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QUANTIFYING THE CHARACTERISTICS OF KNOWLEDGE STRUCTURE

REPRESENTATIONS: A LATTICE-THEORETIC FRAMEWORK

Michael James Young

CRESST/Learning Research and Development Center,

University of Pittsburgh

Abstract

This work shows how lattice theory can be used to develop quantitative measures of
selected characteristics of knowledge structure representations, and how these measures
can be used to assess individual personsÕ knowledge structure representations in a
classroom setting. For a given set of concepts, a knowledge structure can be described by
the present or absent connections in the set of all possible pairwise connections between
concepts. Under this description, the set of all possible knowledge structure
representations for a given set of concepts are the elements of a complemented,
distributive lattice ordered by set inclusion. Measures are developed to assess the
dissimilarity between two knowledge structure representations, the local complexity of
a concept in a knowledge structure, and the global complexity of a knowledge structure.
The effectiveness of these measures in assessing the changes in studentsÕ knowledge
structure representations in an introductory statistics course is examined using data from
Ju (1989).

Introduction

The ability to quantitatively assess individualsÕ knowledge has important
implications for educational measurement, diagnostic assessment, and test
development. Snow and Lohman (1989) stress the importance of knowledge
structure assessment to the educational process:

Students build up vast structures of particularized knowledge, both declarative and
procedural, over their educational years... Such knowledge is often partial, incomplete,
or incorrect in idiosyncratic ways. It is also often tied to particular situations. And i t
can be brought into new learning in ways that distort the new learning, as well as in
ways that allow new learning to complete or correct or the supplant the old. The
improvement in knowledge assessment would seem to depend generally on diagnosis,
both of prior knowledge and of knowledge in the process of being acquired. Such
assessment should include direct attempts to assess how concepts are organized...
(p.Ê304)



2

Knowledge structure assessment for diagnostic purposes is seen by some as a
corrective to the shortcomings of traditional testing practices. Surber (1984) has
suggested that traditional testing for diagnosis of misunderstanding suffers from
the drawbacks of (a) insensitivity to structure, (b) intrusions and distortions, and
(c) errors of omission. Traditional tests are often insensitive to the structure of a
subject being tested, because any given subject Òis not merely a collection of lists
of concepts. A discipline is recognized as such because of the interrelationships of
its conceptsÓ (Surber, 1984, p. 215). Items on a multiple choice test are often
inadequate to test a subjectÕs structural knowledge of a given domain. The
alternative of short answer or essay questions may also have problems. In some
cases, information that was not a part of the instruction may act as an intrusion
in the response given, while in others, information may be distorted in the
process of giving an answer. In either case, these test formats provide:

... no general method of dealing with declarative knowledge errors in terms of scoring or
for diagnostic purposes... [T]hese error responses do not lead to a better understanding of
what the learner knows. In short, an essay test does not permit the systematic diagnosis
of a learnerÕs misunderstanding. (Surber, 1984, p. 215)

Finally, traditional tests often fail to distinguish between a lack of
knowledge and erroneous knowledge; in the case of the multiple choice tests,
this may be further confounded by the results of guessing. Additionally, since
multiple choice items are often weighted equally, there is no way to assess
systematically the importance of the missing knowledge. The need to diagnose
for errors of omission is essential if this is to be remedied.

The importance of knowledge structure assessment to the instructional
design of diagnostic tests has also been addressed. Nitko (1989) argues that
eliciting representations of learnersÕ knowledge structures and comparing them
to the ÒcanonicalÓ knowledge structures of experts should be an integral part of
diagnostic assessment and instructional design:

A test designerÕs understanding of the meaning and structure of the knowledge a student
brings to the instructional system is important for building diagnostic tests. Tests of
prerequisites should focus on these aspects of the preinstructed learner. Frequently,
studentsÕ everyday understandings of terms and phenomena are at odds with the
expertsÕ canonical understandings. These conflicts can interfere with instruction
directed toward acquisition of canonical knowledge, unless studentsÕ knowledge schema
are explicitly addressed in the course of teaching. (p. 461)
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While many writers have recognized the importance of knowledge structure
assessment (e.g., Glaser, Lesgold, & Lajoie, 1987; Lane, 1991), it is still the case that
Òcognitive theories about knowledge structures have progressed far ahead of
research on methods for their assessment that would be useful in educationÓ
(Snow & Lohman, 1989, p. 304).

In recent years a number of methods have been developed to elicit a
representation of a subjectÕs structural understanding for a set of concepts. These
techniques have used a simplified model to represent structural knowledge as a
network of interconnected nodes. In the modelÕs basic form, each node has
represented a concept, the meaning of which is determined by its connections to
other concepts (nodes) in the network. Using this model, these techniques elicit
knowledge structure representations1 for a set of concepts by requiring a subject
to directly manipulate the nodes representing the concepts, and the connections
representing the relationships among them.

While these methods have been used successfully to elicit knowledge
structure representations in such knowledge domains as statistics (Rogan, 1988;
Ju, 1989), the biological sciences (Fisher, Faletti, Thornton, Patterson, Lipson, &
Spring, 1988), physics (Jonassen, 1987; Hegarty-Hazel & Prosser, 1991), chemistry
(Ruiz-Primo, Schultz, & Shavelson, 1997; Ruiz-Primo, Shavelson, & Schultz,
1997), and geology (Champagne & Klopfer, 1980; Ballstaedt & Mandl, 1985), the
analyses of these representations have often been problematic. Most studies have
transformed the data into proximity matrices in order to use a scaling method
such as hierarchical cluster analysis or multidimensional scaling. When these
matrices have been derived by averaging the data across the subjects, group
information has been obtained at the expense of losing the characteristics of the
individual knowledge structures. Those studies that have not used proximity
matrices (e.g., Champagne & Klopfer, 1980) have relied on analytic techniques
that are qualitative rather than quantitative.

                                                
1ÊWhat will be referred to as Òstructural knowledgeÓ in this paper has several different definitions
in the literature. Some writers have associated structural knowledge exclusively with declarative
knowledge (e.g., Snow & Lohman, 1989, p. 298), while others have proposed structural knowledge
as an intermediate type of knowledge that mediates the translation of declarative into procedural
knowledge (Jonassen, Beissner, & Yacci, 1993, p. 4). Structural knowledge has also be referred to as
cognitive structure, conceptual knowledge, and semantic networks (Jonassen et al., 1993, p. 5). In any
event, the representation of such structural knowledge is distinct from the actual underlying
cognitive model.
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This work shows how lattice theory2 can be used to develop quantitative
measures of the selected characteristics of knowledge structures, and how these
measures can be used to assess individual personsÕ knowledge structures in a
classroom setting.

Preliminaries: The Lattice of Knowledge Structure Representations

Let C be a set of k  distinct concepts, where k  is finite, and let K be the set of
all connections between concepts from C. Since this set represents the
combinations of the k concepts taken two at a time, the number of connections n
in the set K is given by     n = C2

k = k!/ (k - 2)!2! = k(k - 1) / 2. The set of connections

will be denoted by K c c cn= { , , , }1 2 K , and the powerset of K (i.e., the set of all
subsets of K) by Ã( )K .

A knowledge structure representation (KSR) on C is a pair ( , )C X , where C is
the set of concepts, and X KÎÃ( )  is a set of connections that join them. The set o f

all possible knowledge structure representations (on C) is denoted by ( , ( ))C XÃ ,
where C andÃ( )K  and are defined as above. Since there are n  connections in K,
and each connection is either present or absent in any knowledge structure
X KÎÃ( ) , then the total number of KSRs in ( , ( ))C XÃ is equal to 2n .

It is natural to consider the set of all KSRs as being ordered: That is, one KSR
is less than or equal to another KSR (( , ) ( , )C X C Y£ ), when the set of connections
for the first KSR is contained in the set of connections for the second KSR
( X Y X Y KÍ ÎÃ for , ( )). Under this ordering, this set forms a lattice.3 This
characterization of the set of the all possible KSRs as the knowledge structure

representation lattice (KSR lattice) allows certain properties to be derived.

                                                
2ÊRecent use of lattice theory in psychology, measurement, and testing can be seen in Hirtle (1982,
1987), Haertel and Wiley (1993), and Tatsuoka (1990, 1991). General information regarding the
theory of partially ordered sets and lattices can be found in Birkhoff (1967), Donnellan (1968),
Salii (1988) and Davey and Priestley (1990). Szasz (1962) also presents a proof showing that the
ordering of a finite set can be illustrated with a diagram. The use of lattices in computer science and
combinatorics is examined in Stanton and White (1986), as well as in Davey and Priestley (1990).
Other approaches to some of this material is provided by Bollob�s (1986), who focuses his study on
the subsets of a finite set; Harary (1972), Harary and Palmer (1973), Palmer (1985), Buckley and
Harary (1989) who explore various aspects of graph theory, including random graphs, distance in
graphs, and graphical enumeration.
3ÊFor any two knowledge structures ( , ),( , ) ( , ( ))C X C Y C KÎ Ã , there a smallest knowledge
structure which is at least as large as either, namely ( , )C X YÈ , and a largest knowledge structure
which is at least as small as either, namely ( , )C X YÇ . The knowledge structures ( , )C X YÈ  and
( , )C X YÇ  are referred to as the join and meet of the knowledge structures (C, X) and (C, Y).
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First, the KSR lattice has both a bottom  element (denoted ( , )C Æ ) and a top

element (denoted (C, K)). These elements represent the KSR with no connections
at all, and the KSR with all possible connections respectively. Furthermore, since
the KSR lattice is distributive (see Young, 1993, p. 226-231), each KSR (C, X) has as
its complement ( , )C X ¢ , the unique element such that ( , ) ( , ) ( , )C X C X CÇ ¢ = Æ

and ( , ) ( , ) ( , )C X C X C KÈ ¢ = . This element can be formed by taking ¢ =X K X\ , the
relative complement of the set of connections X, with respect to set of all

connections K.

As an example, Figure 1 shows the knowledge structure representation
lattice generated from a set of three concepts. The number of pairwise
connections of these concepts is n = -3 3 2 2!/ ( )! !  = - =3 3 1 2 3( ) / , and is denoted by
K c c c= { , , }1 2 3 . Each KSR is represented by a binary vector, with a one used to
indicate the presence and a zero, the absence of a connection. Thus, [0 1 1] is the
vector representing the absence of the first connection (i.e., c1), but the presence
of the second and third connections (c2 and c3).

1 1 1

1 1 0 1 0 1 0 1 1

1 0 0 0 1 0 0 0 1

0 0 0

Figure 1. The knowledge structure representation lattice of three connections.
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More formally, if K c c cn= { , , , }1 2 K is the set of connections for a KSR lattice,
and Z n

i

n
=

=1
0 1X { , }denotes the n-fold Cartesian product of the set {0,1}, then we

can always define a function f f e e e: ( ) ( ) ( , , , )Ã ® =K Z Xn
n by 1 2 K  where

e i ic X= Î1 if  , and  if e i ic X= Ï0  (Davey & Priestly, 1990, p. 20).

The KSR lattice ( , ( ))C XÃ  consists of 2 83 =  elements, each representing a
different knowledge structure generated from the set of connections. The small
circles in this diagram represent the individual KSRs, and the relationships
among the KSRs in the lattice are indicated by lines. For a given KSR, lines going
up indicate the KSRs that contain it, while lines going down indicate the KSRs
that are subsets of it. Note that the bottom of the lattice is the KSR in which none
of the concepts are connected (denoted [0 0 0]), while the top of the lattice is the
KSR in which all of the concepts are connected (denoted [1 1 1]). By tracing
upwards and downwards in the lattice, the intersection and union for any pair of
knowledge structures representations can be found. For example, choosing the
KSRs denoted by [1 0 1] and [0 1 1], then their intersection will be the element
[0 0 1] and their union [1 1 1]. If we consider the diagram of the KSR lattice as a
three-dimensional object, then the complement of each element (i.e., knowledge
structure) can be thought of as the element in the diagonally opposite corner of
the cube.

Measuring the Dissimilarity Between Knowledge Structure Representations

Consider two knowledge structure representations that have been
represented as the n-element, binary vectors         X = (x1 , x2 ,K, xn )  and

        Y = (y1 , y2 ,K, yn ) . We can compare these vectors, tabulate the numbers of

matched and mismatched elements, and arrange these tabulations in a 2 x 2
frequency table as shown in Figure 2. In this table, a represents the frequency of 1-
1 matches, b is the frequency of 1-0 matches, and so forth. Given such an
arrangement of the frequencies, a variety of similarity and dissimilarity
measures for binary data may be defined (Romesburg, 1984).

Three often used measures are the simple matching coefficient (SM), the
binary squared Euclidean dissimilarity (BSED) and the mean character difference

(MCD). The simple matching coefficient is defined as SM a b n= +( ) / , and
represents the percent of perfect agreement to be found between the two vectors.
The MCD and BSED are both dissimilarities or distances, and are defined as
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Connections in KSR Y

Present 1 Absent 0

1-1 1-0

Present 1 a b a + b

Connections Co-occurrences Mismatch

in KSR X 0-1 0-0

Absent 0 c d c + d

Mismatch Conjoint Absences

a + c b + d n = a + b + c + d

Figure 2. 2 x 2 table for comparing knowledge structure representation vectors.

MCD b c n= +( ) /  and BSED b c= + . Each of these coefficients are related to the
simple matching coefficient by MCD SM= -1 and BSED n n SM N SM= - = -( ) ( )1 .
The MCD is thus a rescaling of the BSED to a dissimilarity from 0 to 1, and of the
SM from a similarity to a dissimilarity measure.

Of these different measures, the binary squared Euclidean dissimilarity
provides the most natural interpretation of distance in KSR lattice. Since the
BSED is just the binary version of the squared Euclidean distance, it is a metric

(note that Euclidean distance between X and Y, d x y b di i
i

n

( ) ( )X, Y = - = +
=
å 2

1

 since

only the mismatches are counted). The BSED can be directly interpreted as the
number of ÒmovesÓ or ÒstepsÓ that must be made in the knowledge structure
representation lattice, in order to go from one knowledge structure
representation to another.

For example, in Figure 1, the furthest distance that can be traveled in the
lattice is BSED = 3. In general, if the lattice has n connections, then the maximum
possible distance between two personsÕ KSRs is BSED =n, the distance from a
KSR ( , )C X  to its complement ( , )C X ¢ .

Measuring the Complexity of Knowledge Structure Representations

Two complementary approaches will be used to measure the complexity of
knowledge structure representations. The first, a local measure of complexity, is
the degree of a concept: For a given concept in a knowledge structure, this is
simply the number of connections coming from it. For each of the k concepts in a
knowledge structure representation, this will be a number from 0 to k -1.
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The rank (Stanton & White, 1986, p. 31) of a KSR uses the position within
the KSR lattice as a global measure of complexity: Each KSR in the lattice is
ranked by the number of connections contained within it. In Figure 1, for
example, the ranks of the knowledge structures in the KSR lattice range from the
minimum number of connections (zero) possible for a KSR to the maximum
number (three). For a general knowledge structure representation ( , ( ))C XÃ , the
rank ranges from 0 (i.e., the KSR with no connections) to n  (i.e., the completely
connected KSR).

Two further points should be noted. First, that the number of KSRs of rank
r generated from a set of n  connections is equal to the binomial coefficient
C n r n rr

n = -!/ !( )!. For example, in Figure 1, there are three KSRs with
rank  since r C= =2 32

3, . Second, it should be noted that rank of a KSR is equal to
the one-half the sum of the degrees of the concepts in the KSR.

Using Lattice-Theoretic Measures

The classification and comparison of knowledge structure representations.

The use of the BSED and rank allows for several comparisons to be made. The
amount of change that a subjectÕs structural knowledge undergoes throughout a
course due to instruction can be easily examined. For example, consider a subject
with knowledge structure vector [ ]10 1  at the beginning of a course, with a KSR
vector [ ]11 0  at the end of the course. The dissimilarity between these two KSRs
is a BSED = 2, but their ranks are both equal to 2. The overall complexity of the
KSRs has not changed from the beginning to the end of the course, but two of the
connections between pairs of concepts have changed.

Classifications for a group of knowledge structures can be obtained by
clustering KSRs using as characteristics the presence or absence of connections.
One procedure might be to include one or more canonical representations along
with those of the subjects. This would allow subjectsÕ KSRs to be compared to
several idealized or expert representations for the same set of concepts.

Composite knowledge structure representations. The classification of
interest here can be obtained by using cluster analysis to group connections from
the knowledge structure representations using as characteristics the presence or
absence of a subject having that connection. A dendrogram from this kind of
analysis will group together those pairs of connected concepts shared by the
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greatest number of subjects. By examining the clusters of connected concept pairs,
several KSRs may be analyzed.

First, it might be possible to infer from these clusters of connected concept
pairs, the central concepts or ideas held by the group. Second, it may be possible
to obtain a composite knowledge structure representation for the entire group, by
working backwards from the dendrogram based on these central concepts.
Finally, if we use groups of subjects who differ on a variable such as Òfinal course
grade,Ó we may be able to obtain classifications of their inferred central concepts
based on that variable.

Comparisons to a canonical knowledge structure representation. Definitions
of the ÒcorrectnessÓ of a knowledge structure representation have usually
involved qualitative comparisons of a subjectÕs KSR to that of a canonical
representation that resulted from the analysis of a set concepts for a domain.
When quantitative measures had been used to assess the correctness, they have
usually involved a scoring system (Surber, 1984; Rogan, 1988).

Using the lattice-theoretic measures that have been developed, we can now
assess the correctness of a subjectÕs knowledge structure representation in terms
of its similarity to a canonical representation. Using the binary squared Euclidean
dissimilarity, if a subjectÕs KSR being examined is zero ÒstepsÓ away from the
canonical representation, then it will be completely correct with respect to the
pattern of concepts that the subject connected. Information as to the correctness
of the relations that the subject may have specified is possible only by studying
the language the subject used in the subjectÕs knowledge structure
representation.

Another possible analysis is to identify subsets of connections within the
KSRs, such that each subset represents a key or central concept. The sub-
structures generated by these subsets of connections can then be used to assess the
ÒcorrectnessÓ of a subjectÕs understanding for those central concepts.

An Example of Using Lattice-Theoretic Measures

Method. The effectiveness of these measures in assessing the changes i n
studentsÕ knowledge structures was examined using data taken from Ju (1989).
She used her software program MicroCAM to obtain the knowledge structure
representations from six students for fourteen statistics concepts (see Table 1)
taken from the topics of central tendency and variability. This was done twice:
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Table 1

Statistics Concepts Used in MicroCAM
Pretest/Posttest Experiment by Ju (1989)

Statistics concept

1 Central tendency
2 Mean
3 Median
4 Mode
5 Parameter
6 Population standard deviation
7 Population variance
8 Range
9 Sample standard deviation
10 Sample variance
11 Semi-interquartile range
12 Statistic
13 Unbiased estimator
14 Variability

before the students had been formally introduced to the concepts, and after the
material had been covered in their statistics course. In addition to these
representations, the instructorÕs knowledge structure representation for the
concepts was also obtained for use as a canonical representation. Each of the
KSRs was coded as a binary vector, and the matrix of the binary squared
Euclidean dissimilarities was calculated for all pair-wise comparisons of the
KSRs. The ranks of the KSRs, and the degrees of the concepts in the KSRs were
also calculated. Finally, the thirteen subjectsÕ knowledge structures were analyzed
using this dissimilarity matrix, and the average link clustering algorithm of the
SPSS-Xª procedure CLUSTER (SPSS-Xª, Release 3.0, 1988).

The classification and comparison of individualsÕ knowledge structure

representations. The binary squared Euclidean dissimilarity matrix presented i n
Table 2 allows a number of comparisons of knowledge structure representations
to be made. We can see that students H and J had the most similar KSRs before
instruction (BSED = 8), while after instruction, students I and K were most
similar (BSED = 6). The last row of Table 2 shows how similar each studentÕs KSR
was when compared to that of the teacherÕs, before and after instruction. Finally,
the bold-faced diagonal in the lower left part of the table measures the amount of
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Table 2

Binary Squared Euclidean Dissimilarity Coefficient Matrix for Pretest/Posttest Data
From Ju (1989)

Pretest Posttest

Time Subject F G H I J K F G H I J K

Pretest G 17

H 18 13

I 13 12 11

J 14 13 8 11

K 16 11 14 11 14

Posttest F 19 18 19 18 15 19

G 23 16 17 22 13 19 8

H 25 14 17 20 17 15 6 10

I 21 16 15 16 11 17 12 8 14

J 24 17 18 21 10 16 9 7 11 11

K 21 20 17 20 13 13 10 10 12 6 11

T 24 25 22 21 18 20 9 13 13 11 12 7

Note. Student KSRs are F through K, while the teacherÕs canonical KSR is denoted by T;
boldface diagonal shows dissimilarity from studentÕs pretest to posttest KSR.

change between each studentÕs pretest and posttest KSRs. The studentÕs
knowledge structure representations changed a great deal from pretest to posttest
(Mean = 15.17, SD = 3.19); this change was found to be significant (t = 11.95, df = 5,
p < .005).

The means and standard deviations for the pre- and posttest dissimilarities
between the studentsÕ and teacherÕs KSRs are presented in Table 3. The change i n
the dissimilarities from pretest to posttest (Mean = 10.83, SD = 3.19) was found to
be significant (t = 8.32, df = 5, p < .005), showing that the studentsÕ KSRs were
becoming more similar to that of the teacherÕs.
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Table 3

Means and Standard Deviations for Student-Teacher
Dissimilarities (Binary Squared Euclidean Dissimilarity)

Time N
Mean
BSED

Standard
deviation

Pretest 6 21.67 2.58

Posttest 6 10.83 2.40

Figure 3 is the dendrogram for the clustering solution, and shows two main
clusters. The first contains the teacherÕs knowledge structure representation
together with the studentsÕ posttest structures, while the second cluster contains
all of the pretest knowledge structures. The dendrogram gives visual evidence
that the similarities were greater within the pretest and posttest groups than
across the groups. (If a three cluster solution were preferred, student FÕs pretest
KSR, which was most dissimilar to the other studentsÕ knowledge structure
representations, would stand alone.)

Teacher’s KSR: teach;
Subjects’ pretest KSRs: F pre to K pre;
Subjects’ posttest KSRs: F post to K post.
Cluster analysis using Average Linkage (Between Groups)

Figure 3. Dendrogram of pretest and posttest knowledge structure representations.
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The first method of assessing the complexity of the studentsÕ KSRs made use
of the lattice-theoretic measure of rank. The ranks of each KSR were found, and
the means and standard deviations for the pre- and posttest ranks of the
studentsÕ and teacherÕs KSRs were calculated (see Table 4). The change i n
ranksfrom pretest to posttest (Mean = 4.17, SD = 1.17) was used as a measure of
the change in complexity of the studentsÕ knowledge structure representations.
Though the increase in complexity as mean change in rank was found to be
significant (t = 7.97, df = 5, p < .005), indicating that the studentsÕ representations
were more complex after instruction, none of the studentsÕ KSRs became as
complex as that of the teacher (rank = 20). The mean rank of studentsÕ knowledge
structure representations after instruction was found to be significantly less than
the rank of the teacherÕs knowledge structure representation (t = -4.60, df = 5, p <
.005).

A second method for assessing the complexity of studentsÕ KSRs examined
the mean degree of concept for each of the fourteen concepts presented to the
students. The means and standard deviations for the pre- and posttest degrees of
concepts, as well as the change in degree for each concept are given in Table 5.
Before instruction, the concepts of mean (2), sample standard deviation (9),
sample variance (10), unbiased estimator (13), and variability (14) were found to
have mean degrees that were significantly lower than the degrees that the
teacher had for those concepts (t = -3.16, -17.00, -17.00, -3.37, and -12.85
respectively; d f = 5 for all tests; p-values i n Table 5). After instruction, the

Table 4

Means and Standard Deviation for Pretest and Posttest Ranks
of Student Knowledge Structure Representations

Rank

 Subject Pretest Posttest Change

F 10 15 5
G 15 19 4
H 14 17 3
I 13 17 4
J 10 16 6
K 10 13 3
Mean 12.00 16.17 4.17
SD 2.28 2.04 1.17

Note. The teacherÕs knowledge structure representation had
rank = 20.
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Table 5

Mean and Standard Deviation for the Degree of the Concepts in SubjectsÕ Knowledge Structure
Representations

    Teacher     Pretest     Posttest     Change

Concept Number Mean SD Mean SD Mean SD

1 4 3.50 .84 3.33* .52 -.17 .75
2 3 1.67 1.03* 1.33** .82 -.33 .82
3 1 1.00 .00 1.00 .00 .00 .00
4 1 1.17 .41 1.00 .00 -.17 .41
5 3 1.67 1.51 2.50 .55 .83 1.60
6 2 2.17 1.17 2.50 1.05 .33 .82
7 2 2.17 1.17 2.67 1.21 .50 .84
8 1 1.33 .82 1.00 .00 -.33 .82
9 4 1.17** .41 2.67** .82 1.50  .84
10 4 1.17** .41 2.67** .82 1.50  .84
11 1 .83 .41 1.00 .00 .17 .41
12 4 3.33 1.51 2.33 1.75 -1.00 2.53
13 3 1.33* 1.21 2.17 1.33 .83 1.33
14 7 .50** 1.05 6.17 1.17 4.67  1.63

* p < .05, one-tailed, significantly less than teacherÕs number of connections.
** p < .01, one-tailed, significantly less than teacherÕs number of connections.
  p < .01, one-tailed, significantly greater than zero.

concepts of central tendency (1), mean (2), sample standard deviation (9), and
sample variance (10) were the only concepts to have mean degrees (t = -3.14, -5.00,
-4.00, and -4.00 respectively; df = 5 for all tests; p-values in Table 5) significantly
different from those of the teacher. These results can be interpreted in terms of
how complex those concepts were when compared to those of the teacher.

As a measure of which concepts showed the most increase in complexity
between pretest and posttest, the mean change in degree for each of the fourteen
concepts was calculated. Only the concepts of sample standard deviation (9), and
sample variance (10), and variability (14) showed a significant increase i n
ÒconnectednessÓ (t = 4.39, 4.39, 7.00; df = 5 for all tests; p-values in Table 5).

Finally, a plot of the ranks of the studentsÕ KSRs versus their dissimilarities
to the teacherÕs knowledge structure representation is shown in Figure 4. This
plot shows how both of these measures have changed from pretest to posttest,
and how the studentsÕ knowledge structure representations have become more
similar to that of the instructor (indicated by the cross in the circle on the vertical
axis).
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Figure 4. StudentsÕ KSR ranks vs. dissimilarities to teacherÕs KSR.

Composite knowledge structure representation. A second cluster analysis
was performed on the subjectsÕ posttest knowledge structures representations, to
see which connections the subjects tended to group together into larger
structures. Rather than clustering the subjects on the basis of the connections
they held in common, the connections in the KSRs were grouped on the basis of
the proportion of subjects who shared them. The dendrogram for this analysis is
shown in Figure 5. Since this was an exploratory analysis, the dendrogram was
arbitrarily cut at a seven cluster solution.

This clustering solution was examined as a composite knowledge structure
representation, consisting of those clusters of connections forming the central
ideas labeled A through G. Given the dendrogram, it was possible to produce a
network representation of each of the central concepts in Figure 5. Figure 6
shows the representations of three of those central concepts. Central concept D
included the 1-5 and 5-14 connections, and seemed to represent the studentsÕ
understanding that central tendency (1) and variability (14) are both examples of
parameters (5).
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Note. “Pair” denotes a connected pair of concepts (e.g., P5X13 refers to the
connected pair of concepts 5 (parameter) and 13 (unbiased estimator)). Letters A
through G denote groups of connected pairs of concepts in seven-cluster solution
using Average Linkage (Between Groups).

Figure 5. Dendrogram for cluster analysis of studentsÕ posttest connections.
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Note. Lines indicate connections for concepts.

Figure 6. Inferred central concepts from cluster analysis of studentsÕ posttest
connections.

Central concept E was made up of three connections, with the 9-13 and 10-13
connections being grouped separately from the 5-12 connection. Here the central
idea seemed to focus on unbiased estimation (13): the sample standard deviation
(9) and the sample variance (10) are both examples of unbiased estimators (13);
they are statistics (12) that can be used to estimate parameters (5).

Finally, central concept G consisted of the pairs 5-6, 5-7, 9-12, and 10-12. This
central concept differentiated between population standard deviation (6) and
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sample variance (7) as parameters (5), and the sample standard deviation (9) and
sample variance (10) as statistics (12).

Central concepts B and F though not pictured, were also readily
interpretable. Central concept B was a linking together of the sample and
population standard deviations (9, 6) to the sample and population variances (7,
10). Central concept F consisted of two hub-and-spoke groupings, with the mean
(2), median (3), and mode (4) being centered on central tendency (1), and the
standard deviations (6,9), variances (7,10), range (8), and semi-interquartile range
(11) on variability (14).

Central concept C was made up of three connections, with mean (2) forming
the hub, and population standard deviation (6), population variance (7), and
statistic (12) connecting to it as spokes. This cluster may have to do with how the
standard deviation and variance can be defined in terms of deviations from the
mean.

Interpretation was more problematic for central concepts A and C. Central
concept A was the cluster in the analysis having the greatest number of
connections (see Figure 5). Though statistic (12) was the most highly connected
concept in this cluster (with seven connections), it was not clear what aspect of
the studentsÕ knowledge was being captured here.

Comparisons to a canonical knowledge structure representation. A third
analysis was performed on a subset of the connections, in order to assess the
ÒcorrectnessÓ of studentsÕ KSR for specific central concepts. The teacherÕs KSR
was used as a canonical knowledge structure representation, and four central
concepts were identified by grouping together the connections that made them
up. Figure 7 shows the teacherÕs KSR; the four central concepts of Òcentral
tendency,Ó Òparameter,Ó Òvariability,Ó and ÒestimationÓ that were derived from
this structure are shown in shown in Figure 8.

It should be noted that range (8) was included with the Òcentral tendencyÓ
group; this was done to see how the subsequent analyses would handle
misconceptions or erroneously added concepts. The dissimilarities for the
subjects were once again calculated using only the 19 connections making up the
four central concepts, and a cluster analysis of these reduced KSRs performed.
The pre- and posttest dissimilarities between the studentsÕ and the teacherÕs KSRs
for the four central concepts is presented in Table 6.
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Figure 7.  MicroCAM knowledge structure of teacher (Source: Ju, 1989).
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Note. Central ideas are clockwise from left, central tendency, parameter,
variability, and estimation.

Figure 8. Four central ideas taken from teacherÕs knowledge structure
(After Ju, 1989).



21

Table 6

Pre- and Post-Instructional Dissimilarity Measures Between Teacher and Subjects for Four
Central Concepts

Central concepts

Subject Parameter Variability
Central
tendency Estimation BSED

Pretest
F 3 6 3 6 18
G 2 5 0 6 13
H 2 4 0 6 12
I 2 6 0 6 14
J 2 4 0 6 12
K 3 6 0 4 13
Mean 2.33 5.17 .50 5.67 13.67
SD .52 .98 1.22 .82 2.25

Posttest
F 3 0 0 4 7
G 3 0 0 2 5
H 3 0 0 3 6
I 1 0 0 4 5
J 2 2 0 2 6
K 1 0 0 4 5
Mean 2.17 .33 0 3.17 5.67
SD .98 .82 0 .98 .82
Max 3 6 4 6 19

Of the four central concepts analyzed for the students, only the ideas of
ÒvariabilityÓ and ÒestimationÓ showed a significant increase in similarity to
those of the teacher (t = 6.75, df = 5, p < .001 for ÒvariabilityÓ; t = 3.68, df = 5, p < .01
for ÒestimationÓ): the ÒcorrectnessÓ for those concepts could be said to have
increased. Overall, the students understanding of Òcentral tendencyÓ (with the
exception of Student F) did not improve very much: They essentially had the
same idea of central tendency as the teacher did before instruction. The studentsÕ
gain as the result of instruction was mostly due to an increased understanding of
the idea of Òvariability,Ó where they went from having practically no
understanding of this central concept, to virtually the same understanding of it
as the teacher. These results corroborate the earlier analysis of the degrees of the
concepts within the KSRs. It will be recalled that the studentsÕ concepts of sample
standard deviation (9), sample variance (10), and variability (14) showed greatest
increase in complexity over the course of instruction.
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The cluster analysis based on the four central concepts produced much the
same results as for the full KSR. Except for some shuffling within the groups, the
same distinct pre- and posttest clusters emerged in the dendrogram (Figure 9).

In terms of individual students, the subject who improved the most was
Student F, whose BSED declined a total of 9, due to his improvement i n
understanding the ideas of ÒvariabilityÓ and Òcentral tendency.Ó His initial,
anomalous understanding of the idea of Òcentral tendencyÓ became clear when
his KSR vector for this idea was examined: He had included one extraneous
connection linking central tendency (1) to range (8) in his structure, and omitted
two other relevant connections. This was changed in his posttest KSR when he
matched the teacherÕs KSR for this idea.

Two other students whose representations were of interest were G and H.
While their overall similarities to the teacherÕs KSR increased, on the central
concept of ÒparameterÓ alone, their similarities decreased.

Teacher’s KSR: teach;
Subjects’ pretest KSRs: F pre to K pre;
Subjects’ posttest KSRs: F post to K post.
Cluster analysis using Average Linkage (Between Groups)

Figure 9. Dendrogram of cluster analysis based on four central concepts.
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Conclusion

The lattice-theoretic framework developed here allows for assessments that
can compare individual learnersÕ knowledge structure representations to a
canonical representation, track changes due to instruction, and diagnose omitted,
as well as erroneous, elements in their knowledge.

The definition of knowledge structure representations as elements in a
lattice was found to be an effective global characterization. While the literature
supports the use of qualitative descriptions of such KSR features as complexity,
centrality of concept, and similarity, the lattice-theoretic approach allowed for
quantitative measures of cognitive structures to be developed. The changes i n
studentsÕ dissimilarities, ranks, and degrees of the concepts could be examined
using the instructorÕs KSR as a reference point. In addition, the dissimilarities
could be analyzed using hierarchical cluster analysis. These analyses were able (a)
to detect an increased similarity after instruction of the studentsÕ KSR to that of
their instructor, (b) to detect changes in the complexity of the studentsÕ KSR, (c) to
classify and compare subjectsÕ KSR, (d) to examine subjectsÕ understanding of the
main ideas in the instructorÕs KSR and (e) to infer the main ideas of the subjectsÕ
KSR and represent them as a composite.

In general, the Binary squared Euclidean provided a straightforward
interpretation for the dissimilarity between two knowledge structures
representations, as the number of moves that must be made in order to go from
one KSR to another in the KSR lattice. The two methods used for analyzing the
centrality of a concept in a KSR were essentially complementary: The cluster
analysis grouped together those connections to form a composite of what the
students understood to be the central concepts, while the method examined the
studentsÕ KSR in light of the central concepts identified a priori in the
instructorÕs KSR. Of these two measurement techniques, comparison to the
central concepts in the teacherÕs KSR proved to be more useful. Although the
cluster analysis of the connections was useful in an exploratory sense for
determining what the students felt to be the central concepts, comparisons to the
instructorÕs KSR clearly showed how studentsÕ corrected their organization of
those concepts with instruction. In addition, the technique was able to flag a
studentÕs erroneous inclusion a concept that did not belong to a central concept.
This ability to track mistakenly added and omitted concepts that for a KSR would
be of great use in diagnostic settings.
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The two measures of complexity were also complementary. The first
method made explicit use of the lattice-theoretic structure in its measure of the
rank of a KSR and could be considered as a global measure of complexity. This
was a conceptually ÒcleanÓ way of tying the complexity of a KSR to how Òfar upÓ
in the KSR lattice it was. The second approach of examining the degree or mean
number of connections per concept, could thought of as a local measure of
complexity: It allowed us to examine which specific concepts in a studentÕs KSR
were undergoing an increase (or decrease) in its ÒconnectednessÓ with other
concepts. The choice of technique to use depended on whether one needs a either
a general, global measure, or a specific, local measure of complexity.4

Two steps would seem essential to improving the measures and making
them more accessible to a wider audience. First, the lattice-theoretic framework
should be extended in such a way as to score the ÒcorrectnessÓ of a proposition
associated with the connection between a pair of concepts. A scoring system based
on the canonical knowledge structure of one or more experts could be used to
assess the accuracy of the propositions in a studentÕs KSR. Such a system would
be able to distinguish between propositions that are correct and complete, and
those that are valid but show little or no understanding of the relationship

Second, a way to elicit knowledge structure representations needs to be
integrated with the means to analyze them. While several computer programs
are available for the purpose of eliciting KSRs (e.g., SemNet by Fisher et al., 1988;
MicroCAM by Ju, 1989), none of them can automatically compile measures for
the characteristics of the representations obtained, and then make comparisons
among them. An ambitious design for a program would allow a teacher or
researcher to elicit knowledge structure representations from students, and then
automatically:

¥ Compute the rank of each KSR;

¥ Compute the binary squared Euclidean dissimilarity matrix for all
pairwise combinations of KSRs;

¥ Compute the degree of each concept in a KSR;

                                                
4ÊYoung (1993) extends this analysis by examining the development of studentsÕ knowledge structure
representations for different sets of concepts a sequence of statistics courses, and comparing these
representations to more than one canonical representation.
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¥ Prepare statistical summaries of rank, dissimilarity, and degree of
concept data by group or occasion of testing;

¥ Compare the characteristics of a group of KSRs with the characteristics of
one or more canonical structures;

¥ Provide graphical output such as the dendrogram of a cluster analysis.

Additional features could include record-keeping functions (such as found
in SemNet, which keeps track of relational propositions that have been used)
and testing capabilities (such as MicroCamÕs presentation of a taxonomy of
relations for use in a test). The automatization of such features would go a long
way in allowing classroom use of the measures presented here.
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