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Abstract

An active area in psychometric research is coordinated task design and statistical
analysis built around cognitive models. Compared with classical test theory and item

response theory, there is often less information from observed data about the
measurement-model parameters. On the other hand, there is more information from the

grounding psychological theory, and the task designer’s insights into which patterns of
skills lead to which patterns of performance. We describe a Bayesian approach to

modeling these situations, which uses experts’ judgments to produce prior distributions
for the conditional probabilities in a multivariate latent-variable model, and MCMC

estimation to refine the estimates. Task-design schemas and expert judgments are used in
the first phase to structure the conditional probability table—that is, conjunctive,

compensatory, or disjunctive models, or combinations thereof. Machinery from graded-
response IRT is used to translate experts’ judgments about task requirements into prior

distributions for model parameters, which in turn imply values for all the conditional
probabilities. Bayesian estimation methods are then used to update the distributions for

the model parameters in response to observed data. The approach is illustrated with
examples from the Biomass biology assessment prototype.

                                                  
1The Biomass project was supported by Educational Testing Service (ETS) and the College Board
from January 2000 through June 2000, and by ETS Research from July through September 2000. Dr.
Senturk worked on the project as an ETS summer intern during June and July. Our subject matter
expert consultants were invaluable in working through the issues of standards, claims, and evidence
that underlie the project, and in offering suggestions along the way for the prototype. They are Ann
Kindfield, Dirk Vanderklein, Scott Kight, Cathryn Rubin, Sue Johnson, and Gordon Mendenhall. For
providing data on early field trails of Agouti Segment 1, we thank the ETS Summer 2000 Interns, the
Weston scholars at Montclair State University and their advisor, Prof. Lynn English, and Russell’s
buddies at the Knight Dreams comic book shop.
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1.0 INTRODUCTION

Insights from cognitive psychology and opportunities from information
technology are changing the face of educational assessment today, with new models
for what students know and can do, and new ways of capturing data to inform them
(National Research Council, 2001). Consequently, an active area in psychometric
research is coordinated task design and statistical analysis built around cognitive
models (e.g., Adams, Wilson, & Wang, 1997; Embretson, 1985, 1998). Compared with
classical test theory and item response theory, there is often less information from
observed data about the measurement-model parameters. On the other hand, there
is more information from the grounding psychological theory and the task
designer’s insights into which patterns of skills lead to which patterns of
performance. In this paper, we describe a Bayesian approach to modeling these
situations, which uses experts’ judgments to produce prior distributions for the
conditional probabilities in a multivariate latent-variable model, and Markov Chain
Monte Carlo (MCMC) estimation to refine the estimates.

Of particular importance is integrating the statistical machinery of Bayesian
inference with the substantive issues of task design and evaluation from the very
beginning of an application. In the first phase of modeling, task-design schemas and
expert judgments are used to structure the conditional probability tables required to
model task performance—that is, conjunctive, compensatory, or disjunctive models,
or combinations thereof. In the second phase, models from graded-response item
response theory (IRT) are used to translate experts’ judgments about task
requirements into prior distributions for model parameters. In the third phase,
Bayesian estimation methods are used to update the distributions for the model
parameters in light of observed data.

We illustrate the approach with examples from Biomass, a project carried out at
Educational Testing Service (ETS) in 2000. The project produced a computer-based
prototype assessment for secondary-school biology, with an emphasis on inquiry
skills and model-based reasoning in microevolution and transmission genetics. Four
multistage investigative tasks were developed using the “evidence-centered
assessment design” approach described in Mislevy, Steinberg, Breyer, Almond, and
Johnson (in press). The first segment of one task was pilot tested with 28 summer
students at ETS and Montclair State University, and these data will be used to refine
the model parameters in the third phase of inference.
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2.0 PHASE 0: THE PROBABILITY FRAMEWORK

This section describes the structure and notation we will use for modeling
assessment data and a Bayesian approach to inference in this context.

2.1 A Graphical Model for Assessment

For each Student i, let Si ≡(Si,1,…, Si,N) be a collection of variables characterizing
that student’s knowledge, skills, or abilities in some domain of interest. We refer to
this set of variables and a joint probability distribution as a student model. At any
point in time, we represent our knowledge about that student’s proficiency by a
probability distribution. The prior Pr(Si) is usually based on the distribution of these
skills in the population of interest. We are interested in Pr(Si | X i), where Xi

={Xi1,…,XiM} are observations from the student’s responses to a collection of M tasks
(Almond & Mislevy, 1999). A task may yield more than one observation, as when
multiple aspects of a complex performance are evaluated or several questions are
asked about the same stimulus materials. In this case, Xim is vector-valued, and
observations within Task m will be denoted Xijm with j indexing observations within
Task m.

If we knew Pr(Xi|Si), we could apply Bayes theorem to calculate Pr(Si| Xi).
Usually we assume that the observations from different tasks are conditionally
independent given the student model variables. Thus we consider evidence models

Pr(Xim| Si), in which the observable(s) in Task m , or Xim, is (are) conditionally
independent of all observable variables of other tasks and all but a subset of student-

model variables. In particular, ( )iim SXPr  = ( ))(Pr m
iim SX , where )(m

iS ⊂  Si. We call

)(m
iS  the footprint of evidence model m. Section 3 notes the advantages of defining re-

usable evidence structures and conformable task schemas, where the relationships
between student-model variables and evidence model variables have been worked
out and can be used as skeletons for creating many individual tasks.

At the heart of evidence model m is a collection of conditional probability
tables, one for each variable in the evidence model. The case we will address is the
multivariate latent class model, in which all student model variables Si and all the
observable variables Xi,m are discrete. We may therefore represent the distribution
Pr(Si) as a discrete Bayesian inference network (Jensen, 1996), as well as joint
distributions of the form
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                      (1)

We will refer to Pr(Si) as an SM-BIN fragment and Pr(Xim| )(m
iS ) as an EM-BIN

fragment.

Now if we wish to elicit an unstructured prior for Pr(Xim | )(m
iS ), we must

specify | )(m
iS | Dirichlet distributions, where | )(m

iS | is the size of the state space of

the footprint of Task m. This can be a daunting task. For instance, there are about a
hundred observable variables in the Biomass example discussed below, most with
three possible values, many with size 18 footprints—over five thousand individual
probabilities altogether. In the case of IRT, we have a long history of building
evidence models. We aim to draw on that experience to create “structured latent

class models” (Formann, 1985) for more ambitious structures for Pr(Xim| )(m
iS ).

2.2 A Bayesian Framework

Gelman, Carlin, Stern, and Rubin (1995, p. 3) describe the first step in Bayesian
analysis as setting up a full probability model, or joint probability distribution for all
observable and unobservable quantities in a problem. “The model,” they continue,
“should be consistent with knowledge about the underlying scientific problem and
the data collection process.” In assessment, scientific knowledge concerns the nature
of the targeted knowledge and skill, the ways in which aspects of that knowledge
are evidenced in performance, and the features of situations that provide an
opportunity to observe those behaviors. The key conditional independence
assumption posits that in the main, the aspects of proficiency, expressed in S,

account for the associations among responses to different tasks (although we may
allow for conditional dependence among multiple responses within the same task);
this assumption is manifest in the form of the evidence models described above.

The pertinent variables in assessment obviously include tasks’ characteristics
and requirements, notably features that have been chosen to elicit observations of
the particular kinds, and depending on particular knowledge in ways reflected in
the structure of some particular evidence models. Because this presentation focuses
on probability-based inference given assessment tasks, we will presume that this
design work has been done and the appropriate evidence model structures have
been identified. Sections 3 and 4 show how we use the knowledge that the task
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authors drew upon when we set prior distributions for the conditional probability
tables.

We must thus focus attention on the Xs, which are potentially observable, and
examinees’ Ss, which are not. Structures and parameters that reflect
interrelationships among these variables, consistent with our knowledge about
them, are also needed. We may start with general forms for the SM-BINs and EM-
BINs.

The SM-BIN for Examinee i takes the form of a probability distribution for Si.
An assumption of exchangeability posits a common prior distribution for all
examinees before any responses are observed, with beliefs about expected levels and
associations among components expressed through the structure of the model and
higher level parameters λ; whence, for all examinees i,

( )λ;~ ii SpS .

Depending on theory and experience, the distribution for the hyperparameter λ, or
p(λ), may be vague or precise.

Let mππππ denote the conditional probabilities in the EM-BIN distributions of Task

m. Specifically,

smjkπ  = ( );Pr sSkX iimj ==

that is, the probability of observing a value in response category k for observable
variable j of Task m , given that SM variables take the pattern s. Recall that by

definition, this probability depends only on )(m
iS , the footprint of Task m . The

probability of a value ximj as the response of Examinee i for Observable j of Task m is
written as

( ))(, m
imjimj sxp π ,

where mjπ  represents the conditional probabilities for all possible values for

Observable j of Task m, given all possible SM patterns.

All tasks using a given EM-BIN structure produce observables in the same
forms, furnishing information about the same components of S. However, features
of the tasks can vary in ways that moderate the relationships. For example,
unfamiliar vocabulary and complex sentences tend to make reading comprehension
tasks more difficult. One can model πs directly in terms of item features (e.g.,

Mislevy, Almond, Yan, & Steinberg, 1999). The alternative we will address in this
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paper is parametric modeling of the π’s, the parameters of which may be informed

by expert opinion or empirical data.2 Denoting all the higher level parameters for
Task m by ηm, we write the probability for a given value πm as

( ),mmp ηπ

again with prior knowledge about ηm expressed through higher level distributions
( )mp η . The complete collection of probabilities for all EM-BINs for all tasks is

denoted ππππ, the parameters for all examinees is denoted S, and the responses of all
examinees to all tasks is denoted X.

The probability model for the responses of N examinees to M tasks can now be
written as

             

(2)

Figure 1 represents this model as a generalized form of an acyclic directed graph
(“DAG”), with boxes representing repeated elements of the same kind
(Spiegelhalter, Thomas, Best, & Gilks, 1995). The structure and the nature of the
distributions are tailored to the particulars of an application.

Section 3 concerns the structure of complex assessment tasks and their
interrelationship with students’ knowledge and skills. Section 4 concerns the way
that these considerations can be structured and parameterized in terms of
probability distributions, and experts’ insights mapped into the formal Bayesian
framework. These activities provide the form for (2) in a given assessment context.

replication over
examinees (i)

observables (j)
within tasks (m)

(s)

replication over
tasks/evidence models (m)

XimjSi
λ ηπ

mj m

Figure 1. A generic acyclic directed graph of a Bayesian model.

                                                  
2All of these kinds of information may be available, of course, and it is straightforward to incorporate
them into a unified model.
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Section 5 discusses numerical methods of updating beliefs about examinees and
tasks within this framework, as revised posterior distributions for examinee and task
parameters, in light of a sample of responses.

3.0 PHASE 1: EVIDENTIARY STRUCTURES BASED ON TASK SCHEMAS

This section sketches the idea of building evidence models around recurring
structures among SM variables and observable variables—relationships such as
compensatory, conjunctive, disjunctive, and inhibition relationships, and a kind of
conditional dependence among observations that is analogous to method factors in
factor analysis. Section 3.1 addresses initial implications for Bayesian modeling, and
Section 3.2 describes examples from Biomass.

3.1 Recurring Structures in the Evidence Models

Mislevy, Steinberg, and Almond (in press; 2002, see also Mislevy, Steinberg,
Breyer, et al., in press) discuss the use of re-usable evidence structures, including the
SM- and EM-BINS described above, along with conformable task schemas, as
“evidentiary skeletons” around which to create an indefinite number of individual
tasks. This is especially advantageous in assessments that use complex tasks, where
complexities can include multivariate student models, multivariate observations that
depend on the SM variables in different combinations, and dependencies among
and within tasks: The structure of situations that elicit valued knowledge and skill
can be defined at a higher level of generality, so that the essential relationships
among student-model variables and evidence model variables can been worked out
and used to build many tasks that may appear quite different on the surface.
Following the advice in Mislevy, Steinberg, and Almond (in press, 2002), we want
assessment designers to create schemas for creating individual tasks that are built
around particular configurations of skills and observations that bear evidence about
them. Following the advice in Gelman, et al. (1995), we want psychometricians to
incorporate these relationships into Bayesian analyses of observations in these
situations.

A test developer who is familiar with a content area and the way students
acquire and use knowledge in that area can create situations in which several
aspects of skill and knowledge will be required in predictable ways. Some
relationships that are familiar from test theory are described below. Section 4
proposes mathematical forms through which they may be expressed.
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•  Graded response categories, as addressed by graded response IRT models.
When aspects of a student’s performance are evaluated, there may be
dimensions of quality that can be described as a sequence of increasingly
valued equivalence classes. Performances rated in higher categories are
more likely from students with more of whatever combinations of skills are
required in the task, while performances in lower categories are more likely
from students with less of that proficiency.

•  Conjunctive relationships, as in binary skills latent class models (Haertel,
1984). Multiple skills are required for performance, and lacking any of them
causes lower levels of expected performance. These relationships
correspond to AND-gates in logic.

•  Disjunctive relationships, which correspond to OR-gates. Multiple skills are
required, and increasing values of any of them causes higher levels of
expected performance.

•  Compensatory relationships, as in multiple factor analysis (Thurstone, 1947).
Multiple aspects of skill or knowledge are involved in performance as
captured in an observable variable, and higher levels of those skills imply
increasing probabilities of higher levels of the outcome.

•  Inhibition relationships, (or, stated positively, “enabling relationships”) as
when a modicum of reading skill is needed to read the directions for more
challenging listening tasks in language assessment (Hansen, Forer, & Lee,
2001). Multiple skills are required, but only relatively low values for the
“inhibitor” variables. Once these requirements are met, level of
performance depends mainly on the other variables.

•  Conditional dependence, as found among ratings of different aspects of the
same performance and among items that share common stimulus materials
(Wainer & Kiely, 1987). Conditional dependence concerns relationships
among multiple observable variables, indicating that they are related in
ways beyond those implied by just the SM variables in their footprint.
Ignoring these dependencies results in “double-counting” the information
they provide. They are handled in factor analysis with so-called method
factors, on which only the affected variables have loadings. Analogous
approaches have been implemented in IRT by Bradlow, Wainer, and Wang
(1999) and Gibbons and Hedeker (1992).

The utility of these basic structures can be extended by chaining, catenating, or
layering them in order to model more complex relationships. Although these
relationships can be estimated from data, substantive considerations and design
practice can provide strong prior knowledge about the structure of any given task.
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3.2 Biomass Examples

As mentioned above, the prototype assessment developed in Biomass
addressed inquiry skills and model-based reasoning in the context of microevolution
and transmission genetics. Figure 2 is the full Biomass student model S, which
consists of 15 variables. Each variable has been defined as having three ordered
levels of proficiency: High, Medium, and Low (H, M, L). The ovals represent the SM
variables; the squares represent probability distributions; and the edges represent
the dependence relationships among variables. Their forms will be discussed in
Section 5. The variables each concern some aspect of disciplinary knowledge (DK;
e.g., the Mendelian model, denoted DKMendel), working knowledge (WK; e.g.,
taking steps in the inquiry process using relevant disciplinary knowledge, denoted
WKInqry), or integrated knowledge (IK; e.g., reasoning through models across
systems or levels of organization, denoted IKSysOrg). The model depicts the
hierarchical organization of disciplinary, working, and integrated knowledge that
was indicted by both our subject matter consultants and standards documents from
the domain (e.g., American Association for the Advancement of Science, 1994).

Four multistage investigative tasks were developed, each consisting of a
sequence of segments that a student would work through in the course of the larger
task. Each segment presented information about results from any previous segments
that were needed in the current segment, in order to reduce dependencies across
segments. As the examples below illustrate, however, dependencies did occur
within segments. A total of 48 evidence models were needed to manage incoming
information about students’ proficiencies, with several EM-BIN structures appearing
more than once. Each EM-BIN fragment contained between 1 and 10 observable
variables, and had from 1 to 4 student-model variables in its footprint.

The examples we will address are from the first segment of an investigation in
transmission genetics, which we call “Agouti1.” The student José discovers a
population of mice, notes how many mice have each of four coat colorings, and
decides to investigate the mode of inheritance of coat color in mice. This segment
yields 14 observable variables, each providing a single categorical response on a 3-
point scale. These variables provide evidence about DKMendel and/or WKInqry

through four EM-BINs organized around clusters of related observations:
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IKSysOrg

DKSexCyc

DK

IK

WK

DKTrnGen

DKMechEv

DKNatSel

DKDrift

DKMendel

WKInqry

WKModUse

WKModExp

WKModRev

IKModEvd

Figure 2. The full Biomass student model.

•  Evidence Model 1 (EM1) concerns aspects of a student’s diagrammatic
expression of José’s verbally stated hypothesis about the mode of
inheritance. Figures 3 and 4 show a similar diagram and hypothesis,
illustrating how a student would drag and drop elements from a palette of
symbols and terms to express her hypothesis. Some of the observable
variables concerned the degree of correctness of the elements in given drop
targets; for example, on a 1-3 scale, how accurately the dominance relation
the student constructed matched Jose’s working hypothesis. Others
concerned the consistency among different portions of the constructed
response.

•  For example, Jose posited a dominance relationship, but if a student
indicated co-dominance and genotype/phenotype combinations that were
consistent with co-dominance, then the observable variable concerning
consistency between mode of inheritance and expression of characteristics
received a high value. Seven distinct aspects of this solution are captured as
values of observable variables, all providing evidence about DKMendel but
probably dependent beyond their relationship through that SM variable.
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Figure 3. A mode of inheritance table, before responses.



12

Figure 4. A mode of inheritance table, after responses.

•  Evidence Model 2 (EM2) concerns a table that a student was asked to fill out,
in regard to several statements about implications of the mode of
inheritance. In each case, the student was to indicate if this statement could
be confirmed or rejected on the basis of data from the field population
alone, from the offspring of matings of known members of the field
population, and from the offspring of matings of the next generation after
that. For example, it is a common misconception that if there were more tan
mice than black mice in the field population, then tan is the expression of a
dominant allele. Maybe, maybe not! There are three variables in this cluster,
posited by our experts to depend conjunctively on DKMendel and WKInqry,
and conditionally dependent beyond these joint influences.

•  Evidence Model 3 (EM3) concerns three multiple-choice questions about
implications of forms of dominance. DKMendel is the only SM variable, and
the responses are posited to be conditionally independent.

•  Evidence Model 4 (EM4) asks what José should do next, after having
formalized his hypothesis about the mode of inheritance of coat color based
on the field population. There is just one observable variable. The key to its
solution is a central tenet of inquiry in transmission genetics: Simply
generating a hypothesis that is consistent with a field population is not
sufficient to conclude a mode of inheritance; one must carry out crosses to
test the hypothesis and revise if necessary. Our experts indicated that a
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student must know at least a bit about the Mendelian model to respond to
this question, but the quality of the response would depend mainly on the
ability to apply inquiry skills in this domain. The EM-BIN therefore must
reflect an inhibition relationship, in which a student must be above the Low
level of DKMendel to have chances at making a high-quality response that
increase with increasing levels of WKInqry.

4.0 PHASE 2: QUANTITATIVE PRIORS BASED ON EXPERT KNOWLEDGE

This section addresses the conditional probability distributions for observable

responses, or the ( )mj
m

iimj sxp π,)(  and ( )mjmjp ηπ  terms. We describe and illustrate

the “effective θ” method of assigning conditional probabilities to observable

variables that have ordered response categories.

4.1 The Samejima Model for Graded Responses

The most common IRT models are for binary outcomes. The two-parameter
logistic model for right/wrong (1/0) responses, for example, is logit(Pr(Xij = 1| θ)) =
aj (θ + bj) . Samejima’s (1969) graded response model extends this model to an

observable Xij that can take an integral value from 1 to K. For k=2,…,K define:

Pr(Xij ≥ k|θ) = logit –1 (aj (θ + bjk)), (3)

with Pr(Xij ≥ 1|θ) = 1 and Pr(Xij ≥ K+1|θ) = 0. Response category probabilities can be

calculated from the differences of equations like (3); for k=1,…, K,

Pr(Xij = k| θ) = Pr(Xij ≥ k|θ) - Pr(Xij ≥ k+1| θ). (4)

Figure 5 illustrates response category probabilities for a three-category task, with aj

=1, bj1=-1, and bj2=+1. For very low values of θ, the lowest level of response is most
likely, then as θ increases, probabilities increase for higher valued responses in an
orderly manner. A single value of θ specifies the full conditional distribution of all

possible response values.

4.2 The “Effective θθθθ” Method

We are interested in finding models for ( )mj
m

iimj sxp π,)(  in the case where Si is a

discrete Bayesian network; Ximj is an discrete variable with ordered states; and πmj are
parameters we will specify shortly. We employ the following device. First we pick a

fixed set of values for amj and bmj.3 Then we define a mapping function ( )mj
m

imj Sf π;)(

                                                  
3Natural extensions for future work are estimating item parameters (being careful to not introduce
indeterminacies into the model) and experimenting with different IRT models for multiple-category
responses.
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Theta

X=1

X=2

X=3

Figure 5. Response category curves from the Samejima graded
response model, with a=1 and b=(-1, +1).

to imjθ  on ( )+∞∞− , . We can now apply Samejima’s graded response model to fill out
the tables for Observable j of Task m. Define

( ) ( )( )mjmjmj
m

mjmjmjk aSfkX b,;;Pr )( πθΨ ==

where the probability is computed with the Samejima graded response model as in
(4) with item parameters amj and bmj.

We gain two advantages with this transformation of the problem. First, in the
multivariate case our experts may be comfortable describing the functional form for

mjf  even if they are uncomfortable with specifying a conditional probability table
(e.g., “You have to know how to do A, but then you can solve the problem if you can
carry out either procedure B or procedure C”). This is especially true when tasks
have been designed from the start around predetermined schemas, for which the
structures of recurring evidentiary relationships are already provided.

Second, we have transformed the problem to a scale that is familiar to experts
in educational measurement. Thus, they will be more comfortable with the
elicitation process on this scale. The scale of IRT models is often set by standardizing
the distribution of θ, and in this metric, a value of -1 for b indicates an item that is

somewhat easy for the examinees, 0 a typical item, and +1 a somewhat difficult item;
further, a parameters typically range from about .3 to 3. When the expert says she
expects an item to be easy for the intended population, or that responses will be
fairly strongly related to proficiency, we have a good idea of what the a and b

parameters will be. If we are planning to refine the evidence models with pretest
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data, we can elicit initial opinions in the form of verbal parameters (e.g., “hard” or
“easy”) that are assigned to numerical priors predefined by psychometricians.

We describe this setup for the one-dimensional and multidimensional cases
below and then show how the same approach can also be used to relax the
assumption of independent observations.

4.3 EMs With a Univariate Footprint

4.3.1 Basic Formulas

We begin with the case in which an observable Xmj has only one SM parent,
which we will denote S(m). We define the conditional probabilities psmjk = p(Xmj=k| s(m))
using the projection function ()⋅mjg , a monotonic function of the levels of S(m), which
we then enter into a Samejima graded response model with fixed item parameters
amj and bmj. (In particular, we fix all amjs at 1.) Assuming the levels of S(m) are roughly
equally spaced and coding H=1, M=0, and L=-1, a linear function on the index i,

( ) mjmjmj dicig +=  gives us just two parameters to elicit from an expert no matter
how many states of S(m) or Xmj there are. We interpret mjθ as a student’s proficiency
specific to whatever aspect of performance is captured by Observable Variable j of
Task m, and ()⋅mjg  as the projection of S(m) into that space. The constant parameter dmj

is related to the average difficulty of the item, and the slope cmj depends on the
ability of the task to discriminate among levels of gmj(S

(m)).

We have thus far specified a structure for terms of the form ( )mj
m

iimj sxp π,)( ,
where the hyperparameters mjπ specialize to cmj and dmj. We may now suggest forms
for the ( )mjp π  terms, or more specifically, ( )mjmj dcp , . Leaning on intuition from IRT,
we propose for cmj a truncated normal distribution—a N(1,1) distribution, left
truncated at 0—and for dmj, a normal distribution with a variance of 1 and a mean γmj

based on expert opinion:














+
+

−
−

=

itemeasy rather  afor 1

item n typicaleasier thaan for 5.

item  typicalafor 0  

item n typicalharder tha afor 5.

item hardrather  afor 1

mjγ

Thus,
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( ) ( ) ( )
( ) ( ),1,1,1

,

mj

mjmjmjmj

NN

dpcpdcp

γ+=

=

where ( )σµ,N  represents the standard normal density with mean µ and standard

deviation σ, and ( )σµ,+N  is a normal density restricted to ( )+∞,0 .

4.3.2 An Example From Biomass

Evidence Model 3 concerns three conditionally independent responses to
multiple-choice items, modeled as depending on DKMendel only. Figure 6 depicts
the EM-BIN as an acyclic directed graph. Each item has three ordered possible
outcomes, which correspond to a correct response, plausible distractors, and
implausible distractors. Our experts said all three are items of typical difficulty, so
the initial conditional probability tables will be the same for all three items.
Centering the indices for DKMendel at –1, 0, and 1 for convenience, we define ( )ig j3

= jc3 i + jd3  and set γmj = 0. We will begin MCMC estimation with starting values of
1 and 0 for jc3  and jd3 , so the states (L, M, H) will be mapped to j3θ  values of -1, 0,
and +1 respectively. The item parameters a = 1 and b = (-.5,+.5) are used for the
graded response IRT structure into which j3θ  is mapped. Table 1 gives conditional
response probabilities that correspond to our initial values for c and d.

DKMendel

MendModGen(1)

MendModGen(2)

MendModGen(3)

Figure 6. A directed acyclic graph for Evidence Model 3.

4.4 EMs With Multivariate Footprints

Now suppose that  It is necessary to construct a projection

function ( ))(m
imj Sf  from a vector of SM variables. Before describing some projections

that are appropriate for some common evidentiary relationships, we mention three

categories into which they may be classified. The first two are elaborations of the

linear mappings discussed above for the univariate case.
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Table 1

Initial Conditional Probability Distributions for All Three
Observables of Task 3

DKMendel Pr(X = k)

Indexa qb Low Medium High

-1 -1.00 0.62 0.20 0.18

0 0.00 0.38 0.24 0.38
1 1.00 0.18 0.20 0.62

aLow = -1, Medium = 0, High = 1.
bq  = 1.00*index + 0.00.

•  Combinations of linear mappings. For l = 1,...,L, first define a linear mapping
( ) llll imjmjmjmj dicig θ≡+=  that specifies the marginal influence of )(mS l  as

to performance for Observable j on Task m. Then define a function
 that describes how the skills interact to produce

proficiency for this particular outcome. The compensatory and inhibitor
functions in the following discussion take this form. As in the univariate
case, if we assume the skill levels are roughly equally spaced, we can
describe that relationship with two parameters per skill.

•  Linear mappings of combinations. First define a function of

the indices of L SM variables that describes the structure of their required

interaction, such as a maximum or a minimum. Then define a linear

mapping ( ) imjmjSmjmjSmjmj dicit θ≡+= **  that adjusts for overall difficulty and

sensitivity. The conjunctive and disjunctive functions discussed below take

this form. Only two parameters are required in this case.

•  Everything else. Many other structures mapping from multivariate skills to a
univariate effective θ can be constructed as the need arises, such as leaky
conjunctions and disjunctions, and logical exclusions and necessities.

It is also possible to construct chains of these combining functions, as we shall
do with Evidence Model 2 in the Biomass example.
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4.4.1 Compensatory Relationships

The most common function for modeling compensatory relationships is
weighted sums or averages, as in multiple factor analysis (Thurstone, 1947). We can
describe two variations on this theme to use with the effective θ method.

The first is simply the sum of linear mappings for each SM variable involved.

That is, for l =1,...,L, ( ) llll imjmjmjmj dicig θ≡+= , then  = ∑
l

limjθ .

The advantage of this formulation is that the relevance and difficulty of some aspect

of performance can be assessed with respect to each of the requisite skills, and

information about these factors may be available from experts and/or task features.

The individual difficulties are not well determined by response data, as seen by
rewriting hmj as .∑∑ +

ll
l mjmj dic  The latter sum is tantamount to the item difficulty

parameter that is used in compensatory multivariate IRT models (e.g., Reckase,
1985); component-wise difficulties are not identified without additional structures
across items. This form may be preferred if information about task features induces

informative priors about the dm js. An alternative formulation is ( ))(m
mj Sf

mjlmj intic∑ +=
l

l , where intmj is a single intercept parameter for Item j of Task m.

We postpone illustrating a compensatory relationship until the following
section, since the set of Agouti1 EMs does not include a simple compensatory
relationship but does have conditional dependence relationships that are handled in
a very similar way.

4.4.2 Conditional Dependence

Standard IRT models presume that all observable variables are independent
given student proficiency. This assumption breaks down for tasks that yield
multiple observations, because all can be affected by familiarity with the topic,
previous exposure, misunderstandings of the setup, or transitory distractions. We
can model this situation by introducing into the evidence model an independent
context skill variable to allow for relationships among observables within Task m.
Context, which we may denote by Cm, is then treated as an extra parent of all the
observations j within Task m. Other than being discrete rather than continuous, this
is how conditional dependence was handled by Bradlow, Wainer, and Wang (1999)
in IRT and by Gibbons and Hedeker (1992) in the factor analysis of binary variables.
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4.4.2.1 Basic Formulas

Let S(m) be the footprint of Task m, which provides J observables Xm1, ..., XmJ. If
( ) imj

m
imj Sf θ≡)(  would be the effective θ for calculating conditional probabilities for

Observable mj under conditional independence, we define

( ) ,,)(**
Cmmjimjm

m
iimjimj ieCSf +=≡ θθ

where iCm is the index of the context variable for Task m (centered around zero for
convenience) and emj is the strength of the intratask dependence as it applies to
Observable j. Conditional independence obtains when emj = 0.

The rationale is easiest to see when Context takes only two values, which can
be coded as –1 and +1 without loss of generality. A set of θimj’s would map values of
the SM variables )(m

iS  into conditional probabilities independently for each
Observable mj. But now there are two sets of *

imjθ ‘s, one in which all values are
higher than their corresponding θimj’s by appropriate emj’s and another in which all
are lower by the same emj’s. An examinee is characterized by an unknown value iCm

that determines which of these two (off)sets actually applies to that examinee. It is
marginalizing over the possible iCm values, when the same one applies to all
observables in Task m, that affects conditional dependence.

4.4.2.2 An Example From Biomass

Evidence Model 1 concerns the “mode of inheritance” (MOI) table, which
yields seven observable variables. Each is posited to depend on only one SM
variable, DKMendel, but all are allowed to be conditionally dependent beyond that.
Therefore, a context variable is introduced pertaining to all the observables extracted
as evaluations of distinct aspects of this same solution to this complex task. Figure 7
depicts this structure. Note that no distribution is shown for DKMendel; it is only a
“stub” in the EM-BIN fragment. A distribution is included for the Context variable,
however. It is local to this task only. We define the Context for the mode-of-
inheritance task (abbreviated CEM1) to have two values, High and Low, which we
code as –1 and +1 respectively. Again, each observable has three possible outcomes,
which correspond to High, Medium, and Low responses (e.g., correct, partially
correct, incorrect; or correct, incorrect but consistent, and incorrect and inconsistent).
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DKMendel

Context

MendModRep(1)

MendModRep(2)

MendModRep(3)

MendModRep(4)

MendModGen(1)

MendModGen(2)

MendModGen(3)

Figure 7. A directed acyclic graph for Evidence Model 1.

Table 2 is a table of initial conditional probability distributions for Observable 1
of Task 1, which our experts identified as easier than typical. They were calculated
as follows:

•  111111 dic DKM +=θ

•  
11111

*
11 EMCie+=θθ

•  Initial values: 111 =c , 111 +=d , 5.11 =e

4.4.3 Conjunctive and Disjunctive Relationships

4.4.3.1 Basic Formulas

Simple conjunctive and disjunctive relationships can be structured as logical
operations on the values of SM variables, then mapped linearly to the effective scale.
A conjunctive model posits that all skills in a set are required, and the lowest of
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Table 2

Initial Conditional Probability Distributions for Observable 1 of Task 1

DKMendel Context Pr(X = k)

Indexa q11
b Indexc q11

*d Low Medium High

-1 0.00 -1 -0.50 0.50 0.23 0.27

-1 0.00 1 0.50 0.27 0.23 0.50

0 1.00 -1 0.50 0.27 0.23 0.50
0 1.00 1 1.50 0.12 0.15 0.73

1 2.00 -1 1.50 0.12 0.15 0.73
1 2.00 1 2.50 0.05 0.07 0.88

aLow = -1, Medium = 0, High = 1. b 111111 dic DKM +=θ  = 1.00 iDKM + 1.00.
cLow = -1, High = 1. d

11111
*
11 EMCie+=θθ = q11 + .5 iEM1.

them determines the possibilities of performance. If DKMendel and WKInqry

combine conjunctively to produce a response, for example, a student who is High on
DKMendel and Low on WKInqry is Low on the conjunction. For a conjunctive
relationship, then,

A disjunctive model posits that there are several skills that could be used to
solve a problem, regardless of the status of others, so it is the highest of them that
determines performance. If DKMendel and WKInqry combine disjunctively to
produce a response, the same student who is High on DKMendel and Low on
WKInqry is High on the disjunction. For a disjunctive relationship,

In either case, the logical function can be followed by a linear rescaling with
parameters c and d.

4.4.3.2 An Example From Biomass

Figure 8 shows the structure of Evidence Model 2. Note the chaining, with the
conjunction of DKMendel and WKInqry followed by a compensatory combination
with the Context variable CEM2 for this set of three observable variables. (Note that
this is a different variable from the context variable for the mode-of-inheritance table
discussed above.) Tables 3 and 4 show the construction of initial conditional
probabilities for the first observable in this evidence model, which our experts
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expected to be a little harder than usual. Two tables are used to highlight the
conjunctive mapping. They were calculated as follows:

•  ( ) ( )WKIDKMWKIDKM iiiir ,min,2121 =≡θ , with {Low, Medium, High} coded
{-1,0,1} for both variables.

•  212121
*
21 dc += θθ  (shown as Table 3 with initial values c21 = 1 and

d21 = -.5)

•  
221

*
21

**
21 EMCie+=θθ  (shown as Table 4 with initial value 5.21 =e )

4.4.4 An Inhibition Relationship

In a simple inhibition (or enabler) relationship, one variable must attain a
minimal value in order for another variable’s values to produce an effect. There is a
hurdle that must be overcome.

4.4.4.1 Basic Formulas

Consider an observable variable Xmj with a multivariate footprint S(m), such that
)(

1
mS  inhibits the relationship between X m j and its remaining SM

parents  Denote by  the mapping from  to

DKMendel

WKInqry

Context

MEFactors(1)

MEFactors(2)

MEFactors(3)

∩∩∩∩

Figure 8. An acyclic directed graph for Evidence Model 2, showing the conjunction of DKMendel

and WKInqry, followed by a compensatory relationship with a Context variable that introduces

conditional dependence.
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Table 3

Effective q for a Conjunction of DKMendel and WKInqry

DKMendel
Indexa

WKInqry
Indexa

Minimum
(DKM,WKI) qb

-1 -1 -1 -1.50

-1 0 -1 -1.50
-1 1 -1 -1.50

0 -1 -1 -1.50
0 0 0 -0.50

0 1 0 -0.50
1 -1 -1 -1.50

1 0 0 -0.50
1 1 1 0.50

aLow = -1, Medium = 0, High = 1. bq = 1.00*min(iDKM,iWKI)
 + -0.50.

Table 4

Initial Conditional Probabilities Resulting From a Compensatory Relationship
Between a Context Variable and the Conjunction of Dkmendel and Wkinqry

Conjunction Context Pr(X = k)

qa Indexb q*c Low Medium High

-1.50 -1 -2.00 0.82 0.11 0.08

-1.50 1 -1.00 0.62 0.20 0.18

-0.50 -1 -1.00 0.62 0.20 0.18
-0.50 1 0.00 0.38 0.24 0.38

0.50 -1 0.00 0.38 0.24 0.38
0.50 1 1.00 0.18 0.20 0.62

aq = 1.00*min(iDKM,iWKI) + -0.50. bLow = -1, High = 1.

c

211
*

EMCie+=θθ = q + .5 iEM2.

effective θ that applies when a student is over the hurdle value i*—that is,
*)(

1 iS m
i ≥ —and denote by ( )( ))(min

)(
min m

mj
S

mj Sf
m

−=θ  the minimum value obtained of 
−
mjθ .

The inhibition relationship can be written as

( ) ( )






<
≥

=
−

*)(
1

min

*)(
1

)(
)(**

 if

  if

iS

iSS
S m

imj

m
i

m
imjm

imj θ
θ

θ .
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4.4.4.2 An Example

Figure 9 shows the structure of the EM-BIN fragment for Evidence Model 4,
where DKMendel is an inhibitor of WKInqry—note the stop sign as a symbol for the
structure of the distribution. Table 5 gives a set of conditional probabilities that are
obtained as follows:

•  ( ) ( ) 44
*
44 , dicWKInqryWKInqryDKMendelf WKIEM +==− θ , where WKIi  is the

index of a student’s WKInqry value, +1, 0, or -1 corresponding to High,
Medium, or Low, respectively.

•  44
min
4 dc +−=θ , the value of *

4θ  obtained when WKInqry is in its lowest
state, that is, WKIi  = -1.

•  The hurdle value for DKMendel is Medium; that is, i* = 0 using the same
indexing scheme as for WKInqry.

•  ( )




=+−
≥+

=
Low DKMendelif

 Medium DKMendelif
,

44

44**
4 dc

dic
WKInqryDKMendel WKIθ .

•  Initial values for c4 and d4 are 1 and 0 respectively.

4.5 The Complete Prior Specification for the Biomass Example

This section summarizes the prior distributions we specified for Agouti 1. The
focus of the paper is on the EM-BINs, in particular the effective θ mappings

DKMendelWKInqry

EffMeth

Figure 9. An acyclic directed graph for Evidence Model 4.
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Table 5

Initial Conditional Probabilities With Dkmendel as an Inhibitor of WKInqry

DKMendel WKInqry Pr(X = k)

Indexa Indexa q**b Low Medium High

-1 -1 -1.00 0.62 0.20 0.18
-1 0 -1.00 0.62 0.20 0.18

-1 1 -1.00 0.62 0.20 0.18
0 -1 -1.00 0.62 0.20 0.18

0 0 0.00 0.38 0.24 0.38
0 1 1.00 0.18 0.20 0.62

1 -1 -1.00 0.62 0.20 0.18
1 0 0.00 0.38 0.24 0.38
1 1 1.00 0.18 0.20 0.62

aLow = -1, Medium = 0, High = 1.

b ( )




=+−
≥+

=
LowDKMendel if

 MediumDKMendel if
,

44

44**

dc

dic
WKInqryDKMendel WKIθ

with c4 = 1 and d4 = 0.

discussed in some detail previously—but specifications are required for other
parameters as well. We will also give summary statistics for the priors of selected
parameters, ( ),,,Cat~ 321 λλλiDKMendel  so that we may compare them with

comparable statistics from posterior distributions obtained after the field trial
responses.

4.5.1 Priors for Student-Model Variables

In this problem, there are only two student model variables of persistent
interest: DKMendel and WKInqry. However, there are also Context variables, to
introduce dependencies among the observables within Evidence Models 1 and 2,
that  characterize each student.  Thus for each Student i ,

( )iEMiEMiii CCWKInqryDKMendelS ,2,1 ,,,= . All are categorical variables, with
DKMendel and WKInqry having three values each (High, Medium, and Low) and
CEM1 and CEM2 having two values each (High and Low). We start with the following
prior for DKMendel, positing prior exchangeability for students4:

( ),,,Cat~ 321 λλλiDKMendel

                                                  
4One could posit different priors for different students in the field trial, based on, say, how many
courses they had taken in genetics and how many in science, in general.
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where lλ  is the probability that Student i is in State l  of DKMendel. Dirichlet

distributions provide suitable priors. We posit the relatively uninformative prior

( ) ( ).3,4,3Dir~,, 321 λλλ .

An intuitive interpretation of this distribution is that it corresponds to the amount of
information about the probabilities lλ that one would have after observing (3-1) +

(4-1) + (3-1) = 7 draws, of which 2, 3, and 2 fell into the first, second, and third
categories.

The experts anticipate that DKMendel and WKInqry will be positively associated
among students; students with more knowledge about the concepts and
representational forms of the Mendelian model will probably have more skill in
applying their knowledge. We therefore posit a distribution for WKInqry that is
conditional on DKMendel:

( ) ( ),,,Cat~ 321 tttii tDKMendelWKInqry λλλ=

where ltλ  is the probability that Student i is in State l  of WKInqry given that she is in

State t of DKMendel. We posit for these parameters a set of mild distributions that
effect a positive association:

( ) ( )
( ) ( )
( ) ( ).5,3,2Dir~,,

3,4,3Dir~,,

2,3,5Dir~,,

333231

232221

131211

λλλ
λλλ
λλλ

The context variables are posited to be independent of all other SM variables
and each other, with

CEM1 ~ Bernoulli(.5) and CEM2 ~ Bernoulli(.5).

4.5.2 Priors for Evidence Model Parameters

We may organize the remaining prior specifications in terms of evidence
models. In all cases, we have used the Samejima graded response model with item
parameters a = 1 and b = (0,1). We may therefore drop the subscripts indexing items
and abbreviate the Samejima model as ( ) ( )θθ kXk =≡Ψ Pr , where the observable

and item parameters are apparent from the context of use.

The footprint of EM1 in the student model is S(1)=(DKMendel, CEM1). As
described in Section 4.4.2.2, EM1 contains seven conditionally dependent
observables X11 through X17. The conditional probability distributions for these
observables have the following form:
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( ) ( )
( ),

,,,Pr

1111

*
1111

)1(
1

EMjjDKMj

jijjjiji

iedic

edcSkX

++Ψ=

Ψ== θ

( )1,1~11 Nd , ( )1,0~1 Nd j  for j=2,…7, and for j=1,…,7,  and .

The footprint of EM2 is S(2) = (DKMendel, WKInqry, CEM2). As described in
Section 4.4.3.2, EM2 contains three conditionally dependent observables, X21 through
X23, which depend on the conjunction of DKMendel and WKInqry. Thus,

( ) ( )
( )( ),,min

,,,Pr

2222

*
2222

)2(
2

EMjjWKIDKMj

jijjjiji

iediic

edcSkX

++Ψ=

Ψ== θ

( )1,5.~21 −Nd , ( )1,5.~22 −Nd , ( )1,0~23 Nd , and for j=1,…,3, ( )1,1~2
+Nc j  and

( )1,1~2
+Ne j .

The footprint of EM3 is simply S(3)=(DKMendel). As described in Section 4.3.2,
EM3 contains three conditionally independent observables X31 through X33, and

( ) ( )
( ),

,,Pr

33

333
)3(

3

jDKMj

jijjiji

dic

dcSkX

+Ψ=

Ψ== θ

and for j=1,…,3, ( )1,0~3 Nd j  and ( )1,1~3
+Nc j .

The footprint of EM4 is S (2)=(DKMendel, WKInqry). As described in Section
4.4.4.2, EM4 contains one observable, X4, which depends mainly on WKInqry but is
inhibited by DKMendel. Thus,

( ) ( ),,,,Pr **
4222

)2(
2 ijjjiji edcSkX θΨ==

where

( )




=+−
≥+

=
Low DKMendelif

 Medium DKMendelif
,

44

44**
4 dc

dic
WKInqryDKMendel WKIθ ,

( )1,0~4 Nd , and ( )1,1~4
+Nc .

4.5.3 Summary Statistics for Selected Parameters

Tables 6, 7, and 8 give summary statistics for the prior distributions described above,
along with summary statistics for the posterior distributions that will be described in
the following section. The tables concern item parameters, examinee population
parameters, and individual examinee distributions respectively. These statistics
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Table 6

Summary Statistics of Prior and Posterior Item Parameter Distributions

Evidence
model

Parameter
groups

Parameter
name

Prior
mean Prior SD

Posterior
mean

Posterior
SD

% increase
in precision

EM1 Slopes for c11 1.29 0.79 2.06 0.71 25

DKMendel c12 1.29 0.79 1.04 0.63 58
c13 1.29 0.79 0.95 0.60 72

c14 1.29 0.79 0.80 0.57 95
c15 1.29 0.79 0.95 0.61 70

c16 1.29 0.79 0.79 0.56 101
c17 1.29 0.79 0.80 0.56 102

Slopes for e11 1.29 0.79 1.40 0.55 103
ContextEM1 e12 1.29 0.79 2.07 0.53 124

e13 1.29 0.79 3.18 0.63 58
e14 1.29 0.79 0.69 0.45 211

e15 1.29 0.79 3.18 0.63 57
e16 1.29 0.79 0.70 0.45 209

e17 1.29 0.79 0.70 0.45 205
Intercepts d11 1.00 1.00 2.31 0.60 181

d12 0.00 1.00 -0.34 0.52 273
d13 0.00 1.00 -0.26 0.63 157

d14 0.00 1.00 -2.92 0.59 193
d 15 0.00 1.00 -0.26 0.63 157

d16 0.00 1.00 -2.91 0.59 192
d17 0.00 1.00 -2.93 0.59 195

EM2 Slopes for c21 1.29 0.79 2.09 0.76 8

conjunction c22 1.29 0.79 1.11 0.65 46
c23 1.29 0.79 1.68 0.67 38

Slopes for e21 1.29 0.79 0.91 0.60 71
ContextEM2 e22 1.29 0.79 0.70 0.48 173

e23 1.29 0.79 0.65 0.45 213
Intercepts d21 -0.50 1.00 -1.55 0.60 178

d22 -0.50 1.00 -2.94 0.64 150
d23 0.00 1.00 -0.61 0.50 297

EM3 Slopes for c31 1.29 0.79 2.37 0.72 22

DKMendel c32 1.29 0.79 2.17 0.73 18
c33 1.29 0.79 2.28 0.72 19

Intercepts d31 0.00 1.00 -0.05 0.54 240
d32 0.00 1.00 1.14 0.51 294
d33 0.00 1.00 0.14 0.52 271

EM4 Slope c4 1.29 0.79 1.03 0.49 161
intercept d4 0.01 1.00 0.81 0.43 433
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Table 7

Summary Statistics of Prior and Posterior Population Parameter Distributions

Parameter
groups

Parameter
name

Prior
mean

Prior
SD

Posterior
mean

Posterior
SD

% increase
in precision

Distribution of DKMendel

λ1 0.30 0.14 0.31 0.09 118

λ2 0.40 0.15 0.43 0.11 66

λ3 0.30 0.14 0.26 0.11 73

Conditional distribution of WKInqry given DKMendel

λ11 0.50 0.15 0.50 0.15 2

λ12 0.30 0.14 0.30 0.14 0

λ13 0.20 0.12 0.20 0.12 -1

λ21 0.30 0.14 0.31 0.14 -3

λ22 0.40 0.15 0.40 0.15 -1

λ23 0.30 0.14 0.29 0.13 7

λ31 0.20 0.12 0.19 0.11 17

λ32 0.30 0.14 0.31 0.14 0

λ33 0.50 0.15 0.50 0.15 8

are based on 50,000 draws from the prior using the Gibbs sampler used in Section 5,
but without response data. Using the generic notation of (2), this means drawing
from

                   
(5)

Specialized to the Biomass example, S=(DKMendel, WKInqry), and their higher level
parameters generically denoted λ  are here parameters in categorical probability
distributions. Note that in the Biomass example, the πmj terms are conditional

probabilities calculated directly through the Samejima model with effective thetas
via task parameters denoted generically by ηm, and are here c’s, d’s, and e’s. This
means that the ( )mmjp ηπ  are deterministic functions, and the only uncertainty

associated with π’s is due to uncertainty about η’s.

Note that the prior distributions for all the item slopes are identical,
whereas the item difficulties vary in accordance with the experts’ judgments of their
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Table 8

Summary Statistics of Prior and Posterior Student Parameter Distributions

DKMendel WKInqry

Student
Prior
mean

Prior
SD

Post.
mean

Post.
SD

% increase
precision

Prior
mean

Prior
SD

Post.
mean

Post.
SD

% increase
precision

1 2.00 0.77 2.11 0.48 157 2.00 0.82 1.62 0.72 28

2 2.00 0.77 1.03 0.16 2229 2.00 0.82 1.71 0.78 9

3 2.00 0.77 1.01 0.12 4390 2.00 0.82 1.71 0.79 8

4 2.00 0.77 1.63 0.53 114 2.00 0.82 1.67 0.76 16

5 2.00 0.77 2.10 0.47 175 2.00 0.82 1.97 0.80 5

6 2.00 0.77 2.13 0.45 201 2.00 0.82 1.97 0.79 5

7 2.00 0.77 1.83 0.44 206 2.00 0.82 2.15 0.75 18

8 2.00 0.77 1.95 0.50 136 2.00 0.82 1.89 0.73 26

9 2.00 0.77 1.02 0.12 3985 2.00 0.82 1.71 0.78 8

10 2.00 0.77 2.08 0.49 151 2.00 0.82 1.62 0.72 28

11 2.00 0.77 2.14 0.48 163 2.00 0.82 2.00 0.70 36

12 2.00 0.77 1.69 0.51 135 2.00 0.82 1.86 0.74 22

13 2.00 0.77 2.63 0.49 154 2.00 0.82 2.27 0.69 39

14 2.00 0.77 1.66 0.51 133 2.00 0.82 1.91 0.81 2

15 2.00 0.77 2.65 0.48 162 2.00 0.82 2.04 0.70 37

16 2.00 0.77 1.01 0.11 5180 2.00 0.82 1.71 0.78 9

17 2.00 0.77 2.94 0.23 1036 2.00 0.82 2.86 0.37 393

18 2.00 0.77 2.12 0.47 175 2.00 0.82 2.32 0.68 42

19 2.00 0.77 1.75 0.57 84 2.00 0.82 1.64 0.74 20

20 2.00 0.77 1.16 0.37 341 2.00 0.82 1.69 0.77 11

21 2.00 0.77 1.10 0.31 542 2.00 0.82 1.67 0.78 10

22 2.00 0.77 2.88 0.33 453 2.00 0.82 2.83 0.40 322

23 2.00 0.77 2.79 0.41 263 2.00 0.82 2.69 0.50 161

24 2.00 0.77 2.23 0.46 182 2.00 0.82 2.26 0.70 34

25 2.00 0.77 2.63 0.49 152 2.00 0.82 1.94 0.70 35

26 2.00 0.77 1.01 0.10 5490 2.00 0.82 1.70 0.79 8

27 2.00 0.77 2.18 0.44 212 2.00 0.82 2.25 0.71 32

28 2.00 0.77 2.61 0.50 143 2.00 0.82 1.58 0.67 47

difficulties. The values for the examinee priors are means and standard deviations
calculated with High = 3, Medium = 2, and Low = 1.
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5.0 PHASE 3: REFINEMENT BASED ON FIELD TRIAL DATA

We have spent some effort to build a Bayesian probability framework that
expresses our beliefs about the key relationships between knowledge and
performance in the Biomass tasks. The probability distributions express the
qualitative structure of the relationships, and task and examinee parameters express
the quantitative relationships within that structure. We are in a position to update
our beliefs with information from some actual observations. The focus of Sections
5.1 and 5.2 is on posterior distributions for task and examinee
parameters—refinements of quantitative relationships within the posited structure.
More briefly, Section 5.3 discusses criticism of the qualitative structure itself.

5.1 The Markov Chain Monte Carlo Setup

In Bayesian inference, parameters express belief about the nature and
magnitude of relationships in observable variables. We are thus interested in
posterior distributions for those parameters, which incorporate information from
realized observations into our prior beliefs about the structure of the problem. This
means conditioning on the particular values of X obtained from students to produce
the following posterior distribution, stated first in the generic notation:

( ) ( )( ) ( ) ( ) ( ).,,, )( λληηππληπ pspppsxp,p i
i m j

mmmjmj
m

iimj∏∏∏∝XS  (6)

Note the similarity in form between the full Bayesian model for all observations and
parameters, given earlier as (2), and the posterior for the parameters, given as (6).
The difference is that in (6), the values of the observables are known and fixed. We
see that these terms are the difference between the prior distribution for the
parameters (5) and their posterior (6).

Monte Carlo Markov Chain (MCMC) techniques provide a general approach to
computation in Bayesian inference (e.g., Gelman et al., 1995) that suits the modular
construction of assessment we argued for in Section 3. A full treatment of MCMC
methods is beyond the current presentation, but the essential idea is to produce
draws from a series of distributions that are equivalent in the limit to drawing from
the posterior distribution of interest. We used the BUGS computer program
(Spiegelhalter et al., 1995) to effect a Gibbs sampling solution in our example. Each
iteration produces a value for each parameter in the model, drawn from what is
called its “full conditional” distribution: Its distribution is conditional on not only
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the data, but a value for every other parameter in the model. In the Gibbs sampler,
the values for the other parameters are draws from their full conditional
distributions on the previous iteration. Using the general notation and describing
the process at the level of blocks of parameters for convenience, the t+1th iteration
looks like this:

Draw 1+tS  from ( )XS ,,, tttp ληπ ;

Draw 1+tη  from ( )XS ,,,1 tttp λπη + ;

Calculate 1+tπ  from 1+tη ; and

Draw 1+tλ  from ( )XS ,,, 111 +++ tttp ηπλ .

Under broad conditions, the distribution of draws from a sequence of iterations
converges to draws from a stationary distribution that is the desired posterior, and
the empirical distribution of a large number of draws for a given parameter
approximates its marginal distribution. Summaries such as posterior means and
variances can be calculated (for example, to construct self-contained SM- and EM-
BIN fragments).

5.2 Posterior Distributions

Table 9 gives the responses of the 28 students in the field trial, and Tables 6-8,
which were introduced at the end of Section 4, give summaries of posterior
distributions for parameters conditional on this data. In this section, we offer some
observations on these results.

Looking first at the response data, we note immediately a dearth of “2”
responses, except for the last observable. In most cases, the students did well or
poorly on most aspects of the tasks, without many performances of intermediate
quality—even though the average of all the responses, with H = 3, M = 2, L = 1, was
1.62, just about in the middle. The students showed a great range in performance:
Nothing better than the lowest response from Students 3 and 26, to a majority of 3s
for Student 22.

The items range from very difficult (nobody did better than the lowest
response on x14, x16, x17, and x22) to fairly easy (most students answered x11 correctly).
Did these results accord with the experts’ prior expectations? Sort of. There were
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Table 9

Observed Responses

Student x11 x12 x13 x14 x15 x16 x17 x21 x22 x23 x31 x32 x33 x4 Mean

1 3 1 1 1 1 1 1 1 1 1 3 3 1 2 1.50

2 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1.14
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.00

4 3 1 1 1 1 1 1 1 1 1 1 1 3 2 1.36
5 3 3 3 1 3 1 1 1 1 1 1 3 3 3 2.00

6 3 1 1 1 1 1 1 1 1 1 3 3 1 3 1.57
7 3 1 1 1 1 1 1 1 1 2 1 3 1 3 1.50

8 3 1 3 1 3 1 1 1 1 2 1 3 3 2 1.86
9 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1.07

10 3 1 1 1 1 1 1 1 1 1 1 3 3 2 1.50
11 3 3 3 1 3 1 1 2 1 1 1 3 3 2 2.00

12 3 3 3 1 3 1 1 1 1 2 1 3 1 2 1.86
13 3 3 3 1 3 1 1 1 1 2 3 3 3 3 2.21

14 3 3 3 1 3 1 1 1 1 1 1 3 1 3 1.86
15 3 1 1 1 1 1 1 2 1 1 3 3 3 2 1.71

16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.00
17 3 3 1 1 1 1 1 3 1 3 3 3 3 3 2.14

18 3 1 3 1 3 1 1 1 1 3 3 1 3 3 2.00
19 3 3 1 1 1 1 1 1 1 1 3 1 1 2 1.50

20 1 1 1 1 1 1 1 1 1 1 1 3 1 2 1.21
21 3 3 3 1 3 1 1 1 1 1 1 1 1 1 1.57

22 3 3 3 1 3 1 1 3 1 3 3 3 3 3 2.43
23 3 1 1 1 1 1 1 3 1 2 3 3 3 3 1.93

24 1 1 1 1 1 1 1 1 1 2 3 3 3 3 1.64
25 3 3 3 1 3 1 1 1 1 2 3 3 3 2 2.14

26 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.00
27 3 1 1 1 1 1 1 1 1 2 3 3 1 3 1.64
28 3 1 1 1 1 1 1 1 1 1 3 3 3 2 1.64

Mean 2.50 1.71 1.71 1.00 1.71 1.00 1.00 1.29 1.00 1.50 1.93 2.36 2.00 2.29 1.64

three items for which they had opinions other than “typical.” They expected
Observable 1 of Task 1 to be easier, and it turned out to be the easiest one in the
study. They expected Observables 1 and 2 of Task 2 to be easier than typical, and
they were. But the four observables noted above on which every student was rated
Low were not expected to be different from typical. This may be due to the fact that
the students in the field trial were not exactly the same as the ones the experts had in
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mind as a target population. They thought about how hard a task would be for a
student who had been working through a unit on this material and who would be
familiar with the notation and expectations used in the prototype. Our field trial
students did not have this advantage, which could differ from one task to the next.

The prior distributions we posited for the parameters were fairly mild. Looking
at posterior distributions, we see that the information in 14 responses each from 28
students was sufficient to impact distributions for individual students substantially,
but it had hardly any effect on belief about the distribution of SM variables (i.e., the
λ’s).

Task parameter posteriors showed means that departed significantly from their
priors. The slopes for Context variables, for example, were initially all at 1.29;
posterior means ranged from .65 to 3.18. Intercept means, which were initially at 0
for typical items, ranged from -2.94, for the items on which no one succeeded, to
2.37, for a task on which about two thirds of the students did well. To see the effect
of the data on the conditional probabilities, compare Tables 10 and 11 for
Observables 3 and 4 of Task 1. They started with the same initial conditional
probability tables, since the experts expected both to be about typical. These tables
have been calculated through the Samejima structure with the posterior means of
their respective task parameters. Note that the revised conditional distributions for
Observable 3 show it is much easier than Observable 4, and much more
conditionally associated with the other observables within this task.

Table 10

Revised Conditional Probability Table for Observable 3 of Task 1

DKMendel Context Pr(X = k)
Indexa θ11

b Indexc θ11
*d

Low Medium High

-1 0.00 -1 -0.50 0.98 0.01 0.01

-1 0.00 1 0.50 0.08 0.11 0.81

0 1.00 -1 0.50 0.95 0.03 0.02

0 1.00 1 1.50 0.03 0.05 0.92

1 2.00 -1 1.50 0.88 0.07 0.05

1 2.00 1 2.50 0.01 0.02 0.97

aLow = -1, Medium = 0, High = 1. b 111111 dic DKM +=θ  = 0.95 iDKM + -.26.

cLow = -1, High = 1. d
11111

*
11 EMCie+=θθ = θ11 + 3.18 iEM1.
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Table 11

Revised Conditional Probability Table for Observable 4 of Task 1

DKMendel Context Pr(X = k)

Indexa θ11
b Indexc θ11

*d Low Medium High

-1 0.00 -1 -0.50 0.98 0.01 0.01

-1 0.00 1 0.50 0.93 0.05 0.03
0 1.00 -1 0.50 0.96 0.03 0.02

0 1.00 1 1.50 0.85 0.09 0.06
1 2.00 -1 1.50 0.91 0.06 0.04
1 2.00 1 2.50 0.72 0.16 0.13

aLow = -1, Medium = 0, High = 1. b 111111 dic DKM +=θ  = 0.80 iDKM + -2.92.

cLow = -1, High = 1. d
11111

*
11 EMCie+=θθ = θ11 + 0.69 iEM1.

To quantify the amount of information about the various parameters, the
parameter summary tables indicate a percentage increase in precision from priors to
posteriors. It is calculated as follows:

( ) ( )
( ) 2

22

SDprior 

SDprior SDposterior 
100precisionin  Increase % −

−− −×= .

A value of zero would indicate no new information, and a value of 100 would mean
there was twice as much information about a parameter after seeing the data than
there was before seeing it.

There are only very modest increases for the parameters of the student
distribution—noticeable for the distribution of DKMendel, since every student
contributes something, with information from all of their responses, but almost none
for conditional distributions of WKInqry given DKMendel. This latter result obtains
both because there is less information about WKInqry for each student and because
the conditional distributions for WKInqry would necessarily be based on fewer
observations than a marginal distribution for DKMendel, even if individual students’
values were known with certainty.

Task parameters show increases in precision that are greater than those for
student population parameters, but less than for individual students (see next
paragraph). In general there are greater increases in precision of intercept
parameters than for slope parameters, a finding consistent with experience in IRT. It
is intriguing to see that evidence is particularly weak for the slope parameters of the
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conjunction of DKMendel and WKInqry in EM3. Further investigation is needed to
determine whether this is a pervasive characteristic of combinations such as
conjunctions and disjunctions.

There are substantial increases in precision for the posteriors of individual
students, at least as far as DKMendel is concerned. These means are calculated as
expected values over the coding High = 3, Medium = 2, and Low = 1, so high
precision corresponds to probability concentrated on one particular value. Thus,
posterior precision is very high for students who performed at high levels on all
tasks or at low levels on all tasks; almost all of their posterior probability is on the
highest or the lowest value of an SM variable. We learn more about DKMendel than
about WKInqry, mainly because there are more observables that provide information
about DKMendel. Posterior precision is greater for DKMendel, and posterior means
can be further from their prior means than is the case for WKInqry. With this small
field trial data set, we may not learn much about higher level parameters, but even
given broad priors that rely on experts’ opinions, we are pretty sure that a student
who does poorly on most of the observables is Low and a student who does well is
High!

5.3 Model Fit

Model criticism is an essential facet of Bayesian (or any other) statistical
inference, since the inferences that probability-based reasoning allows us to draw
through models are suspect if the data do not accord well with the model. This
regrettably brief section outlines the route we are beginning to pursue in examining
fit in the kinds of models we have discussed in this paper. The reader is referred to
Gelman et al. (1995) and chapters 9-13 of Gilks, Richardson, and Spiegelhalter (1996)
for discussions of model criticism in MCMC estimation more generally.

The particular technique we are exploring is the use of shadow data sets, created
in the course of MCMC iterations. For each observed response ximj in the realized
data, we can define another variable yimj that follows exactly the same distribution
we have proposed and fit for ximj but is never observed. If our model is correct, the
actual data is a plausible draw from the predicted distribution of the shadow data.
Thus, the distribution of the shadow data or any summary statistic of it that is
accumulated over the MCMC iterations constitutes a tailor-made null distribution
against which to evaluate how surprising the data are in light of the model we have
proposed. (See Ludlow, 1986, for an example of the usefulness of this approach in



37

IRT before MCMC techniques were widely available.) Again using the generic
notation, we use the following distribution to produce the predictive distribution of
the shadow data matrix Y:

( )
( )( )( ) ( ) ( ) ( ).,,             

,,¶,,
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Table 12 presents one draw of shadow responses. Note that the averages for
both observables and students approximate those of the observed data closely,
including the observables on which no actual students did better than Low. The lack
of “2” responses, except for the final observable, is also replicated. Any statistic of
actual responses, such as correlations and joint distributions, as well as the marginal
means we have shown, could be calculated on the shadow data set as well. Because
the distribution of such statistics could then be accumulated over iterations, an
empirical null distribution would be obtained against which to evaluate how typical
or how surprising the corresponding feature of the real data was.

One way we used the shadow data was to evaluate an index of examinee fit.
Define the fit mean square for Examinee i as follows:

 ( )( )∑∑ −=Ζ
m j

imjimji xEx 2
14

1 ,     (7)

where responses are coded H=3, M=2, L=1, and

( ) ( ).,Pr
3

1
∑
=

==
k

miimjimj SkxxE π

In iteration t of the Gibbs sampler, these quantities can be evaluated conditional on
the draws of the task and examinee population parameters. So too can
corresponding fit mean squares in which each actual observation ximj in (7) is
replaced by its shadow counterpart yimj. The relevant index is the proportion of
iterations in which the fit mean square for the x’s is greater than the one for the y’s.
One run with 1,000 iterations produced values across the 28 examinees between .06
for Examinee 25 (the best fit) and .78 for Examinee 18 (the worst fit). Examinee 18’s
pattern is somewhat uncommon because of High values for the slightly harder-than-
typical observables x23 and x31, coupled with a low value for the easier-than-typical
observable x32. The fact that the highest empirical p-value was only .78 caused us
some concern about the power of the test. We did a second run with an additional
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Table 12

One Set of Shadow Responses

Student y11 y12 y13 y14 y15 y16 y17 y21 y22 y23 y31 y32 y33 y4 y Mean x Mean

1 3 1 1 1 1 1 1 1 1 1 1 1 2 3 1.36 1.50

2 1 3 1 1 1 1 1 1 1 1 3 1 1 1 1.29 1.14
3 1 1 2 1 1 1 1 1 1 1 2 2 1 3 1.36 1.00

4 3 1 1 1 1 1 1 1 1 1 3 1 1 3 1.43 1.36
5 3 3 3 1 3 1 1 1 1 1 3 3 3 3 2.14 2.00

6 3 1 1 1 1 1 1 1 1 2 3 2 3 3 1.71 1.57
7 2 3 1 1 3 1 1 1 1 1 3 3 2 2 1.79 1.50

8 3 2 3 1 1 1 1 3 1 3 2 2 1 1 1.79 1.86
9 3 1 1 1 1 1 1 1 1 1 1 1 2 1 1.21 1.07

10 3 1 1 1 1 1 1 1 1 1 3 3 3 2 1.64 1.50
11 2 3 2 1 3 2 1 1 1 3 3 3 3 2 2.14 2.00

12 3 3 3 1 3 1 1 1 3 1 3 3 1 2 2.07 1.86
13 3 2 3 1 1 1 1 2 3 3 2 3 3 2 2.14 2.21

14 3 3 3 1 1 1 1 1 1 1 3 1 1 2 1.64 1.86
15 1 1 3 1 1 1 1 1 1 1 3 3 3 1 1.57 1.71

16 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1.14 1.00
17 3 1 2 1 1 1 1 3 1 3 3 3 3 2 2.00 2.14

18 3 3 1 1 1 1 1 3 1 3 3 3 3 3 2.14 2.00
19 3 3 3 1 1 1 1 1 1 1 2 1 1 2 1.57 1.50

20 1 3 1 1 1 1 1 1 1 1 1 1 2 1 1.21 1.21
21 3 1 1 1 1 1 1 1 1 1 1 3 2 1 1.36 1.57

22 3 3 3 1 1 1 1 2 1 2 3 3 2 1 1.93 2.43
23 3 2 1 1 1 1 1 3 2 1 3 3 3 1 1.86 1.93

24 3 1 1 1 1 1 1 1 1 2 3 3 3 1 1.64 1.64
25 3 3 3 1 3 1 1 1 1 3 3 3 2 1 2.07 2.14

26 3 1 1 1 1 1 1 1 1 1 1 2 1 1 1.21 1.00
27 3 1 1 1 1 1 1 1 1 1 1 3 2 3 1.50 1.64
28 3 2 1 1 1 1 2 1 1 2 3 3 2 3 1.86 1.64

y Mean 2.64 1.93 1.75 1.00 1.36 1.04 1.04 1.36 1.18 1.57 2.36 2.29 2.04 1.86 1.67

x Mean 2.50 1.71 1.71 1.00 1.71 1.00 1.00 1.29 1.00 1.50 1.93 2.36 2.00 2.29 1.64

fictitious response vector, one with High values for the harder observables and Low
values for the easier ones:

xbadfit = (1,1,1,3,1,3,3,3,3,3,3,1,1,1).

We were comforted to see that of 20,000 draws of a shadow response pattern to this
maximally bad fitting pattern, only 4 had a higher mean square—an empirical p-
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value of .0002. When a response vector is seriously out of sorts, this index will flag it.
(This is just an existence proof, of course; a more serious analysis would run
simulations to characterize the specificity and the sensitivity of fit indices
constructed in this manner.)

6.0 CONCLUSION: NEXT STEPS

In this paper, we have described an approach to building conditional
probability distributions for complex assessments and illustrated the ideas with
some specifics we have worked out thus far. There is much to do, along many
dimensions.

Substantive issues concern the development of conditional probability model
structures that are useful and reusable across applications. As the link between
substantive experts’ ways of thinking about problems in their domain and
statisticians’ ways of thinking about parameters and distributions, these structures
must both correspond to substantively important aspects of tasks and support
sound estimation procedures. We have found this a challenge best met by a small
team of experts focused on this goal, whose work provides schemas for complex
tasks and skeletons of the evidentiary arguments that underlie them, to be fleshed
out as many times and in as many ways as task authors then care to do. The
alternative approach of creating complex tasks without considering these issues
looks to us like a loser, at least in the context of medium- to large-scale assessment
(as we argue in Mislevy, Steinberg, Breyer, et al., in press). The practical benefits of
efficiency and reusability are foregone, to be sure, but a more serious loss is the
explicit and careful working through of the evidentiary argument. Messick’s 1994
paper on performance assessment remains invaluable for thinking about how to
design complex tasks. We see our work as fleshing out the psychometric
implications of his ideas.

Estimation issues were not the focus of this presentation, but it is clear that
attention is required there as well. Obvious steps would be running and monitoring
chains of MCMC iterations from multiple starting points and more in-depth
investigations of model fit. In particular, the different relationships among SM
parents of observables need to be compared. Our experts proposed, and we fit, a
conjunctive model for EM3. Would a compensatory model have fit as well, or better?
The low efficiency for estimating the item parameters of the conjunctive relationship
suggests there may be benefits in a bias toward linearity in models. Other extensions



40

we have mentioned along the way include more flexible estimation of task
conditional probability structures, and incorporation of task features as collateral
information about task difficulty parameters. For the Biomass example itself, we
should gather and analyze more data, increasing the student sample size and
expanding to more tasks.

Operational issues will flow from what we learn in the research described
above. That is, what kinds of tools, data structures, interfaces, and building blocks
help an organization carry out this work efficiently on a large scale? We have made
some progress already in tools for designing task and statistical-model fragments
(see the section on the Portal project in Frase et al., 2003). Extensions we see a need
for right now include the automatic generation of BUGS code from our model
design tools, interfaces to help task authors create tasks from libraries of task- and
evidence model templates, and procedures for interacting with experts at both the
levels of creating schemas and supplying information about individual tasks created
within those schemas.
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