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DOES ADAPTIVE TESTING VIOLATE LOCAL INDEPENDENCE?*

Robert J. Mislevy and Hua-Hua Chang

Educational Testing Service

Abstract

Item response theory posits Òlocal independence,Ó or conditional independence
of item responses given item parameters and examinee proficiency parameters.
The usual definition of local independence, however, addresses the context of
fixed tests and appears to yield incorrect response-pattern probabilities in the
context of adaptive testing. The paradox is resolved by introducing additional
notation to deal with the item selection mechanism. Implications for
estimation of examinee proficiency are noted.

Key words: Adaptive testing; conditional independence; item response theory;
local independence

A Question

The cornerstone of item response theory (IRT) is the assumption of local

independence (LI), which posits that an examineeÕs response to a given test item
depends on an unobservable examinee parameter q but not on the identity of or
responses to other test items the examinee may have been presented (Lord, 1980,
p. 19).  More formally, responses to test items are conditionally independent,
given item parameters and q; or, equivalently, the joint distribution of item
responses is equal to the product of the marginal distributions (Lord & Novick,
1968, p. 361).  An IRT model satisfies LI in a domain of n dichotomous items if

                                                
*ÊWe are grateful to Charlie Lewis, Ming-Mei Wang, and Pao-Kuei Wu for discussions on this
topic.  The first authorÕs work was supported in part by the National Center for Research on
Evaluation, Standards, Student Testing (CRESST), Educational Research and Development
Program, cooperative agreement number R117G10027 and CFDA catalog number 84.117G, as
administered by the Office of Educational Research and Improvement, U.S. Department of
Education. The findings and opinions expressed in this report do not reflect the policies of the
Office of Educational Research and Improvement or the U.S. Department of Education.
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Prob U1 = u1,¼,Un = un q,b1,¼,bn( ) = Prob Uj = uj |q,b j( )
j =1

n

Õ , (1)

where Uj  is the response variable for Item j; uj  represents a value thereof, either
1 if correct or 0 if incorrect; and b j  is a possibly vector-valued parameter
characterizing the dependence of response probabilities to Item j on q.  Assuming
the b j s are known, denote the item response function Prob Uj = uj |q,b j( ) by
f j u;q( ).  

As an example, consider a test consisting of two items, Item a and Item b.

ExamineesÕ responses follow the Rasch model, or

f j u;q( ) = exp u q - b j( )[ ] 1 + exp q - b j( )[ ],

with ba= 0 and bb= 1.  Under LI,

Prob Ua = 1,Ub = 0 q = 1( ) = f a 1;q( ) f b 0;q( ) =.731´.500 =.3655. (2)

Similarly,

Prob Ua = 0,Ub = 0 q = 1( ) = f a 0;q( ) f b 0;q( ) =.269´.500 =.1345,

Prob Ua = 0,Ub = 1q = 1( ) = f a 0;q( ) f b 1;q( ) =.269´.500 =.1345,

and 

Prob Ua = 1,Ub = 1q = 1( ) = f a 1;q( ) f b 1;q( ) =.731´.500 =.3655.

Equation 1, the usual definition of LI, does not address the order or the
mechanism by which items come to be administered to the examinee.  It is
typically used with fixed test forms, in which the identity and order of items is
predetermined.  As in the example, (1) specifies the probabilities of observing the
2n  possible response patterns given a particular value of q.  As such it serves as
the basis for both Bayesian inference about q and maximum likelihood
estimation of q with reference to repeated samples of U1,¼,Un( ) for fixed values

of q (e.g., Section 20.3 of Birnbaum, 1968).

Computerized adaptive testing (CAT) is a more recent development in IRT
(Wainer et al., 1990).  Items are selected sequentially in CAT in light of an
examineeÕs previous responses, in order to provide more efficient estimation of
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q .  Under the Rasch model, for example, an examinee answering items correctly
would be administered successively more difficult items, while an examinee
answering incorrectly would be administered successively easier items.  Let us
add to our example Item c , with bc =-1, and define the following simple adaptive

testing scheme.  Two items are presented to an examinee, with the identity of the
second item dependent on the response to the first:

1. Administer Item a and observe a value for Ua .

2a. If ua=1, then with probability .75 administer Item b and observe a
value for Ub , or with probability .25 administer Item c and observe a
value for Uc ; or else,

2b. if ua=0, then with probability .75 administer Item c and observe a
value for Uc , or with probability .25 administer Item b and observe a
value for Ub .

3. Stop testing.

The tree in Figure 1 shows the eight possible response patterns that can
occur and their respective probabilities when q = 1.  We see in particular that

Prob Ua = 1,Ub = 0 q = 1( ) =.2741, (3)

which contradicts the value of .3655 calculated as f a 1;q( ) f b 0;q( ) using the

definitional equation of LI with q = 1.  The probability of observing the response
pattern, it would appear, is not equal to the product of the marginal probabilities
of the individual responses.  Is this not a failure of local independence?

Notation for CAT

The trouble is ambiguous notation: The expression Ò Prob Ua = 1,Ub = 0 q = 1( )Ó

refers to different events in (2) and (3).  In (2), only the values of responses to
specified items in a specified order need be addressed.  In (3), the process by which
item identities and orders are determined is also at issue.  We must extend the
notation to first distinguish, then model, these two situations.  We adapt the
route taken by Mislevy and Wu (1996).  We assume that, in Fred LordÕs words,
Òthe probability of success on an item depends on .Ê.Ê. item parameters, on
examinee ability q , and nothing elseÓ (Lord, 1980, p. 19).
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The datum observed in adaptive testing is actually a sequence of N ≤ n

ordered pairs, S = I1,UI1
( ),…, IN ,UIN

( )( ) , where Ik identifies the k th item

administered and Uik
 is the response to that item.  Define the partial response

sequence Sk as the first k ordered pairs in S, with the null sequence s0

representing the status as the test begins.  Testing continues until, say, a desired
level of precision is reached, or a predetermined number of items has been
administered. We may augment the collection of items with the fictitious Item 0,
the selection of which corresponds to a decision to terminate testing. It can be
written as the N+1st item in the adaptive test, but no response is associated with
it.  

A test administrator defines an adaptive test design by specifying, for all
items j and all realizable partial response sequences sk, the probabilities φ( j,sk )

that Item j will be selected as the k+1st test item, after the partial response
sequence sk has been observed from an examinee.  Under Bayesian minimum
variance item selection, for example, the as-yet-unadministered item that
minimizes the expected posterior variance of θ  with respect to the current
distribution p(θ |sk )  is chosen as the k+1st item with probability one (Owen,
1975).  For the two tests in our running example, the item selection probabilities
are as given in Figure 2.

The probability of S for an examinee with ability θ  can be constructed
sequentially.  The probability of selection for the first item is φ i1,s0( ).  The
probability of response ui1

 to Item i1 is given by the IRT model as f i1
ui1

;θ( ), which
does not depend on the fact that Item i1 happened to have been presented first.
The probability of selection for the second item given  s1  is φ i2,s1( ), which
depends on the value of ui1

 but not on θ  given ui1
.  The probability of the

corresponding response is f i2
ui2

;θ( ), independent of the identification of, and the
response to, the first item.   Continuing in this manner through the decision to
stop testing (i.e., the selection of Item 0 as the N+1st item) and grouping similar
terms yields
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φfixed j,sk( ) =

1

1

1

0














 if j = a and k = 0 

if j = b and k = 1

if j = 0 and k = 2

     otherwise

   Fixed Test  

Note: The interpretation of this item selection function is as
follows: Item a is selected with probability 1 as the first item
to administer, Item b is selected with probability 1 as the
second item to administer, and Item 0, or the determination
to stop testing, is selected with probability 1 as Òthe third
item.Ó

φCAT j,sk( ) =

1    if j = a and k = 0

.25 if j = b and sk = a,0( )( )

.75 if j = c and sk = a,0( )( )

.75 if j = b and sk = a,1( )( )

.25 if j = c and sk = a,1( )( )
1    if j = 0 and k = 2

0 otherwise.


















    Adaptive Test

Figure 2.  Item selection functions for fixed and adaptive test examples.
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Prob S = i1,ui1( ),…, iN ,uiN
( )( )θ[ ] = f ik

uik
;θ( )

k =1

N

∏ φ ik ,sk −1( )
k =1

N +1

∏ . (4)

Rather than the ambiguous expression Ò Prob Ua = 1,Ub = 0 θ = 1( ) ,Ó we can

now write for our fixed test

Prob S = a,1( ), b,0( )( )θ,φfixed[ ]

= f ik
uik

;θ( )
k =1

N

∏ φ fixed ik ,sk −1( )
k =1

N +1

∏
= f a 1;θ( ) f b 0;θ( )Prob I1 = a( )Prob I2 = b s1 = (a,1)( )Prob I3 = 0 s2 = (a,1),(b,0)( )( )
=.731×.500 ×1 ×1 ×1

=.3655,

which agrees with (2).  For our CAT, we can write

Prob S = a,1( ), b,0( )( )θ,φCAT[ ]

= f ik
uik

;θ( )
k =1

N

∏ φCAT ik ,sk −1( )
k =1

N +1

∏
= f a 1;θ( ) f b 0;θ( )Prob I1 = a( )Prob I2 = b s1 = (a,1)( )Prob I3 = 0 s2 = (a,1),(b,0)( )( )
=.731×.500 ×1×.75 ×1

=.2741,

which agrees with (3).

We note in passing some implications for estimation.  Equation 4, the
probability for a sequence of responses in CAT, factors into two terms.  Only the
first depends on θ , and it is just the product of marginal item-response
probabilities that appears in (1).  Inferences about θ  that accord with the
Likelihood Principle, therefore, need only address the first term.  This includes
Bayesian and direct likelihood inference about θ Ñbut not sampling
interpretations of the MLE θ̂ .  The correct point estimate is identified but no
claims about its distribution in repeated samples for fixed θ  necessarily follow
(Mislevy & Wu, 1988).  The correct sampling distribution for θ̂  must be verified
with respect to repeated administrations of the entire adaptive test.  Chang and
Ying (in press) consider the sampling variance of θ̂  with respect to the second
order derivative of f j uj ;θ( )∏ , and offer some large-sample conditions under



8

which the latter is a reasonable large-sample approximation of the former i n
CAT.  

Conclusion

So, does CAT violate local independence?  Since the standard notation and
terminology for defining Òlocal independenceÓ is not rich enough to describe
CAT, one must choose how to apply the term in the extension.  We can write
expressions with the previously missing item-selection random variables on
either side of the conditioning bar, and see the answers they suggest.  Again we
assume that item responses depend on item parameters and θ  only.

In CAT, we could, on the one hand, take Prob Ua = ua ,…,Uq = uq θ( )  to mean

the probability of observing the CAT response vector with the implied
identity of items and the indicated responses; that is,
Prob Ua = ua ,…,Uq = uq{ } and I1 = a,…, IN = q{ }θ( ) .  But from (4),

Prob Ua = ua ,…,Uq = uq{ } and I1 = a,…, IN = q{ }θ( )
= Prob S = i1,ui1( ),…, iN ,uiN

( )( )θ[ ]
= f ik

uik
;θ( )

k =1

N

∏ φ ik ,sk −1( )
k =1

N +1

∏

≠ f ik
uik

;θ( )
k =1

N

∏ .

The answer is Òyes, local independence is violated by CATÓÑif Òlocal
independenceÓ is taken to mean that the product of the item-by-item
probabilities conditional on θ  yields the probability of observing a response
vector with those items and those responses, given θ .1  To those interested i n
frequentist inference, such as sampling interpretations of the MLE, the other
terms in the probability of observing the response vector can materially affect the
distribution of these estimators.

                                                
1 In this sense, LI is also violated by intentional omissions and examinee choice of items, even
when student responses to items they have responded to depends only on θ  (Mislevy & Wu,
1996).  Unlike CAT, the missing responses in these cases can depend on θ  even after
conditioning on the identity of and responses to items for which responses are observed.  The
missingness process cannot be ignored even under Bayesian and direct likelihood estimation.
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On the other hand, we could take Prob Ua = ua ,…,Uq = uq θ( )  to mean the

probability of observing the CAT response vector with
the indicated responses given  the implied identity of items; that is,
Prob Ua = ua ,…,Uq = uq{ }θ, I1 = a,…, IN = q{ }( ).  And

Prob Ua = ua ,…,Uq = uq{ }θ, I1 = a,…, IN = q{ }( )
= Prob Uik

= uik
θ, Ua = ua ,…,Uik−1

= uik−1{ }, I1 = a,…, IN = q{ }( )
k =1

N

∏

= Prob Uik
= uik

θ, Ik = ik( )
k =1

N

∏

= f ik
uik

;θ( )
k =1

N

∏
= Prob Ua = ua θ( )×…×Prob Uq = uq θ( ).

The answer is Òno, local independence is not violated by CATÓÑif Òlocal
independenceÓ is taken to mean that the product of the item-by-item
probabilities conditional on θ  yields the only term in the probability of observing
a CAT response vector that depends on θ .  And to those interested in inference
that accords with the Likelihood Principle, this is all that matters.  
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