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TOWARD A FRAMEWORK FOR VALIDATING GAINS

UNDER HIGH-STAKES CONDITIONS

Daniel M. Koretz

CRESST/Harvard Graduate School of Education

Daniel F. McCaffrey and Laura S. Hamilton

CRESST/RAND Education

Abstract

Although high-stakes testing is now widespread, methods for evaluating the validity
of gains obtained under high-stakes conditions are poorly developed.  This report
presents an approach for evaluating the validity of inferences based on score gains on
high-stakes tests.  It describes the inadequacy of traditional validation approaches
for validating gains under high-stakes conditions and outlines an alternative
validation framework for conceptualizing meaningful and inflated score gains.  The
report draws on this framework to suggest a classification of forms of test preparation
and their likely effects on the validity of gains.  Finally, it suggests concrete directions
for validation efforts that would be consistent with the framework.

For nearly three decades, high-stakes testing has grown increasingly
widespread and important in U.S. education. This development has been
explosive during the past decade. Roughly half of the states now make
graduation contingent on test scores; roughly 40 states use test scores for school-
level accountability, in many cases tying financial and other rewards and
sanctions to test scores; and the use of scores as promotional gates is enjoying a
resurgence. Test-based accountability has been enshrined in Title I for some
years, and the current Administration’s education proposals would institute test-
based rewards and sanctions nationwide. High-stakes uses arguably have become
the most important applications of large-scale testing in American education.

The validation of score-based inferences has not kept pace with this
development. The validity evidence typically provided with tests is insufficient
to indicate whether inferences about changes under high-stakes conditions are
justified. Few efforts are made to evaluate directly score gains obtained under
high-stakes conditions, and conventional validation tools are not fully adequate
for the task. (Note that throughout, we use “validity” to refer only to the quality
of evidence supporting an inference, not to consequential validity.)
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This technical report presents an effort to develop more systematic
approaches to the validation of gains under high-stakes conditions. The first part
of the report discusses the inadequacy of traditional approaches to validation for
evaluating gains under high-stakes conditions. This is followed by a description
of a general framework for conceptualizing and validating gains. A subsequent
section draws on the framework to categorize forms of test preparation and their
likely effects on the validity of gains. The final section briefly sketches
methodological directions for the validation of gains suggested by the
framework. A formal mathematical model of the framework is presented in the
Appendix.

The Inadequacy of Current Approaches

Much of the evidence used to validate scores under low-stakes conditions is
correlational.  For example, we expect reasonably high correlations between
scores on the test in question and other tests of the same domain, and we expect
the differences in correlations among measures to reflect similarities and
differences among the constructs they purport to measure.

While cross-sectional correlations and changes in them may be helpful to
evaluate gains, neither is sufficient to indicate whether gains are meaningful.
Meaningful but non-uniform gains could either augment or attenuate cross-
sectional correlations.  If reasonably uniform over time, inflated gains could
leave cross-sectional correlations intact.  Nonetheless, some analysts cite cross-
sectional correlations as evidence of the validity of gains (e.g., Greene, 2001).

The possibility of stable correlations in the face of dramatic divergence i n
means and probable score inflation can be illustrated by gains on Kentucky’s
KIRIS (Kentucky Instructional Results Information System) assessment.  During
the first years it was administered, scores on KIRIS increased rapidly, but scores
on both the National Assessment of Educational Progress (NAEP) and the ACT
rose much more slowly or not at all. Among students who took both KIRIS and
the ACT mathematics assessments, the mean score on KIRIS rose about .7 SD

over three years, while the mean on the ACT dropped trivially (Koretz & Barron,
1998; see Figure 1). During that time, however, the student- and school-level
correlations between the tests were reasonably stable, after an initial increase
(Table 1). Note that the correlations were low enough that scores on KIRIS and
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Figure 1.  Standardized mean change on KIRIS and ACT, mathematics.
Source: Koretz & Barron (1998).

the ACT did not have to march upward in lockstep to maintain the correlation;
there was ample unpredicted variance to allow for year-to-year fluctuations
among schools in gain on KIRIS, as long as there were no major persistent
differences in trends over time.

Most of the few validation studies of gains under high-stakes conditions
have looked at concordance in trends rather than just cross-sectional
concordance—specifically, the degree to which gains on high-stakes tests

Table 1

Correlations Between ACT and KIRIS Mathematics Scores

1992 1993 1994 1995

Student level 0.54 0.71 0.70 0.72

School level 0.69 0.75 0.58 0.74

Note. Adapted from Koretz and Barron (1998).
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generalize to lower stakes tests such as NAEP (e.g., Klein, Hamilton, McCaffrey,
& Stecher, 2000; Koretz & Barron, 1998; Koretz, Linn, Dunbar, & Shepard, 1991;
Linn, 2000; and Linn & Dunbar, 1990). These comparisons, however, are subject
to an inherent ambiguity, in that it is rarely clear how much generalizability of
gains to expect in the absence of score inflation because of differences in the tests’
intended targets of measurement (Koretz, forthcoming; Koretz & Barron, 1998).
The disparity is sometimes great enough to warrant an inference that scores have
been appreciably inflated (e.g., Klein et al., 2000; Koretz & Barron, 1998; Koretz et
al., 1991), but it is not possible to estimate the degree of inflation with any
precision.

The ambiguity inherent in comparisons of trends on a high-stakes test
(called a focal test here) and a lower stakes audit test is illustrated by the Venn
diagram in Figure 2. The rectangle represents all gains on a state focal test. The
partially overlapping ellipse represents gains on the audit test, in this case, state
NAEP. The gains on the focal test are subdivided into three categories. Gains
stemming from score inflation—for example, teaching the specific items on the
test—are represented by area A. Meaningful gains on the focal test that do not
generalize to the audit test because of differences in intended inferences and
resulting differences in test construction are represented by area B. Meaningful
gains that do generalize to the audit test are represented by area C. NAEP gains
have only two subdivisions—meaningful gains that do and do not generalize to
the state’s focal test—because until the present, educators have had little
incentive to teach in ways that would inflate gains on NAEP. This situation is
gradually changing, of course, and proposals now before Congress could change it
dramatically.

Two aspects of Figure 2 are particularly important. First, although it has
often been claimed that a divergence in trends between a focal test and an audit
test will overstate score inflation because of differences in the inferences
intended for each, this is not necessarily so. To the extent that the focal and audit
tests support different inferences, the divergence in trends may actually
understate score inflation. Suppose that area D is large—that is, there is
substantial material covered by the audit test but not the focal test, and students
are learning more of it over time. Suppose also that, as is usually the case, scores
on the state’s focal test are increasing faster than scores on the audit test. If the
inferences users base on the focal test are limited to the content of that test and
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Figure 2. Schematic representation of gains on NAEP and a state test.  Source:
Adapted from Koretz (forthcoming).

do not include the content represented by area D, the inclusion of area D in the
audit measure will lead to an underestimate of score inflation. Large bias of this
sort may be unlikely, but some degree of bias is plausible.

Far more important, the relative size of the five regions is unknown, and
for that reason, the degree of validity or inflation cannot be well estimated. The
delineation of area B from area C and of area C from area D—in each case, the
distinction between meaningful gains that are and are not generalizable because
of differences in the inferences intended for the two tests—is obscured by the
incomplete and often vague specification of the intended inferences. The
distinction between areas A and B—between nongeneralizable score gains that
do and do not represent meaningful increases in student learning—is obscured
both by this incompleteness of specification and, in most cases, by a lack of
information on the roots of performance gains (e.g., the extent to which they are
dependent on particular formats, rubrics, and so on).

The work reported here represents the early stages of an effort to ameliorate
this ambiguity through a systematic consideration of the performance elements
implicit in both scores and the inferences based on them.
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The Basic Framework

This section describes a model for considering the performance elements
that contribute to both inferences and scores and for evaluating the validity of
changes in scores over time.  This applies to tests that support inferences about
student mastery of domains.  It does not apply to predictive inferences unless
those are directly tied to inferences about mastery.  Thus, for example, it does not
apply to the validity of predictive inferences about college performance based on
SAT-I scores. A development of the mathematical implications of the
framework can be found in the Appendix.

The traditional view of test construction focuses on the whittling down of
the possible focus of measurement through the specification of the domain,
definition of a framework, choice of test specifications, and selection of items or
tasks (e.g., Koretz, Bertenthal, & Green, 1999). It focuses on the material included
in a test and does not clarify the nature of excluded material or its relevance to
particular inferences. This traditional view also focuses on intentional decisions
about inclusion or emphasis and does not address inadvertent emphasis. The
interpretation of the generalizability of gains, however, hinges on the relevance
to inferences of both excluded and unintentionally emphasized material, and it
also depends on the degree to which the emphasis assigned to material on the
test comports with the emphasis inherent in the inference. Therefore, a more
complex view of test development is needed to take these factors into account.

Elements of Performance

The alternative framework begins with the general term, elements o f

performance.  This deliberately vague term subsumes all the aspects of
performance that underlie both performance on tests and inferences about it.
These elements may be either substantive or non-substantive. We use
substantive to refer to elements that contribute either explicitly or tacitly to the
definition of the domain about which inferences are drawn. In elementary
mathematics, examples include knowledge of arithmetic algorithms and the
skills needed to apply them to meaningful problems. Non-substantive elements
are not the focus of inference and do not differentiate one domain from another.
An example would be facility with a particular format that is of no particular
importance for the intended inference. The distinction between substantive and
non-substantive elements is often hazy but is useful nonetheless.
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These elements of performance are conceptually distinct, but they are not
necessarily empirically independent, either in cross-section or over time. They
must be treated as distinct, however, if differences among them are pertinent to
inferences about performance and if they have the potential to vary

independently over time. For example, algebra and geometry skills will normally
be collinear in cross-section, but if a test of high school mathematics proficiency
tested only algebra, teachers might respond to the test by increasing their
emphasis on algebra while reducing time spent on geometry, and performance
in algebra could increase independently of performance in geometry.

The process of test construction can be viewed as the selection of a subset
from the range of potentially relevant performance elements. This is illustrated
in Figure 3. The first stages resemble traditional models of test construction. The
set of substantive elements is divided into domains, some tested and others not.
Within a tested domain, the set of substantive elements is subdivided into those
included in a given test and those not tested. The sets of elements included i n
alternative tests of the same domain are likely to overlap considerably; this is not
shown in Figure 3 for visual clarity.

Elements in a tested subset have varying importance in terms of their
influence on scores.  That is, total scores will be more sensitive to changes i n
performance on some elements than on others.  One obvious source of these
differences in sensitivity is simply the number of items that tap each element,
but numerous other factors can contribute as well, depending on the nature of
the items and the manner of test construction.  For example, sensitivity can be
affected by scoring rubrics, scaling procedures, differences in item discrimination,
and relative difficulty.  For present purposes, however, only the aggregate impact
of those factors is important.  We call this aggregate the effective test weight.

Discussion of score inflation requires that we give this notion of an effective
test weight a formal representation.  The term does not imply that test scores
need be a weighted linear composite of performance on individual elements.
Rather, the model is very general.  Let θi represent performance on any element
i.  Then test score Y is a function of the vector of θ values:

Y = ƒ(θθθθ).
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The effective test weight of a given element is the sensitivity of Y to changes i n
performance on that element, that is, the partial derivative of Y with respect to
θi :

wi  =  ∂
∂
Y

iθ
 .

This representation is important because some sources of score inflation stem
from biased estimates of performance on individual items—that is, biased
estimates of one or more θi —while others result from distortions in the
aggregation of these estimates into scores.

The next step in the schematic, the division into in-specification and out-of-

specification elements, has no explicit counterpart in the traditional view of test
construction, but it can be important for understanding score inflation. We use
“specification” to refer to the explicit guidelines that direct the construction of a
test. These might include a test framework or content-by-process matrix, content
and performance standards (perhaps combined with illustrative examples of
content), or a more detailed curriculum framework. Tested content that is within
the domain and hence is relevant to important inferences but that is not
explicitly noted by the guidelines is classified as out-of-specification. The
classification of material as in- or out-of-specification depends only on the
guidelines for test development, not on its importance to the domain or the
inference in question. The identical element of performance could be in-
specification in one test and out-of-specification in a second test that is intended
to support similar inferences.

Out-of-specification material arises not only because of the omission of
substantively important elements from test development guidelines, but also
because it is often impossible to specify included elements fully. For example, a
set of guidelines that specifies that students should have proficiency with
quadratic equations—a very high level of specificity by today’s standards—still
does not fully specify how this material will be tested. For example, will the test
assess factoring, and if so, will it require students to demonstrate facility with
both completing the square and using the binomial formula? Will they be
required to use the binomial formula to determine the number of roots without
factoring, and will they need to find maxima and minima? These decisions are
relatively minor but could appreciably influence the generalizability of gains.
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The final stage in the schematic differentiates between intentional and
unintentional representation of performance elements. Although this cannot be
represented clearly in the schematic, representation refers here not only to the
inclusion or exclusion of an element, but also to the emphasis given to included
elements, that is, their effective test weights. Unintentional weighting can arise
because of unforeseen effects of the factors contributing to effective test weights
(such as unintended differences in item discrimination). It is likely, however,
that a more important source of unintentional inclusion and weighting is
incomplete or incorrect anticipation of the skills and knowledge students will
bring to bear in answering test items.

A clear example of unintentional weighting was provided by the pilot form
of a state high school mathematics assessment written several years ago. The
state’s standards made several references to geometry, but most simply noted the
subject area in general. They included only one brief reference to coordinate
geometry, in the context of using geometry as a tool for understanding functions
and patterns. The pilot test, however, had a substantial emphasis on coordinate
geometry, not because it was a main substantive focus of the developers, but
rather because it provides a handy vehicle for assessing numerous aspects of
proficiency in algebra. In this manner, performance elements may be
unintentionally overweighted—that is, given more emphasis in a test than the
intended inferences warrant.

Finally, an analogous but simpler selection and weighting occurs with non-
substantive elements as well. This too can be both intentional and
unintentional.

Seen this way, the elements of a test are of the six types arrayed at the
bottom of Figure 3. Three types of element (in-specification, out-of-specification,
and non-substantive) are crossed with intent (intentional versus unintentional).

Generalizability of performance or of gains could be threatened by
differences among tests in the inclusion or weighting of elements in any of these
six categories. The meaning of a failure of generalizability will hinge on the types
of elements involved and their relevance to the inferences supported by scores.
In theory, interpretation of a high degree of generalizability may also require
distinguishing these classes of elements, although this is likely to be less
important in practice. For example, as noted earlier, the validity of gains could be
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overestimated if an audit test includes substantively important elements that are
excluded from or given very little weight in a high-stakes test, that are not
pertinent to the inferences supported by the high-stakes test, and that show
sizable performance gains.

Targets of Inference

Scores on a test are used as the basis for inferences about a target o f

inference—in the case of achievement tests, students’ proficiency on a bundle of
skills and knowledge. Validity depends in part on the consistency between the
test and the target of inference, but the issue of consistency is complex,
particularly when inferences pertain to change.

The inferences users base on scores are often simple and vague. For
example, newspapers will often write about broad constructs such as proficiency
in mathematics with little attention to the elements of performance underlying
the inference (e.g., Koretz & Deibert, 1996). This simplification is not merely a
convenience. The nature of the target of inference is often both tacit and poorly
formed. Many users of scores lack a clear notion of the array of proficiencies
implied by scores, and even more sophisticated consumers of scores who agree
on a simple interpretation of a score increase may have widely varying opinions
about the elements of performance that should be implied by it. For example,
disparities in trends between NAEP and high-stakes tests in both Kentucky and
Texas sparked debate about the appropriate targets of inference for the focal tests.
Even consideration of standards and test guidelines leaves considerable room for
uncertainty and disagreement about intended or appropriate inferences.

Nonetheless, it is useful to conceptualize targets of inference as paralleling
the construction of tests, while acknowledging that the former are both vague
and variable. The targets of inference can be seen as comprising elements
comparable to the elements of a test shown in Figure 3, although the distinction
between intentional and unintentional representation is not pertinent to the
description of the target. The target of inference also includes non-substantive
elements of performance. For example, users of test scores may have in mind
contexts or ways in which examinees should be able to manifest substantive
proficiencies, and these may correspond to non-substantive elements of tests.

Some performance elements may appear in the target but not the test, or
vice versa. Those that are irrelevant to the inference but have substantial test
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weights go by the traditional term of construct-irrelevant elements. To evaluate
the validity of gains, however, we need also to consider elements that are
important to an inference but that are not included in the test, which we call
implicit elements because they are included in the inference but are not directly
measured.

The relative importance of performance elements to the target, however, is
more complex than is their relative importance to the test. Emphasis in the test
can be defined simply as the sensitivity of the total score to changes i n
performance on individual elements, which we have labeled the effective test
weights of the elements. A change in performance on an element affects scores
but is irrelevant to test weights—that is, it is irrelevant to the emphasis accorded
to the element by the test. In contrast, the importance of performance elements
to a target of inference does depend on expectations about change in performance
on them.

The user’s model of gains defines the limits of the changes in performance
on particular elements that are consistent with a users’ notion of improvement
in the overall construct measured by the test. These models, of course, are likely
to be partially tacit and poorly formed. Models of change may take many forms,
depending on the nature of the inference. For example, in most instances, a total
test score can increase even if performance on some important elements
decreases. Some inferences about improvement may entail a compensatory
model consistent with this, but others may not. Some inferences may require
zero or positive changes on all elements; some might require substantial
improvements on all elements. The model of gains may also vary with the
pattern of performance shown by the individual. For example, the model may be
nonlinear, crediting changes at some levels of performance more than changes at
others. This might take the form of a ceiling, in which increases in performance
on a given element are important up to a certain level of proficiency but of little
or no importance above that level.

Inference weights refer to the relative importance of these changes to the
user’s inference. In some instances, these weights may be vague; in other cases,
they may be reasonably clear, if not easily quantified. For example, in evaluating
the mathematics achievement of elementary school students, users vary greatly
in terms of the relative importance they ascribe to arithmetic computation skills,
problem solving, and the ability to communicate mathematics. Similarly, users
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vary in terms of the relative importance they ascribe to proper spelling and usage
in evaluating the writing of students in the primary grades. In both of these
cases, the differences in inference weights are often explicit and actively debated
but are not clearly quantified.

Inference weights, like the user’s model of gains, may depend on the
students’ patterns of performance. For example, proponents of phonics and the
whole-language approach may differ in terms of the relative importance of
decoding and comprehension to the notion of improved reading in the primary
grades, but this disagreement is likely to be far less important when evaluating
improvements in the reading of proficient high school readers.

The validity of an inference about improvement therefore depends on the
degree to which gains in total scores warrant the inference that performance on
important elements in the target has changed consistently with the user’s model
of gains and inference weights. This consistency is a matter of degree. When an
assessment reduces a complex array of performances to one or a few scores, there
is likely to be a range of performance changes that offer reasonable support for a
given inference. That is, the user’s weighted model of gains will generally accept
a range of performance changes that vary in their consistency with the inference.
The tolerance for poor consistency—the rate at which decreasing consistency
with the model undermines the inference—will hinge in part on inference
weights; the lower the weight, the less damage inconsistent change will do to the
validity of the inference. However, the model may allow changes in one element
to influence the acceptable range of change on another. For example, a user may
believe that improvement in overall proficiency ideally ought to mean
improvement in performance on each of a set of elements but may tolerate
deterioration on one element if improvements on the others is sufficiently
large.1

If tests included all important substantive elements, the strength of the
inference would depend on the vector of actual changes in performance on the
tested elements, the user’s model of gains, and the consistency of test and
                                                
1 One can think of the changes in performance on all performance elements germane to the inference
as defining a hyperspace. If fully explicit, the user’s model of gains and inference weights would
define one or more hyperplanes that represent optimal support for the inference, but many
deviations from these optimal surfaces would provide adequate or even strong support for the
inference. The loss function that describes how much validity deteriorates with various deviations
from these optima will depend on the inference weights and model of gains.
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inference weights. This would include the degree to which changes in scores
result from changes in performance on elements (substantive or not) with little
or no relevance to the inference—for example, from practice with specific
formats or rubrics.

Because of the incompleteness of tests, however, validity also depends on
the degree to which change on implicit elements consistent with the user’s
model of gains and inference weights can be assumed on the basis of changes on
measured elements. In traditional validation, one needs to assume or
demonstrate only that the cross-sectional relationship between measured and
unmeasured elements is consistent with the construct, but that cross-sectional
consistency need not imply that changes in performance on implicit elements
are consistent either with measured change or with the inference.

In the case of complex assessments, it will not be practical to evaluate fully
the consistency of measured change with the user’s inference weights and model
of gains, but for many important questions of validity, that will not be necessary.
For example, the finding that scores on state high-stakes tests sometimes increase
far more rapidly than scores on NAEP (e.g., Klein et al., 2000; Koretz & Barron,
1998) has provoked substantial disagreement about the degree to which these
disparities threaten the validity of inferences based on increases in scores on the
focal tests. One need not reach agreement on the weights assigned to each
performance element to address this question. It can be addressed to some degree
simply by determining whether elements that are tested by NAEP but have small
or zero test weights in the focal test are as a set unimportant to the inferences
about improvement users are basing on the focal test.

Correlational Versus Means-Based Validation Evidence

In the traditional context, validity hinges on the degree to which the
performances elicited by the subset of relevant elements included in the test
provide a basis for inferring performance on the larger set of elements relevant
to the domain, many of which will be poorly measured or implicit (i.e., entirely
excluded from the test). Thus validity is a matter of sampling—not the sampling
of content, but the sampling of performance elements elicited by the content.
Sampling of performance elements must be representative, not in the sense of
being selected from the larger set with known probability, but in the sense that
the aggregate of performance across the sampled set must be an informative
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representation of the broader range of performance implied by the inference. One
aspect of this sampling is the consistency of test weights with inference weights.
A second aspect is the ability of the sampled elements to support inferences about
the implicit elements that are not sampled—for example, the ability of
performance on 40 words in a vocabulary test to represent proficiency with the
many thousands of words not sampled.  The possibility of a change over time i n
the relationship between scores and the relevant performance elements is rarely
considered except in special contexts, such as the linking of alternative forms.

All of the evidence traditionally used to test validity in this context is cross-
sectional, and most is correlational, including simple correlations among like
tests, convergent/discriminant evidence, generalizability analysis, and tests of
dimensionality. Various types of content-related evidence add support to
decisions about adequacy of sampling from the larger set of elements relevant to
the inference. This evidence plays an important role in validating gains as well,
even though it is not sufficient for this purpose. One would not want to gauge
improvement with an instrument that cannot be shown to be adequate at the
start. Changes in cross-sectional relationships over time may also provide
important clues about the validity of gains, although as noted above, the
interpretation of such changes is not always obvious.

Taken together, these methods focus on the similarities of rankings across
measures but do not address similarities in means.  (Generalizability analysis
does, of course, evaluate mean differences, but typically it has been applied to the
analysis of mean differences across conditions within tests, not to variations i n
means across alternative measures of the same construct.)  This focus on the
consistency of rankings was generally not problematic in traditional validation
work carried out under low-stakes conditions.  For example, a correlation
between scores on two tests administered to the same sample might be used as
evidence of the validity of one of them.  Under low-stakes conditions, a
difference in means in this case would have no inherent meaning and would
not be relevant to validity, provided the difficulty level of both tests was
appropriate.

In examining the validity of gains, on the other hand, mean
differences—or, more generally, changes in location on the scale—become
central.  A core question is whether a change in scores provides a biased view of
change on the bundle of elements given high inference weights by the user.
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Under high-stakes conditions, one cannot assume that relationships among
performance elements, both sampled and implicit, are stable over time.
Therefore, one cannot assume that change on sampled items provides an
unbiased estimate of change on implicit items or that a change in scores provides
an unbiased estimate of change on the valued elements.  Under low-stakes
conditions, behavioral responses to testing are relevant to validity only if they
involve unambiguously inappropriate test preparation or test administration,
such as teaching secure items.  In contrast, under high-stakes conditions, a wide
range of behavioral responses to testing—including responses that are not clearly
inappropriate by traditional standards—can alter the relationships between
performance elements, both sampled and implicit, and thus threaten the validity
of inferences based on changes in scores. The importance of behavioral response
is clarified by distinguishing various types of test preparation, as described in the
following section.

Cross-sectional consistencies in ranking do not necessarily indicate a lack of
bias in means.  Therefore, to validate gains in scores, it is necessary to turn to
methods that allow meaningful comparisons of means or of other changes i n
location.  This can be done using cross-sectional data if a method is found for
placing the results of two tests on a common scale that is unaffected by score
inflation.  For example, Koretz et al. (1991) used scales based on national
standardization samples to permit comparisons of results on two different tests.
A more general solution is to compare trends in scores across measures, which
can be done without linking of scales, for example, by normalizing the
distributions of scores on both measures.

Types of Test Preparation

We use the term test preparation to refer to all steps educators take, both
desirable and undesirable, to prepare students for tests. This contrasts with a
more common usage in which test preparation has a negative connotation,
denoting methods that inflate scores or are undesirable for other reasons. W e
distinguish among seven types of test preparation:

• teaching more;

• working harder;

• working more effectively;
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• reallocation;

• alignment;

• coaching; and

• cheating.

The first three of these types of test preparation can produce unambiguously
meaningful gains in scores. That is, they can produce higher levels of
performance on substantive elements of the test (either in- or out-of-
specification) that warrant the inference that students have improved their
mastery of the intended domain. One is teaching more—for example, providing
more instructional time by adding days to the school year, instituting remedial
classes outside of normal school hours, or devoting more of the school year to
actual instruction. Assuming that these changes are focused on tested knowledge
and skills, are not accompanied by a deterioration of gains per unit time, and are
not achieved by decreasing time allotted to other important outcomes, they will
produce meaningful gains in student learning. Another method is simply
working harder—for example, covering more material per hour of instructional
time. The success of this method is not guaranteed—it depends, for example, on
teachers not abbreviating needed explanations or exceeding the ability of students
to keep pace—but it can produce meaningful gains. A third approach could be
called working more effectively—for example, adopting a better curriculum or
more effective teaching methods.2

The other four types of test preparation, however, can produce inflated
scores—that is, increases in scores that do not warrant the inference that
students’ mastery of the target of inference has improved by a commensurate
amount. All but cheating can also produce meaningful gains in scores,
depending on how they are conducted. The boundaries among the four are not
always distinct, but it is nonetheless useful to categorize them in this fashion.

                                                
2 We use the term “effectively” and avoid the term “efficiently” because of the meaning of
“efficiency” in economics. For example, a teacher “working harder,” using methods of constant
effectiveness, would produce a gain in efficiency from an economic viewpoint—that is, an increase
in output per unit input, where in this case the primary input is simply instructional time. We
believe it is useful to distinguish more effective methods from working harder and therefore avoid
this more general concept of increased efficiency.
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Reallocation

We use the term reallocation to refer to shifts in resources among
substantive elements of performance. For example, numerous studies have
found that teachers report shifting instructional time to focus more on the
material emphasized by an important test, both within and across domains (e.g.,
Darling-Hammond & Wise, 1985; Koretz, Barron, Mitchell, & Stecher, 1996;
Koretz, Mitchell, Barron, & Stecher, 1996; Salmon-Cox, 1982, 1984; Shepard, 1988;
Shepard & Dougherty, 1991). The resources relevant to reallocation are not
limited to instructional time; they include all of the resources that parents and
students as well as teachers must allocate among performance elements.
Assuming that resources are effective when applied to both emphasized and
deemphasized elements, a shift of resources will result in a reallocation of
achievement as well. Reallocation alters the meaning of a change in total scores
by changing the relationships among performance elements.

Reallocation within domains can have various effects on test scores and on
the validity of gains, depending on the test and inference weights of the elements
given both increased and decreased emphasis. For example, if the elements
receiving increased emphasis have both higher effective test weights and higher
inference weights than the elements receiving lowered emphasis, both scores
and achievement will increase. This case is discussed further under alignment.

Reallocation can also inflate scores, however, if it decreases emphasis on
elements with substantial inference weights but relatively low or zero test
weights. This case is what is often called “narrowing of instruction.” In some
cases, the impact of reallocation is clear. For example, if teachers begin focusing
disproportionately on elements with large test weights while substantially
deemphasizing important elements excluded from the test, then the ability of
performance on included elements to represent the broader set relevant to the
inference is undermined. In other cases, the effects of reallocation may be more
subtle. For example, a teacher may shift emphasis among tested performance
elements to take advantage of inadvertent overweighting of some elements,
creating a misleadingly large increase in scores. It is important to note that
reallocation can inflate scores even if the emphasized material is important to
the inference and even if the deemphasized material is not in-specification. All
that is needed for inflation to occur is a behavioral response that increases the



19

alignment of performance with test weights more than that with inference
weights.

In terms of the model above, reallocation can inflate scores by distorting the
aggregation of estimates for individual elements into scores. The composite score
may have the wrong weights to represent accurately change in performance i n
the domain as a whole (as delineated by the user’s model of gains and inference
weights). This distortion may involve misaligned weights for tested elements,
but perhaps more important, it may also undermine the ability of performance
on measured elements to represent performance on implicit elements.

Reallocation can also occur among domains; for example, a school may shift
time from science into mathematics in response to a testing program that
assesses the latter but not the former. Whether the gains caused by reallocation
among domains is inflation depends on the inferences the tests are used to
support. In this example, if results on the test were used strictly to support the
inference that students were learning more mathematics, the between-subjects
reallocation would not make the increase in scores misleading. If, on the other
hand, users inferred from the increase in scores that the increase in mathematics
scores represented a net increase in learning because there was no compensating
decrease in performance in other important areas, the increase in scores would
be misleading.

Alignment

“Alignment” between tests and the standards they are intended to reflect is a
buzzword of contemporary education debate and is almost always presented as
desirable. Some observers specifically argue that alignment provides protection
against score inflation because it presumably focuses instruction on elements
deemed valuable by those who drafted the standards. In the terminology used
here, standards identify elements of performance that warrant high inference
weights in the eyes of those drafting them, and alignment gives these elements
high test weights as well. The concordance of inference and test weights should
imply, according to this argument, that increases in scores are meaningful, not
inflated.

Of course, the degree to which other users share the values that motivated a
particular set of standards—or even know what they are—is uncertain.
Therefore, even if a test is well aligned with a state’s standards, it may be poorly
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aligned with the inferences many important users base on scores. For present
purposes, however, we will leave this issue aside.

Even when users understand and accept a state’s standards, the argument
that alignment protects against score inflation is simplistic. Increased alignment
is a form of reallocation, and its impact on the validity of gains depends on the
same considerations that arise in other types of reallocation. The extent to which
alignment may inflate gains depends not only on which elements receive greater
emphasis, but also on which elements receive less.

One reason why alignment is not necessarily sufficient to protect against
inflation is the incompleteness of test development guidelines and of tests
themselves. Because of that incompleteness, important elements—elements
with appreciable inference weights—may be given small or zero test weights.
This leaves teachers free to deemphasize or ignore elements with substantial
inference weights even while working to raise scores by focusing on material
emphasized by the standards. In addition, alignment cannot fully protect against
the assignment of substantial test weights to elements with small or zero
inference weights—for example, when a test focuses on certain non-substantive
elements—or against opportunistic responses to overweighting.

Coaching

The term “coaching” has been used to refer to many types of test
preparation. Here we restrict its use to two types of preparation, one focusing on
substantive elements, the other on non-substantive elements.

Substantive coaching refers to an instructional emphasis on narrow aspects
of substantive performance elements to comport with the style or emphasis of
test items. In some instances, the object of this focus is not an intentional
emphasis of test developers. For example, a teacher may notice that a test’s items
about the area of polygons focuses entirely on certain classes of polygons—say,
only regular polygons, or only polygons with 5 sides or fewer—and may focus
instruction unduly on those classes of figures at the expense of other types of
polygons. As a result, students might exhibit facility in calculating areas that does
not generalize well to other types of polygons.

The distinction between substantive coaching and reallocation may
sometimes appear hazy in practice, but they are fundamentally different in terms
of the framework presented here. Reallocation moves resources and



21

achievement among substantively important performance elements, thus
changing the meaning of composite scores. When it inflates gains, it does so by
undermining the ability of change in the composite scores to represent change i n
achievement consistent with the user’s model of gains. In contrast, coaching,
whether substantive or non-substantive, distorts the estimates of performance
on the elements themselves; that is, it biases estimates of one or more θi .

The distinction between substantive coaching and cheating (discussed
further below) can also be hazy. Consider the following example of test
preparation provided by district officials in Montgomery County, Maryland:

The question on the review sheet for Montgomery County’s algebra exam reads in part:
“The average amount that each band member must raise is a function of the number of
band members, b, with the rule f(b)=12000/b.” The question on the actual test reads in
part: “The average amount each cheerleader must pay is a function of the number of
cheerleaders, n, with the rule f(n)=420/n.” (Strauss, 2001, p. A09)

The author then posed the question “Is this good test preparation or—as some
parents claim—institutional cheating?” and noted that it was defended as
appropriate by some district officials (Strauss, 2001, p. A09). One might argue
about whether this test preparation should be classified as cheating, but if not, it
would be an example of substantive coaching.

Non-substantive coaching refers to forms of test preparation that focus
instruction on elements of the test that are largely or entirely unrelated to the
definition of the domain the test is intended to represent—that is, elements that
are largely or entirely non-substantive.

Limited coaching can be appropriate and can increase the validity of scores
by removing construct-irrelevant impediments to performance. For example, if a
format is sufficiently novel for students, it may cause them to perform more
poorly than their mastery of substantive elements of the test would warrant.
Some amount of coaching to increase familiarity would lessen this barrier and
improve validity of scores.

However, even when it improves the cross-sectional validity of scores,
coaching may inflate gains. If scores from the first administration of a test are
depressed by novelty, and if coaching appropriately eliminates that bias in scores
on the second administration, scores will increase even if true mastery of the
domain remains unchanged (e.g., Koretz & Barron, 1998).
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Once familiarity with format and other non-substantive elements is no
longer a barrier to performance, additional coaching is usually inappropriate,
either inflating scores or simply wasting instructional time. When non-
substantive coaching inflates scores, it does so in the same manner as substantive
coaching, that is, by biasing estimates of individual θ  values.

Cheating

The most extreme form of test preparation is cheating. The distinction
between cheating and other forms of test preparation can also be vague. In
particular, the dividing line between cheating and coaching is hazy, because both
distort total scores by biasing estimates of performance on individual elements,
not by altering the aggregation of those estimates into total scores.

The types of cheating are diverse and include, for example, providing
answers, correcting students’ responses, alerting students to incorrectly answered
items so that they can review them, providing access during testing to
inappropriate material, violating test administration procedures, and allowing
students to practice secure test items in advance. In some instances, cheating is
distinguished from coaching in that cheating appears designed specifically to bias
scores. Intent, however, cannot always distinguish cheating from coaching, as a
teacher may use a form of test preparation that is clearly cheating in the eyes of
experts and that undermines the validity of both scores and gains while
believing the method to be appropriate. Cheating, however, unlike coaching,
cannot increase the validity of scores.

Methods for Evaluating the Validity of Gains

In this section we briefly discuss several methods that may be used to
evaluate the validity of interpretations of test score gains. Some of these methods
have been widely used in validation studies, whereas others will require
development and testing before they can be used in practice. We neither provide
details for applying any of these methods nor attempt to present an exhaustive
list. Instead, this section is intended to illustrate directions for validation implied
by the framework described above.

Clarifying Inference Weights

The first category of methods addresses the need to understand the
inference weights that users apply. Although validity is a characteristic of an
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inference rather than a test, in many validation efforts the inference is largely
unquestioned and the focus is on the test and on patterns of performance rather
than on the inference itself. However, this is unwarranted when inferences
pertain to gains obtained under high-stakes conditions. In such cases, validity
depends in part on the alignment of inference and test weights, and validity
therefore cannot be adequately evaluated without clarifying the inferences users
base on scores.

As explained earlier, one faces several difficulties in ascertaining inference
weights. These difficulties include the incomplete specification of test
frameworks, the diversity of inference weights among users, and the tacit and
incompletely formed nature of most users’ inference weights and models of
change. However, it is possible to address these problems and to collect
information that would provide useful summaries of typical weights applied by
various user groups, such as teachers, newspaper reporters, policymakers, or
parents. We do not intend to imply that there is a single set of inference weights
that can somehow be identified. Rather, each approach is likely to yield a slightly
different set of performance elements and relative weightings among them.

Nonetheless, it should be feasible to discern broad patterns of inference
weights. Validation must reflect these patterns, even if that requires several
judgments of validity, each pertaining to different sets of weights. For example,
one might find that most people in a given group of users agree that
“improvement in high school mathematics” should entail improvement i n
basic algebra but that users are clearly divided in terms of whether proficiency i n
data analysis and statistics is important. If the audit measure used for high school
mathematics has substantial test weights for data analysis and statistics (as does
NAEP), this might require evaluating whether data analysis and statistics
contributed substantially to a divergence between the audit and focal measures
and whether estimates of validity would differ with and without the inclusion of
that topical area.

We draw a distinction between the inference weights of test developers and
sponsors and those of other users. We include under the rubric of “sponsors” the
policymakers and agencies that design and implement testing programs.
Developers and sponsors have initial intended inference weights, which are the
weights corresponding to the inferences they intend test scores to support. W e
contrast these with the actual inference weights applied by other users, such as
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parents, the press, and (in most settings) teachers, who generally play little or no
role in determining the intended inferences from external tests. Policymakers
must be counted as users as well as sponsors, in that they may have actual
weights that differ markedly from those initially intended. This may be true
even of those involved in the design, for their inference weights may shift over
time.

The first inference weights we consider are the intended weights of test
sponsors. Most published tests are accompanied by tables or lists of specifications
that indicate what concepts and skills should ideally be measured by the test. For
statewide testing, the state’s content standards often provide information about
the intended weights. However, many state test assessment directors
acknowledge that their state tests are not well aligned to the standards, and that
therefore the effective test weights will be somewhat different from the intended
inference weights implied in the published standards. In such cases, states may
create mappings that indicate which test items are associated with which
standards. These mappings provide an indicator of the intended targets of
inference and the relative weights among them. Statements of intent may also be
found in state laws that pertain to the state’s testing program or in statements
that are made by the test’s sponsors (e.g., press releases that discuss changes in test
scores and what they mean). All of these sources provide information about the
intentions of the legislature or test developers and represent what users such as
parents are being told they should infer from test results (as distinct from what
they actually infer).

Information about the actual inference weights applied by stakeholder
groups such as parents, teachers, and the media must be gathered directly from
members of these groups. Despite the increasing emphasis on high-stakes testing
and on the use of test scores as indicators of school effectiveness, we know very
little about the meanings users attribute to scores. A few studies have examined
the inferences of writers in the lay media (e.g., Koretz & Deibert, 1996), but we are
aware of no systematic empirical studies of the inference weights of some other
key groups, such as parents. Without this information, however, it is not
possible to evaluate adequately the validity of gains.

There is likely to be wide variation in the inference weights applied both
among and within these groups. Consider parents, for example. Inferences about
the meanings of the mathematics test scores their children receive are
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undoubtedly shaped by a number of factors, including the kinds of curriculum
materials they’ve seen in the classroom, the nature of the homework students
bring home, and parents’ own experiences with math. They are probably also
shaped by the nature of the score reporting—e.g., if several subscores are
reported, the parent may be more likely to consider math as multidimensional
than if only a single, global score is reported.

Surveys and interviews with representative samples of parents, and
perhaps other community members, might be an effective way to discern their
inference weights and to gauge the extent to which these map onto the
performance changes that contribute to score gains. To be effective, however,
such surveys or interviews with parents would need to be highly structured and
could not rely solely on open-ended questions about inference weights. The
structure would be needed to address the tacit and incomplete nature of
inference weights and models of change. For example, to understand what
parents think a test is measuring, it might be fruitful to give them several
constructs from which to choose, and to collect this information both before they
have seen the test (which in many states would provide an accurate indicator of
what parents think given the information they typically have) and after showing
them specific items from focal and audit measures. Showing them illustrative
items would remind them of content of which they might not have been aware
and would compel them to assign weights to content that has appreciable test
weights. Another approach would be to show parents frameworks from different
tests and ask them to rate the importance of each element in the frameworks. For
example, to help evaluate the discrepancy in trends between NAEP and TAAS
noted by Klein et al. (2000), one could ask parents to rate the importance of core
elements of the NAEP frameworks for their inferences about the meaning of
improved performance on TAAS.

An additional source of information about users’ inference weights is the
news media. Test results are frequently reported in national as well as local
newspapers and are widely discussed in other media outlets as well. A systematic
review of how results are presented would yield important information about
the inference weights that are conveyed to the public through the media. Koretz
and Deibert (1996) conducted a study examining the reporting of NAEP results.
They found that the reports of performance on NAEP were typically very simple
and generally included little detail at the level of the performance elements, but
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they did not attempt to determine whether any reports provided enough
information to be useful for validating gains. Examining descriptions of test
results reported in the press, as well as the ways in which the press represents
claims made by policymakers and educators, may be a useful step in trying to
understand whether the meaning of test score gains as reported to the public is
consistent with existing validity evidence.

Teachers represent a particularly important stakeholder group. Although
understanding teachers’ inference weights is essential for understanding a range
of other issues, such as how high-stakes tests influence instruction, it is difficult
to make a clear distinction between inference weights and test weights in the case
of teachers, as we discuss below. Therefore we address teachers in the following
section, which discusses approaches for clarifying test weights. Research should
also examine the inference weights applied by other education personnel,
particularly principals and superintendents, who influence how test scores are
used.

Clarifying Test Weights

Efforts to clarify effective tests weights are also crucial to evaluating the
validity of gains on any test but will face a different set of difficulties. One hurdle
is the need to determine an appropriate level of detail, one that is specific
enough to capture important differences in change over time but that is general
enough to provide a meaningful and useful basis for comparison. For the
purposes of most validity investigations, it will be necessary to specify the test
weights at least at the same level of detail as the inference weights, but it may be
necessary to specify them in considerably greater detail. A second difficulty is that
information about weights can be obtained from numerous sources, but they are
likely to yield incomplete and differing information. Therefore, it may be
necessary to decide on methods for combining sometimes discrepant
information from multiple sources.

Examination of the test content itself and classification of items into
categories (see, e.g., Bond & Jaeger, 1993) provide a method for understanding
how various constructs are weighted on a test and for evaluating whether these
weights are consistent with the weights that are communicated to test users
through standards documents or other published materials. One challenge i n
this kind of work is that content standards and inference weights are often not
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sufficiently well defined to enable clear classification. Even when they are,
however, the classification of items is typically not straightforward. Most items
are inherently ambiguous and difficult to classify under a single category, and
simple inspections of item content are generally insufficient for understanding
the specific skills and sources of knowledge upon which examinees draw.

Approaches that elicit information about how examinees respond to items
may be especially powerful for clarifying the actual test weights assigned to
performance elements. Messick (1989) includes these approaches in his
discussion of methods for gathering validity evidence. For example, gathering
evidence of the cognitive processes in which examinees engage while
responding to test items may help to illuminate the constructs that are measured
(see, e.g., Hamilton, Nussbaum, & Snow, 1997). In some cases these methods may
identify performance elements that differ from what is presented in the formal
test specifications.

Particularly under high-stakes conditions, teachers may be a valuable source
of information about effective test weights. As a group, teachers clearly pay
attention to what is on tests, and many use this information to help shape their
instruction. Especially under high-stakes conditions, teachers often adapt their
curricula to increase the amount of time spent on material covered by the test,
and these strategies often result in improved scores. Stecher, Barron, Chun, and
Ross (2000) found that teachers in a high-stakes testing context generally paid
more attention to what is on the test than to the state’s published standards.
Although teachers’ perceptions of what is measured may be considered another
set of inference weights, their efforts to use information from tests to shape their
instruction may be more accurately thought of as behavioral responses to test
weights (albeit their perception of the test weights rather than the weights as
determined by researchers or test developers). In fact, teachers probably devote
more effort than members of any other group to identifying test weights,
including unintended weights, and therefore represent a valuable source of
information on test weights, if information about their judgments is collected
systematically. Information about teachers’ perceptions of test weights could be
obtained by various methods, including structured surveys somewhat like those
suggested above for parents.

One approach to ascertaining effective test weights involves inspecting test
items and deciding what the items, individually and together, appear to
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measure. We call this “backward mapping” because rather than starting with
standards (or other test guidelines) and determining which if any of the
standards an item measures, one starts with items and infers standards. This
might be done by teachers currently preparing students for the focal test, by other
teachers in the same substantive area, or by other individuals with pertinent
substantive expertise. Many items could plausibly measure a variety of different
things, and a single item might be mapped to multiple standards depending on a
number of factors, such as the degree to which teachers attend to surface features
of the item.

Backward mapping could be useful in several ways. A comparison of
standards to the results of backward mapping would indicate the degree to which
teachers are attuned to the standards in ways that were intended by the
developers and proponents of those standards. Perhaps more important,
backward mapping might reveal ways in which changes in test scores are
influenced by performance elements that were not specified by the test’s
sponsors, including non-substantive elements, or by unintentional
overweighting. (The example of unintentional overweighting of coordinate
geometry noted in an earlier was identified by an informal effort at backward
mapping.) This in turn could help refine investigations of teachers’ responses to
the focal test. The results of backward mapping could also be useful for
establishing clusters of items, as discussed below. Finally, backward mapping
could be used to address other important questions that are not central to the
validation of gains per se, such as evaluating the validity of the commonly held
assumption that standards-based accountability systems provide clear goals and
lead to desirable changes in instruction.

Examining Item Clusters Longitudinally

As we discussed earlier, most existing evidence about the validity of gain
scores in high-stakes testing situations relies on total scores from one or more
tests, but more detailed information about performance elements is often needed
to estimate the validity of gains adequately. When item-level data are available,
the question is how to define clusters of items that correspond to important
performance elements. Below we discuss two general methods for forming item
clusters.
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First, inference weights may be used as a basis for clustering items. That is,
items may be clustered to match the performance elements that are particularly
important for key inferences on a test; a subscore could then be calculated
separately for each cluster, and changes over time in the scores for these clusters
could be estimated and compared. This approach to examining test score gains
would facilitate an understanding of changes in the performance elements that
were identified through methods such as those described in the previous
sections. Differential gains across clusters defined in this manner could result
from a number of factors, including uneven attention by teachers or students to
the elements, differences in the difficulty of the items across elements (including
possible ceiling effects), and differential sensitivity to instruction. Variations i n
gains across clusters would clarify the meaning of increases in total scores, and
the concordance of the relative gains with inference weights and models of
change would provide evidence of the validity of inferences about overall gains.

Second, clustering may be done empirically based on differences in the
amount of change over time. For example, items could be classified into several
bins—large positive change, small positive change, no change, and negative
change. Next, we might examine the mix of performance elements in each of
these bins to determine whether growth on some elements is particularly strong
or weak. This information about differential change across performance
elements could then be compared with the nature of inferences about change to
evaluate the consistency of inferences with actual change. In addition, inspecting
the content of items in a given bin, especially when they cover multiple
performance elements, might reveal attributes of items that were previously
unknown to users and that influence change. These may be non-substantive
elements, such as similarities in item format. Information from this type of
analysis could help researchers to structure subsequent investigations of changes
in instructional practices.

Examining Dimensionality

Another approach to analyzing item-level data involves investigating the
dimensionality of the test. To some degree, such analyses may be considered
extensions of the clustering approach described above. We do not discuss or
compare specific statistical approaches to exploring dimensionality, though
choice of method is obviously a critical consideration.
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Before discussing the specific questions that can be addressed through a
dimensionality analysis, it is important to note that many conventional
approaches applied to tests of a single academic subject generally indicate a
unidimensional structure. As noted by Muthén, Khoo, and Goff (1997), however,
in most cases there are nonetheless potentially useful distinctions that can be
made from an analysis that is designed to detect deviations from
unidimensionality. Moreover, as noted earlier, even the finding that a test is
unidimensional in cross-section does not mean that dimensional differences are
unimportant for validating gains. Performance on elements that are
dimensionally indistinct (i.e., very highly correlated) in cross-section may
nonetheless change independently over time. The latent variable modeling
approach that Muthén and his colleagues use is a promising method for
exploring the questions we discuss below, though certainly not the only
approach.

We discuss three questions that may be addressed through an analysis of a
test’s dimensionality. First, does the dimensionality remain constant over time,
particularly as the stakes attached to the test increase? Exploratory analyses of
dimensionality at multiple time points may reveal changes in the structure of
the test, and these changes may be tied directly to test preparation efforts. Such
changes would occur if, for example, the variability of performance on one
dimension was reduced through test preparation efforts; in this case, a
dimension that was observed at the first administration may not be observed at a
later administration. Both substantive and non-substantive elements may
contribute to dimensionality, so test preparation efforts targeted at either type
may affect changes in the structure over time.

Second, in cases of constant dimensional structure over time, does the
magnitude of score gains differ across dimensions? Several studies have
revealed that group differences sometimes vary across the dimensions of a test
(e.g., Hamilton, 1998; Muthén et al., 1997), and similar approaches may be used to
explore differential growth. These approaches are similar to those discussed i n
the section on clustering. Instead of using a pre-existing set of performance
elements and classifying items according to them, a dimensionality analysis
would be conducted to reveal a plausible set of performance elements, and items
are would be classified based on their correlations with the dimensions that are
identified. This approach may be desirable when there is a lack of information
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about the test’s performance elements, or it may be combined with other
approaches designed to identify a set of performance elements.

Finally, how do the results of an empirical analysis of dimensionality
correspond with the targets of inference expressed by a test’s sponsors and users?
This question follows naturally from the previous one. If gains vary across
dimensions due to behavioral responses that target some dimensions more than
others, the validity of inferences about gains will depend on both the degree to
which the elements in the target of inference are similar to those represented by
the dimensions, and the degree to which differential gains across elements are
similar to users’ inferences about the meaning of a score gain. Data collected
using approaches like those described in the section on clarifying inference
weights provide an initial comparison, but it might be desirable to collect
additional information from users or sponsors once the dimensionality has been
ascertained through empirical analysis. For example, users could be given the list
of dimensions and some descriptive information about each, and asked to attach
weights that represent the importance they place on each dimension. It is likely
that the dimensions identified empirically will differ substantially from the
elements to which users are attuned, so this more structured approach may be
necessary for eliciting inference weights that correspond to the dimensions.

Examining Correlational Structure

Clues to the validity of gains may also be obtained from investigation of the
correlational structure of test scores and student background characteristics. Such
analyses may be particularly useful for understanding behavioral responses to
testing. As we discussed earlier, score inflation will not necessarily result i n
changes in correlations with scores on other measures. Changes in correlational
structure may occur in some cases, however, especially if the extent and type of
test preparation activities vary by school or student characteristics (e.g., if teachers
at high-poverty schools tend to engage in more test preparation than teachers at
low-poverty schools). It is important to keep in mind that correlations alone are
not sufficient evidence of inappropriate test preparation activities; for example, a
decrease in the correlation between test scores and student poverty could reflect
either greater score inflation in poor schools or a real effect on the equity of
outcomes. Investigations of correlations between test scores and student
background are probably most useful when scores on an audit test are available.
In such cases it may be possible to evaluate the degree to which changes i n
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correlations between scores on a high-stakes test and student background are
reflected in correlations shown by the lower stakes test.

Most test preparation activities will exert effects at either the school or
classroom level and may therefore produce discrepancies in correlational
structure across levels of aggregation. These discrepancies may be observable in a
single year of data. For example, Klein et al. (2000) compared student- and school-
level correlations in one Texas district between both among tests and between
test scores and background variables. They found that correlations with scores on
tests not used for high stakes were typically higher at the school level than at the
student level, as one would expect from aggregation. Some correlations with
TAAS scores, however, were very small or near zero at the school level,
suggesting interventions that affected entire schools. Effects on correlations
might also be found by comparing relationships across years.

Again, correlational patterns alone are insufficient for understanding the
extent and nature of test preparation activities. They can, however, serve as one
source of evidence in a validity investigation and may help to identify potential
threats to validity that should be examined in greater detail through classroom
observations, interviews with teachers, or other methods designed to provide
information about behavioral responses to testing.

Conclusions

The framework proposed here is presented only in general terms, and
efforts to apply it may suggest modifications or additional specificity. Even in its
most general form, however, the framework offers a basis for understanding
forms of test preparation, suggests new directions for validation efforts under
high-stakes conditions, and has implications for policy.

The framework clarifies that score inflation requires neither
unambiguously inappropriate test preparation nor the allocation of instructional
resources to substantively unimportant aspects of a test, such as item formats or
substantive performance elements with small inference weights. Certainly,
either of these can inflate scores, but inflation can arise without them.
Emphasizing elements with high inference weights is certainly desirable in its
own right, and all other things equal, it will typically inflate scores less than
would comparable emphasis on unimportant or non-substantive elements.
Even focusing on valued performance elements, however, can inflate
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scores—for example, if those elements are unintentionally overweighted, or if
emphasis on them comes at the expense of other elements also important to the
inference but accorded little or no emphasis on the test. If resources are
reallocated to be more consistent with test weights without maintaining or
increasing concordance with inference weights, the representativeness of tested
material will be undermined, and scores will be inflated.

A corollary is that although many tests may be improved in various ways to
lessen the problem of score inflation, such improvements are not necessarily
sufficient. Put in popular parlance, neither “tests worth teaching to” nor “tests
aligned with standards” are sufficient protection against score inflation. The
validity of gains hinges on the extent to which changes in total scores imply
acceptable changes in performance on all elements that should increase,
according to the user’s model of gains, and that have large inference weights.

This in turn implies that in most circumstances, the validity of gains cannot
be established without examination of changes on external measures because of
the large number of important elements that are excluded from any test. These
external measures could be audit tests, or they could be provided by a test design
in which unanticipated particulars are cycled into the focal test. It is likely that
these unanticipated particulars would need to be both substantive and non-
substantive. However, deciding what elements are sufficiently novel to be
unanticipated but sufficiently similar to be relevant to the intended inferences
will often be difficult.

Simple comparisons with audit measures, while useful to identify egregious
inflation, will typically be insufficient to estimate the degree of validity of gains
(or, conversely, the degree of inflation) unless there is clear agreement about the
appropriateness of the test weights of both the focal and audit tests for key
inferences. Without that, we are left with ambiguity about how much
generalizability is enough. To better estimate validity or score inflation without
such agreement, it will be necessary to identify important groups of performance
elements and examine shifts in performance at the level of those groups to
examine their consistency with important inferences.

However, we currently lack good methods for identifying the key groups of
elements. What criteria should be applied to decide which need to be considered
as distinct groups? A priori criteria, such as test specifications or statements of
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standards, are important but insufficient (e.g., because of unintentional
overweighting and our lack of certainty about the skills and knowledge actually
elicited by many test items). One focus of our ongoing work will be to evaluate
various approaches to delineating the groupings of performance items most
important for this specific purpose.

Finally, several of the problems inherent in validating gains, such as
uncertainty about the expected level of generalizability to audit measures and the
lack of clarity about key groups of performance elements, stem from the
vagueness of intended and actual inferences. To some degree, this is a matter of
policy rather than research. Without becoming overly prescriptive, the standards
in some states could be made more specific about the elements that students are
expected to learn, and some states and localities could be clearer about the
inferences that are intended for specific tests. In many instances, however, clearer
statements of policy may not suffice. It may be necessary to investigate inferences
systematically in order to elicit tacit inference weights, and it may be necessary to
use contrasts among measures to clarify the bounds of acceptable inferences. This
too will be a focus of our ongoing work.
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APPENDIX

A Mathematical Model of the Validity of Gains

The inferences many users base on test scores are very simple. This becomes
apparent, for example, when examining reports about test scores in the lay press
(e.g., Koretz & Deibert, 1996). A recent release of results from the National
Assessment of Educational Progress also illustrates this point. The presentation
of the results in The Washington Post included these comments:

Less than a third of the nation’s fourth-grade students are proficient at reading and the
gap between the best and worst readers is widening, according to test results released
yesterday by the U.S. Department of Education. . . . The results indicated that fourth-
graders who ranked among the nation’s top 10 percent of readers scored slightly higher
than they did in 1992, while the bottom 10 percent lost ground. (Fletcher, 2001, p. A2)

As these examples illustrate, many users treat test scores and achievement
in a domain as essentially unidimensional and ignore differences among
performance elements. Assuming that standards of technical quality have been
met, a single score on the test is seen as an adequate measure of mastery of the
entire domain of inference. The model of inference implicit in the simplest of
these cross-sectional inferences is simply that a test score implies a corresponding
level on a single latent performance variable:

Y ⇒  T

where Y is a score on a test and T is a latent or “true” indicator of achievement i n
the domain that is some form of composite of performance on individual
elements or a single latent factor that explains most of the variance in every
individual element. Similarly, the model underlying the simplest inferences
about change is:

∆Y ⇒  ∆T

This assumes that change is in some sense comparable, perhaps proportional,
across all elements within the domain.

For purposes of validation, however, it is not sufficient to view gains
simply in terms of change on a composite measure, whether latent or observed.
One reason is that performance elements that are highly correlated in a cross-
section may show different patterns of change over time. Progress on measured
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performance elements, for example, may not imply commensurate progress on
implicit elements that were initially highly correlated with them. Another
reason is that the implications of change may hinge on patterns of initial
performance. An increase from an initially high level of performance may have
different implications than a comparably large increase from an initially low
level of performance; in that case, an inference about change on the overall
construct must consider initial values as well as the amount of change.

Accordingly, the model presented here represents latent change in overall
achievement—that is, change across the range of performance elements relevant
to the inference—as a set of performance levels on different elements, not as a
single composite or composite change.

Model of an Inference

The goal of this section is to present a model that is general enough to
describe any inference that users make about the substantive performance
elements from a change score and a description of the assumptions required for
such inferences to be valid.

An inference made by a user of scores maps change scores on a test to
assumed changes in performance on substantive performance elements.
Roughly speaking, the inference is valid to the degree that actual changes i n
performance, both measured and unmeasured, are similar to the assumed
changes in performance. Thus we first present a model for describing this
mapping of change scores to assumed changes in performance. We then present
a model for determining if changes in performance are similar to the assumed
changes in behavior.

To make this notion more precise, let Y1 denote a score on a test at time 1
and let Y2 denote the score at time 2. The scores could be for an individual or an
aggregate unit such as a school or grade within a school; however, for clarity, we
will refer to student scores. Let ∆Y = Y2 – Y1.  Let θθθθ = (θθθθ1', θθθθ2')' be the 2p-vector of
unobserved performance elements from the two time points, where p is the
number of performance elements, both substantive and non-substantive. θθθθ
includes all measured and unmeasured performance elements that are inferred
from a change score and all performance elements that contribute to change
scores, even construct-irrelevant elements that have zero inference weights. For
simplicity, we consider the common case in which each value of θθθθ results in a
single change score, such as a change in estimated reading proficiency, ∆Y = G(θθθθ    ).
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This model can easily be generalized, however, to the case in which a test is used
to generate several subscores, each of which is a function of some subset of the
performance elements included in the test. If Yt = g(θθθθt) then

G(θθθθ) = g(θθθθ2) – g(θθθθ1) ≈ wi
i

p

∑  (θθθθ2i – θθθθ1i),

where the θti’s are the elements of θθθθt and the wi are the effective test weights, wi =
∂g/∂θi, evaluated at θ1i. Thus, the wi weight changes in the performance elements
by the partial derivative of the function g.

Users of change scores have as a target of inference the θθθθ values that they
would like to infer from an observed value of ∆Y.  Note that a user’s inferences
may involve some or all of the values of θθθθ at both time 1 and time 2, not just a
vector of changes ∆θθθθ.  For example, the user’s inference about change on a given
performance element may depend on the initial level of performance on that
element. Let the set A∆Y be the target of inference for a change score ∆Y. That is,
A∆Y is the set of θθθθ    s that the user assumes is implied by a change score ∆Y for a
single unit of observation—in this case, for a single student. For example,
suppose there are two performance elements and that the user assumes that the
domain is unidimensional, so that ∆Y implies that ∆T = c∆Y for some
proportionality constant c.  In terms of the individual performance elements, the
assumption that ∆T = c∆Y is equivalent to the assumption that θθθθ21 – θθθθ11 = c∆Y

and θθθθ22 – θθθθ12 = c∆Y.  Therefore for this user’s inference about the gain of a single
student, A∆Y = {θθθθ: θθθθ21 – θθθθ11 = θθθθ22 – θθθθ12 = c∆Y }.  There is more than a single θ in A∆Y

in the general case because neither the initial nor final values are fixed by the
inference.

Among the students of interest, the sets A∆Y are defined by the inference, not
by the performance elements and the test.  G(θθθθ) = ∆Y does not imply that θθθθ ∈  A∆Y;
that is, there may be functions of θ that produce ∆Y but are not consistent with
the user’s inference. This might arise, for example, if a small decrease in one
performance element were more than offset by a large increase in another, but
the user’s model of change is conjunctive, requiring increases on all elements.
To evaluate the validity of an inference we need to consider how the user’s
inference corresponds to student performance. Each student of interest has a
vector of performance elements. These elements generate a change score, and
from this change score the user infers something about the change in the
student’s performance. If a particular student has a vector of performance
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elements θ* and a change score ∆Y* = G(θθθθ    *), then the user infers that the
student’s performance belongs to the set A∆Y*. For this user’s inference, the vector
of performance elements θ* maps to the set A∆Y*. For example, suppose the
student improves her performance on math computation but not problem
solving and the test measures only problem solving; however, the user makes
an inference about change in both problem solving and computation. The
student’s θ* results in a positive ∆Y*, and the A∆Y* includes only values of θ
where computation and problem solving improve. Thus θ* is not an element of
A∆Y*.

More generally, we let A∆Y(θ) denote the inferred values that correspond to
the change score θθθθ generates. The notation A∆Y(θ) implies the two-stage process
that maps student performance to a change score and a change score to inferred
values. Thus, for any θθθθ, A∆Y(θ) is what the user infers about this performance. By
comparing θθθθ to A∆Y(θ) we can determine the error in the inference. θθθθ may or may
not be an element of A∆Y(θ).  When θθθθ ∉  A∆Y(θ) then the user’s inference is incorrect
for this student with performance elements θθθθ and change score equal to ∆Y.
Ideally, θθθθ ∈  A∆Y(θ) for all students of interest, so that inference is correct for the
population of interest. If the assumption that θθθθ ∈  A∆Y(θ) for all values of θθθθ is
plausible, then we would conclude that the inference is valid. However, validity
is a continuum, not a dichotomy, so if the assumption that θθθθ ∈  A∆Y(θ) for all
values of θθθθ is not plausible, then the inference could still be sufficiently valid if θθθθ
is sufficiently “close to” A∆Y(θ).  We now provide a means for determining if θθθθ is
close to A∆Y(θ).  

Measures for Determining the Validity of an Inference

As discussed in the previous sections, users of test scores have a, possibly
tacit, notion of the discrepancy between two levels of performance. This notion
of discrepancy is related to the target of inference and the user’s model of change.
The user’s model of change defines the limits of changes in performance and
determines which vectors of performance display similar gains in performance
and which do not. Because the user might not value change in all dimensions
equally the measure of discrepancy or distance between performance vectors
might weight discrepancies on some performance elements greater than those
on other elements. We use d(ξξξξ , θθθθ    ) to denote the user’s measure of distance or
discrepancy between two vectors of performance elements. The distance between
θθθθ and ξξξξ is greater when the vectors differ on performance elements with large
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inference weights (elements of particular interest to the users) than when the
two vectors differ an equal amount on elements with small weights (elements of
little interest to the users). The distance measure does not need to be a traditional
Euclidean distance measure. For example, if the user is more concerned about
gains for students with low performance at time t = 1 than for student with high
performance at t = 1, then the distance measure will depend on the values of θθθθ1.
If ξ is any element of A∆Y(θ), then this measure also defines the distance between a
vector of performance elements and the inferred values of A∆Y(θ). We define this
distance as

D(θθθθ    ) = 
ξ∈Α ∆Y( )θ

inf
 d (ξξξξ,,,,θθθθ)  .

D(θθθθ    ) measures the distance from θθθθ to the closest point in A∆Y(θ). If θθθθ is an element
of A∆Y(θ) then D(θθθθ    ) = 0.  

For each individual student of interest there exists a distance D(θθθθ    ) between
the student’s performance (θθθθ    ) and the inferred value of the student’s
performance A∆Y(θ).  Ideally for each individual D(θθθθ    ) will equal zero. However, i n
most cases, it would be unrealistic to expect D(θθθθ    ) to be exactly zero, even if the
user’s inference could be specified perfectly. It is more realistic to expect D(θθθθ    ) > 0.
In that case, the question becomes the size of D(θθθθ    ).  The larger the value of D(θθθθ    ),
the less warranted the inference drawn from the observed ∆Y. For this purpose,
it is necessary to distinguish three types of inference:

1. Inferences about individual units of observation, such as students. In
this case, the issue is simply how much of a threat to the inference is
provided by D(θθθθ) for the individual, which depends on the distance
measure, the user’s inference weights and the user’s model of change.

2. Inferences about the distribution of change in a group of individual
units of observation, such as samples of students. These are not
inferences about aggregate summary statistics, such as means. For
example, some systems require that failing students attend summer
school and use an increase in a test score as a basis for determining
whether these students may progress to the next grade. The inference
underlying this policy might be stated as follows: in the great majority of
cases, students whose scores have increased to a specified level have
improved to a sufficient degree on the skills and knowledge in question
that they should be promoted. The size of the mean increase is not at
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issue. What is at issue are the proportion of times that students have
improved at least to a certain level, and perhaps the degree to which
others fall short. These inferences are discussed below.

3. Aggregate inferences, such as inferences about changes in mean scores at
the level of schools. These are not discussed further here. However,
these are analogous to #1 and #2 in terms of the logic of inference, even
though they are different in terms of statistical properties. For example,
if the unit of analysis is individual schools and the statistic on which
inferences are based is a mean score, inferences about individual schools
are analogous to those about students in #1, and inferences about
distributions within groups of schools are analogous to those for groups
of students in #2.

Note that the distinction between the first and second category of inferences
can be blurry, in that many inferences about individual students depend on
information about a collection of individuals. For example, experience with
many test-takers may be needed to determine the seriousness of errors about
individuals, that is, to establish the user’s inference weights. Nonetheless, the
two categories of inference are logically distinct, and considerations enter into the
second that do not necessarily enter into the first.  

More formally, for an inference about an individual student on a single test,
the validity of the inference is determined by D(θθθθ    )= d(ξξξξ , θθθθ    ). In contrast, for a
given inference about a collection of students, that is, as defined by the collection
of sets A∆Y, there is a unique value of D(θθθθ    ) for every vector θθθθ and the inference is
valid if D(θθθθ    ) is small on average over all values of θθθθ. To calculate this average we
need to consider a distribution for the values of θθθθ across students of interest, Fθ .

The average is given by

L  = ∫
2 pR

D(θθθθ)dFθ

and the inference is valid when L is sufficiently small. The meaning of
sufficiently small will depend on the nature of the inference and the
performance elements and may be open to debate. Even if the user is focused on
a particular the sample of students, the distribution Fθ . will not be known and to

validate the inference the user must make (and test as best as possible)
assumptions about this distribution.
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When evaluating the validity of an inference, we must determine pairs (D,
Fθ) of a distance measure and a distribution function that result in small values

of L. We must then consider the plausibility of the distribution function given
the available empirical evidence to support assumptions about Fθ . We must also

determine the consistency of the distance measure with the users inference
weights. Given the available empirical data on the distribution of θθθθ and the users
inference weights, if there are plausible pairs (D, Fθ) that result in small values of

L then the inference is valid, otherwise the evidence indicates that the inference
is invalid.

Example 1

To make these ideas clear we first consider a very simple example. Suppose
a domain has only two performance elements, θ1 and θ2, for example, math
computation and math problem solving. Also, suppose that the test gives zero
weight to θ2 (problem solving) and nonzero weight to θ1 (computation). The
user, on the other hand, is interested only in θ2 and infers that ∆Y = ∆θ2. Such a
situation might occur if a state’s standards focus on problem solving but the state
continues to use a test that measures computation. Although many pairs (D, Fθ)

might result in L, given the user’s inference, only distances with zero inference
weight on θ2 should be considered. As shown in Figure 1, for a given value of
∆Y, A∆Y = {θθθθ : ∆Y = ∆θ2}.  However, the set of θθθθ that result in a change score of ∆Y

is the set where ∆Y = ∆θ1. If ∆θ1 ≈ ∆θ2 then D(θθθθ    ) will be small. On the other hand,
if ∆θ2 is much larger or smaller than ∆θ1, then D(θθθθ    ) can become arbitrarily large.
Therefore to obtain small values of L, the distribution Fθ must put most of its

mass on values of θθθθ where ∆θ1 ≈ ∆θ2.  

That is, for the inference to be valid we must assume that ∆θ1 and ∆θ2 are
highly correlated. In this particular example, one might well have data indicating
that the cross-sectional correlation between θ1 and θ2 is strong, because students
who do well in mathematical problem-solving are likely to do relatively well i n
computation as well. However, as explained in the body of the paper, a large
cross-sectional correlation between θ1 and θ2 does not necessarily imply a strong
correlation between ∆θ1 and ∆θ2 because behavioral responses to the test might
cause performance on the two elements to change differently over time. The
correlation between ∆θ1 and ∆θ2 might be substantial if teachers respond to the
test by emphasizing both computation and problem solving—that is, if they do
not reallocate resources between these two elements in response to the test’s
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emphasis on problem solving. The correlation might also be high if teachers
reallocate some resources to problem solving and if the additional work students
do on problem solving generalizes and causes gains in computation as well. On
the other hand, reallocation, coaching, or cheating might cause θ1 to increase
independently of θ2; indeed, some forms of test preparation could cause θ2 to
decrease as θ1 increases.

Thus, to establish the validity of the inference that ∆Y ⇒  ∆θ2, we need
supplementary data. Evidence might include concordant trends on an audit test
that gives a substantial weight to θ2, estimates from an audit test of the
correlation between ∆θ1 and ∆θ2, or data about instruction showing the forms of
test preparation used in response to the test.

The simple example demonstrates the potential value of the model. The
model calls for specifying the inference and using that inference to identify a
measure for determining how well the inference aligned with true performance.
The model clarifies how a review of the test and the inference would ideally
indicate the values of θθθθ that will result in large error. Finally, the model requires
determining the assumptions about the distribution of scores that are required
for the inference to be valid given a measure of error that is consistent with the
user’s inference weights. The key to the practical utility of the model will be the
ability to generate hypotheses and appropriate data to test the validity of the
inference in a manner consistent with the model.
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