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ON THE ASSESSMENT OF SCIENCE ACHIEVEMENT1

Richard J. Shavelson and Maria Araceli Ruiz-Primo

Stanford University/CRESST

Abstract

In this paper we provide one possible definition of science achievement and
hypothesize links between the definition and instruments that can used be used to
measure achievement. We define three types of science: declarativeÑknowing tha t
something is true; proceduralÑknowing how to do something; and strategicÑknowing
the which, when, and why of doing something. The working definition identifies
several characteristics of knowledge that should be considered in achievement testing
and that can help identify competent and less competent students in a domain:
structureÑexperts have highly organized knowledge, novices do not; and
metacognitionÑexperts monitor their actions and flexibly adjust them based on
feedback. We also describe some instruments for measuring science achievement
following from this broader notion and provide evidence bearing on their technical
quality.

There is a saying that intelligence is what intelligence tests measure. This
saying is an even more apt description of academic achievement: Achievement
is what multiple-choice and short-answer tests measure. Lacking in all
achievement testing is a reasonable, working definition of achievement to guide
measurement. In this paper, we sketch, very briefly and incompletely,2 a broader
notion of achievement than is implied by current achievement testing practice.
Our focus is on achievement in the domain of science, but we suspect that some
ideas presented here apply to other subject matter domains. We then describe
instruments for measuring science achievement that are consistent with this
broader notion, and provide evidence bearing on their technical quality. W e
conclude by suggesting new areas for research on science achievement
measurement.
                                                
1 A version of this report will be published in a volume edited by the Max Planck Institute in
Berlin.
2 For example, the definition does not address situated cognition (e.g., Greeno, 1998).  Hence, it is a
working definition in need of development.
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Working Definition of Science Achievement

What does it mean to achieve in a subject matter domain such as science?
Surely such achievement must include knowing the important facts and
concepts within the domain. That is, we expect students of physics to know what
Òforce,Ó Òmass,Ó and ÒaccelerationÓ mean. We also expect them to know that an
object in motion will continue in motion indefinitely unless other forces act on
it to slow or stop it. This kind of knowledgeÑknowing that something is trueÑ
is often called propositional or declarative knowledge; knowledge about facts,
concepts, and principles. Current multiple-choice and short-answer achievement
tests do a reasonably good job of measuring certain aspects of propositional
knowledge. Indeed, a remarkable technology of multiple-choice and short-
answer testing has been developed and used extensively in the twentieth
century.

Our notion of what it means to achieve in science, however, goes beyond
the idea that propositional knowledge is a set of factual and conceptual Òbeads on
a chain.Ó For propositional knowledge to be Òusable,Ó the bits of information
need to be interrelated conceptually. ExpertsÕ declarative knowledge, for example,
is highly structured (e.g., Chi, Glaser, & Farr, 1988, Glaser, 1991). ÒLearning
scienceÓ has been described, at least in part, as a process of building an
increasingly sophisticated knowledge structure; that is, as a process of becoming
expert in a science domain (see, e.g., Shavelson, 1972, 1974). Current paper-and-
pencil achievement tests do a poor job of measuring the structural aspect of
declarative knowledge. What is needed is a ÒpictureÓ of how key concepts in a
science domain are organized mentally by a student. That is, we need a picture of
a studentÕs Òcognitive structure.Ó To get this snapshot, alternatives to traditional
achievement tests must be sought, alternatives that probe cognitive structure
directly (e.g., concept maps) and indirectly (e.g., concept-similarity judgments).
Some of these techniques are described later in the paper.

However, even this fuller notion of declarative knowledge stops short of
what might be conceived of as science achievement. After all, scientists conduct
investigations, testing curiosities, hunches and theories. They test their ideas by,
for example, manipulating some variables and controlling others to gather
empirical support for their hunches and theories. ShouldnÕt our conception of
science achievement include the knowledge and skills needed to conduct such
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investigations? That is, shouldnÕt our conception of achievement include
procedural knowledgeÑknowing how  to do something? Current paper-and-
pencil tests do a poor job of measuring procedural knowledge (Ruiz-Primo &
Shavelson, 1996b). In conducting an investigation, for example, a scientist does
something to the external world (e.g., manipulates objects in a laboratory) and
the external world reacts in turn. Multiple-choice and short-answer science
achievement tests do not react to the actions taken by the student. To tap a
studentÕs procedural knowledge, we might put her in a laboratory, pose a
problem or set forth a hypothesis, and observe (and evaluate) how she goes about
solving the problem or testing the hypothesis. Recognizing that laboratories are
not ubiquitous in schools, we might construct a test in the form of a Òmini-
laboratory.Ó This laboratory might be composed of materials that can be
transported from one classroom to another and set up on a studentÕs desk. Or the
mini-laboratory might be provided via a computer simulation that can be
transported from one computer to another. We call tests that involve student-
conducted, Òhands-onÓ investigations performance assessments. Some examples
are provided in the paper.

There still seems to be more to achieving in science than admitted by the
notions of declarative and procedural knowledge. For example, research has
shown that experts combine concepts and procedures in the form of rules for
action under certain task demands and work conditions. The result is a set of
alternative plans to solve a problem. This kind of knowledge is known as
strategic knowledgeÑknowing which, when, and why specific knowledge would
be applicable. Experts seem to structure this knowledge in the form of menta l

models  (e.g., Glaser, Lesgold, & Gott, 1991). They are able to use this model to
bring their declarative and procedural knowledge to bear on solving a new
problem or testing a new hypothesis. We do not know of any systematic
assessment research and development in this area of science achievement,
although there is a large research literature on mental models in science (e.g.,
Gentner & Stevens, 1983).

In sum, we can identify at least three kinds of knowledge that might
constitute the domain of science achievement: declarative, procedural and
strategic. One important characteristic of each of these three kinds of knowledge
is that they are more or less structuredÑmore structured for the expert; less
structured for the novice (e.g., Glaser, 1991). Undoubtedly, there are other kinds
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and characteristics of knowledge that should be included in a definition of
science achievement. This is a work in progress, a beginning.

Assessing Some Dimensions of Achievement

Our working definition of achievement demands a broader array of
measuring instruments than typically used in testing achievement. The need for
different tests to tap different kinds and characteristics of achievement
constitutes a critical research agenda. Furthermore, the instruments developed
must generate trustworthy results; that is, they must be reliable and valid. Here
we describe some measuring instruments developed with the intent of tapping
some of the forms of knowledge included in our conception of achievement. W e
also provide evidence on their technical qualityÑreliability and validity. Before
doing so, we sketch our approach to evaluating technical quality.

Approach to Evaluating Technical Quality of Assessments

We have used a sampling framework to evaluate the technical quality of
assessments (Shavelson, Baxter, & Gao, 1993). We view an assessment as a
concrete, goal-oriented task with an associated response demand and scoring
system. The task is performed by a student on a particular occasion (e.g., second
week in May) and scored by an expert rater, who judges the scientific validity of
studentÕs procedures according to the task as well as the final product. The
measurement method depends on the kind of assessment used. For example, the
following methods have been used as a science performance assessment:
observation of a hands-on investigation, a studentÕs notebook on the
investigation, a computer simulation of the investigation, or paper-and-pencil
tests based on the investigation.

The tasks in an assessment are assumed to be a representative sample of the
content in a subject domain; the content may be substantive, methodological, or
both. Task sampling is easily described, and even possible to implement, at least
approximately, when the domain is a concrete curriculum such as the National
Science Resource CenterÕs Science and Technology for Children (see Hein &
Price, 1994, for a description).3 Task sampling becomes more difficult at the state
or nation level when a curriculum framework, such as CaliforniaÕs Science

                                                
3 Similarly, in military job performance measurement, domain sampling is possible, approximately,
because job tasks are enumerated in doctrine (Wigdor & Green, 1991).
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Framework for California Public Schools, Kindergarten Through Grade Twelve ,
serves as the domain specification and the curriculum itself varies from one
school or classroom to another (but see Baxter, Shavelson, Herman, Brown, &
Valadez, 1993).

Occasions are assumed to be sampled from a universe of all possible
occasions on which a decision maker would be equally willing to accept a score
on the studentÕs performance. Occasion sampling, especially with performance
assessments, has seldom been studied, due to expense (Cronbach, Linn, Brennan,
& Haertel, 1997).

Raters are assumed to be a representative sample of all possible individuals
who could be trained to score performance reliably. Rater sampling is not
difficult to implement, but it is costly due to training, scoring, re-calibration time,
and human resources.

Finally, methods  are sampled from all permissible measurement methods
that a decision maker would be equally willing to interpret as bearing on a
studentÕs achievement.

A studentÕs performance can be viewed as a sample of behavior drawn from
a complex universe defined by a combination of all possible tasks, occasions,
raters and measurement methods. Student performance may vary across a
sample of tasks, raters, occasions, or methods. Traditionally, task, occasion, and
rater have been thought of as sources of unreliability in a measurement (cf.
Shavelson et al., 1993; Shavelson & Webb, 1991), whereas the incorporation of
measurement method in the specification of the universe moves beyond
reliability into a sampling theory of validity (Kane, 1982). When performance
varies from one task to another, or from one occasion to another, or from one
rater to another, we speak of measurement error due to sampling variability.
When performance varies from one measurement method to another, we speak
of the lack of convergent validity due to method-sampling variability.

Once conceived as a sample of performance from a complex universe,
generalizability (G) theory can be brought to bear on the technical quality of
assessment scores (cf. Cronbach, Gleser, Nanda, & Rajaratnam, 1972; see also
Brennan, 1992, Kane, 1982; Shavelson & Webb, 1991). From a G theory
perspective, an assessment score is but one of many possible samples from a large
domain of assessments defined by a particular task, an occasion, a rater, and a
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measurement method. The theory focuses on the magnitude of sampling
variability due to tasks, raters, and so forth, and their combinations, providing
estimates of the magnitude of measurement error in the form of variance
components. These variance components can be combined to estimate a standard
error of measurement for relative decisions (rank-ordering students) and
absolute decisions (e.g., describing levels of student performance). In addition, G
theory provides a summary coefficient reflecting the ÒreliabilityÓ of generalizing
from a sample score to the much larger universe of interest (e.g., the score
achieved over all possible tasks, occasions and raters) called a generalizability

coefficient.

From a generalizability perspective, sampling variability due to raters, for
example, speaks to a traditional concern about the viability of judging complex
performance in an assessmentÑinterrater reliability (cf. Fitzpatrick & Morrison,
1971). Sampling variability due to tasks speaks to the complexity of the subject
matter domain. Traditionally, task sampling has been thought of as related to
internal consistency reliability. One goal of test developers has been to make
ÒitemsÓ homogeneous to increase reliability. Within the sampling framework,
task sampling variability is dealt with not by homogenizing the tasks but by
stratifying the domain, increasing sample size, or both. Sampling variability due
to occasions corresponds to the classical notion of retest reliability. From a
sampling perspective, the occasion facet reminds us that decision makers are
willing to generalize a studentÕs performance on one particular occasion to many
possible occasions. Finally, sampling variability due to measurement method
bears on convergent validity. Large-method sampling variability indicates that
measurement methods do not converge as has commonly been assumed i n
arguing for the cost efficiency of multiple-choice testing.

With G theory we can evaluate the complex assessments described in this
paper. We now turn to these assessments.

Concept Maps

Interest in assessing the structure of declarative knowledge is based on the
assumption that understanding in science involves a rich set of relations among
important concepts in that domain. To access studentsÕ cognitive structuresÑi.e.,
relations between conceptsÑtwo approaches have been used. Indirect approaches
probe a studentÕs knowledge structure by asking her to rate the similarity
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between concepts (e.g., Goldsmith, Johnson, & Acton, 1991), to associate words
(e.g., Shavelson, 1972, 1974), or to sort concepts into groups based on their
similarity (e.g., Shavelson & Stanton, 1975). A more direct approach is to ask a
student to construct a ÒmapÓ or labeled graph that makes explicit how he relates
concept pairs. We focus here on the use of a direct, Òconstruct-a-concept-mapÓ
approach to evaluate the structural aspect of declarative knowledge. Concept
map assessments are interpreted to represent, at least partially, the structure of an
individualÕs declarative knowledge in a content domain.

Definition. A concept map is a graph in which the nodes represent concepts,
the lines between nodes represent relations and the labels on the lines represent
the nature of the relation between two concepts (Figure 1). A pair of nodes and
the labeled line connecting them is defined as a proposition, the basic unit of a
concept map. We conceive of a concept-map-based assessment to be composed of
(a) a task that invites students to provide evidence bearing on their knowledge
structure in a content domain; (b) a format for the studentÕs response; and (c) a
scoring system by which the studentÕs concept map can be evaluated accurately
and consistently.

Concept 
Map

is a

graph

with with

nodes
linking 
lines

represent have

linking 
words

concepts

explain the 
relationship 

between 
pairs of

relate 
pairs of

Figure 1. A concept map of what a concept map is.
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Types of maps. We (Ruiz-Primo & Shavelson, 1996a) have identified
different ways in which concept map tasks, response formats, and scoring
systems vary in practice (Table 1). Concept map tasks vary as to (a) task

demandsÑthe instructions given to students in generating their concept maps
(e.g., fill in a skeleton map, construct a map from scratch, or talk about the
relation between concepts to an interviewer); (b) task constraintsÑthe
boundaries of the task (e.g., students may or may not be asked to construct a
hierarchical map, or to use more than one link between concepts, or to provide
the concepts for the map); and (c) task content structureÑthe intersection of the
task demands and constraints with the structure of the subject domain to be
mapped (i.e., there is no need to impose a hierarchical structure if the content
structure is not hierarchical).

Three types of response variations have been identified in concept mapping:
(a) response modeÑwhether the studentÕs response is paper-and-pencil, oral, or on
a computer (e.g., students may be asked to draw the concept map on a piece of
paper or to enter the concepts and relations on a computer); (b) response formatÑ
the characteristics of the response requested usually fitting the specifics of the
task (e.g., if the task asks students to fill in a skeleton map, a skeleton map and
concepts are provided); (c) the mapperÑwho draws the map (e.g., student, teacher,
interviewer).

Three scoring strategies have been used in practice: (a) score map
components (e.g., the number of nodes, links, cross-links); (b) compare a studentÕs
map with a criterion map (e.g., an expertÕs concept map); and (c) a combination of
both strategies (e.g., an expertÕs concept map is used to validate a studentÕs links
and concepts).

Technical quality. An assumption made when using concept maps is that
they provide a ÒpictureÓ of a studentÕs knowledge structure. That is, the
characteristics of the observed structural representation portray an important
aspect of the studentÕs underlying knowledge structure. A highly connected,
integrated, organized structure characterizes experts and competent students.
Isolated, less integrated structures are typical of students who are novices, less
competent. However, the observed characteristics of a representation of a
studentÕs knowledge structure may depend to a large extent on how the
representation is elicited, not a minor issue. From the characterization presented
above, it is clear that concept mapping techniques can vary widely in the way   
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Table 1

Variations Among Concept Map Components

Map assessment
components Variations Instances

Task Task demands Students can be asked to:
¥ fill in a map
¥ construct a map from scratch
¥ organize cards
¥ rate relatedness of concept pairs
¥ write an essay
¥ respond to an interview

Task constraints Students may or may not be:
¥ asked to construct a hierarchical map
¥ provided with the concepts used in the task
¥ provided with the concept links used in the task
¥ allowed to use more than one link between nodes
¥ allowed to physically move the concepts around until a

satisfactory structure is arrived at
¥ asked to define the terms used in the map
¥ required to justify their responses
¥ required to construct the map collectively

Content structure The intersection of the task demands and constraints with
the structure of the subject domain to be mapped.

Response Response mode Whether the student response is:
¥ paper-and-pencil
¥ oral
¥ on a computer

Format characteristics Format should fit the specifics of the task

Mapper Whether the map is drawn by a:
¥ student
¥ teacher or researcher

Scoring system Score components of the
map

Focus is on three components or variations of them:
¥ propositions
¥ hierarchy levels
¥ examples

Use of a criterion map Compare a studentÕs map with an expertÕs map.  Criterion
maps can be obtained from:
¥ one or more experts in the field
¥ one or more teachers
¥ one or more top students

Combination of map
components and a
criterion map

The two previous strategies are combined to score the
studentÕs map.

Note. From Ruiz-Primo and Shavelson (1996b).
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they elicit a studentÕs knowledge structure, which in turn can produce different
representations and scores.

Our research has focused on providing evidence on the impact of different
mapping techniques and their technical characteristics. The techniques used i n
our research were selected from the same task demand, Òconstruct a map.Ó
Within this demand, task constraints were varied in different studies (see below;
Figure 2). The response format (viz. draw the map on a piece of paper) and the
scoring system (viz. scoring based on a criterion map and the quality of the
propositions) have been held constant across the studies.

Three types of scores have been examined in our research: (a) proposition-

accuracy scoreÑthe sum of the accuracy ratings assigned to each proposition in a
studentÕs map (assessed on a 5-point scale from 0 for inaccurate/incorrect, to 4 for
excellent/outstanding in that the student provided a complete proposition that
shows deep understanding of the relation between two concepts); (b)
convergence scoreÑthe proportion of accurate propositions in the studentÕs map
out of the total possible valid propositions in a criterion map; and (c) salience

scoreÑthe proportion of accurate propositions out of all the propositions in the
studentÕs map.

We first examined whether anything was lost in a representation of a
studentÕs knowledge structure when the assessor provided concepts for building
a map instead of the student generating the concepts. We varied the source of the
concept sample: student-generated sample or assessor-generated sample (Ruiz-
Primo, Schultz, & Shavelson, 1996). One mapping technique asked students to
provide the concepts with which to construct the map and the other technique
provided the concepts (Figure 2). Results indicated that the two techniques were
equivalent. No significant differences were found among means or variances for
both the proposition accuracy and salience scores.4 However, based on practical
grounds, we recommend the assessor-generated concept sample method because
a scoring system can be developed before data are collected and applied to all
maps. The student-generated sample technique is clearly less practical in a large-
scale assessment context.

                                                
4 Convergence scores were not available for the ÒNo ConceptsÓ technique because no criterion could
be established to determine the expected number of propositions.
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Instructions  When No Concepts
Are Provided to the Students

Instructions When Concepts
Are Provided to the Students

You recently studied the chapter on Chemical
Names and Formulas.

Construct a concept map that reflects what
you know about Ions, Molecules, and
Compounds.

The concept map should have 10 concepts in
it.  We are providing you with 3 concepts:
ions, molecules, and compounds.

Select another 7 concepts to construct your
map.  The 7 concepts should be the ones that
you think are the most important in
explaining ions, molecules, and compounds.

Organize the terms in relation to one another
in any way you want.  Draw an arrow between
the terms you think are related.  Label the
arrow using phrases or only one or two linking
words.

You can construct your map on the blank pages
attached.  When you finish your map check
that:  (1) all the arrows have labels; (2) your
concept map has 10 concepts, and (3) your map
shows what you know about ions, molecules,
and compounds.

After checking your map redraw it so someone
else can read it.  Staple your final map to this
page.

Examine the concepts listed below.  They
were selected from the chapter on Chemical
Names and Formulas that you recently
studied.  The terms selected focus on the topic
Ions, Molecules, and Compounds.

Construct a concept map using the terms
provided below.

Organize the terms in relation to one another
in any way you want.  Draw an arrow between
the terms you think are related.  Label the
arrow using phrases or only one or two linking
words.

You can construct your map on the blank pages
attached.  When you finish your map check
that:  (1) all the arrows have labels; (2) your
concept map has 10 concepts, and (3) your map
shows what you know about ions, molecules,
and compounds.

After checking your map redraw it so someone
else can read it.  Staple your final map to this
page.

LIST OF CONCEPTS:
acids
anions
cations
compounds
electrons
ions
metals
molecules
molecular compounds
polyatomic ions

Figure 2.  Instructions to construct concept maps using techniques that differ in the demands imposed
on the students.

To study the sensitivity of concept map scores to the sampling variability of
assessor-generated concepts, we randomly sampled concepts from a subject
domain (Ruiz-Primo et al., 1996). The same students constructed a map with two
different samples of concepts (Sample A and Sample B). Half of the students
constructed their maps first using Sample A (sequence 1) and the other half first
using Sample B (sequence 2). No sequence effects or significant differences i n
means or variances were found on any type of score (i.e., proposition accuracy,
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convergence, salience). This result might be due to the procedure used i n
selecting the concepts. The list of concepts used to randomly sample the concepts
was a cohesive list of critical concepts in the domain. Therefore, any combination
of concepts could provide critical information about a studentÕs knowledge on
the topic.

We also evaluated the differences between mapping techniques that
imposed a hierarchical and a nonhierarchical structure on studentsÕ
representations of two types of content domainsÑone that is naturally
hierarchical and one that is not (Ruiz-Primo, Shavelson, & Schultz, 1997).
Regardless of the type of organization, we expected that as subject matter
knowledge increases, the structure of the map should increasingly reflect the
structure, hierarchical or not, in the domain as held by experts. Therefore, topics
for this study were selected as having different structures according to expertsÕ
concept maps. On average, studentsÕ scores did not depend on whether the
instruction to produce a hierarchical map matched a like content domain (i.e., no
topic by mapping technique interaction was found in any type of score). We are
still working on indicators to evaluate the hierarchical structure of the studentsÕ
maps.

G theory was brought to bear on the reliability of concept map scores.
Results across all the studies are clear about the effect of human judges (ÒratersÓ):
Raters can reliably score studentsÕ maps. Raters, in general, did not introduce
error variability into the scores (Ruiz-Primo et al., 1996, 1997). Results from the
first two studies showed that the largest variance component was due to
systematic differences among studentsÕ map scoresÑthe purpose of
measurement. The major source of measurement error was the interaction of
persons by mapping technique; some students performed better with the student-
generated concept sample, others performed better using the assessor-generated
concept sample. Both relative and absolute reliability (ÒgeneralizabilityÓ)
coefficients were high (> .79) and of similar magnitude. This suggests that map
scores can consistently rank students relative to one another as well as provide a
good estimate of a studentÕs level of performance, regardless of how well her
classmates performed.

Results obtained across all the studies suggested that the type of score
selected for scoring concept maps might be an issue. Results from the G studies
showed that the percent of variability among persons (Òtrue scoreÓ variability) is
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highest for the proposition-accuracy score, followed by the convergence score,
and finally the salience score. Relative and absolute generalizability coefficients
were higher for the proposition accuracy score (~ .90) than for the other two
scores (~ .79). Proposition-accuracy scores, then, better reflect systematic
differences in studentsÕ knowledge structures than convergence or salience
scores. However, based on the amount of work and time involved in developing
a proposition-accuracy scoring system, we recommend the use of convergence
scores for large-scale assessment.

Finally, correlations between multiple-choice tests and concept map scores
across the different studies are all positive and moderately high (r ~ .50). W e
interpret these findings to mean that concept maps and multiple-choice tests
measure overlapping, yet different aspects of declarative knowledge.

Issues in the use of concept maps. There is some evidence that concept-
maps tap different aspects of achievement than do multiple-choice tests.
However, the virtues of concept maps may not be sufficient to overcome the
challenges they face. Research is needed to determine, for example, which
mapping techniques are more suitable for assessment purposes, especially for
large-scale testing. We also need to know more about the cognitive demands
imposed on students with the different techniques. Some researchers consider
that asking students to draw a map from scratch imposes too high a cognitive
demand on them to produce a meaningful representation of knowledge
structure (Schau & Mattern, 1997). A technique considered as imposing a lower
cognitive demand asks students to fill in the blanks in a concept map (Schau,
Mattern, Weber, Minnick, & Witt, 1997). However, nothing is known about the
differences in the representations provided by techniques that ask students to
construct a map and techniques with lower cognitive demands, such as fill in a
skeleton map. Do both techniques provide the same picture of a studentÕs
knowledge structure? Do the features of a particular technique limit the
measurement of achievement maps are intend to tap?

A similar level of ignorance exists about the effects of different response
modes on studentsÕ scores (e.g., drawing maps on a piece of paper or on a
computer). Findings in the field of performance assessment have shown that a
studentÕs performance is sensitive to the method of assessment (see below).
Whether or not these findings can be generalized to concept maps still remains
to be studied.
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Still another issue lies in the use of criterion maps in scoring concept maps.
Simply put, there are many accurate (and inaccurate) ways to represent the
interrelatedness of a set of concepts in a knowledge domain. ExpertsÕ concept
maps disagree for this very reason. Which expertÕs map should serve as the
criterion map? Different criterion maps can lead to different decisions about the
adequacy of studentsÕ knowledge structures. Furthermore, are criterion maps the
best way to score concept maps? At present, there is no widely accepted system for
scoring concept maps. Research is needed to explore a wide variety of scoring
systems that address the adequacy of propositions in concept maps. If concept
maps are to be used in the measurement of achievement, a great deal of research
needs to be done (see Ruiz-Primo & Shavelson, 1996a).

Performance Assessment

Science performance assessments invite students to conduct a Òhands-onÓ
investigation to test a hypothesis or solve a problem. Students plan and carry out
an investigation, and report and interpret their findings. Performance
assessments provide evidence bearing on procedural and strategic knowledge
(e.g., Baxter, Elder, & Glaser, 1996) and sometimes propositional knowledge.

Definition. A science performance assessment is composed of (a) a task that
poses a meaningful problem and whose solution requires the use of concrete
materials that react to the actions taken by the student, (b) a response format  that
focuses the studentÕs report of the investigation (e.g., record procedures, draw a
graph, construct a table, write a conclusion), and (c) a scoring system that
involves professionals judging both the reasonablenessÑscientific
defensibilityÑof the procedures used to carry out the task and the accuracy of
findings (Ruiz-Primo & Shavelson, 1996b).

To exemplify this definition we use the ÒBugsÓ performance assessment
(Shavelson, Baxter, & Pine, 1991). In this assessment, the studentÕs task is to use
laboratory equipment (e.g., bugs, dish, blotter paper, black paper, lamp, spray
bottle) to design and conduct an investigation to find out which environment
(e.g., damp or dry) sow bugs seek out. The student responds by drawing a
conclusion about the environment and describing the procedures she used to
carry out the investigation. The studentÕs performance is scored by considering
the scientific validity of the procedure used (e.g., comparing alternative
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environments in the same investigation) and the conclusion drawn from the
results of the investigation.

Types of performance assessments. There are as many performance tasks as
there are investigations in science. We have attempted to reduce the range by
classifying them according to regularities in their characteristics (Figure 3; see
Ruiz-Primo & Shavelson, 1996b; Shavelson, Solano-Flores, & Ruiz-Primo, i n
press). Although our categories (as would any other category system)
oversimplify the complexity and uniqueness of each assessment, they focus on
commonalities that have proven useful in developing other assessments within
the same category. The Others category in our classification scheme
acknowledges our ignorance and the possibility of discovering other types of
tasks.

Table 2 provides examples of each type of assessment and the focus of its
corresponding response format and scoring system. Here we briefly define each
category and describe each example.

Types of Tasks

Component 
Identification

Comparative 
Investigation

Classification Observation Others

Types of 
Scoring 
Systems

Procedure- 
Based

Evidence- 
Based

Others

Rubric

Others

¥ Paper Towels 
¥ Bugs 
¥ Incline Planes 
¥ Saturation

¥ Electric 
   Mysteries 
¥ Mystery  
   Powders

¥ Rocks & Charts 
¥ Sink & Float

¥ Day-Time 
    Astronomy

¥ Leaves 
   (CAP  
    Assessment)

Dimension- 
Based

Data 
Accuracy- 

Based

?

?

Figure 3.  Types of tasks and scoring systems in performance assessments.
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Table 2

Examples of Different Types of Assessments

Type of assessment Task Response format Scoring system

Comparative
Investigation:

Saturated Solutions

Given three powders
students determine
which one saturates
water most readily
and which least
readily.

Asks students to write
in detail how they
conducted the
investigation as well
as their finding.

Procedure-based.
Focuses on the
scientific defensibility
of the procedure used
and the accuracy of the
findings.

Component
Identification:  

Mystery Powders

Given bags of powder
mixtures students
determine which
powders are in each
bag.

Asks students to report
the tests they used to
confirm and/or
disconfirm the
presence of a substance
as well as their
observations.

Evidence-based.
Focuses on the evidence
provided to confirm or
disconfirm the
presence of a
particular powder and
the accuracy of the
findings.

Classification :  

Rocks and Charts

Given some rocks,
students create a
classification scheme
by selecting the
relevant properties
that help to classify
these and other rocks.

Asks students to show
the classification
scheme they
constructed and to
explain why they
selected the attributes
used in their
classification scheme.

Dimension-based.
Focuses on the
relevance of the
attributes selected to
construct the scheme
and the accuracy of the
use of the
classification scheme.

Observation:  

Daytime Astronomy

Given an earth globe
students model the
path of the sun from
sunrise to sunset and
use direction, length,
and angle of shadows
to solve location
problems.

Asks students to
provide results of their
observations and to
explain how they
collected the
information.

Data accuracy-based.
Focuses on the
adequacy of the model
used to collect the data
and the accuracy of the
data collected.

In comparative investigations students are asked to compare two or more
objects on some attribute while controlling other variables. The ÒSaturated
SolutionsÓ investigation falls within this category (Figure 4). The task in this
investigation asks students to compare the solubility of three powders in water
(see Table 2). The Saturated Solutions response format  invites students to
provide not only their conclusion about saturation but also a description of how
they conducted the investigation (i.e., the procedure used). The scoring system

for a comparative investigation is procedure-based. To score studentsÕ
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Figure 4. The Saturated Solutions investigation.

performance, information about both the quality of the procedures used and the
accuracy of the problem solution is essential. For example, a studentÕs score i n
the ÒSaturated SolutionsÓ assessment is based on the scientific defensibility of the
procedure used (e.g., did the student use the same amount of water with each of
the three powders? did she carefully measure the amount of powder used i n
each solution?) and on the accuracy of the studentÕs results (i.e., which of the
powders is required most and which one least to saturate water?). If students are
careless in measuring the water or the amount of powder, the comparison of
powder solubility is flawed.

The component identification investigation asks students to determine the
components that make up the whole. For example, in the ÒMystery PowdersÓ
investigation, the studentÕs task is to determine the household substances (e.g.,
baking soda, cornstarch, salt) that are contained in a ÒmysteryÓ bag (Figure 5). The
response format  asks the student to provide information about the tests (e.g.,
iodine, vinegar) he used to confirm  or disconfirm  the presence of a substance
(e.g., baking soda) and his observation of what happened when each test was
used. The scoring system is evidence-basedÑit focuses on the evidence the
student used to confirm the presence of one component and/or disconfirm the
presence of another, as well as on the accuracy of his response as to the contents
of the mystery bag.
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Figure 5. The Mystery Powders investigation.

The classification investigation asks students to create a classification
scheme using attributes of a set of objects that can serve a practical or conceptual
purpose. For example, the task in the ÒRocks and ChartsÓ investigation asks a
student to consider different properties of rocks (e.g., hardness, layers, streak) to
create a classification scheme and use it to classify a sample of rocks (Figure 6). In
a typical response format, the student is asked to report the classification scheme,
provide justification for the dimensions selected in his scheme, and use the
scheme developed to classify a sample of objects provided. The scoring system is
dimension-based and focuses on whether the student used attributes relevant to
the purpose either singly or in combination to classify objects. For example, the
scoring system for ÒRocks and ChartsÓ focuses on the relevance of the rocksÕ
properties selected by the student to develop the classification scheme and how
accurately he uses the scheme to classify the sample of rocks provided.

The observation investigation asks students to observe and systematically
record an attribute of an object over a period of time. For example, the task in the
ÒDaytime AstronomyÓ investigation asks a student to use her knowledge of
Earth-Sun relations to model shadows at different times of day in the Northern
and Southern Hemispheres to solve location problems (Figure 7). In the
response format, the student provides information about the data she collected
during her observations as well as the methods used to collect the data. The
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Figure 6. The Rocks and Charts investigation.
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Figure 7.  The Daytime Astronomy investigation.
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scoring system is data-accuracy-based. Scoring focuses on whether students
produce accurate results based on both observing natural phenomena and
developing models to explain their observations. The scoring system for the
ÒDaytime AstronomyÓ investigation focuses on the accuracy of the observations
made and the procedure used to model sun shadows with a flashlight and an
Earth globe.

Performance assessment methods. StudentsÕ performances have been
measured using different methods: direct observationÑan observer records a
studentÕs performance as the student proceeds with the investigation;
notebookÑa student records his procedures and conclusions in a notebook;
computer  simulationÑa student conducts an investigation on a computer; and
paper and pencilÑa student works problems in planning, designing, and/or
interpreting a hypothetical hands-on investigation (i.e., short-answer and
multiple-choice tests; Baxter & Shavelson, 1994; Shavelson et al., 1991; Shavelson
& Baxter, 1992). Direct observation is considered to be the ideal measurement
method or Òbenchmark.Ó The other methods are considered to be surrogates.
Because direct observation is costly in time and human resources, the surrogate
methods are used more widely in classrooms and large-scale assessments.

Technical quality. Initially greatest concern about performance assessment
was attached to rater sampling variability; complex behavior was assumed to be
too difficult to judge either in real time or from a written record. Research is
quite clear on this issue: Raters can be trained to evaluate complex performance
reliably (e.g., Shavelson et al., 1993). Nevertheless, not all individuals can be
trained to score performance consistently, and raters must be continually checked
and re-calibrated (Wigdor & Green, 1991).

The findings on task sampling variability are remarkably consistent across
diverse domains such as writing, mathematics, and science achievement (Baxter
et al., 1993; Dunbar, Koretz, & Hoover, 1991; Shavelson et al., 1993) and
performance of military personnel (Wigdor & Green, 1991). Task sampling
variability is large. A large number of tasks is needed to get a generalizable
measure of student performance.

One study, and perhaps the only study, of occasion sampling variability with
science performance assessments indicates that this source of variability may also
be large (Ruiz-Primo, Baxter, & Shavelson, 1993; Shavelson et al., 1993). Indeed,



21

occasion sampling variability is often confounded with task sampling variability
because assessments are given only at one point in time (Cronbach, Linn,
Brennan & Haertel, 1997). We have found that both task sampling and occasion
sampling variability combined give rise to the major source of measurement
error in performance assessment (Shavelson & Ruiz-Primo, in press).

Finally, method sampling variability is sufficiently great to suggest that
different methods may tap into different aspects of science achievement (Baxter
& Shavelson, 1994). A studentÕs score depends on the particular task sampled and
the particular method used to assess performance (see Baxter & Shavelson, 1994).
Research suggests that the paper-and-pencil method is less exchangeable with
direct observation (r < .30) than other methods. Direct observation, notebooks
and computer simulationsÑall methods that react to the actions taken by the
students in conducting an investigationÑseem to be more exchangeable (r ~ .50;
Shavelson & Ruiz-Primo, in press). The important lesson to learn from this
research is that performance assessment scores are sensitive to the method used
to assess performance.

Issues in the use of performance assessments. Performance assessments face
challenges that, at present, limit their practicality in large-scale testing programs.
For example, performance assessments are costly and time consuming to
develop and administer (Stecher & Klein, 1997). The technology available is
limited, and does not approach the efficiency of multiple-choice tests. Although
some attempts are being made to develop a technology (Solano-Flores,
Jovanovic, & Shavelson, 1997; Solano-Flores & Shavelson, 1997), we are not
close to an off-the-self, high-quality performance assessment similar to that
associated with multiple-choice tests.

The quality of a performance assessment determines whether or not it taps
procedural knowledge. Glaser and Baxter (1997) found that the task, response
format, and scoring system hold the key for tapping what performance
assessments intend to measure, procedural and strategic knowledge. Assessment
tasks that provide step-by-step instructions for conducting an investigation may
prohibit students from demonstrating how they applied their knowledge to
solve the problem. Indeed, this type of task may only show that a student is able
to follow directions. Also, scoring systems inconsistent with the task do not
involve studentsÕ meaningful use of knowledge and problem-solving
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procedures. Performance assessments need to focus not only on content but also
on the process-demands of the assessment task (Glaser & Baxter, 1997).

A major issue in using performance assessments is that a substantial
number of tasks is needed to reliably estimate student- and school-level
performance due to task sampling variability. At the individual level, 8 to 23
tasks may be needed to reach reliability .80 (Gao, Shavelson, & Baxter, 1994;
Shavelson et al., 1993). At the school level, a trade-off between the number of
students tested and number of tasks in an assessment should be considered. For
example, to achieve reliability .80, 50 students and 15 tasks or 100 students and 12
tasks may be needed. Gao et al. (1994) found that as few as 7 tasks may be needed
for a sample of 25 students if matrix sampling is used. The impact of task
sampling on time, cost, and human resources is substantial. It may take about
2.25 hours of testing time to obtain a generalizable measure of student
achievement if we consider 7 tasks of 20 minutes each.

The brief review of the state of the art in science performance assessments
presented above makes clear that high-quality performance assessments are
costly to produce, administer and score. A long-term research agenda should (a)
develop a high-quality performance assessment technology for use i n
curriculum, and in state and national examinations; (b) examine and learn how
to reduce task/occasion sampling variability; and (c) explore which measurement
methods are the most appropriate for testing students.

Concluding Comments on Directions for Science Achievement Measurement

We have set forth an incomplete working definition of science
achievement. We have conceived of three types of knowledge that need to be
included in such a definition. The first type of knowledge is declarative
knowledge, knowing that something is true. This knowledge includes facts,
concepts and principles; paper-and-pencil achievement tests do a reasonably good
job of measuring important aspects of declarative knowledge. The second type of
knowledge is procedural knowledge, knowing how to do something. This kind
of knowledge includes knowledge of procedures for carrying out a scientific
investigation (e.g., controlling some variables, manipulating others, and using
the appropriate measurement). Performance assessments do a reasonably good
job of measuring important aspects of this knowledge. The third type of
knowledge is strategic knowledge, knowing the which, when and why of doing
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something. Strategic knowledge is organized in a mental model that represents a
studentÕs understanding of the phenomenon being dealt with and helps her
integrate declarative and procedural knowledge so as to bring them to bear i n
specific situations.

In addition to mapping out three areas of knowledge to be considered i n
achievement testing, the working definition identified several characteristics of
knowledge that warrant consideration in achievement testing. The first
characteristic of knowledge (declarative, procedural and strategic) is that it is
structured; experts have highly organized knowledge, novices do not. Concept
maps do a reasonably good job of measuring aspects of the structure of
declarative knowledge, although a great deal of research remains to be done with
this measurement technique. However, there has been little research on the
measurement of the structural aspects of procedural or strategic knowledge.
Further achievement testing research should address this gap.

Another characteristic of knowledge is Òmetacognition.Ó Metacognition
involves an individual monitoring how she accesses and uses knowledge.
Metacognition also involves use of heuristic strategies for searching knowledge,
and for checking to see whether the search produced reasonable, reliable results.
Although there has been considerable research on metacognition, this construct
has not been integrated into achievement testing. Again, research is needed to
fill this gap.

At this point, it should be clear as to why we consider our definition of
achievement an incomplete, working definition. The definition is incomplete
because it does not include some aspects of knowledge such as scientistsÕ tacit
knowledge of norms in a laboratory culture or the conventions they use to
represent ideas when working together in the laboratory (e.g., Bleicher, 1996;
Greeno, 1998; Kozma, Chin, Russell, & Marx, 1997). Nor does it include an
adequate array of knowledge characteristics such as structure and metacognition.
The definition is a working definition in that although it helps to guide the
development and interpretation of science achievement assessments, the
definition will change as we gather new information from achievement
assessments themselves.
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