decision on choice of cutpoint, should be taken into account i n
making inferences in the final growth analysis and the evaluation of treatment
effects. When this is not done, it is very likely that the standard errors would be
underestimated and the inference may be too optimistic (Faraway, 1992;
Weisberg, 1985, p. 229). One possible solution would be to carry out a
bootstrapping procedure to obtain more realistic estimates of the standard errors.

This multistage procedure, which involves paired subgroup analysis for
evaluating treatment effects in the presence of nonlinear interactions between
treatment and baseline, will be illustrated using the Johns Hopkins Prevention
Research Center data in the next section. The illustration will include estimation
of bootstrap standard errors.
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4 Illustration of the Multistage Procedure

The Good Behavior Game intervention program was part of a larger
preventive intervention trial completed by the Johns Hopkins Prevention
Research Center. The longitudinal study started in 1985 with two years of
classroom-based randomized preventive intervention in the first and second
grades. Data were collected from the first grade through the eighth grade from
about 1,000 students, during both the two years of intervention period and six
years of post-intervention period.  Schools involved were randomly assigned to
either an intervention or a non-intervention condition (external control). The
intervention schools were randomly assigned to one of the two intervention
programs: the Mastery Learning (ML) program for improving reading proficiency
or the Good Behavior Game (GBG) program that was a classroom-based
intervention designed to reduce aggressive behavior in the classrooms.  Within
the intervention schools, children entering first grade were assigned randomly to
classrooms, and one classroom per school was selected as a control classroom
(internal control).  

The data used for this study are pertinent to the GBG program. Children
were measured in their aggression level four times during the two-year
intervention period, in the fall and the spring of the first and second grades.
After the intervention had ended, the children were evaluated once a year in the
spring during the six-year follow-up. The primary measure of the aggressive
behavior was the Teacher Observation of Classroom Adaptation-Revised (TOCA-
R) scale. The scale includes items such as breaks rules, fights, harms property and
loses temper.

The GBG program is aimed at the social adaptational process in the
classroom related to rules and authority; the hypothesis was that social
maladaptive aggressive behavioral responses were malleable through changing
the social adaptational process in the classroom, and that the changes would
remain in the child's coping responses to later social task demands concerned
with rules and authority.  Details of the intervention program and measurement
used can be found in Kellam, Rebok, Ialongo, and Mayer (1994).

4.1 Previous Research Findings

Kellam et al. (1994) studied the course of aggression among the Cohort 1
male and female children. They found that the GBG had increasing effects as the
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level of aggression rose in the fall of first grade, but only among the males, and
only among the males at or above the median on aggression in the first grade.
Analysis of covariance was used to test the impact of GBG separately by gender
and then by the subpopulations of male and female at different levels of initial
aggression taking the measurement at the Fall of Grade 1 as baseline and
comparing the children's aggression level at Grade 6. Their results show a
possible treatment-baseline interaction. They concluded that there was a
treatment effect only for males who were at or above the median level of
baseline aggression and that the effect increased with the increase in baseline.
Their findings were based on data at two time points, comparing aggression level
at Grade 1 and Grade 6.  

Muth�n and Curran (in press) used data from all eight time points from
Grade 1 to Grade 6 for the Cohort 1 males to illustrate their two-group
formulation for modeling intervention effect, comparing longitudinal growth
trajectories between the control group and the treatment group. They fitted a
quadratic trajectory to the data and demonstrated how linear interactions
between the initial aggression status and the treatment effect can be modeled
within the context of the two-group control/treatment formulation. They found
significant interaction between the initial aggression level and the treatment
effect. They also found significant treatment effect in the linear growth rate.

For direct comparison of results, the same dataset and measurement scale
were used for the current method illustration, and the clustering of the data
ignored as in the Muth�n-Curran study. The subset of data used include only the
Cohort 1 males and only children who stayed in the same treatment or control
condition for the two years of the intervention period. There were 75 such male
children in the GBG treatment group. The GBG control and ML control were
pooled to form the control group with 111 male children. These were the
children in the intervention schools who did not undergo any GBG treatment
program.

In the GBG intervention study, it was found that the third grade was a
transition period worth further investigation (Kellam et al., 1994) where mean
aggression was observed to have peaked during the spring of Grade 3 with larger
variance. In this illustration, a piecewise linear growth model (Bryk &
Raudenbush, 1992; Seltzer, Frank, & Bryk, 1994) was considered for studying the
treatment effects during the different periods of development in view of the
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findings in Kellam et al. (1994). The two phases are from Grade 1 to Grade 3 and
from Grade 3 to Grade 6 with a large part of the early phase coinciding with the
intervention period. Using the piecewise linear growth model, the shorter and
longer term intervention effects can be assessed; also, the nature and size of the
treatment-baseline interactions during the two periods can be determined
separately.

4.2 The Growth Model and Preliminary Analyses

The two-stage piecewise linear growth model has an initial status factor and
two growth rate factors, one for each piece. Model specifications of piecewise
linear growth models in the latent curve context are discussed in Khoo (1997).
Figure 2 shows the path diagram of this model. The initial status factor was
allowed to covary with the two growth rate factors. The input for LISCOMP
program (Muth�n, 1987) is available from the authors.

Initial 
Status

Growth
  Rate1 

Growth
  Rate2 

1 1 1 1 1 1
0.5

1 1.5
2.5

1

T1 T2 T3 T4 T5 T6 T7 T8

2.5 2.5 2.5

1 1 2 3

Figure 2.  A two-stage piecewise linear growth model.
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The data were first analyzed separately for the control group and the
treatment group.  This piecewise model fitted well for both groups; better for the
control group, c2(21) = 25.59, p = 0.22, than for the treatment group, c2(21) = 30.70,
p = 0.08. The early growth rate means (during intervention) are positive and
significant (at 0.05 level) for both groups. For the control group, the mean
aggression level remained nearly constant after the spring of the third grade
whereas for the treatment group, it decreased gradually.  

The two groups were analyzed jointly in a multiple-group setting, with
added growth rate factors to model the treatment effects as described in Muth�n
and Curran (in press). The treatment group had the same three growth factors as
the control groups, which established the normative growth, and two added
growth rate factors to capture the growth rate differences due to intervention.
The path diagram for this two-group model is shown in Figure 3. The equality of
the initial status between the two groups was tested in terms of the mean and the
variance of the factor. Results showed that only the equality constraint across
group on the variance of the initial status factor needed to be relaxed. The added
growth rate factors were regressed on the initial status factor to test for linear
treatment-baseline interactions in the two different stages of growth. This model
fitted reasonably well, c2(50) = 60.87, p = 0.14. Estimates and standard errors are
shown in Table 1 and the mean trajectories are shown in Figure 4.

There is significant variation in the initial status factor in both the control
and the treatment groups. The early growth rate factor has a mean that is
significantly greater than zero and a significant variance. In the later stage, from
the third grade to the sixth grade, the growth rate factor mean is not significant,
but there is significant variation in the growth rate. These results show that
neither of the regression intercepts of the early added growth rate and the later
added growth rate is significantly different from zero. Because the initial status
means are set at zero for both groups, these regression intercepts are the added
growth rate means, indicating that there are no overall treatment effects in the
early or the later stages. In both the growth stages, the initial status influence on
the added growth rate factor in the treatment group was found to be negative
(-0.134, -0.098) and significant (tÊ=Ê-2.949, tÊ=Ê-2.093), showing substantial
treatment-baseline interaction. The more aggressive individuals benefit more
from the treatment; their aggression level decreases at a higher rate. This finding
is consistent with that of Kellam et al. (1994) and Muth�n and Curran (in press).
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Table 1

Two-Group (Control/Treatment) Analysis: Two-Stage Piecewise Growth Model

Control group (n = 111) Treatment group (n = 75)
c2(50) = 60.87,  p = 0.14

Outcome variables

Intercept 2.014 (0.023) = 2.014 (0.023) 

Growth factors

Initial status
Mean 0.0 ( * ) 0.0 ( * )

Variance 0.624 (0.106) 1.148 (0.229)
Early growth rate

Mean 0.128 (0.033) = 0.128 (0.033)
Variance 0.036 (0.011) = 0.036 (0.011)

Later growth rate
Mean 0.005 (0.027) = 0.005 (0.027)

Variance 0.034 (0.015) = 0.034 (0.015)

Growth factor covariances

Initial status - Early growth rate 0.0 ( * ) 0.0 ( * )
Initial status - Later growth rate 0.0 ( * ) 0.0 ( * )

Regression on initial status

Added early growth rate
Intercept 0.006 (0.054)

Slope -0.134 (0.046)
Added later growth rate

Intercept -0.060 (0.054)
Slope -0.098 (0.047)

Residual variances for outcome variables

Time 1 0.441 (0.085) 0.441 (0.117)
Time 2 0.452 (0.076) 0.378 (0.095)
Time 3 0.417 (0.068) 0.528 (0.110)
Time 4 0.519 (0.081) 0.721 (0.134)
Time 5 0.421 (0.078) 0.641 (0.130)
Time 6 0.404 (0.078) 0.745 (0.139)
Time 7 0.272 (0.088) 0.268 (0.072)
Time 8 0.261 (0.131) 0.631 (0.146)

* Parameter is fixed in this model.
  Standard errors are given in parentheses.
= Parameter set equal across group.
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T1 T2 T3 T4 T5 T6 T7 T8
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Figure 3.  A two-stage piecewise linear growth model in a multiple-group (control/ treatment)
setting.

As shown in Muth�n and Curran (in press), it is easy to conclude that there is no
overall treatment effect since the treatment effect is seen only through the
interaction effect with baseline.  In order to identify the subgroup who benefited
substantially from the intervention and to assess the actual treatment effects i n
this subgroup, further analyses were carried out using the multistage procedure
proposed in Section 3.
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Figure 4.  Mean growth trajectories (simultaneous joint analysis).

4.3 Baseline Estimation and Assessing Nature of Treatment-Baseline

Interactions

Data from the first four time points were used for the estimation of baseline.
Three waves of data would have been sufficient for a linear growth model to
estimate the initial status, but because there were four waves of data covering the
two-year intervention period, all four time points were used. The two groups
were analyzed simultaneously with the same L and with the y-intercept fixed at
zero across time and across groups. This ensures measurement invariance across
the control and treatment groups and therefore puts the factor scores of the two
groups on the same metric. In addition, because the control and treatment group
shared the same measurement occasions and were measured under the same
conditions, the error variances of each outcome variable were equated across
groups. This constraint was tested to not significantly affect the fit of the model.
No other parameters were constrained to be equal. There was a reasonably good
model fit, c2(8) = 10.41, p = 0.24. The first measurement was predicted by the
model with an R2 of 0.68 for the control group and 0.80 for the treatment group.
The initial status factor scores were calculated for each individual based on the
regression method using the estimated parameters and the observed outcome
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variables. Factor score determinacy, which measures the correlation between the
estimated factor scores and the true factor values, was 0.88 for the control group
and 0.95 for the treatment group. These factor score determinacy values were
considered high enough for the purpose of ranking the subjects for subsetting.

Figure 5 shows a GAM plot of aggression level at the spring of Grade 6
(Time 8) fitted to a smooth function of the factor score estimated baseline for the
treatment group and the control group. The black dots on the fitted lines show
individual fitted values. The 95% confidence bands are shown around the fitted
lines. While the fitted line for the control group looks nearly linear with
aggression at Time 8 increasing with baseline, the treatment group shows a
decline in the aggression level for subjects with baseline level above the mean.
With this plot, it is possible to compare the final aggression level of two
individuals, one from the treatment group and one from the control group, who
have the same baseline. The difference between the aggression levels will be the
Òtreatment effectÓ or the Òaggression dropÓ for an individual in the treatment
group at that baseline level if we take the control aggression level as the
aggression level of the individual if there had not been an intervention. If there
is no treatment-baseline interaction, the two lines would have been parallel,
with the Òaggression dropÓ due to treatment nearly the same at all baseline
levels. The plot shows that the Òaggression-dropÓ is not uniform along the
baseline and does not vary linearly with the increase of baseline. An effect of
treatment is not apparent for children who are below the mean aggression level.
A treatment effect only appeared for individuals whose baseline aggression was
above the mean. This is consistent with the Kellam et al. (1994) findings, but
within the high group for whom the treatment was effective, the treatment effect
appears to vary nonlinearly with baseline. On the extreme right end of the plot,
there are two individuals who appear to be outliers. How the growth of these
individuals may affect the analysis results will be investigated.

Because the generalized additive models are based on two time points only,
the treatment effects shown may be sensitive to the choice of the dependent
variable. As a sensitivity check, GAM plots varying as dependent variable the
outcome at the spring of Grade 1 (Time 2) to the spring of Grade 5 (Time 7) were
also plotted and shown in Figure 5B and Figure 5C. From the plots, we can see
that the same interaction effects start showing at Time 3, but they do not appear
to be substantial until Time 7 and Time 8. The aggression curve for the treatment
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Figure 5 B.  GAM fitted values (T2ÐT4).
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group appears to drop below that of the control group at the higher end of
baseline in all of the plots except for Time 5 (Grade 3) and Time 6 (Grade 4). At
Time 5, the aggression level of the two outliers is high, and this brings the
treatment curve up at the right hand end. At Time 6, the treatment curve is
above the control curve in the middle range of baseline, though not by a
significant amount. At Time 7 and Time 8, the gap between the control curve
and treatment curve widens for the higher baseline range. The cutpoint decision
would have been similar if using Time 7 or Time 8. Looking at the series of plots,
it is noted that the estimated aggression levels of the two outliers dropped from
Grade 4 and stayed low from Grade 4 through Grade 6.

4.4 Multiple-Group Growth Analyses

In order to model the nonlinear interaction within the growth model, the
control and the treatment groups were both divided into the high-baseline group
and the low-baseline group based on the estimated baseline and the differential
response to treatment. A cutpoint was chosen based on the Figure 5 GAM plot
using Grade 6 (Time 8) aggression. The point chosen was that which appeared to
divide the two samples into two groups where there appeared to be treatment
effects in one group and not in the other. These two groups are the high-baseline
pair (42 in the control group and 41 in the treatment group) and a low-baseline
pair (69 in the control group and 34 in the treatment group). The 95% confidence
bands around the two GAM curves can also be taken into account in making the
decision on the minimum baseline value where the treatment starts to show
differential effect.

The observed means of the eight time points from the fall of Grade 1 to the
spring of Grade 6 are plotted in Figure 6 for both the high- and the low-baseline
groups. The data were reanalyzed based on the same two-piece linear growth
model but carrying out pairs of two-group analyses where the low-baseline
control group was compared with the low-baseline treatment group (Model L),
and the high-baseline control group was compared with the high-baseline
treatment group (Model H).

Model L started as exactly the same model as the two-group, two-stage
piecewise growth model for the joint analyses of the full control and treatment
groups. But this Model L has a poor fit. Each of the equality constraints was tested
i n turn, and it was found to be necessary to relax the equality constraints for the
variances of the normative growth rate factors. The variance of the later growth
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Figure 6.  TOCA-R observed means over time (high- and low-baseline groups).

rate was found to be zero in the control group and was fixed at zero. Even with
these equality constraints between the control group and the treatment group
relaxed, Model L does not fit well, c2(49) = 74.73, p = 0.01. Estimates are shown i n
Table 2.

Model H started as the two-group, two-stage piecewise growth model with
the regression of the added growth rate factors on the initial status. The error
variances for outcome variables were also equated across groups. The model has
a good fit, c2(56) = 65.299, p = 0.19. Estimates are shown in Table 3. The two
regression slopes on the initial status are negative but not significant, showing
that the treatment-baseline interaction effects are not significant anymore within
the more homogenous group. The same model was analyzed without
interaction effects. This model fits reasonably well also, c2(58) = 70.93, p = 0.12.
Estimates are shown in Table 4, and estimated mean trajectories are plotted and
shown in Figure 7 together with the low-baseline groups. The mean normative
growth rates are not significantly different from zero both in the early stage and
in the post-intervention stage. The later normative growth rate has a greater
variation than the early normative growth rate, but neither is significant in these
high-baseline groups. The added early growth rate mean for the treatment group
is also not significant and practically zero, but the added growth rate mean in the
later piece is found to be significant (m = 0.201, t-value = -2.07) and negative.
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Table 2

Two-Group (Control/Treatment) Piecewise Analysis: Low-Baseline Groups

Control group (n = 69) Treatment group (n = 34)
c2(49) = 74.73,  p = 0.01

Outcome variables

Intercept 1.301 (0.029) = 1.301 (0.029) 

Growth factors

Initial status
Mean 0.0 ( * ) 0.0 ( * )

Variance 0.0 ( * ) 0.033 (0.019)
Early growth rate

Mean 0.212 (0.040) = 0.212 (0.040)
Variance 0.064 (0.014) 0.027 (0.011)

Later growth rate
Mean -0.018 (0.032) = -0.018 (0.032)

Variance 0.0 ( * ) 0.008 (0.027)

Added early growth rate
Mean -0.019 (0.056)

Variance 0.0 ( * )
Added later growth rate

Mean 0.042 (0.054)
Variance 0.0 ( * )

Residual variances for outcome variables

Time 1 0.141 (0.024) 0.031 (0.020)
Time 2 0.226 (0.039) 0.095 (0.031)
Time 3 0.291 (0.051) 0.240 (0.063)
Time 4 0.459 (0.082) 0.233 (0.063)
Time 5 0.421 (0.096) 0.254 (0.084)
Time 6 0.329 (0.087) 0.296 (0.098)
Time 7 0.335 (0.086) 0.207 (0.124)
Time 8 0.405 (0.089) 0.359 (0.236)

Residual covariances for outcome variables

Time 1-Time 2 0.100 (0.025) -0.008 (0.019)
Time 2-Time 3 0.033 (0.017) -0.003 (0.022)
Time 3-Time 4 0.281 (0.058) 0.158 (0.053)
Time 4-Time 5 0.045 (0.040) 0.033 (0.037)
Time 5-Time 6 -0.084 (0.060) 0.054 (0.068)
Time 6-Time 7 0.068 (0.066) -0.004 (0.060)
Time 7-Time 8 0.049 (0.061) 0.032 (0.155)

* Parameter is fixed in this model.
  Standard errors are given in parentheses.
= Parameter set equated across group.
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Table 3

Two-Group (Control/Treatment) Piecewise Analysis With Interactions: High-Baseline Groups

Control group (n = 42) Treatment group (n = 41)
c2(56) = 65.30,  p = 0.19

Outcome variables

Intercept 2.980 (0.105) = 2.980 (0.105) 

Growth factors

Initial status
Mean 0.0 ( * ) 0.0 ( * )

Variance 0.501 (0.133) = 0.501 (0.133)
Early growth rate

Mean 0.027 (0.070) = 0.027 (0.070)
Variance 0.040 (0.019) = 0.040 (0.019)

Later growth rate
Mean 0.049 (0.063) = 0.049 (0.063)

Variance 0.074 (0.048) = 0.074 (0.048)

Growth factor covariances

Initial status - Early growth rate 0.0 ( * ) 0.0 ( * )
Initial status - Later growth rate 0.0 ( * ) 0.0 ( * )

Regression on initial status  

Added early growth rate
Intercept -0.016 (0.090)

Slope -0.108 (0.118)
Added later growth rate

Intercept -0.194 (0.093)
Slope -0.171 (0.121)

Residual variances for outcome variables

Time 1 0.659 (0.154) = 0.659 (0.154)
Time 2 0.548 (0.115) = 0.548 (0.115)
Time 3 0.817 (0.150) = 0.817 (0.150)
Time 4 0.904 (0.155) = 0.904 (0.155)
Time 5 0.718 (0.147) = 0.718 (0.147)
Time 6 0.825 (0.163) = 0.825 (0.163)
Time 7 0.255 (0.198) = 0.255 (0.198)
Time 8 0.486 (0.384) = 0.486 (0.384)

(Estimates for residual covariances not shown)

* Parameter is fixed in this model.
  Standard errors are given in parentheses.
= Parameter set equated across group.
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Table 4
Two-Group (Control/Treatment) Piecewise Analysis: High-Baseline Groups

Control group (n = 42) Treatment group (n = 41)
c2(58) = 70.93,  p = 0.12

Outcome variables

Intercept 2.969 (0.104) = 2.969 (0.104) 

Growth factors

Initial status
Mean 0.0 ( * ) 0.0 ( * )

Variance 0.389 (0.099) = 0.389 (0.099)
Early growth rate

Mean 0.030 (0.070) = 0.030 (0.070)
Variance 0.025 (0.020) = 0.025 (0.020)

Later growth rate
Mean 0.047 (0.065) = 0.047 (0.065)

Variance 0.089 (0.049) = 0.089 (0.049)

Added early growth rate
Mean -0.014 (0.089)

Variance 0.0 ( * )
Added later growth rate

Mean -0.201 (0.094)
Variance 0.0 ( * )

Residual variances for outcome variables

Time 1 0.805 (0.154) = 0.805 (0.154)
Time 2 0.597 (0.115) = 0.597 (0.115)
Time 3 0.853 (0.150) = 0.853 (0.150)
Time 4 0.886 (0.155) = 0.886 (0.155)
Time 5 0.744 (0.147) = 0.744 (0.147)
Time 6 0.846 (0.163) = 0.846 (0.163)
Time 7 0.224 (0.198) = 0.224 (0.198)
Time 8 0.420 (0.384) = 0.420 (0.384)

Residual covariances for outcome variables

Time 1-Time 2 0.380 (0.112) -0.003 (0.128)
Time 2-Time 3 0.177 (0.091) 0.161 (0.106)
Time 3-Time 4 0.336 (0.124) 0.459 (0.131)
Time 4-Time 5 0.328 (0.122) 0.074 (0.115)
Time 5-Time 6 0.140 (0.112) 0.233 (0.140)
Time 6-Time 7 0.177 (0.121) -0.042 (0.123)
Time 7-Time 8 -0.311 (0.247) -0.245 (0.270)

* Parameter is fixed in this model.
  Standard errors are given in parentheses.
= Parameter set equated across group.
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Figure 7.  Growth trajectories of high- and low-baseline groups showing treatment-
baseline interaction.

This final model was run with the two outliers in the treatment group
deleted. The model fit did not change much, c2(58) = 71.2, p = 0.11, but the added
growth rate mean in the later piece that was found to be significant before is now
smaller in magnitude and no longer significantly different from zero at the 5%
level (m = 0.169, t-value = -1.92). This calls for caution in the inference.

The above analyses involve multiple steps including subjective decision on
choice of cutpoints. The tests of significance, however, were based on only the
last step of the analyses. It is very likely that the standard errors are
underestimated and the inference too optimistic. Furthermore, the growth
models were fitted using the maximum likelihood method assuming
multivariate normality, while the outcome variables at the early time points are
rather skewed and the multivariate normality assumptions may not be met. The
maximum likelihood estimator is quite robust to non-normality, but the
standard errors would be underestimated. Bootstrapping procedure was used to
obtain more realistic standard errors for the estimates.
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4.5 Estimating Standard Errors by Bootstrap

Two hundred bootstrap samples (B = 200) were generated by randomly
sampling with replacement 111 times from the control group (n = 111) and 75
times from the treatment group (n = 75) so that sample sizes were equal to the
original sample.  For each of these bootstrap samples, factor score of the initial
status was estimated for each individual in both the control and treatment
groups.  The estimation was calculated based on estimates obtained by applying
the same linear growth model based on the first four time points to the bootstrap
sample.  The individuals in both the control and treatment groups were then
ordered from low to high on their initial status factor scores.  The treatment
group was subsetted into two groups, the low-baseline group and the high-
baseline group based on the same group ratio as the original data.  The cutpoint
was noted and applied to the control group to divide it into the two low- and
high-baseline groups as in the treatment group.

The same two-group analysis was then carried out to compare the low-
control group to the low-treatment group and the high-control group to the
high-treatment group using the same model. Parameter estimates were recorded
for the 200 samples, and bootstrap samples that produced inadmissible solutions
were discarded and redrawn. The inadmissible solutions discarded were those
that resulted in negative variances, which probably occurred due to some odd
samples. There were about 20% of these out of the total number of samples
drawn. Bootstrap estimates of standard errors were calculated for each parameter.
Because the main interest is in the inferences to the results of the analysis of the
high-baseline control/treatment pair where there may be significant findings,
only the bootstraps results for the high-baseline pair are reported.

Table 5 shows the same parameter estimates as those of Table 4, but with the
original standard errors replaced by the bootstrap estimates of standard errors.
Comparing the two sets of standard errors, the largest differences are in the
standard errors of the intercept, which captures the mean initial status for the
two groups and the variance of the initial status factor. These bootstrap estimates
are 0.238 and 0.133 compared to the original values of 0.104 and 0.099. These
differences are to be expected because the initial status mean and variance for the
high-baseline group are the quantities that will vary a lot with the decision of
cutpoint. It seems that this is where the standard errors were very much
underestimated if the variation due to cutpoint decision was not taken into
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Table 5

Two-group (Control/Treatment) Piecewise Analysis: High-Baseline Groups (With Bootstrap
Estimates of Standard Errors)

Control group (n = 42) Treatment group (n = 41)
c2(58) = 70.93,  p = 0.12

Outcome variables

Intercept 2.969 (0.238) = 2.969 (0.238) 

Growth factors

Initial status
Mean 0.0 ( * ) 0.0 ( * )

Variance 0.389 (0.133) = 0.389 (0.133)
Early growth rate

Mean 0.030 (0.109) = 0.030 (0.109)
Variance 0.025 (0.022) = 0.025 (0.022)

Later growth rate
Mean 0.047 (0.062) = 0.047 (0.062)

Variance 0.089 (0.048) = 0.089 (0.048)

Added early growth rate
Mean -0.014 (0.115)

Variance 0.0 ( * )
Added later growth rate

Mean -0.201 (0.097)
Variance 0.0 ( * )

Residual variances for outcome variables

Time 1 0.805 (0.193) = 0.805 (0.193)
Time 2 0.597 (0.170) = 0.597 (0.170)
Time 3 0.853 (0.186) = 0.853 (0.186)
Time 4 0.886 (0.149) = 0.886 (0.149)
Time 5 0.744 (0.182) = 0.744 (0.182)
Time 6 0.846 (0.206) = 0.846 (0.206)
Time 7 0.224 (0.211) = 0.224 (0.211)
Time 8 0.420 (0.383) = 0.420 (0.383)

Residual covariances for outcome variables

Time 1-Time 2 0.380 (0.181) -0.003 (0.202)
Time 2-Time 3 0.177 (0.131) 0.161 (0.126)
Time 3-Time 4 0.336 (0.149) 0.459 (0.140)
Time 4-Time 5 0.328 (0.197) 0.074 (0.119)
Time 5-Time 6 0.140 (0.227) 0.233 (0.145)
Time 6-Time 7 0.177 (0.164) -0.042 (0.131)
Time 7-Time 8 -0.311 (0.327) -0.245 (0.311)

* Parameter is fixed in this model.
  Bootstrap estimates of standard errors are given in parentheses.
= Parameter set equated across group.
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account. The bootstrap standard errors are also slightly larger for some of the
growth rates means, but the differences are not large enough to make a difference
in the inferences made. It is noted that the standard errors for the treatment
effects in this case are not affected so much by the decision of cutpoint and the
bootstrap resampling. The treatment effect found significant for the second
growth stage for the more aggressive boys is still significant taking the
uncertainty of the multistage procedure into account.

With these results, it appears that the different baseline groups responded
quite differently to treatment. The piecewise approach has the advantage of
allowing the evaluation of treatment effects in the different stages. Subsetting the
sample based on estimated baseline and analyzing the subgroups separately can
tease out the differential treatment effects in the two groups. The fact that in this
analysis, the treatment was found to be ÒeffectiveÓ only after the third grade
ought to generate questions for substantive researchers. Whether the difference
between the control and the treatment group is attributable to the intervention
after such a long period ought to be asked. Plausible alternative explanations
ought to be explored. If the difference was really due to treatment, then there
ought to be explanations for the delayed effect. A replication of the experiment
may be needed in order to establish the validity of this finding.

5 Discussion

The advantage of conducting program evaluation using longitudinal data is
obvious if the intervention is designed to change a developmental process. The
Muth�n-Curran two-group formulation allows the modeling of treatment effects
as random effects that vary across the individuals, while considering normative
growth established using the control group. This method of assessing treatment
effects in the latent growth framework has the full advantage of structural
equation modeling flexibility. Individual differences in growth and factors
influencing growth due to treatment can be modeled directly. The interaction
effects of treatment with background variables including baseline can be assessed
easily.

The multistage procedure for modeling and assessing treatment effects was
aimed at evaluating treatment effects for those most at risk in the presence of
nonlinear treatment-baseline interactions. The multistage procedure also calls
for better methods of obtaining realistic standard errors of estimates.
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Bootstrapping the whole procedure to estimate the standard errors to some
extent takes the uncertainty involved into account. Further investigations
should be carried out regarding obtaining better estimates of standard errors and
to evaluate the adequacy of the bootstrapping procedure in this context.

In terms of modeling longitudinal growth, treatment effects of short
duration are usually lost in the modeling and treated as measurement errors.
This kind of temporary effect would likely occur right after an intervention starts
but disappear after a while. This was observed in the GBG data where there was a
sharp drop from Time 1 to Time 2 with an upward trend after Time 2. It is very
difficult to decide whether this effect is of a temporary nature and is of no
consequence in the big picture, or whether it alters the trajectory of growth
permanently by shifting it down. This argues for multiple measurements over at
least a short period before intervention to set a preintervention trend, so that any
effects of consequence can be correctly interpreted. This will also contribute to the
estimation of baseline.

Usually when an intervention program has an immediate effect, we would
ask whether the effect lasts over time. When there is no short-term effect and a
difference appears between the control group and the treatment group after a
long period, as was found in the GBG analysis, questions regarding whether the
difference is attributable to the intervention ought to be asked. There may be
other plausible alternative explanations for the difference. Unless there is a
sound hypothesis and the mechanism for explaining why and how the effect
would be delayed is in place, it is difficult to justify attributing the delayed
difference in outcome to the intervention especially when the sample is small.

The implications of finding that the Good Behavior Game intervention was
only effective for the more aggressive males would need careful consideration.
Targeting the intervention at the more aggressive children only may not
produce the desired effects. The Good Behavior Game is a team-based behavior
management game that promotes good behavior by rewarding teams that do not
exceed maladaptive behavior standards (Kellam et al., 1994). The classroom
teacher made sure that the teams were heterogeneous when assigning each child
in the class to one of three teams. This heterogeneous group composition may be
necessary to bring about change in the more aggressive boys. Targeting the
intervention only at the more aggressive males would result in a different
design and a different intervention that ought to be tested anew. Even though
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the analyses cannot be used for targeting the treatment to more aggressive
individuals, they are useful in two regards. First, they make it possible to find a
treatment effect that may be hidden due to the interactions of treatment with
baseline. Second, they indicated for whom the treatment is effective and the sizes
of the treatment effects during different stages.

When program effectiveness is observed only at the high end of baseline
and the distribution of outcome variable is skewed towards the low end, there is
the concern of distributional assumptions in the analysis and also the issue of
outliers. Down-weighting the outliers may mean down-weighting an important
case in the range of baseline where the intervention is most relevant. This may
imply that an intervention that is targeted for problem behavior should probably
oversample those with problems in the intervention trial.
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