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BAYES NETS IN EDUCATIONAL ASSESSMENT:

WHERE DO THE NUMBERS COME FROM?1

Robert J. Mislevy, Russell G. Almond,

Duanli Yan, and Linda S. Steinberg,

CRESST/Educational Testing Service

Abstract

Educational assessments that exploit advances in technology  and cognitive psychology
can produce observations and pose student models that outstrip familiar test-theoretic

models and analytic methods.  Bayesian inference networks (BINs), which include
familiar models and techniques as special cases, can be used to manage belief about stu-

dents’ knowledge and skills, in light of what they say and do.  BINs for assessments that
add new tasks to their item pools and measure different students with different items can

be assembled from building-blocks fragments.  A student-model BIN (SM-BIN) fragment
contains student model variables, which characterize aspects of knowledge.  Evidence

model BIN fragments (EM-BINs) contain observable variables and pointers to student
model variables.  Joining EM-BIN fragments to an SM-BIN fragment permits one to

update belief about a student as observations arrive in a setting the EM-BIN was
constructed to handle.  Markov Chain Monte Carlo (MCMC) techniques can be used to

estimate the conditional probabilities in the BINs from empirical data, supplemented by
expert judgment or substantive theory.  Details for the special cases of item response

theory (IRT) and multivariate latent class modeling are given, with a numerical example
of the latter.

1.  Overview

This paper concerns statistical methods for managing uncertainty about stu-
dents’ knowledge, as evidenced by their performances in assessment tasks.  Section
2 sketches a framework for assessment design that includes the building blocks of
the statistical model.  They are student model Bayesian inference network (SM-BIN)
fragments, which contain unobservable variables that characterize aspects of
students’ knowledge or skills, and evidence model fragments (EM-BINs), which

                                                  
1 We thank Eddie Herskovitz and Andrew Gelman for their contributions to this work and to Kikumi
Tatsuoka for permission to use her data on mixed number subtraction. We gratefully acknowledge
our intellectual debt to Dr. Tatsuoka, having leaned on the insights in her classroom observations,
cognitive analysis, test design, and analyses.
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contain observable variables and pointers to student-model variables.  The BIN
fragments can be joined for updating belief about students’ proficiencies as evidence
arrives, an example of “knowledge based model construction” (KBMC; Breese,
Goldman, & Wellman, 1994).

Section 3 addresses the perennial question in expert systems, “Where do the
numbers come from?”  We describe a general probability model and a Bayesian
approach to estimating the parameters of student and evidence models, calibrating
new tasks into an existing assessment, and drawing inferences about students.
Section 4 illustrates the ideas for computerized adaptive testing (CAT) with item
response theory (IRT) models.  Section 5 lays out a second special case, namely, a
multivariate latent class model, and gives a numerical example.

2.  The Assessment Framework

The essential problem in assessment is drawing inferences about what a
student knows or can do, from limited observations of what she actually says or
does in a relatively small number of particular settings.  The present paper arises
from a research program studying educational assessment from the perspective of
evidentiary reasoning (Schum, 1994), the “Portal” project.  The focus here is on
statistical methods.  Other presentations focus on cognitive psychology (Mislevy,
1995, Steinberg & Gitomer, 1996), probability-based reasoning (Almond et al., 1999;
Mislevy & Gitomer, 1996), assessment design (Almond & Mislevy, 1999; Mislevy,
Steinberg, & Almond, in press); and computer-based simulation (Mislevy et al.,
1999; Steinberg & Gitomer, 1996).

A quote from Messick (1992) captures the spirit of our approach to assessment
design:

A construct-centered approach would begin by asking what complex of knowledge,
skills, or other attribute should be assessed. . . .  Next, what behaviors or performances

should reveal those constructs, and what tasks or situations should elicit those
behaviors?  Thus, the nature of the construct guides the selection or construction of

relevant tasks as well as the rational development of construct-based scoring criteria and
rubrics.   (p. 17)

Our work has two facets: a conceptual framework for assessment, and processes for
developing and implementing specific applications built according to the
framework.  Figure 1 is a schematic representation of the four high-level objects in a
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Portal conceptual assessment framework where the issues of statistical inference
arise.

• The Student Model contains unobservable variables, denoted θi = θi1,...,θiK( )
for Examinee i, which characterize the aspects of knowledge and skill that
are the targets of inference in the assessment.  The SM-BIN manage our
belief about θi  in terms of a probability distribution.  The student model

variables for all N examinees in a sample of interest is denoted θ.

• An Evidence Model first describes how to extract the salient bits of evidence
from what a student says or does in the context of a task (the work
product).  Evidence rules produce the values of observable variables,
denoted Xj = Xj1,..., XjM( )  for Task j.  An evidence model also describes, in

terms of the structure of an EM-BIN, how each X j  depends on θ .  The

complete collection of responses across all examinees and all tasks is
denoted X.

• A Task Model describes the features of a task that need to be specified.  This
includes specifications for the work environment, tools the examinee may
use, the work products, stimulus materials, and interactions between the
examinee and the task, as consistent with the evidentiary requirements of a
conformable evidence model.  The characteristics of a task are expressed by
task model variables, Y j  = Y j1,...,Y jL( ) for Task j; they are determined by the

test developer, and are known with certainty.  The complete collection of
task features for all tasks in the item pool is denoted Y.

     Evidence Model(s)

1. xxxxxxxx   2. xxxxxxxx
3. xxxxxxxx   4. xxxxxxxx
5. xxxxxxxx   6. xxxxxxxx
7. xxxxxxxx   8. xxxxxxxx

Evidence
rules

Assessment Assembly Specifications

SM-BIN

EM-BIN

     Student Model
     Task Model(s)

Figure 1.  High-level assessment design objects.
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• The Assembly Model describes the mixture of tasks that go into an
operational assessment, either the specification of a fixed test form or a
procedure for determining tasks dynamically.

3.  The Probability Framework

According to Gelman et al. (1995, p. 3), the first step in Bayesian analysis is
setting up a full probability model—a joint probability distribution for all observable
and unobservable quantities in a problem.  “The model,” they continue, “should be
consistent with knowledge about the underlying scientific problem and the data
collection process.”  In assessment, what we know about the domain identifies the
nature of the targeted knowledge and skill, the ways in which aspects of that
knowledge are evidenced in performance, and the features of situations that provide
an opportunity to observe those behaviors.  We incorporate this information in a
student model and a series of evidence models. The key conditional independence
assumption posits that the aspects of proficiency expressed in the student model
account for the associations among responses to different tasks (although we may
allow for conditional dependence among multiple responses within the same task).

3.1.  The Probability Model

The pertinent variables in assessment obviously include tasks’ Ys, all of which
are observable; examinees’ θ s, which are not; and Xs, which are potentially
observable.  Structures and parameters that reflect interrelationships among these
variables, consistent with our knowledge about them, are also needed.   We may
build the required structures from SM-BINs and EM-BINs.  This section describes
them in general terms, while Sections 4 and 5 work through special cases from item
response theory and latent class modeling.

The SM-BIN for Examinee i is a probability distribution forθi .  An assumption

of exchangeability posits a common prior distribution for all examinees before any
responses are observed, with beliefs about expected levels and associations among
components expressed through the structure of the model and higher level
parameters λ ; whence, for all Examinees i,

θi ~ p θ λ( ). (1)
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Depending on the strength with which theory and experience inform population-
level beliefs, p λ( ) could range from vague to precise.

As noted above, the evidence model for a class of tasks contains (1) rules for
ascertaining the values of observable variables X from a student’s work product,
and (2) the structure of a probability model for X given θ .  We focus on the latter.
Evidence models, indexed by the s, each support a class of tasks that provide values
for a similar set of observable variables X(s) ; further, the dependence structure of
these X(s) s on θ  is the same for all tasks j using the same evidence model. Thus the

EM-BINS for task sharing the same evidence model will have the same graphical
structure and exchangeable parameters (probability tables), but the conditional
probability distributions within that structure can differ. As Sections 4 and 5
illustrate, this structure is guided by theory about proficiency in the domain and
careful task construction that evokes targeted aspects of that proficiency.

Let π(s) j  denote the parameters of the EM-BIN distributions for Task j which

uses the structure of evidence model s(j), (or more simply, s).  The distribution of the
responses of Examinee i to Task j is

X(s)ij ~ p(X(s)|θi,π(s)j).  (2)

All the tasks using an Evidence Model s produce observables X(s)  of the same

form, contributing information about the same components of θ .  But within this
common evidentiary structure, features of the tasks, encoded as Ys, can moderate
these relationships. For example, unfamiliar vocabulary and complex sentence
structures tend to make reading comprehension tasks more difficult. The parameters
π(s) j  for particular tasks may thus be modeled as exchangeable within evidence
models given the values of designated task model variables Y(s) ; that is,

π(s) j ~ p π(s) Y(s) j ,ηs( ), (3)

with prior beliefs expressed through higher-level distributions p ηs( ) .  We assume

that X(s)ij  does not depend on Y(s) j  other than possibly through π(s) j .  The complete

collection of probabilities for all EM-BINs for all tasks is denoted π and the complete
collection of a prior parameters for those probabilities is denoted η .

The full probability model for the responses X(s)ij  of N  examinees to J tasks

nested within S evidence models can now be written as
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p X,θθ,ππ,ηη,λ Y( ) ~ p X(s)ij θi ,π(s) j( )
i

∏
j

∏
s

∏ p π(s) j Y(s) j ,ηs( )p ηs( )p θi λ( )p λ( ). (4)

Figure 2 is a generalized form of an acyclic directed graph (“DAG”)
representation of this model, with boxes representing replicated elements
(Spiegelhalter et al., 1996).  The structure and the nature of the distributions is
tailored to the particulars of an application. In the sequel, we will omit the evidence
model subscripts (s) from Xj, Yj, and πj, when they are not needed.

replication over 
examinees (i)

replication over 
tasks (j)

(s)

replication over 
evidence models (s)

Xijθiλ ηπ(s)j

Y(s)j

Figure 2.  DAG representation of the Probability Model. Xij  is the response of
Student i to Task j; θi  is the parameter of Examinee i; λ  is the parameter of the
distribution of θ s; π(s) j  is the parameter for Task j, which uses Evidence Model s;
Y(s) j  are the task model variables for Task j; and η s( )  is the parameter of the
distribution of π(s) j s.  All of these parameters can be vector-valued.

3.2  Statistical Inference

In general, the second step of Bayesian inference involves conditioning on
observed data.  Continuing from the preceding section, this would mean
conditioning on whatever observations X are made (say Xold), to yield a posterior

distribution for the unobservable parameters θθ,ππ,ηη,  and λ , and predictive
distributions for Xs not yet observed (say Xnew ); i.e., p Xnew ,θθ,ππ,ηη,λ Y,Xold( ).
Parameters and unobserved responses that are not of immediate interest can be
integrated out of this joint posterior to provide marginal posterior distributions for
specified variables as desired.

What are the jobs in an ongoing operational assessment?  Primarily, we want to
learn about the θ s of individual examinees, for such purposes as making selection
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decisions, planning instruction, providing feedback on learning, informing
policymakers, and guiding students’ work in a coached practice system.  Usually we
can observe a student’s responses to only a limited number of tasks.  On the other
hand, we can often observe responses to a given task from a large number of exami-
nees. From these observations we refine our knowledge about how responses to a
given task depend on θ ; that is, the π s . This knowledge provides a means of

selecting tasks to administer to examinees, updating our beliefs about their θ s, and
estimating the conditional probability distributions for new items. This knowledge
is used to selecting tasks to administer to examinees, update our beliefs about their
θ s, and estimate the π s of new items.

3.2.1  Inference About Examinees

Consider inference about Examinee i when ππ,ηη,and λ are known to take the
values of ππ∗ ,ηη∗ , and λ∗  respectively.  This situation may be approximated in an

ongoing program with considerable data about these parameters (Sections 3.2.2 and
3.2.3).  Suppose we observe Examinee i’s responses to tasks 1 through J.  The
objective is to proceed from the prior distribution p θi λ*( ) to the posterior

p θi λ*, xi1,…, xiJ ,π1
*,…,πJ

*( ) .

The SM-BIN for Examinee i is a probability distribution for θi .  Its initial status
is p θi λ*( ).  Following (2), the EM-BIN for Task 1 is p X1 θi ,π1

*( ) .  Together they imply

the joint distribution of θi  and X1 , namely p X1,θi λ*,π1
*( ) ≡ p X1 θi ,π1

*( )p θi λ*( ).  Once

xi1 is observed, Bayes Theorem yields an updated distribution for θi : p θi λ*, xi1,π1
*( ).

To it we can attach the EM-BIN for Task 2, or p X2 θi ,π2
*( ) , and use Bayes Theorem

again to obtain p θi λ*, xi1, xi2 ,π1
*,π2

*( ) once xi2  is observed.  So on through Task J.

Note that the capability to dock evidence-model BIN fragments with the student-
model BIN fragment, absorb evidence from it, then discard it in preparation for the
next task is made possible by the conditional independence structure across
observations from different tasks—a structure generally achieved only through
careful study of proficiency in the domain and principled task construction in its
light.

When all the student model variables and observable variables are discrete, the
belief updating equations all have closed form (Lauritzen & Spiegelhalter, 1988).
Complications arise when one wishes to assemble fragments on the fly, in ensuring
that a proper join tree can be secured for each concatentated BIN.  Almond et al.
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(1999) offer one solution to this problem: forcing edges in the student-model BIN
among student-model variables, which are parents of some observable in any
evidence model that may be used.

Rarely are ππ,ηη, and λ  known with certainty.  Fully Bayesian inference deals

with them and all the θ s at once (Section 3.2.2).  The modularity of SM-BINs and
EM-BINs that suits KBMC can be maintained by using facsimiles that replace ππ∗  and
λ*  with point estimates π̂π and λ̂ —e.g., posterior means given Xold—or marginal

approximations p̂ θ( ) =  p θ λ ,Xold( )p λ( )∫ dλ  a n d  p̂ X(s)ij θi( ) =

p π(s) j Xold ,Y(s) j ,ηs( )p ηs( )dπ(s) jdηs∫∫ .

3.2.2  Inference About Higher Level Parameters

 When an operational assessment program is initiated, responses from a large
sample of examinees may be used to draw sharp inferences about the parameters of
the population of examinees and a startup set of tasks.  The inferential targets are λ ,
ηη, and ππold , and the relevant posterior distribution is p ππold ,ηη,λ Y,Xold( ).  The results

of this analysis can be used to construct SM- and EM-BINs for use with future
examinees.

The details of such analyses have been worked out for special cases of familiar
assessment practices, such as the IRT methodologies outlined in Section 4.  Recent
work with Monte Carlo Markov Chain (MCMC) estimation (e.g., Gelman et al.,
1995) provides a general approach that can be applied flexibly with new models as
well, and suits the modular construction of probability distributions in KBMC.  A
full treatment of MCMC methods is beyond the current presentation.  It suffices here
to state the essential idea: to produce draws from a series of distributions
constructed in the manner sketched below, which is equivalent in the limit to
drawing from the posterior distribution of interest.

We address p ΘΘ,,ππold ,ηη,λ Y,Xold( )  in the present problem using a Gibbs sampler.
Iteration t+1 starts with values for each of the parameters, say ΘΘt ,ππold

t ,ηηt ,λ t{ } .  A

value is then drawn from the following conditional distributions:

Draw ΘΘt +1 from p ΘΘ ππold
t ,ηηt ,λ t ,Y,Xold( );

draw ππold
t +1  from p ππold ΘΘt +1,ηηt ,λ t ,Y,Xold( ) ;

draw ηηt +1  from p ηηΘΘt +1,ππold
t +1,λ t ,Y,Xold( ); and
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draw λ t +1 from p λ ΘΘt +1,ππold
t +1,ηηt +1,Y,Xold( ) .

Once the process is stationary, the distribution of a large number of draws for a
given parameter approximates its marginal distribution.  Summaries such as
posterior means and variances can be calculated, which may be used to construct
self-contained SM- and EM-BIN fragments.  We used the Spiegelhalter et al. (1996)
BUGS program in the example in Section 5.  See Gelman et al. (1995) on assessing
convergence and criticizing model fit.

3.2.3  Inference About New Tasks

Ongoing assessment programs continually add new tasks to the item pool,
whether to help maintain security, to extend the range of skills addressed, or simply
to provide variety for students. We assume that the new items are created in
accordance with existing task models and conformable evidence models.  We must
estimate the π s  for the EM-BINs of the new tasks.

Suppose we have already obtained responses Xold  from a sample of examinees

for a set of tasks 1…J, and by methods such as those described above obtained
posterior distributions p λ Xold( ) , p η(s) Xold( )  for s=1…S, and  p πj Y j ,Xold( ) for j=1…J.

We wish to calibrate into the set a new Task J+1, which uses Evidence Model s[J +1]
and is characterized by task features YJ +1.  We obtain responses Xnew  from a sample
of Nnew  examinees to both Task J+1 and previously-calibrated tasks.  The objective

now is to obtain an approximation p πJ +1 Y j +1,Xold ,Xnew( ) that we can use to produce

the EM-BIN for Task J+1.

A first approach acknowledges remaining uncertainty about the parameters of
the old tasks and the examinee and task hyperdistributions. Posterior distributions
from the startup estimation are employed as the priors for λ , ηη, and ππold .  These are,
respectively, p λ Xold( ) , p ηη Xold( ) and p ππold Yold ,Xold( ).  The iterations in an MCMC

solution echo those of the startup estimation:  One draws successively for λ , ηη, and
ππold  as well as for  πJ +1 and ΘΘnew .  In addition to posteriors for πJ +1 and ΘΘnew  based
on Xnew , one obtains updated distributions for λ , ηη, and ππold  based now on both
Xold  and Xnew .

A second, simpler, approach treats the previous point estimates as known.  The
probability model for this so-called “empirical Bayes” approximation is
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p Xnew ,ΘΘnew ,πJ +1 λ̂ , η̂η, π̂1,…, π̂J ,YJ +1( )
= p Xnew ΘΘnew , π̂1,…, π̂J ,πJ +1( )

     ×p πJ +1 η̂s[ J +1],YJ +1( )p ΘΘnew λ̂( )
= p Xij θi , π̂j( )

j =1

J

∏
i=1

Nnew

∏ p Xi, J +1 θi ,πJ +1( )

    ×p πJ +1 η̂s[ J +1],YJ +1( )p θi λ̂( ).
MCMC estimation approximates the posterior

p ΘΘnew ,πJ +1 Xnew , λ̂ , η̂η, π̂1,…, π̂J ,YJ +1( )
with iterations of the following form:

Draw ΘΘt +1 from p ΘΘπJ +1
t , λ̂ , η̂η, π̂1,…, π̂J ,YJ +1( );

Draw πJ +1
t +1  from p πJ +1 ΘΘt +1, λ̂ , η̂η, π̂1,…, π̂J ,YJ +1( ) .

This second approach is simpler because it treats parameters known only
partially, namely λ , ηη, and ππold , as if they were known with certainty. This
expedient can distort the resulting posterior for πJ +1, understating uncertainty and

possibly changing its shape or location.  Just how tight the distributions for λ , ηη,
and ππold  must be for these distortions to be negligible is an empirical question, as

illustrated in Section 5.

4.  Item Response Theory and Adaptive Testing

This section discusses computerized adaptive testing (CAT) with item response
theory (IRT).  In CAT, the preceding ideas have been applied in large-scale opera-
tional testing programs such as the Graduate Record Examination (GRE) and the
Armed Services Vocational Aptitude Battery (ASVAB).  It is a good example because
both the student model and the observations are fairly simple, and the
methodologies have evolved over the past fifty years in the context of educational
testing.
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4.1  Item Response Theory (IRT)

An IRT model expresses an examinee’s propensity to perform well in a domain
of test items, in terms of a single unobservable proficiency variable θ .  Item re-
sponses are posited to be independent, conditional on θ  and item parameters that
express characteristics such as items’ difficulty or their sensitivity to proficiency.
The Rasch model for J dichotomous test items is an example:

P x1,…, xJ |θ,β1,…,βJ( ) = P x j |θ,β j( )
j =1

J

∏ , (5)

where x j is the response to Item j (1 for right, 0 for wrong), β j  is the difficulty

parameter of Item j, and P x j |θ,β j( )= exp x j θ − β j( )[ ] 1 + exp θ − β j( )[ ] .  The β j s play

the role of the πj s in the notation of Section 3.

The student model in IRT contains the single proficiency variable θ , and an
SM-BIN is just a probability distribution for θ —initially p θ( ).  A task model
specifies a set of salient features of a class of items, or task model variables Y j  that

concern content areas, cognitive demands, item format, work product specifications,
and so on, as required to assemble tests or model item parameters.  An evidence
model contains the rules for determining  the value of the response x j  from an

examinee’s work product, such as a rubric a rater uses to evaluate a free response or
a correct answer against which an examinee’s multiple-choice response is compared.
An evidence model also specifies the structure of EM-BINs, which in this example
are identical in form but generally differ as to the value of β j .  The evidence model
may further posit a relationship between β j  and Y j  (see Section 4.3).

The likelihood function (5) corresponds to catenated EM-BIN fragments.  Once
an examinee’s response vector x  = x1,…, xJ( )  is observed, it is viewed as a likelihood

function for θ , say L θ x,B( ).  Bayesian inference is based on the posterior p θ x,B( ) ∝
L θ x,B( )p θ( ), where B= β1,…,βJ( ). Then p θ x,B( )can be summarized by its posterior

mean θ  and variance Var θ x,B( ).

4.2  Inference About Examinees: CAT

A fixed test form provides different accuracy for different values of θ , with
greater precision when θ  lies in the neighborhood of the items’ difficulties.  CAT
tailors the test’s level of difficulty to each examinee.  Testing proceeds sequentially,
with each successive item k+1 selected to be informative about the examinee’s θ  in
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light of the responses to the first k items, or x k( )  (Wainer et al., 1990, Chap 5). A
Bayesian approach to CAT starts from a prior distribution for θ  and selects each
next  i tem j  to  mini mize expected posterior variance, or
Exj

Var θ x (k ) , x j ,B
(k ) ,β j( ) x (k ) ,B(k )[ ] .  Additional constraints on item selection can be

incorporated into the assessment assembly algorithm, such as item content and
format encoded as task model variables Y j  (Stocking & Swanson, 1993).  Testing

ends when a desired measurement accuracy has been attained or a specified number
of items has been presented.

Figure 3 depicts the SM-BIN and EM-BINs in IRT-CAT.  Figure 3a shows the
SM-BIN on the left, consisting of the single SM variable θ  and the distribution object
that contains current belief about its unknown value.  On the right is a library of EM-
BINs, each linked to a particular task.  The observable variable x j  appears, along
with the distribution object that contains the IRT conditional distribution for x j

given θ .  Figure 3b shows an EM-BIN “docked” with the SM-BIN to absorb
evidence in the form of a response to the corresponding item.

X1

Xn

:

X2

Student
Model

Task

θ

θ X2

 Library

a) SM-BIN and Task/EM-BIN Library

b) EM-BIN for Item 2 "docked" with SM-BIN

Figure 3. SM-BIN and Task/EM-BINs in IRT-CAT. The distribution object
for the SM-BIN contains the distribution for θ ; those for the tasks contain
the conditional distributions of the item response given θ .



13

4.3  Inference About Higher Level Parameters.

For selecting items and scoring examinees in typical applications, estimates of
the item parameters are obtained from large samples of examinee responses and
treated as known.  This procedure plays the role of the MCMC estimation described
in Section 3.2.2.  Bayes modal estimation and maximum likelihood (Bock & Aitkin,
1981) are widely used, although MCMC methods are appearing (e.g., Albert, 1992).

There is growing interest in exploiting collateral information about test items’
features Y j  to reduce the number of pretest examinees needed to estimate item

parameters (Mislevy, Sheehan, & Wingersky, 1993).  For example, Scheuneman,
Gerritz, and Embretson (1991) accounted for about 65% of the variance in item
difficulties in the Reading section of the National Teacher Examination with
variables for tasks’ syntactic complexity, semantic content, cognitive demand, and
knowledge demand.  Fischer (1973) integrated cognitive information into IRT by
modeling Rasch item difficulty parameters as linear functions of effects for item
features.  Incorporating a residual term to allow for variation of difficulties among
items with the same features gives

β j = Ykj
k =1

K

∑ ηk + ε j ,

where ηk is the contribution of Feature k to the difficulty of an item, Ykj is the extent

to which Feature k is represented in Item j; and εj is a N(0,φ 2) residual term.

Sheehan and Mislevy (1990) used this model with item features based on cognitive
analysis of the difficulty of document literacy tasks.

4.4  Inference About New Tasks

CAT selects items according to their difficulty parameters in order to maximize
information about an examinee’s θ . To do this one must know something about the
β j s.  Now testing programs continually introduce new items into the item pool so

items do not become spuriously easy after examinees share them.  Estimating the β s

of new items within the context of operational testing is called “on-line calibration.”
This is usually done by administering examinees both optimally-determined items
whose β s are well-estimated and randomly-selected new items whose β s are not

known.  The responses to the former are used to determine the examinee’s
operational score, while the responses to the latter are used to learn about the new
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items’ β s.  This is the situation discussed in Section 3.2.3.  Standard practice is to es-

timate the parameters of new items using the empirical Bayes approximation; that is,
the parameters of the “old” items are treated as known.  Empirical studies have
shown this expedient yields satisfactory estimates for Bnew.  The evidentiary value of

Ys for β s can also be exploited in on-line calibration, in order to reduce the number

of pretest examinees that are needed; knowing that a vocabulary item tests a
common word, for example, gives it an initial prior distribution anticipating a
lower-than-average difficulty parameter.

4.5  A Pointer to Factor Analysis

Without working through the details, we note in passing how neatly another
mainstay of psychometrics, factor analysis (Thurstone, 1947), falls into the structure
outlined in Section 3.  In the notation of Section 3, the basic equation of factor
analysis is

xij = πjθik + eij ,
k
∑ (6)

where xij  is the observable test score of Examinee i on Test j; πj  is the loading

(regression coefficient) of Test j on the unobservable Factor k , θik  is Examinee i’s
value on Factor k, and eij  is a residual, independent of θik  and having variance
σ j

2 —the unique variance of Test j.  Equation 6 implies that for standardized test

scores and factors,

ΣΣX = πΣΣθ ′π + diag σ1
2 ,...,σ J

2( ),

where ΣΣX  and ΣΣθ  are the correlation matrices of the scores and factors, respectively.

Factor analysts were initially concerned with determining the number of
factors in a given problem and estimating the factor loadings—fundamentally the
problem discussed in Section 3.2.2.  Issues of resolving indeterminacies among factor
solutions and of distinguishing exploratory and confirmatory analyses can be
viewed as issues of specifying prior distributions for πs and σ j

2 s (Scheines, Hoijtink,

& Boomsma, 1999).  Once a solution is accepted, what can be said about a particular
examinee’s factor values given her test scores?  Factor score estimation (Cattell, 1978,
Chap. 11) addresses this question—the problem of Section 3.2.1.  And if the factor
loadings of a set of tests have been estimated from one data set, can loadings for
additional tests on the same factors be obtained from new examinees’ scores on both
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the original tests and the new ones?   Dwyer (1937) answered in the affirmative by
introducing “extension loadings”—in essence the problem discussed in Section 3.2.3.

5.  A Multivariate Latent Class Model

This section concerns binary skills latent class models (Haertel, 1984).  We give
numerical results from analyses of Tatsuoka’s (1990) data on mixed number
subtraction with middle school students.

5.1  Binary Skills Models

In a binary skills model, the student model contains a vector of K 0/1 variables
θi = θi1,...,θiK( ), each of which signifies that an examinee either does (1) or does not

(0) possess some particular element of skill or knowledge in some learning domain.
A task in this domain is similarly characterized by a vector of K 0/1 task model
variables Y j = Y j1,...,Y jK( ) that indicates whether a task does (1) or does not (0)

require each of these skills for successful solution; these values are known with
certainty, and are determined by the features of task’s construction and the skills
that theory says are required to solve it in light of those features.  The statistical
component of the evidence model posits that an examinee is likely to succeed on a
task ( Xj = 1) when she possesses the skills it demands, and likely to fail ( Xj = 0) if

she lacks one or more of them.

5.2  The Method B Network

This example is grounded in a cognitive analysis of middle-school students’
solutions of mixed-number subtraction problems.  Klein et al. (1981) identified two
methods of solution:

Method A: Convert mixed numbers to improper fractions, subtract, then
reduce if necessary.

Method B: Separate mixed numbers into whole number and fractional parts,
subtract as two subproblems, borrowing one from minuend whole number if
necessary, then simplify and reduce if necessary.

We focus on students learning to use Method B.  The cognitive analysis mapped out
a flowchart for applying Method B to a universe of fraction subtraction problems.  A
number of key procedures appear, which a given problem may or may not require.
Students had trouble solving a problem with Method B when they could not carry
out one or more of the procedures an item required.  Instruction was available to
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review each procedure.  The purpose of the test in this example was to determine
which procedures a student should review, among five procedures that are
sufficient for mixed-number subtraction problems when no common denominator
needs to be found.  The procedures are defined at the grain-size of the review
lessons; they are as follows:

Skill 1: Basic fraction subtraction.

Skill 2: Simplify/reduce fraction or mixed number.

Skill 3: Separate whole number from fraction.

Skill 4: Borrow one from the whole number in a given mixed number.

Skill 5: Convert a whole number to a fraction.

θ1,…,θ5  are student-model variables that correspond to having or not having

each of these skills, with the idea that a student with a low probability of having a
skill would benefit from the corresponding review session.  Prior analyses revealed
that Skill 3 is a prerequisite to Skill 4.  We introduced a three-level variable, θWN , that
incorporates this constraint.  Level 0 of θWN  means having neither of these skills;

Level 1 means having Skill 3 but not Skill 4; Level 2 means having both of them.

Table 1 lists fifteen items from Dr. Tatsuoka’s data set, characterized by the
skills they require—i.e., their Y s.  The list is grouped by patterns of skill
requirements.  All the items in a group have the same structural relationship to θ .
They require a student have the same conjunction of skills in order to make a “true
positive” correct response.  They accord with the same evidence model, and will
have EM-BIN fragments with the same graphical model.

We re-analyze data that Dr. Tatsuoka collected and analyzed with her Rule-
Space methodology, which also used a binary skills foundation but with a somewhat
different set of skills and a pattern-matching approach to handling uncertainty.  We
consider the responses of 325 students deemed to be using Method B.

5.3  The Probability Model

The full probability distribution for all 325 examinees and 15 items has the form
shown in (4).  The distributions are specified as follows.
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Table 1

Skill Requirements for Fraction Items

Skills required

Item Text 1 2 3 4 5 EM

6 6
7 − 4

7 = x 1

8 3
4 − 3

4 = x 1

12 11
8 − 1

8 = x x 2

14 3 4
5 − 3 2

5 = x x 3

16 4 5
7 −1 4

7 = x x 3

9 3 7
8 − 2 = x x 3

4 3 1
2 − 2 3

2 = x x x 4

11 4 1
3 − 2 4

3 = x x x 4

17 7 3
5 − 4

5 = x x x 4

20 4 1
3 −1 5

3 = x x x 4

18 4 1
10 − 2 8

10 = x x x 4

15 2 − 1
3 = x x x x 5

7 3 − 2 1
5 = x x x x 5

19 7 −1 4
3 = x x x x 5

10 4 4
12 − 2 7

12 = x x x x 6

The student model variables are θ1,…,θ5,θWN( ) .  Preliminary analyses based on

point estimates from Tatsuoka’s analysis led us to the structure depicted in Figure 4.
Edges represent conditional dependence relationships, with directions chosen
according to the usual instructional order.  Recalling that each of the variables θk   is
binary and θWN  has three levels, we may describe the SM-BIN, or p θ λ( ), as follows:

θ1 is Bernoulli with probability λ1; that is, θ1 ~ Bern λ1( ).

θ2 depends on θ1: θ2 θ1 = z  ~ Bern λ 2z( )  for z=0,1.  That is, there may be

different probabilities of having Skill 2 depending on whether a student
does or does not have Skill 1; those probabilities are λ 20  and λ 21

respectively.

θ5 depends on θ1 and θ2 : θ5 θ1 + θ2 = z( )~Bern λ 5z( ) for z=0,1,2.  That is, there

may be different probabilities of having Skill 5 depending on whether a
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student has Skills 1 and 2; we allow for different probabilities depending
on how many of them the student has: λ 50  if neither, λ 51 if just one of
them, and λ 52  if both.

θWN   can take values 0,1,2; it depends on θ1, θ2 , and θ5 :

θWN θ1 + θ2 + θ5 = z( )  ~ Cat λ WN ,z,0 ,λ WN ,z,1,λ WN ,z,2( ) , for z=0,1,2,3.  As above, the

probabilities for θWN  are modeled as depending on other skills, and only

the count of those mastered is distinguished.

θ3 =0 if θWN =0; θ3 =1 if θWN =1 or 2.

θ4=0 if θWN =0 or 1; θ4=1 if θWN =2.

The last two of these relationships are logical rather than probabilistic, effecting the
prerequisition relationship between θ3  and θ4  .

θ1

θ2

θ5

θ

θ3 θ4

WN

Figure 4.  DAG for student model for mixed number
subtraction. Squares represent student-model variables;
round tangles represent distribution objects.

We specified, for each λ , a prior distribution with an effective sample size of
25. These are Beta α ,β( ) for the θWN s that are parameters of Bernoulli distributions,

with α =21 and β =6 when the probability is expected to be high (e.g., students who

have Skill 1 are likely to have Skill 2) and vice versa when the probabilities are
expected to be low  (students who don’t have Skill 1 probably don’t have Skill 2
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either).  We used Dirichlet priors for the λ 5  vectors, positing increasing belief of

having Skills 3 and 4 as a student has more of Skills 1, 2, and 5.

Evidence models correspond to patterns of θ1,…,θ5  that are required to solve a

class of items, at least one of which appears in the 15-item data set.  There are six
such patterns, which can be described either in terms of the vector of skills required
or equivalently by the pattern of Task Model variables Y of items that conform with
that evidence model.  The evidence models and the items that use them can be read
from Table 1.  For example, Evidence Model 3 is characterized by Y = (1,0,1,0,0), and

Items 4-6 accord with it.

The EM-BINs take the form of misclassification matrices, specified by a false
positive probability πj 0  of a correct response if the examinee does not have the

conjunction of skills associated with the evidence model Task j uses, and a true
positive probability πj1  of a correct response if she does.  We denote by δi(s)  whether

Examinee i has the skills needed for tasks using evidence model s; it takes the value
1 if she does and 0 if she does not.

The EM-BIN for Task j, which uses evidence model s, contains the observable
response Xj , pointers to the student model variables for which Y(s)k =1, and the

following conditional probability distributions:

Xij δi(s) = z( )  ~ Bern πjz( ), for z=0,1.

That is, the probability of a correct response, or Xij =1, follows a Bernoulli
distribution, with probability parameter πj1  if Student i does have the required skills
and πj 0  if she does not.  These conditional probabilities are allowed to differ from

item to item, both within and across evidence models.  Figure 5 shows the structure
of EM-BINs for s=2 and 4.

For priors for the πs, we again imposed Beta distributions with  effective
sample sizes of 25.  These are Beta(21,6) for πj1s, or true positives, and Beta(6,21) for
πj 0 s, or false positives.  This corresponds to the prior expectation that students who

do have the necessary skills will answer an item correctly about .8 of the time, and
students who don’t will answer correctly only about .2 of the time.  These priors are
just initial guesses.  We expect, and indeed observe, substantial changes from the
priors in the posterior means.
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Xj

θ1

θ1

θ3

θ3

θ4

Xj

Figure 5.  EM-BIN structures for tasks using Evidence
Models 2 and 4. Distribution object represents distributions
of response X j  given values of student-model parents
indicated by pointers to student-model variables.

5.4  Inference About Examinees

In an operational assessment, inference about an individual examinee starts
with the possibly-diffuse population prior distribution—i.e., the SM-BIN initialized

at p θ λ̂( ) or at p θ Xold( ) = p θ λ( )∫ p λ Xold( )dλ , depending on the approximation being

used.  EM-BINs for the items to which responses are observed are joined with the
SM-BIN, and evidence is absorbed into the SM-BIN (Mislevy, 1995).

Table 2 gives an illustration from the present example.  The values of the λ s
and πs were fixed at the posterior means of the first run in the following section,
and Bayes net calculations were carried out with the ERGO computer program
(Noetic Systems, 1991).  We see how beliefs are changed after observing an examinee
give mostly correct answers to items requiring skills other than Skill 2, but not those
that do require it.  The base-rate and the updated probabilities show substantial
shifts toward the belief that this examinee has Skills 1, 3, 4, and possibly 5, but al-
most certainly not Skill 2.

Table 2

Profile of Skill-Mastery for X = (1,1,0,1,1,0,1,1,0,1,1,1,0,1,0)

Skill Prior probability Posterior probability

1 .883 .999
2 .618 .056
3 .937 .995
4 .406 .702
5 .355 .561
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5.5  Inference About Higher-Level Parameters

As a baseline against which to compare subsequent runs that better mirror
operational work, we used BUGS to estimate the full probability model from Section
5.3 with all 15 items and all 325 examinees. Table 3 gives summary statistics from
this run for selected parameters. The posterior means and standard deviations of the
parameter estimates appear, along with method-of-moments estimates of Beta
distributions these posteriors imply. Recalling the priors were Beta distributions
with an effective weight of 25 observations, the column labeled n̂  approximates the
effective number of observations the data was worth in estimating each parameter.
They are always less than the actual sample size of 325, since examinees’ actual skill
vectors are not known with certainty.

Table 3

MCMC Estimation, All Tasks, 325 Examinees

Parameter/State Mean SD α̂   β̂ n̂  

λ1 .81 .02 204 49 226

λ2 λ1=0 .21 .07 11 23 8

λ1=1 .90 .03 134 11 118

π4 False Positive .19 .05 12 51 37

True Positive .92 .02 193 16 182

π5 False Positive .20 .04 16 63 52

True Positive .91 .02 173 18 164

π8 False Positive .09 .02 20 211 204

True Positive .87 .03 114 17 104

π10 False Positive .04 .01  9 199 181

True Positive .81 .03 109 26 108

π12 False Positive .18 .03 38 169 180

True Positive .75 .04 109 36 118

π14 False Positive .05 .01 12 218 203

True Positive .68 .04 90 42 106
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Table 4 affects a startup run in an operational testing program. Two hundred
twenty-five of the examinees were sampled, and parameters were estimated in
BUGS for the λ s and for the πs of 12 items.  This run establishes the statistical
framework for subsequent inferences about new examinees and new items.  The
rows with values show posterior means similar to those of the baseline run, but
slightly higher standard deviations. Translated to approximate Beta distributions,
they show proportionally lower effective sample sizes. The blank rows correspond
to the 3 items not administered; they are the “new” items to which we now turn our
attention.

Table 4

MCMC Estimation, 12 Tasks, 225 Examinees

Parameter/State Mean SD α̂   β̂ n̂  

λ1 .80 .03 144 37 154

λ2 λ1=0 .23 .08 6 21 1

λ1=1 .90 .03 96 10 80

π4 False Positive .15 .05 8 42 23

True Positive .92 .02 135 11 119

π5 False Positive — — — — —

True Positive — — — — —

π8 False Positive .10 .02 17 155 145

True Positive .83 .04 65 14 52

π10 False Positive — — — — —

True Positive — — — — —

π12 False Positive .16 .03 23 121 117

True Positive .74 .04 75 27 74

π14 False Positive — — — — —

True Positive — — — — —
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5.6  Inference About New Tasks

We carried out two BUGS runs to calibrate the three new items into the
assessment, each reflecting one of the on-line calibration strategies outlined in
Section 3.2.3.  The response data for both runs are the same: responses to all 15 items
from the 100 examinees not used in the setup run.

Table 5 summarizes the results from a Bayesian approximation in which the λ s
and the πs about which evidence was obtained in the first run are started with Beta
or Dirichlet priors that reflect the posteriors from the setup run, via the method of
moments approximations.  For these parameters, the resulting posteriors agree well
with the results from the 325-examinee setup run—they are based on the same ex-
aminees, although the responses to the three new items from the 225 startup sample
of examinees is not  included.   The  posteriors for the  three  new items,
correspondingly, do not match quite as closely and translate to lower effective
sample sizes.

Table 5

Three New Tasks, 100 Examinees, Priors From Previous Run

Parameter/State Mean SD α̂   β̂ n̂  

λ1 .81 .02 205 49 226

λ2 λ1=0 .22 .08 11 21 5

λ1=1 .90 .03 134 13 119

π4 False Positive .19 .05 11 47 31

True Positive .94 .02 192 12 177

π5 False Positive .27 .07 11 30 14

True Positive .89 .03 79 10 62

π8 False Positive .08 .02 19 209 201

True Positive .85 .03 95 17 85

π10 False Positive .09 .03 8 79 59

True Positive .79 .05 49 13 35

π12 False Positive .17 .03 35 173 181

True Positive .75 .04 110 38 121

π14 False Positive .07 .03 6 75 53

True Positive .68 .06 43 20 36
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Table 6 summarizes the results from the empirical Bayes approximation, in
which the λ s and the πs about which evidence was obtained in the first run are
fixed at the posterior means obtained in the setup run.  The only parameters
involved in the MCMC iterations were the 100 new examinees’ θ s and the 3 new
items’ πs.  We see that the posterior means for the new items agree almost exactly
with those of the preceding Bayesian solution.  The effective sample sizes are greater
by about 3 on the average, which represents the impact of treating the λ s and the
πs from the previous run as “known” rather than “less uncertain than they were.”
This modest overstatement of precision would seem acceptable in practical work.

Table 6

Three New Tasks, 100 Examinees, Priors fixed at Posterior Means
From Previous Run

Parameter/State Mean SD α̂   β̂ n̂  

λ1 — — — — —

λ2 λ1=0 — — — — —

λ1=1 — — — — —

π4 False Positive — — — — —

True Positive — — — — —

π5 False Positive .27 .07 12 33 17

True Positive .89 .03 81 10 64

π8 False Positive — — — — —

True Positive — — — — —

π10 False Positive .09 .03 8 80 61

True Positive .80 .05 48 12 34

π12 False Positive — — — — —

True Positive — — — — —

π14 False Positive .07 .03 6 78 57

True Positive .68 .06 46 21 41

Next Steps

There are several fronts along which further work is needed.  In an applied
project, we are currently applying the approach illustrated in Section 5 to a
simulation-based assessment of problem-solving in biology. We are considering
alternative ways of joining SM- and EM-BINs that produce approximations in the
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SM-BIN posteriors, trading off exactitude for flexibility in larger problems. We also
plan to develop templates for EM-BIN probability distributions that formally
incorporate cognitively-relevant task model variables into response models (e.g.,
Wang, Wilson, & Adams, 1997). The most important lesson we have learned so far is
the need for coordination across specialties in the design of complex assessments.
An assessment that pushes the frontiers of psychology, technology, statistics, and a
substantive domain all at once cannot succeed unless all are incorporated into a
coherent design from the very beginning of the work.
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