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Abstract

A student’s understanding of a problem before he or she solves it is a critical component
of successful problem solving. This understanding is based on how a problem is

represented; that is, whether a problem is understood in terms of principles or solution
methods or whether the focus is on features that are irrelevant to its solution. In this

study, we examined 12th-grade students’ representations of statistics problems for which
they used a sorting task. W e indexed the degree to which problems were sorted

according to statistical methods, and we used a verbal protocol to assess students’
explanations of their sorts. Two main findings are discussed: (a) Students’ problem

representations were based on key features that underlie statistical methods, and the
extent to which these features were stressed in explanations varied; and (b) students’

explanations were more sensitive to the nature of their problem representations than was
their sorting performance. These findings have implications for the design of instruction

and assessment.

The objective of this study was to examine a significant aspect of problem
solving, namely, problem representation in the domain of statistics. Problem solving
is a critical component of the mathematics curriculum (National Council of Teachers
of Mathematics [NCTM], 1989; 2000) and has been the focus of research for two
decades. Yet, comprehensive problem-solving programs are not always
implemented in K-12 classrooms, and research still is needed to fully understand the
complexities of the problem-solving process (Lester, 1994). It is a well-established
finding that solving a problem successfully requires that a solver first understand
the problem, and second, perform the appropriate procedure (Brenner et al., 1997;
Mayer, 1985; Mayer, Lewis, & Hegarty, 1992). Problem understanding involves
having an accurate problem representation, which results from a process of trying to
connect one’s content knowledge to requirements of the specific problem under
consideration before executing a solution procedure (Silver & Marshall, 1990).
                                                  
1 We gratefully acknowledge Joy Evans’  assistance with the data collection and thank Corinne
Zimmerman, Marsha Lovett, Marguerite Roy, Gloria Berdugo, and Maria Magone for helpful
comments on an earlier version of this draft.
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Inability to represent a problem accurately can result in unsuccessful problem
solving (Marshall, 1995; Mayer et al., 1992). This difficulty is particularly common to
word problems because their solution depends on a problem representation that is
constructed from verbal and contextual information provided in the text. The ability
to represent problems accurately by translating words into appropriate equations
and interpreting the solutions into problem contexts is critical to understanding and
solving problems, particularly when they are complex (Koedinger & Nathan, 1999).
One way to facilitate the development of problem representation skills is to give
students experience with word problems before they learn how to manipulate
symbols (Brenner et al., 1997; Koedinger & Nathan, 1999; Nathan & Koedinger,
2000). Students can thus acquire verbal problem representation skills, which can
provide the basis for representing the constraints of problems in symbolic language,
before actually solving equations (Koedinger & Nathan, 1999). In other words, once
acquired, students’ verbal problem representations can scaffold the development of
symbolic representations prior to problem solving.

Research examining how individuals represent word problems has centered on
chess, physics, and mathematics. These investigations have revealed the relationship
between accuracy of problem representation and expertise (Chase & Simon, 1973;
Chi, Feltovich, & Glaser, 1981; Larkin, McDermott, Simon, & Simon, 1980;
Schoenfeld & Herrmann, 1982; Silver, 1981). An important aspect of this relationship
is the ability to perceive the structure of a subject matter domain; that is, to
understand the concepts and how they are interrelated. The expertise literature
reveals that novices (or students in the early phases of learning a particular content)
do not perceive the domain structure in problems. Rather, they focus on irrelevant
features of the problem, such as the story line or content not pertinent to solving the
problem. In other words, novices represent problems in terms of surface features. In
contrast, experts (or students with extensive experience in a particular content
domain) represent problems in terms of relevant principles or methods—the
structural features—and apply them appropriately.

The notion that individuals represent problems in terms of surface or structural
features is consistent with schema theory. According to this theory, a problem is
represented based on knowledge of a problem type (Chi et al., 1981). A schema
results from experience in solving problems that share common features (Marshall,
1995). The most relevant features are abstracted and incorporated into existing
schemata or form the basis of new schemata. Successful problem solving thus
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requires that critical problem features be recognized and mapped onto existing
schemata (Marshall, 1995; Mayer et al., 1992). A common methodology for
examining problem representation is problem categorization on a sorting task (Chi
et al., 1981; Mariné & Enscribe, 1994; Quilici & Mayer, 1996; Schoenfeld &
Herrmann, 1982; Silver, 1981). Information about students’ problem representations
can be gleaned from their ability to categorize problems according to basic problem
types (Mayer et al., 1992).

Although a substantial amount is known about students’ problem
representations in physics and mathematics, little work has been done in the domain
of statistics. The cognitive research in this area is young, and much has yet to be
learned about how students solve statistics problems (Becker, 1996). Statistics is a
particularly fruitful domain of investigation given its complexity and reputation for
being hard to grasp (Cumming, Thomason, & Zangari, 1995; Garfield & Ahlgren,
1988; Shaughnessy, 1996), its importance in everyday decision making (Hauff &
Fogarty, 1996; Moore, 1997), its current role in the K-12 mathematics curriculum and
emphasis on problem solving, and the instructional dependence on word problems.
There is a need for studies that examine students’ ability to accurately represent
statistics problems.

Students’ ability to structure their knowledge of a domain often can depend on
how the curriculum is organized. The manner in which statistics is treated in the
mathematics curriculum can vary across schools. Statistical content can be
embedded within the mathematics curriculum at various points in the year or
treated as a separate course. The key in each of these contexts is whether the
relationship between concepts is emphasized and when. Content related to
hypothesis testing, for instance, often is taught as a course, and the curriculum unit
is organized in such a way that principles are taught first (e.g., central limit theorem
and probability), followed by hypothesis testing methods. Each method is taught in
isolation from the others (Lovett, 2001). Hypothesis testing usually is taught at the
university; however, some high schools have provided students with opportunities
to learn about inferential statistics (e.g., Advanced Placement statistics courses). As
in mathematics, statistics instruction traditionally has focused on developing
students’ ability to solve equations. It rarely allows students to practice making
decisions about appropriate analyses (Lovett, 2001; Lovett & Greenhouse, 2000). The
common and distinguishing structural features that underlie various hypothesis
tests are therefore not addressed explicitly. Consequently, it is often difficult for
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students to represent problems in terms of the appropriate structure (Hubbard,
1997). The manner in which the curriculum is organized can thus make it more
difficult for students to perceive that structure in the problems they are asked to
solve.

Frequent use of word problems and increasing emphasis on problem- and
project-based methods in statistics classrooms (e.g., Derry, Levin, Osana, & Jones,
1998; Fillebrown, 1994; Lajoie, Lavigne, Munsie, & Wilkie, 1998; Lavigne & Lajoie,
2000) enhance the value of research that examines students’ problem
representations. One potential avenue of research is exploring how students’
problem representations differ when students are presented with pre-constructed
problems (e.g., word problems) as opposed to situations where they pose their own
problems (e.g., projects). As a first step in this endeavor, we examined high school
students’ representations of pre-constructed word problems dealing with hypothesis
testing. We focused on these problems because (a) they are often used in statistics
instruction, (b) the research on students’ representations of such statistics problems
is limited, and (c) we wanted to identify features students considered important in a
controlled setting.

In statistics, students must be able to understand a problem so that they can
apply statistical procedures appropriately and draw suitable conclusions. Knowing
when to apply particular statistical procedures, such as hypothesis testing, is a
difficult skill for students to acquire (Lovett, 2001; Quilici & Mayer, 1996). They must
know the critical features that underlie statistical methods, recognize them in
problems, and apply them appropriately, in order to be successful problem solvers
(Hubbard, 1997). Recognizing structural features underlying methods such as a t
test, chi-square test, and correlation is a necessary first step in deciding their
appropriateness. This process is difficult for many students, who tend to rely on
heuristics (e.g., a two-way table, hence the problem must require a chi-square test)
rather than structural features (e.g., categorical data that examine a relationship
between two variables, hence a chi-square test is required for this problem). Reliance
on heuristics reflects a surface approach where key words or data structures are the
focus for solving the problem. Emphasis on structural features reflects a principled
approach where the purpose of analysis, its conditions of applicability, the type of
data to be collected, the test algorithm, and the meaning of the conclusions are
understood (Hubbard, 1997).
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Statistics problems dealing with hypothesis tests can be represented in terms of
various structural features. Higher level features for distinguishing between
hypothesis tests involve making decisions about type of data (i.e., measurement vs.
categorical), research purpose (i.e., examination of differences vs. relationships), and
number of variables or groups (two vs. multiple; Howell, 1989). Finer grain features
can include subcomponents of these higher level categories, such as measurement
level (i.e., nominal vs. ordinal) and type of variable (i.e., related or dependent vs.
independent). Research examining whether students represent statistics problems in
terms of these features is limited. Some studies have investigated problem solving in
the domain of statistics, focusing on problem-solving errors (e.g., Allwood, 1990;
Allwood & Montgomery, 1982), problem-solving strategies and transfer (e.g., Paas,
1992), planning processes (e.g., Lovett, 2001), the relationship between competence
and metacognition (Mariné & Enscribe, 1994), and expertise (Hauff & Fogarty, 1996;
Hong & O’Neil, 1992). Only one study, by Quilici and Mayer (1996), has investigated
students’ problem representations.

Quilici and Mayer (1996) were interested in how college students with limited
knowledge of statistics (i.e., only took an introductory statistics course) or no
knowledge of statistics (i.e., never took a statistics course) represented inferential
statistics problems. They examined students’ problem representations after a session
in which the students were exposed to examples that emphasized structure. This
intervention was meant to help students recognize which tests were appropriate for
which problems. The examples provided information about structure by identifying
the inferential tests that were required to solve them, namely, t test, chi-square test,
and correlation. Viewing these examples was expected to help students abstract the
structural features underlying the three tests. The structural features emphasized in
the problems consisted of type of variable (i.e., independent vs. dependent) and type
of data (i.e., quantitative vs. categorical). After viewing the examples, students were
required to group new problems that they thought belonged together. The
effectiveness of the “structure-emphasizing” examples for fostering students’
representations of inferential statistics problems was examined by comparing the
problem groupings of students who received the intervention with the sorts of those
who did not. Students who were shown sample statistics word problems for each
test were expected to sort subsequent problems more on the basis of structure (i.e.,
group together all problems requiring the same test) than surface features (i.e.,
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weather, politics, education) compared to students who were not exposed to
examples. The results supported the hypothesis.

Quilici and Mayer’s (1996) study was strong, but it was limited by its focus on a
single measure, namely, scores indicating the extent to which problems were sorted
based on structural and surface features. These data provided estimates of students’
problem representations but did not reveal the thinking processes that formed the
basis of the sorts. In other words, students were not required to explain why they
sorted problems in the way that they did. Further research is needed to determine
the validity of sorting scores as an indicator of problem representation. Moreover,
additional sources of evidence such as verbal explanations are needed to triangulate
the data and to provide insights into the reasons why particular problems were
grouped.

The present study was exploratory and designed to extend Quilici and Mayer’s
(1996) work by collecting verbal data to examine the nature of student problem
representations more closely. We were interested in why students sorted particular
problems together and not just in how they were grouped. Our intent was to
characterize students’ problem representations immediately after receiving an
instructional unit on hypothesis testing, rather than creating and examining the
effectiveness of an intervention specifically designed to foster these skills. In this
sense, the present study attempts to describe the problem representations that arise
in typical statistics classrooms. Another way our study differed from Quilici and
Mayer’s was in the structural features that were emphasized in the sorting
problems. The structure in our problems consisted of higher level features
associated with making decisions about the appropriateness of inferential tests (i.e.,
purpose, data type, and number of variables or groups). Quilici and Mayer
emphasized one of these higher level features (data type) and another general
feature (variable type).

We replicated Quilici and Mayer’s 1996 study only with respect to the sample,
use of particular word problems (see methodology for details), the types of tests
required to solve the problems (i.e., t test, chi-square test, and correlation), and the
methodology employed (i.e., sorting task and scoring of problem groupings).
Students participating in both studies were somewhat similar in that they were
relatively comparable in terms of their statistical experience (however, Quilici and
Mayer also included students who had no experience with statistics) and their ages
(the difference between 12th grade and college is not substantial). Moreover, even
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though students had learned a range of tests, we chose to focus on t test, chi-square,
and correlation problems for two reasons: (a) a desire to represent a range of tests
frequently used in research and (b) time constraints. Z-test problems, for example,
were not included because Z  tests are rarely used in the analysis of most genuine
research problems. Class instruction focuses on them because they provide the
foundation for hypothesis testing and thus have conceptual value. Linear regression
problems also were omitted because the distinction between regression and
correlation was too subtle to be informative at this grade level. Finally, F-test
problems would have been an interesting contrast to t-test problems. However, time
constraints did not allow for their inclusion because students’ participation would
have been extended from one to two class periods, which was not possible due to
students’ schedules.

Three research questions were explored in this study:

1. Do the sorting scores indicate that problems are represented in a superficial
or principled way?

2. Are the features identified in students’ explanations based on statistical
methods or irrelevant characteristics of problems?

3. Do students’ explanations for sorts correspond with the scores representing
the extent to which their sorts are superficial or principled?

Methods

Participants

Twenty-one students (11 female, 10 male) from a 12th-grade introductory
statistics course participated in the study after completing instructional units on
hypothesis testing in the spring. The sample was largely middle class and Caucasian
(80%). Participants were among the strongest in their cohort in terms of mathematics
ability. The content taught in the statistics course was equivalent to an introductory
undergraduate-level course and was offered only to students who had successfully
completed all required mathematics courses. The hypothesis testing units covered
the following ordered topics: Z tests, t tests, chi-square tests, correlation, linear
regression, and F tests. Students participating in the study thus had statistical
knowledge and experience solving problems dealing with targeted inferential tests
(i.e., t test, chi-square test, and correlation). Since each statistical method was learned
in isolation from the others, there was little opportunity for students to participate in
classroom activities that required they distinguish between the different tests.
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Materials

Statistics word problems were typed and presented to students on separate 3-
inch x 5-inch index cards. Problems represented three inferential tests students had
learned about in class, that is, t test, chi-square test, and correlation. Three problems
were developed for each test, resulting in a total of nine problems (adapted from
Lovett, 2001; Quilici & Mayer, 1996). These problems can be represented in terms of
two overarching features: structural and surface. Structural features can represent
fundamental principles or statistical methods. In hypothesis testing, structural
features can be inferential tests or characteristics associated with tests. Critical
features underlying hypothesis tests include purpose of study (i.e., whether the
research question involves examining differences or relationships) and data type
(i.e., whether the data can be measured or counted). These two features form the
basis of a principled problem representation in this context and provide the basis for
deciding whether a chi-square test, a t test, or a correlation is appropriate for any
given problem (Howell, 1989). Figure 1 illustrates features associated with each type
of test.

An additional characteristic that could be salient for the students since they
also learned about F tests is the number of groups or variables being compared. This
feature enables students to distinguish a t test from an F test since they share the
same purpose (i.e., comparison) and data type (i.e., measurement) features. A t test
involves a comparison of two groups, whereas an F test is used to compare multiple
groups. Consequently, a third feature, number of groups or variables, could be an

Relationship between 2 variables

Chi-square t-testCorrelation

Categorical data Measurement data

Difference between 2 groups

Data Type

Purpose

Figure 1.  Critical features associated with t test, chi-square test, and correlation.
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important part of the decision making for students on this task. It is therefore
included as one of the salient categories even though the problems were not
designed to vary in terms of this feature.

Surface features represent a superficial understanding of statistics and include a
focus on semantic (i.e., topic or cover story, such as education, weather, and politics)
or literal (i.e., data structure or organization) similarities. Table 1 illustrates how
each problem varied by structure and surface features. The order in which problems
were presented was counterbalanced to ensure that surface and structure problems
were alternated. The resulting sequence was presented to each participant in the
same order.

Procedure

Each student participating in the study was individually taken out of the
statistics class to perform the sorting task. Before starting the task, participants were
informed of what was required of them. They were then asked to explain what they
had to do and how they would do it to ensure they understood the task. Students
were given the deck of cards and instructed to sort problems based on how they
“best went together” (Mariné & Enscribe, 1994; Quilici & Mayer, 1996). They were
not required to solve the problems. Students also were required to think aloud and
to explain the reasoning underlying each sort while they were performing the task.
Several semi-structured interview questions were posed at the end of the task (e.g.,
How are problems in each pile similar? How is each pile different?). The interviewer
recorded these sessions on audiotape and in a notebook. A blank worksheet was
available for student use. The data were transcribed, segmented, and analyzed based
on how problems were grouped together and why.

Measures

The data were examined in two ways. First, the manner in which problems
were sorted was measured by computing scores that reflected the degree to which
sorts were principled (i.e., structure score) or superficial (i.e., surface score). Second,
the reasons (or explanations) underlying sorts were categorized according to
structural (i.e., purpose, data type, number of variables or groups) or surface (e.g.,
cover story) features. The sorting scores and explanation categories are two indices
of problem representation that vary in the amount of detail they provide. Each is
described in more detail in Table 1.
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Table 1

Statistics Problems Characterized by Structure and Surface

Structural
features

Surface features (cover story)
——————————————————————————————————————

Education Weather Politics

t test

Difference
Measurement
2 Groups

A professor is teaching
two sections of the same
class. One section meets
on Mondays and
Wednesdays, the other on
Tuesdays and Thursdays.
The professor gave the
same test to both sections
and wants to know
whether students in the
two sections performed
differently. The test was
worth a total of 100 points.

Weather reporters in the
Pittsburgh area often give
temperature readings that
are based at two locations:
the airport and the
downtown core. A
journalist wanted to find
out whether the
temperatures reported
from the two locations
varied. Temperature
readings from both sites
were recorded for one
year.

A political candidate
wants to know whether
voters’ party affiliation
(Democrat vs.
Republican) varies based
on their income level.
The candidate’s aide
conducts a survey asking
people to report their
party affiliation and their
total annual income.

Chi-square test

Relationship
Categorical
2 Variables

A school superintendent
suspects that high school
students’ intended college
major varies by gender. To
find out, a short
questionnaire is
distributed asking male
and female senior students
in the district whether
they plan to major in the
sciences or arts when they
apply to college.

A weather analyst thought
that there was a difference
in the occurrence of
tornadoes and hurricanes
based on time of day. The
scientist used data from
the last 50 years that
specified the type of wind
phenomena and whether it
occurred in the a.m. (i.e.,
midnight to noon) or p.m.
(i.e., noon to midnight).

The governor’s office
wants to know if the
prevalence of different
kinds of crime varies
across different regions
of Pennsylvania. A state
official collects crime
reports from police
stations across
Pennsylvania. Each
report is labeled with the
name of the reporting
police station and
describes either a
personal or a property
crime.

Correlation

Relationship
Measurement
2 Variables

A professor teaching a
class on creativity asks
students to answer a
questionnaire designed to
measure creative thinking
on a scale from 1-50. The
professor believes that
watching TV stifles
creativity. Students’ scores
are recorded along with
the reported number of
hours of TV they watch
per week.

After examining weather
data for the last 50 years, a
meteorologist claims that
the annual precipitation
varies with average
temperature. For each of
the 50 years, the
meteorologist notes the
annual rainfall and average
temperature.

To receive additional
federal funds to the
health care budget, each
state must obtain a
government rating of the
quality of its health care
offerings (averaged
across the state). A
congressional aide wants
to know whether the
amount of federal funds
allocated to each state
depends on the state’s
health care ratings.
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Sorts: Structure and surface scores. The degree of similarity between grouped
problems was examined by computing a structure and surface score for each
participant based on pairs of problems in each sort that represented structure and
surface (Quilici & Mayer, 1996). Structure sorts were those in which t-test, chi-
square, or correlation problems were correctly grouped together. Surface sorts were
those in which education, politics, and weather problems were grouped together.

Four steps were involved in scoring the sorting data. First, structure and
surface scores were calculated based on the way problems were paired. Three pairs
can be made for each test type (e.g., t-test problem pairings = 1 & 2, 1 & 3, and 2 & 3)
for a total of nine structure pairs (i.e., 3 t-test pairs, 3 chi-square pairs, and 3
correlation pairs). The same number of pairings applies to surface sorts where
education, politics, and weather problems are grouped together. Optimal groupings
thus consisted of three sorts with three problems each. Each pair was assigned a
score from 0 to 3, for a maximum score of 9 for structure (i.e., 3 pairs for 3 types of
tests) and a maximum score of 9 for surface (i.e., 3 pairs for 3 types of cover stories).
Second, scores were converted into proportions by dividing each score by the
maximum score. For example, a participant who produced four sorts consisting of
two t-test problems, two correlation problems, two chi-square problems, and a
mixed set of problems (i.e., one t test, one correlation, and one chi-square) would
receive a structure score of 6. Dividing this number by 9 results in a proportion
structure score of 0.67. Proportions ranged from 0 to 1. A proportion of 0 (minimum
score) for structure or surface indicated that problems were not sorted based on
principled or superficial features. A proportion of 1 (maximum score) indicated that
the sorts were based on perfectly principled (i.e., for the structure score) or
superficial (i.e., for the surface score) representations. The higher the proportion, the
greater the degree to which the sort is based on structure or surface (i.e., maximum
proportion score of 1 for both). The sort in the example would therefore be moderate
in terms of structure and represent some principled understanding.

Third, participants were categorized as either structure- or surface-using,
depending on the relative strength of each proportion. This measure emphasizes the
predominantly stronger of the two problem representations and provides a general
label. A participant was categorized as structure-using if the structure proportion
was greater than or equal to the surface proportion. If the reverse was true, then the
participant was characterized as surface-using. The fourth step in scoring the sorting
data involved grouping structure proportions into categories to distinguish among



12

three levels of problem representations: superficial, moderately principled, and
principled. These categories provide a meaningful way of discussing the
sophistication of the representations. Moreover, treating the data in this way allows
for a comparison of scores with reasons underlying the sorts, which were
categorized in this manner (as will be seen in the next section). We focused on
structure proportions because they are the most interesting and account for the
surface scores by virtue of the scoring method. High structure scores, for example,
are generally associated with moderate to low surface scores and vice versa.
Focusing on structure is also legitimate in cases where the structure and surface
scores are equivalent. The structure proportions were grouped into representation
levels in the following way: Proportions between 0 and 0.4 were categorized as
superficial, proportions between 0.4 and 0.7 were coded as moderately principled,
and proportions between 0.7 and 1 were identified as principled.

Reasons for sorts: Categories of features. Reasons for each sort were coded
based on categories that emerged from the data. Many explanations reflected critical
hypothesis testing features and included one or several of the following: (a) type of
statistical test—t test, chi-square, correlation; (b) research purpose—difference
versus relationship; (c) data type—measurement versus categorical; (d) number of
variables or groups— two ve r s u s  multiple; (e) superficial statistical
considerations—data organization or whether the problem stated that data were
collected; (f) nonstatistical considerations—topic or cover story; and (g) lack of
problem similarity—problems not perceived as similar to others. The first three
categories reflect structural features that underlie principled problem
representations. The last three categories, on the other hand, are based on surface
features that underlie superficial problem representations.

The categories were grouped in terms of sophistication levels to ascertain the
degree to which explanations were principled. The data were grouped into
principled, moderately principled, or superficial categories. A principled

representation is reflected by explanations that are based on type of statistical test
alone or in combination with underlying test features, such as purpose, data type, or
number of variables or groups. Representing problems based on two or more of
these critical features is also principled. Thinking about problems in these ways is
sophisticated in that it requires that knowledge of multiple features be integrated. A
moderately principled representation is based on explanations that consist of one
critical feature. Considering a single feature is principled but incomplete because it
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is not connected to other critical features. A superficial representation is based on
irrelevant considerations, such as data organization, whether the problem involved
data that were already collected or whether data had to be collected to answer the
question, cover story, or perceived lack of problem similarity. None of these features
reflect statistical principles related to hypothesis testing. The percentage overlap
between two raters independently coding the data was 87% before discussion for
both the content and sophistication-level categories. Coding differences were
resolved through discussion, resulting in 100% agreement.

Results

Students’ problem representations were examined based on two types of data:
sorting scores and explanation categories. These indices vary in the amount of
detailed information that is provided about students’ representations. First, we
report on the nature and extent to which problem representations were principled
based on students’ explanations of their sorts. This index is more sensitive than
sorting scores for identifying concepts students consider important and is therefore
a more direct measure of problem representation. We focus on features that were
identified by students and how sophisticated these are relative to key features
involved in selecting appropriate hypothesis tests. These results are followed by an
analysis of the average number of groupings that were produced and the extent to
which problem representations were principled based on structure and surface
scores. The score index is more sensitive to the degree of accuracy related to
particular pairings of problems than to the knowledge associated with groupings.
An accurate sort implies principled understanding. In this sense, a sorting score is
an indirect measure of problem representation. We then compare the results
obtained from the two measures to examine the relationship between sorting scores
and explanation categories. We present cases in which the scores either
underestimated or overestimated the degree to which problem representations were
principled. Finally, we report on the types of problems that tended to be sorted
together.

Sorting Categories

Explanations accompanying the sorts revealed that problem representations
were highly variable. Twenty-six different reasons were generated. In some cases,
one feature (e.g., purpose) provided the basis for each sort (58% of reasons) and in
others, two or more features (e.g., purpose and data type) were focused on (42% of



14

reasons). Features emphasized in students’ explanations were grouped into 10
general categories. These categories and their relationship to each representation
level are presented in Table 2.

Note that the data are based on the total number of groupings or piles that
were produced (N = 72) rather than by student. Problems were generally not sorted
according to an overarching criterion. Rather, students’ reasons for sorting different
groups of problems often were unrelated. For instance, problems were sorted into
three piles because the student stated that one set of problems dealt with differences,
another involved collecting data, and a third represented measurement data. In this
case, the student was not using purpose as the overarching criterion for grouping
problems. Otherwise two piles would have been made; one based on difference and
the other on relationship. Instead, different kinds of reasons were emphasized for
each of the three groupings, namely, purpose, superficial consideration, and data
type. Variability of problem representation was therefore demonstrated in two
ways: (a) the total number of different reasons provided and (b) the contrasting
features that were emphasized for each sort that a student produced.

Table 2

Classification of Reasons for Sorts by Representation Levels

Representation level
% Reasons

(N = 72)

Principled 23%

Purpose, data type, and number of variables/groups (n = 4) 6%

Purpose and data type (n = 6) 8%
Purpose and number of variables/groups (n = 1) 1%

Test and purpose (n = 5) 7%
Test (n = 1) 1%

Moderately principled 49%
Purpose (n = 24) 33%

Data type (n = 7) 10%
Number of variables/groups (n = 4) 6%

Superficial 28%
Superficial statistical (n = 13) 18%

Nonstatistical consideration (n = 4) 6%
No problem similarity (n = 3) 4%

Note. In situations where reasons emphasized both a critical feature (e.g., purpose)
and an irrelevant feature (e.g., data organization), the strongest reason was
prioritized and categorized accordingly (e.g., purpose).
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The range of combined and single critical features in Table 2 illustrates that
students’ problem representations were based on key statistical ideas and varied in
sophistication. Interestingly, purpose and data type, either in isolation or
combination, formed the basis of most problem representations (59%), and were
thus sufficient for sorting the problems in a principled way. Ability to think about
statistics problems in terms of these critical features is important because it can
enhance successful problem solving on word problems. Selecting an appropriate
statistical test for solving statistical problems is based on one’s ability to represent
problems in terms of these features. While some explanations indicated that
problems were represented in a principled way, half the representations were
moderately principled, with purpose being the most salient single feature.
Superficial representations also were evident but to a much lesser degree. Features
such as data organization, which are based on statistics but are not particularly
relevant to the task, formed the basis of most superficial groupings. Note that a
focus on data organization reflects the often-used heuristic of data structure for
determining a chi-square test. In short, students’ explanations for each sort revealed
that they had acquired sufficient statistical knowledge to enable them to represent
the problems in terms of one or two critical test features.

Earlier we mentioned that students were not generally guided by an
overarching criterion in grouping problems. As such, we examined the features that
were emphasized in each sort, rather than by each student. One way to examine the
extent to which each student’s representation was principled is to average the levels
that characterized each of the student’s sorts. That is, sorts categorized as superficial,
moderately principled, and principled were assigned scores of 0, 1, and 2,
respectively. These scores were then averaged for each student (N = 21). For
example, a student who made a superficial sort and two moderately principled sorts
would be assigned a total score of 2, which divided by the number of sorts (i.e., 3),
would be close enough to 1 to be categorized as moderately principled. Using this
method, we found results similar to those reported above; that is, that most students
provided reasons that reflected a moderately principled representation (57%). In
addition, slightly more students provided reasons that reflected a principled (24%)
rather than a superficial representation (19%).

Notice that we have not examined whether students were accurate in
identifying the specific characteristics associated with each feature. For example, we
did not determine whether a “relationship” explanation was correctly applied to a
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relationship problem. Rather, we focused on the general feature of purpose. The
reason we did not code for accuracy of explanations was due to the ambiguity of
students’ responses. For example, a common explanation for sorts was that the
problems dealt with “dependency.” The problem with this response is it could mean
any number of things. It could mean that the problem involves testing for a
relationship or comparing paired groups. Students did not elaborate enough on
their explanations to determine their accuracy with any degree of reliability. Hence,
we decided to focus on whether students were able to think about statistics
problems in terms of the more general features of purpose, data type, and number of
variables or groups. Being able to do so is an important first step in developing the
ability to select hypothesis tests appropriately.

Groupings and Sorting Scores

Students produced roughly the same number of groupings (M = 3.43, SD =
1.03) as would be expected from an optimal sort (i.e., 3). The actual problems that
were grouped together, however, did not necessarily belong together. Two findings
suggest that problems were sorted more in terms of statistical principles than
superficial characteristics of the problems: (a) Students were characterized as being
more structure-using (62%) than surface-using (14%)2 and (b) the average structure
proportion was higher (M = 0.454, SD = 0.268) than the average surface proportion
(M  = 0.243, SD = 0.160). Nonetheless, when we compared the average structure
proportion to the optimal sort (i.e., proportion of 1), we found that problem
representations were not substantially more principled than superficial. In fact,
when the structure proportions were converted into representation levels, we found
that most participants’ sorts can be characterized as superficial (57%). Principled
(24%) and moderately principled (19%) representations were evident but much less
frequent. These findings contrast with those reported in the previous section and are
discussed in more detail below.

Correspondence of Scores With Categories

The explanation categories suggested that performance was based on a variety
of problem representations and that some of these were rather sophisticated. On the
whole, this index indicated that students’ representations tended to be moderately
principled (57%). In this sense, students’ explanations for their sorts were consistent

                                                  
2 Twenty-four percent of students were neither structure- nor surface-using since they received the
same scores in both categories.
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with the overall characterization of students’ performance as structure-using.
However, the degree of structure was more often low than high, with students’
sorting scores being predominantly superficial (57%). Figure 2 illustrates that the
two indices were nonetheless consistent in measuring principled problem
representations, with 24% of the students demonstrating a strong understanding of
hypothesis tests based on both their sorts and explanations. The inconsistent results
at the moderate and superficial levels reflect the variability of explanations
underlying the sorts and suggest that this measure is more sensitive than scoring
based on actual performance (i.e., sorts produced).

Table 3 illustrates the limited relationship between sort scores and explanation
categories in identifying the degree to which students’ (N = 21) problem
representations were principled. Only 5% of the overall principled representations
were actually principled in terms of both structure scores and explanations. The only
real consistency occurred for superficial representations where both sorts and
explanations were characterized as superficial. Surprisingly, there were quite a few
superficial-scoring students who were principled in their explanation (14%). The
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Figure 2.  Representation level by index.
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Table 3

Relationship Between Two Indices of Problem Representation

Explanations

Structure score Superficial
Moderately
principled Principled Total

Superficial 14% (n = 3) 29% (n = 6) 14% (n = 3) 57% (n = 12)

Moderately principled 5% (n = 1) 9% (n = 2) 5% (n = 1) 19% (n = 4)
Principled 0% (n = 0) 19% (n = 4) 5% (n = 1) 24% (n = 5)

Total 19% (n = 4) 57% (n = 12) 24% (n = 5) 100% (N = 21)

reverse did not occur. Superficial reasons did not underlie principled sorts. These
data highlight the variability of students’ representations and suggest that students
understand more about statistics than might be implied by performance alone.
Weak performance, as indicated by sorts, may, in fact, underestimate students’ level
of understanding, which is revealed more explicitly in students’ explanations of
their sorts. Students may be able to represent problems in principled ways by
emphasizing critical features that underlie inferential tests. However, they may not
be able to attribute features to the correct problem. It is this connection or integration
problem that must be addressed in instruction and assessments.

Two additional examples illustrate the variability of representations and the
potential of either underestimating or overestimating students’ knowledge. The first
example involves a case where the same level of performance was exhibited for
entirely different reasons. The clearest example from the data involves four students
whose sorts were scored as principled (i.e., same structure proportion score of 0.8),
but whose reasons varied in sophistication among sorted problems and between
students. Table 4 displays the reasons underlying these students’ sorts. Three points
can be made regarding these data. First, some criteria are guiding the sorts, but these
are not consistently applied to all problems (e.g., student C distinguishes two sets of
problems based on whether or not data were collected but sorts the remaining
problems based on the assumption that differences are being compared). Second,
one would expect the explanations to reflect primarily principled representations or
at least a mix of principled and moderately principled representations given the
high structure score. Yet, there were more moderately principled and superficial
reasons underlying these principled sort scores than there were principled
explanations. Third, reasons provided for the sorts varied greatly by student. The
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Table 4

An Example of Different Reasons Underlying a Principled Sort Score

Student A Student B Student C Student D

Principled:
Difference +
measurement

Moderate:
No. of groups

Moderate:
Difference

Moderate:
Difference

Moderate:
Categorical

Moderate:
No. of groups

Superficial:
Data were
collected

Moderate:
Relationship

Superficial:
Data organization

Moderate:
No. of groups

Superficial:
Data were
not collected

only feature that seemed salient to most of these students is associated with
purpose, that is, difference. In this example, students’ understanding of inferential
statistics based on their sort scores was overestimated. Even though students
performed well on the task (i.e., tended to sort the appropriate problems together),
their reasons for doing so varied and were not always principled.

A second example illustrating variability of representations involves a case
where the same problems were grouped together for different reasons. Four
students correctly sorted correlation problems together, receiving a perfect structure
score for this problem set. Two students were principled in their reasoning, one
indicating that the problems involved correlation and the other that they involved
making a comparison of averages. A third student demonstrated a moderately
principled representation by focusing on number of groups (i.e., multiple options for
both variables). The fourth student, also moderately principled in representing these
correlation problems, focused on purpose (i.e., one independent variable having an
effect on another). Again, reasons varying in sophistication and content can underlie
strong performance. These examples illustrate how seemingly similar performance
can mask variability in thinking and how perfect scores (or seemingly correct
answers) do not necessarily reflect principled understanding

Types of Problems Sorted Together

The previous sections presented results pertaining to students’ problem
representations based on two kinds of measures: scores derived from students’ sorts
and categories derived from explanations. We presented data suggesting that these
two measures did not necessarily provide consistent information about the degree to
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which problem representations were principled. In this section, we focus on the
types of problems that tended to be sorted together to gain insight into the
confusions that may affect students’ performance on the sorting task. We examined
the frequency with which certain types of problems were grouped together and
found that confusion was strongest for chi-square problems. Chi-square problems
tended to be paired with either t-test (42%) or correlation (39%) problems. According
to students’ explanations, these problems were grouped together mainly because
they involved an examination of differences and dependency (closely related to
relationship), respectively. T-test and correlation problems occasionally were
grouped together mostly because of their common data type (19%). These results
suggest that students focused on the correct features, but had difficulty
distinguishing among problems because their representations were not sufficiently
integrated. For example, sorting t-test and correlation problems together because
they share the same data type is accurate. However, the only way to distinguish
between these two tests is to go one step further and decide whether the problems
examined differences or relationships. Considering both purpose and data type is
required for distinguishing between problems requiring these tests (or for any of the
problems presented in this study).

Summary

Two main findings emerged from the data in this study. The first was that
students’ problem representations were based on important statistical features, and
the extent to which they were emphasized in students’ explanations was variable.
Most students were able to think of the statistical problems in terms of purpose, that
is, whether they involved an examination of differences or relationships. Other
students were able to think in terms of data type or number of variables or groups.
A smaller number of students thought of the problems in terms of both purpose and
data type. Although not many students focused on superficial characteristics of the
problems, some did think about problems in terms of both superficial and
principled features (or moderately principled). These mixed representations reflect
students’ incomplete understanding of inferential tests. The lack of knowledge
integration also was seen in the types of problems that were grouped together. By
focusing on a single correct feature, students grouped two sets of problems that did
not belong together. Students would have been able to tease apart these problem
sets had they considered the critical second feature.
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The second main finding of the study was that students’ explanations were
much more sensitive to the nature of their problem representations than was their
sorting performance. The specific features guiding the performance were revealed
through explanations, and in many cases, the performances were either
underestimated or overestimated by the sorting scores. The sorts suggested that
students’ problem representations were predominantly superficial, whereas the
explanations revealed that the representations were in fact more moderately
principled than superficial. In this case, students were able to think about the
important features but were not successful in applying them to the appropriate
problems. The sorting scores alone would have underestimated the extent to which
students’ representations were principled. However, there was also the case in
which performance overestimated students’ problem representations. The scores
suggested a principled representation, whereas explanations revealed that a mix of
features formed the basis of the sorts. These features, however, were not always
principled and tended to be moderately principled or a mix of all three types of
representations. These findings suggest that assessments that provide students with
an opportunity to explain their thinking are most sensitive to capturing the strengths
and weaknesses in their understanding of statistical methods.

Discussion

Problem representation is a fundamental aspect of problem solving and has
been investigated extensively in the domains of physics and mathematics. The
literature reveals that successful problem solvers represent problems they are
attempting to solve in terms of structural features that are critical to solving
problems within that domain. In contrast, unsuccessful problem solvers represent
problems in terms of superficial features, which are irrelevant to solving the
problem. Problem representation becomes more important with increased use of
problem- and project-based activities in K–12 classrooms. In these activities,
students can pose their own questions or problems to investigate, which increases
the ill-defined nature of such tasks. Moreover, the inclusion of statistics instruction
at this level and the limited problem-solving research in this area enhance the value
of studies examining students’ representations of problems constructed by
themselves or others. This exploratory study was a first step in investigating
students’ problem representations in statistics by focusing on word problems
constructed by researchers.
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The 12th-grade students who participated in the study had a strong
background in mathematics and represent young adults who take or prepare for the
Advanced Placement (AP) statistics courses. Although these students are members
of a select group, the challenges they encountered can help statistics instructors
focus on issues that are likely to arise for learners of other ability levels. In other
words, the difficulties encountered by the higher ability students in our sample are
likely to occur for all students. Moreover, although hypothesis testing currently is
not a standard statistical unit in the high school mathematics curriculum, it is likely
to become more mainstream as students’ sophistication with statistics increases due
to their early experiences with this content. Thus, this exploratory study can provide
us with a glimpse of what needs to be done for high school students who are
currently learning inferential statistics and for building this understanding in the
earlier grades. In this sense, the results of the study raise important issues that can
then be tested in the general population, as hypothesis testing becomes a more
common unit in mathematics or even in science.

The findings from our exploratory study reveal that the 12th-grade students
were able to develop somewhat deep structural representations even without direct
instruction on underlying test features or on how to select an appropriate test. This
finding counters Quilici and Mayer’s (1996) contention that students are
predisposed to represent problems superficially until they receive an instructional
intervention, such as structure-emphasizing examples, that reduces this tendency.
The contrasting results could be due to one reason or a combination of reasons: (a)
the collection of verbal data in our study; (b) the instruction; and/or (c) the limited
representativeness of our sample. A likely explanation for differences in the two
studies is the use of verbal data in our study, which was missing in Quilici and
Mayer’s study. If we had focused solely on sorting performance, the results of our
study would have concurred with Quilici and Mayer’s contention that students tend
to sort problems superficially. However, the verbal data in our study revealed that
despite sorting problems in a superficial way, students’ explanations for these sorts
were moderately principled; they focused on at least one of three critical features.
On the basis of these verbal data, problem representations were moderately
principled rather than superficial.

A second explanation for the contrasting result is the manner in which students
learned statistics initially. Little information is provided about the initial classroom
experience of Quilici and Mayer’s (1996) sample except that some participants had
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experience with statistics through an introductory course. The instruction in these
college courses still tends to be somewhat traditional. Students participating in our
study, however, learned statistical content by building models, and the curriculum
was developed based on a variety of sources, including AP statistics. The initial
foundation for our students’ statistical knowledge was therefore based on
instruction that was likely more innovative than traditional. Note that although the
teacher’s approach was innovative, little time was available for emphasizing the
relationship among tests and for explicitly addressing how they contrast in terms of
the underlying features. In this sense, direct instruction on underlying test features
or on how to select an appropriate test was not provided. Only in this way was the
initial instruction in both studies somewhat similar. However, Quilici and Mayer’s
sample did subsequently receive instruction for emphasizing structure, albeit
indirect. Students in our study did not receive such instruction.

A third source of differences between the two studies that might account for
the results is the composition of our sample in terms of ability level. Quilici and
Mayer (1996) found that their high-ability college students always sorted statistics
problems based on structure, regardless of whether they were shown an example
word problem. Our sample can be regarded as being predominantly high ability
since students were among the most successful in mathematics in their cohort. As
such, our sample may have been predisposed to seeing more structure than most of
the students participating in Quilici and Mayer’s study. Moreover, some participants
in their study did not have any previous statistics experience and were thus less
knowledgeable initially than other participants in both their study and ours who
had taken an introductory statistics course. It is also possible that we created a
demand characteristic by asking students to perform a task during their statistics
class that predisposed them to think about the problems in a statistical manner.

Nonetheless, in our study, there was clearly room for improvement in students’
sorting performance, which was not optimal. Quilici and Mayer (1996) also found
that sorting performance was not at a high level despite improvement after exposure
to structure-emphasizing examples. Variability in problem representation is a
possible source of the less-than-optimal performance. In our study, problem
representations were highly variable. This finding is not surprising since students
had acquired only a moderate level of experience. As apprentices (Collins, Brown, &
Newman, 1989), students’ initial representations were based on different forms of
knowing that co-exist and may even be contradictory (Siegler, 1996). The statistics
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course was their first, and although they acquired some statistical knowledge, they
had not yet mastered the conditions under which this knowledge applied. Students
needed more experience applying their knowledge in a variety of contexts (Silver &
Marshall, 1990) and on different kinds of questions (Hubbard, 1997). Performance in
this moderate learning phase is usually diverse and fragmented.

Part of the variability in students’ problem representations is due to a lack of
knowledge integration. The expertise literature demonstrates that knowledge of
concepts, methods, and principles in a domain becomes increasingly interconnected
as competence is achieved (Glaser, 1989). These connections reflect an organized
knowledge base that forms the basis of principled representations. In contrast,
novices’ knowledge is fragmented, and their understanding superficial. In this
study, students tended to represent problems in terms of one critical test feature,
that is, purpose of study. Problems requiring different types of tests were confused
because they had a single characteristic in common (e.g., purpose). The second
feature that distinguished problem sets (e.g., data type) was often ignored. Students
must be able to make connections among concepts and between ideas and skills in
order to succeed in solving statistics problems (Hauff & Fogarty, 1996; Huberty,
Dresden, & Bak, 1993; Schau & Mattern, 1997). The finding that our sample’s
knowledge was not sufficiently integrated reflects the fact that they were early
learners of inferential statistics.

Educational Implications

The instructional implications that can be drawn from this study involve a
focus on experimental design, a change in the sequencing of content, and the use of
examples. First, statistics courses dealing with inferential statistics could benefit
from an emphasis on experimental design rather than on the mastery of
computation for using test formulas (Quilici & Mayer, 1996). Students participating
in our study were able to detect at least one critical test feature from a single course
on hypothesis testing. This is a positive finding. Unfortunately, the connection
among structural features and how they distinguish between hypothesis tests was
not made. This difficulty can be attributed to the teaching of each hypothesis test
separately (Lovett, 2001; Lovett & Greenhouse, 2000). Opportunities for comparing
and contrasting hypothesis tests in statistics classrooms are rarely provided.
Moreover, structural features that underlie statistical methods are not explicitly
addressed. Many courses focus on the computation of statistics for each test; few
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emphasize the critical features underlying each, and when they do, only one lesson
is provided on the topic. The sorts of students in Quilici and Mayer’s study were not
optimal partly because test features were emphasized indirectly. Students had to
abstract the features from examples that identified the test, rather than explicitly
highlight the critical features. Lovett found that students without prior statistics
experience improved significantly in their problem sorts (i.e., from superficial to
structural) when the instruction highlighted the structural features and their
meaning. Teachers therefore need to provide students with opportunities to examine
word problems in terms of experimental design features. They should be asked to
specify the variables and their characteristics in each problem (Quilici & Mayer). A
focus on differences in data types for dependent variables is especially needed given
confusions between the t test and chi-square test on the one hand (Quilici & Mayer),
and the chi-square test and correlation on the other. The connection between
purpose and data type can be emphasized each time a hypothesis test is taught,
thereby providing contrasts between tests and facilitating the development of an
organized structure of knowledge.

Increased focus on features associated with experimental design can be
accomplished by changing the sequence in which the content associated with
inferential statistics is taught. In mathematics and statistics classrooms, students
spend most of their time learning equations and formulas, which they are exposed
to first, and then are given opportunities to solve word problems at the end of each
unit. Some researchers recently have suggested that the sequence should be
reversed, that is, students should be given experience with word problems first and
then be required to solve equation or symbol manipulation problems (Brenner et al.,
1997; Koedinger & Nathan, 1999; Nathan & Koedinger, 2000). The key is for students
to understand when it is appropriate to apply a particular method before trying to
solve a problem using formulas. It is the decision-making aspect of this process that
is difficult for students to grasp. Koedinger and his colleague (Koedinger & Nathan;
Nathan & Koedinger) have suggested that instruction should build on students’
representations of simple word problems, which are based in natural language.
Verbal representations are more familiar to learners than formal representational
systems, which can be more difficult to understand in some cases.

In statistics, beginning instruction with word problems can provide teachers
with an opportunity to emphasize the structural features associated with each test at
the start of each section covering a different test. These features could be taught
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cumulatively so that similarities and differences in features across inferential tests
are emphasized throughout the curriculum. One instructional strategy that seems to
help individuals to perceive the structure across problems is the use of examples.
Examples appear to be useful under the following conditions: (a) when differences
between pairs of problems are highlighted (Catrambone & Holyoak, 1989; Gick &
Holyoak, 1983); (b) when multiple examples are used with high-ability students
(Sweller & Cooper, 1985); and (c) when example solutions are modified to highlight
the use of principles (Catrambone, 1994). Presenting students with examples that
emphasize structure before sorting or solving word problems also seems to improve
students’ ability to represent problems based on structure (Paas, 1992; Quilici &
Mayer, 1996; Silver & Marshall, 1990). To ensure that problems are represented in a
principled way, the features that underlie specific tests should be addressed
explicitly.

Variability in students’ problem representations and the different level of detail
provided by the two indices used in this study have a clear implication for
assessment, namely, that multiple forms of assessment are needed to validly assess
aspects of problem solving. A full portrayal of students’ problem representation
would not have been achieved without the use of multiple forms of evidence. Jacobs
(1993) found that paper-and-pencil assessments underestimated students’
understanding compared to assessments that provided students with an
opportunity to explain their thinking. In a similar vein, requiring that students
explain their rationale for sorting certain problems together enabled us to notice
some inconsistencies between problem groupings and the explanations. Students’
performance on the sorting task both underestimated and overestimated their
understanding. The consequence of this variability for assessment is that some labels
for describing the nature of representations indicate that students could solve the
problem (e.g., scores), while others suggest they could encounter difficulties (e.g.,
explanations), or vice versa. Using an index that illustrates the degree to which
representations are principled by way of problem similarity is sensible. This index
provides a quick and efficient way to examine students’ representations and to get a
sense of their underlying knowledge structures. However, this measure is not
completely precise, as demonstrated in this paper. This finding raises the question of
how much precision is required for a measure to be useful. In this case, precision
was enhanced with explanations, thereby increasing the utility of representations for
judging poor and strong problem solving.
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Multiple forms of assessment can provide a more complete and detailed profile
of student learning, as well as increase validity (Collins, Hawkins, & Frederiksen,
1993-1994; Costa, 1989; Frederiksen & Collins, 1989; Huberty et al., 1993; Lajoie, 1995;
Linn, Baker, & Dunbar, 1991; NCTM, 1995; Shepard, 1989, 1991; Wiggins, 1990,
1992). The potential for misrepresenting what students actually know and do not
know on a single assessment is lessened when multiple forms of assessments are
used. Hubbard (1997) suggested that assessments include a variety of problems and
that at least one of these be nonstandard. Students should also be encouraged to
apply their knowledge in new ways. An alternative assessment could require that
students pose their own problems rather than solve pre-constructed ones (Hubbard,
1997). This suggestion is consistent with the notion of having students investigate
projects or problems of their own choosing. It would be interesting to examine
students’ problem representations within this context. Here, too, students eventually
would have to consider the essential features of the problems for selection of an
appropriate statistical analysis for the project data.

The sorting task has typically been used as a methodology within psychology,
rather than as a form of assessment within education. Nonetheless, this task has
value in statistics classrooms as a formative assessment for improving ongoing
learning and instruction. It is a short task (students took, on average, 13 minutes to
complete it) that can be accomplished individually or within small groups. The key
is to have students explain their problem groupings on paper and/or in group or
class discussions. Using this task as an assessment is a quick, efficient, and valuable
way to receive feedback on statistical content students perceive as important, as well
as about what they ignore or do not fully understand. Students can focus on a
variety of features and at different grain sizes. The sorting task can highlight the
extent of students’ knowledge as long as it is accompanied by explanations. The
teacher could use this information to revise the instruction to focus on relevant
concepts and to foster knowledge integration. This form of assessment is dynamic
and can be embedded within the instruction.

In conclusion, multiple and formative forms of assessments are needed to
obtain valid information about various aspects of students’ thinking and
performance during the problem-solving process. Problem representation continues
to be a critical component of problem solving. We have presented data to suggest
that although students can perform at a particular level, the thinking that underlies
the performance can be superior. Instructional activities and assessment tasks must
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provide learners with opportunities to articulate what they consider important and
to identify similarities and differences among solution methods. Integrating
assessment with instruction so that one builds on the other in this manner is the
hallmark of formative assessment.
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