PSYCHOPHYSIOLOGICAL CORRELATES OF FEMALE TEACHER BEHAVIOR AND EMOTIONAL STABILITY: A SEVEN-YEAR LONGITUDINAL INVESTIGATION William H. Lucio Principal Investigator Graduate School of Education, UCLA Marion A. Wenger Thomas D. Cullen Co-Investigators Department of Psychology, UCLA - I. Normative Data on Autonomic Nervous System Functions, and Psychophysiological Correlates of Student Teaching Performance - II. Re-analysis of the Physiological Test Data - III. Psychophysiological Correlates of Teaching Performance During the First In-service Year - IV. Psychophysiological Correlates of Professional and Health Status During the Sixth In-service Year - V. Psychophysiological Correlates of Teaching Performance and Affective Behavior During the Seventh In-service CSEIP Technical Report No. 3, November, 1967 University of California, Los Angeles, California #### PREFACE The purpose of this longitudinal study, initiated in 1959, was to investigate the relations of individual differences in personality and functioning of the autonomic nervous system to the behavior, emotional stability and general health of teachers and pupils. The ultimate goal is twofold: (1) the development of predictive indices of value in identifying persons who should be directed toward occupations less stressful than teaching, and (2) the identification of physiological measures useful in evaluating pupil achievement and adjustment. This report presents analyses of data obtained on teachers over a seven-year period. (Work on the pupil phase has been initiated with a sample composed of pupils enrolled in the University Elementary School, UCLA.) Measurement of teacher characteristics related to teaching style is a concern of the Center for the Study of Evaluation of Instructional Programs. This study seeks to determine if physical measures of teachers are correlated with indicators of teaching effectiveness. If so, such measures can contribute to a description of the instructional program to which a child has been exposed. Section I presents the rationale and findings of the initial study, in slightly abridged form, since the collected data provide the basis for all follow-up investigations. In this study a battery of psychological and physiological tests was administered to 279 female students enrolled in elementary teacher education at UCLA. Normative data concerning the physiological functioning of the autonomic nervous system in adult females were obtained, and the relations of the psychophysiological test data to evaluations of student teaching performance analyzed, (Lucio, Wenger 1961). After completion of the initial study, and before undertaking the follow-up studies to determine the predictive value of the psychophysiological test battery, the size of the sample was reduced and certain of the analyses of the physiological data were repeated. The reasons for employing a smaller sample, and the results of the re-analyses of the data, are presented in Section II. The results of the first follow-up study, which involved evaluations of teaching performance in the first year of inservice teaching and their relations to the psychophysiological test data collected in the initial study, are reported in Section III. The results of the second follow-up study, which involved assessments of professional status and health status in the sixth year of in-service teaching and their relations to the original psychophysiological test data, are reported in Section IV. Data have been collected for the third follow-up study concerned with the relations of the psychophysiological test data to teacher interests, affective behavior, organizational satisfaction, and instructional performance; the results will be the subject of a separate report when the analyses are completed. Support for the initial study was provided by the United States Office of Education, Department of Health, Education and Welfare under Office of Education Contract number SAE 8311. Follow-up investigations were supported in part by the University of California Center for the Evaluation of Instructional Programs and in part by University of California Research Grant number 1761 from National Science Foundation funds. Appreciation is expressed to the Los Angeles Air Pollution Control District (APCD) for data on atmospheric contaminants and to the Campus Computing Network, UCLA, for computational assistance. The investigators gratefully acknowledge the generous professional assistance of UCLA faculty members, research assistants and teacher education personnel, and appreciate the cooperation and participation of teachers and administrators, in various California school districts, who made possible the gathering of data for the investigation. W. H. Lucio, M. A. Wenger, T. D. Cullen University of California, Los Angeles #### **ABSTRACT** PSYCHOPHYSIOLOGICAL CORRELATES OF FEMALE TEACHER BEHAVIOR AND EMOTIONAL STABILITY: A SEVEN-YEAR LONGITUDINAL INVESTIGATION The Central purpose of this study was to investigate the predictive validity of a body of psychophysiological data with regard to the performance and emotional stability of female teachers. Analyses of the relations of individual differences in personality and in functioning of the autonomic nervous system (ANS) to measures of teacher behavior, emotional stability, and general health were made: (1) during student teaching, and (2) during the first, sixth, and seventh years of in-service teaching. Normative data on ANS functions in young adult females were obtained and a general autonomic factor was described. The study constitutes the first extensive investigation of functions innervated by the autonomic nervous system in a young adult female population, and the first use of a psychophysiological test battery in research on teacher performance. #### Rationale The investigation was based on the theses that (1) measures of individual differences in ANS functions, be they inherited or acquired, afford a means of predicting those elementary teachers who will be least likely to withstand the stresses involved in teaching; and (2) these measures used in conjunction with selected indices of personality and mental and physical health and controlled appraisals of teaching performance will provide improved predictive indices of teacher behavior. The justification for testing the value of ANS measures with teachers is derived from many sources. The ANS is known to be involved in emotional behavior and emotional disorders. The work of Wenger and Ellington (1943), Wenger (1948, 1957, 1966) and others (cf. Darrow, 1943; Kuntz, 1951) has shown that individual differences in ANS function are measurable and related to aspects of behavior and personality. The findings summarized by Wenger (1966) indicate that stable individual differences in autonomic functioning during controlled rest exist in both children and adults and that these differences related to certain personality patterns and to certain definable diagnostic categories. ### General Procedures In the first phase of the investigation a battery of psychophysiological tests was administered to 279 non-volunteer female subjects enrolled as students in elementary education at UCLA. Instruments employed were: Guilford-Zimmerman Temperament Survey, Cooperative English Test, Arithmetic Concepts Test, Scale for Rating Characteristic Levels of Muscular Tension, Classroom Observation Record and UCLA Teacher Rating Scale, the latter two instruments administered to obtain records of controlled observations of teaching performance. The physiological testing procedures (described in detail by Wenger, Clemens, and Engel, 1957) were designed to assay functioning of the autonomic nervous system, and they involved the collection of two classes of information: (1) resting or pre-stimulus data, and (2) reactions to cold pressor stimulation followed by continued recovery measurement. The specific tests administered were as follows: - (1) Initial Pre-stimulus Physiological Measures: (a) salivary output, (b) sublingual temperature, (c) standing palmar conductance, (d) pupil diameter, (e) finger temperature, (f) dermagraphia latency, (g) dermagraphia persistence, (h) log palmar conductance change, and, - (2) Continuous and Intermittent Physiological Measures: (a) palmar conductance, (b) volar conductance, (c) systolic blood pressure, (d) diastolic blood pressure, (e) pulse pressure, (f) heart period, (g) respiration period, (h) face temperature, (i) axillary temperature, (j) finger temperature, (k) finger pulse volume, and (l) stomach period. Analysis of the physiological data involved application of transformations to reduce skewness and to effect homogeneity of variances and correction of the measures for the effects of climatic and other uncontrolled variables. Factorial analysis was employed to test the thesis that an autonomic factor existed among young adult women, and factor estimates were computed. In the second phase of the investigation assessments were made of performance, emotional stability, and professional and health status of the subjects during the first, sixth and seventh years of in-service teaching by a set of instruments developed for this study. These instruments were: Confidential Teacher Rating Scale (CTRS), General Health Inventory, Professional Status Inventory, Affective Behavior Inventory (ABI), and Instructional Performance Scale (IPS). Analyses were made of the relations of the psychophysiological test battery to: (1) indices of student teacher performance, and (2) indices of teacher performance, emotional stability, and professional and health status during in-service teaching. ### Results - 1. Initial study of student teaching performance - a. A general autonomic factor, similar to ones described in previous studies of children and adult males, was found to exist for young adult females. - b. Indices of student teaching performance were positively related to sociability (Guilford-Zimmerman
scale S), negatively related to characteristic level of muscle tension, and positively related to finger temperature. A tentative characterization of good teachers as sociable, relaxed, and having a high finger temperature was suggested. - 2. First-year follow-up study of in-service teaching performance - a. Unfavorable ratings of performance in the area of classroom behavior were associated with lower scores on the Guilford-Zimmerman scale S, and unfavorable ratings in the area of teacher-parent relations were associated with higher levels of muscle tension. Confirmation was thereby provided for two of the conclusions of the initial study, that teaching performance is positively related to sociability and negatively related to muscle tension. - b. While a few physiological variables were found to be related to ratings of teaching performance, the pattern of these relations did not afford a basis for interpretation in terms of general autonomic balance or imbalance. It was concluded that this first-year follow-up study did not furnish clear evidence of an association between teaching performance and characteristic level of ANS functioning. - c. Ratings of supervised student teaching performance by University staff supervisors and outside observers did not provide any basis for the prediction of school principals' ratings of performance in the first year of in-service teaching. - 3. Sixth-year follow-up study of health status and professional status - a. The relations of individual physiological variables, autonomic factor scores and multivariate patterns of autonomic activity to the incidence of psychosomatic and other disorders consistently pointed to an association of relative sympathetic nervous system (SNS) dominance with several kinds of disorders and of relative parasympathetic nervous system (PNS) dominance with an absence of disorders. The strongest tendency toward relative SNS dominance was present among subjects troubled by anxiety and fear. These results are consistent with findings in previous studies of males. - b. No evidence was found to support the hypothesis that a general increase in PNS activity is a feature of certain respiratory disorders. Instead, a specific mixed pattern of PNS dominance in some functions and SNS dominance in others was found to occur with relatively high frequency among subjects having hay fever and/or sinus trouble. - c. Evidence of a relation between autonomic nervous system functioning and success in teaching was provided by the differences between tenured and non-tenured teachers in autonomic factor scores and patterns of autonomic activity. Teachers who showed autonomic imbalance in the direction of relative PNS dominance apparently adjusted least well to teaching; few of them had attained tenure at the time of the study, and a relatively high proportion had left the profession. - d. The previous conclusions that teaching performance is positively related to sociability and negatively related to muscle tension again were supported by the differences between tenured and non-tenured teachers found in this study. These and other differences on the Guilford-Zimmerman scales suggested a characterization of the less successful teachers, in comparison to the more successful ones, as less friendly and sociable, less objective, less active, less emotionally stable, more introverted and more tense. This constellation of tendencies corresponds with the pattern of personality traits which has been reported elsewhere as associated with PNS dominance, and therefore it is consistent with the differences found here between the more and less successful teachers in autonomic nervous system functioning. - e. Ratings of performance in the first year of in-service teaching were found to be of greater value that the original ratings of student teaching performance for the prediction of professional status in the sixth year of teaching. The relations of these ratings to professional status indicated that teachers whose performance in the first year was rated unfavorably were less likely subsequently to achieve tenure and more likely to spend relatively little time in teaching or to leave the profession altogether than teachers whose performance in the first year was rated favorably. # TABLE OF CONTENTS | | | Page | |-----|--|------------------------------------| | | | | | Pre | face | i | | Abs | tract | iv | | Lis | t of Tables | xiii | | I. | NORMATIVE DATA ON AUTONOMIC NERVOUS SYSTEM FUNCTIONS, AND PSYCHOPHYSIOLOGICAL CORRELATES OF STUDENT TEACHING PERFORMANCE | 1 | | | 1. Introduction | 1
1
3
5 | | | 2. Subjects and Procedures Subjects | 5
6
7
8
20
21
21 | | | Classroom Observation Record | 2 2
2 4 | | | Physiological Data for Effects of Uncontrolled Variables | 25 | | | Factorial Analyses of the Corrected Physiological Data Relationships Among Ratings of Student Teacher Performance and the Physiological and | 32 | | | Psychological Variables | 44
56 | | II. | RE-ANALYSIS OF THE PHYSIOLOGICAL TEST DATA | 62 | | | Reduction in Size of Sample Transformations and Corrections of the | 62 | | | Physiological Data | 63 | | | 3. Factorial Analysis of the Corrected Physiological Variables | 77 | | | 4. Pattern Analysis of the Corrected Physiological Data | 82 | | | | | Page | |-------|------------|--|------| | III. | | CHOPHYSIOLOGICAL CORRELATES OF TEACHING | 0.5 | | | J | PERFORMANCE DURING THE FIRST IN-SERVICE YEAR | 87 | | | 1. | Evaluation of In-service Teaching Performance | 87 | | | 2. | Relations of In-service Teaching Performance | | | | 7 | to the Psychophysiological Test Battery | 88 | | | 3. | Relations of In-service Teaching Performance to Student Teaching Performance | 95 | | | 4. | Discussion and Conclusions | 95 | | | | | | | IV. | | CHOPHYSIOLOGICAL CORRELATES OF PROFESSIONAL AND HEALTH STATUS DURING THE SIXTH IN-SERVICE YEAR | 98 | | | 1 | HEALTH STATUS DURING THE STATE IN-SERVICE TEAR | 90 | | | 1. | Evaluation of Health Status | 98 | | | 2. | Relations of Health Status to the | | | | | Psychophysiological Test Battery | 100 | | | 3. | Evaluation of Teaching Status | 100 | | | 4. | Relations of Teaching Status to the | | | | | Psychophysiological Test Battery | 107 | | | 5. | Relations of Teaching Status to Previous | | | | | Evaluations of Teaching Performance | 114 | | | 5. | Discussion and Conclusions | 117 | | Refer | ence: | S | 125 | | | | | | | Appen | dice | S | | | | Α. | Individual Subject Data-Recording Form | 128 | | | | Key for Individual Subject Data-Recording Form | 130 | | | В. | Scale for Rating Characteristic Level of | | | | | Muscular Tension (MT) | 131 | | | С. | Classroom Observation Record (COR) | 132 | | | D. | Glossary for Classroom Observation Record | 133 | | | Ε. | University of California Rating Scale for | | | | <i>L</i> . | Student Teaching - Elementary School (UR) | 141 | | | F. | A Description of the Guilford-Zimmerman | | | | 1 • | Temperment Survey Traits | 142 | | | G. | Supplementary Data Forms | 143 | | | Н. | Confidential Teaching Rating Scale (CTRS) | 144 | | | 11. | Confidential Inquiry Letter | 145 | | | I. | General Health Inventory | 146 | | | J. | Professional Status Inventory | 148 | | | · . | Professional Inquiry Letter | 149 | # LIST OF TABLES | | | Page | |------|--|------| | 1-A. | Correlations of Pre-stimulus Physiological Measures with Uncontrolled Variables | 29 | | 1-B. | Correlations of Physiological Reactions to Cold Pressor Stimulation with Uncontrolled Variables | 30 | | 1-C. | Means and Standard Deviations of Uncontrolled Variables, and their Intercorrelations | 31 | | 1-D. | Equations for Correction of Pre-stimulus Physiological Measures | 33 | | 1-E. | Equations for Correction of Physiological Reactions to Cold Pressor Stimulation | 34 | | 1-F. | Means and Standard Deviations of Uncorrected Pre-stimulus Levels, and Arbitrary Baselines upon which Corrections of Physiological Reactions were Based | 35 | | 1-G. | Means and Standard Deviations of Corrected Pre-stimulus Physiological Measures | 36 | | 1-H. | Means and Standard Deviations of Corrected Physiological Reactions to Cold Pressor Stimulation | 37 | | 1-I. | Intercorrelations Among Pre-stimulus Physiological Measures | 39 | | 1-J. | The Factor Solutions of Pre-stimulus Physiological Measures | 40 | | 1-K. | Equations for Estimation of Factors from Pre-stimulus Physiological Data | 42 | | 1-L. | Intercorrelations Among Physiological Reactions to Cold Pressor Stimulation and Selected Uncontrolled Variables | 4 3 | | 1-M. | The Factor Solutions of Physiological Reactions to Cold Pressor Stimulation | 45 | | 1-N. | Means and Standard Deviations of Criterion Variables and Psychological Measures | 47 | | 1-0. | Intercorrelations Among Criterion Variables | 48 | | | <u> </u> | age | |--------|--|-----| | 1-P. | Correlations of Criterion Variables with Prestimulus Physiological Measures and Factor Estimates | 50 | | 1-Q. | Correlations of Criterion Variables with Physiological Reactions to Cold Pressor Stimulation | 51 | | 1-R. | Correlations of Criterion Variables with Guilford-Zimmerman Scores and Muscle Tension Ratings | 52 | | 1-S. | Multiple Correlation Coefficients and Beta Weights
for Predicting Major Criterion Variables from
Selected Physiological and Psychological Variables. | 54 | | 2-A.1. |
Correlations of Pre-stimulus Physiological Measures with the Seven Uncontrolled Variables for which Corrections were Applied | 64 | | 2-A.2. | Correlations of Pre-stimulus Physiological Measures with other Uncontrolled Variables | 65 | | 2-B.1. | Correlations of Physiological Reactions to Cold
Pressor Stimulation with the Seven Uncontrolled
Variables for which Corrections were Applied | 66 | | 2-B.2. | Correlations of Physiological Reactions to Cold Pressor Stimulation with Other Uncontrolled Variables | 67 | | 2-B.3. | Correlations of Physiological Reactions to Cold Pressor Stimulation with Pre-stimulus Baseline Levels | 69 | | 2-C. | Means and Standard Deviations, and Inter-
correlations of the Seven Uncontrolled Variables,
for which Corrections were Applied | 70 | | 2 - D. | Beta Weights in the Equations for Correction of Pre-stimulus Physiological Measures | 72 | | 2-E. | Beta Weights in the Equations for Correction of Physiological Reactions to Cold Pressor Stimulation | 7 3 | | 2-F. | Means and Standard Deviations of Uncorrected Pre-stimulus Levels, and Arbitrary Baselines upon which Corrections of Physiological Reactions were Based | 74 | | 2-G. | Means and Standard Deviations of Corrected Pre-stimulus Physiological Measures | 75 | | | | Page | |--------|---|------| | 2-H. | Means and Standard Deviations of Corrected Physiological Reactions to Cold Pressor Stimulation | 76 | | 2-I. | Intercorrelations Among Pre-stimulus Physiological Measures | 78 | | 2-J.1. | Centroid Factor Solution for Pre-stimulus Physiological Measures | 80 | | 2-J.2. | Rotated Factor Solution for Pre-stimulus
Physiological Measures, and Equation for
Estimation of a General Autonomic Factor | 81 | | 2-K. | Autonomic Patterns Defined by Levels of Activity in Five Physiological Variables, and their Frequencies in Normative and Respondent Samples | 84 | | 2-L. | Standardized Means of Pre-stimulus Physiological Measures for Subjects Classified According to Ratings on the Confidential Teacher Rating Scale (CTRS) | 90 | | 2-M. | Frequencies of Autonomic Patterns within Categories of Ratings on the Confidential Teacher Rating Scale (CTRS) | 91 | | 2-N. | Standardized Means of Physiological Reactions to Cold Pressor Stimulation for Subjects Classified According to Ratings on the Confidential Teacher Rating Scale (CTRS) | 93 | | 2-0. | Standardized Means of Muscle Tension Ratings and Guilford-Zimmerman Scores for Subjects Classified According to Ratings on the Confidential Teacher Rating Scale (CTRS) | 94 | | 2-P. | Standardized Means of Student Teaching Performance Ratings for Subjects Classified According to Ratings on the Confidential Teacher Rating Scale (CTRS) | 96 | | 2-Q. | Standardized Means of Pre-stimulus Physiological Measures for Subjects Reporting the Occurrence of Certain Kinds of Disorders | 101 | | 2-R. | Frequencies of Autonomic Patterns Within | 102 | | | | Page | |------|--|------| | 2-S. | Standardized Means of Reactions to Cold Pressor Stimulation for Subjects Reporting the Occurrence of Certain Kinds of Disorders | 104 | | 2-T. | Standardized Means of Muscle Tension Ratings and Guilford-Zimmerman Scores for Subjects Reporting the Occurrence of Certain Kinds of Disorders | 105 | | 2-U. | Standardized Means of Pre-stimulus Physiological Measures for Subjects Classified According to Teaching Status | 108 | | 2-V. | Frequencies of Autonomic Patterns within Teaching Status Categories | 110 | | 2-W. | Standardized Means of Reactions to Cold Pressor Stimulation for Subjects Classified According to Teaching Status | 112 | | 2-X. | Standardized Means of Muscle Tension Ratings and Guilford-Zimmerman Scores for Subjects Classified According to Teaching Status | 113 | | 2-Y. | Standardized Means of Student Teaching Performance Ratings for Subjects Classified According to Teaching Status | 115 | | 2-Z. | Frequencies of Favorable and Unfavorable Ratings on the Confidential Teacher Rating Scale for Subjects Classified According to Teaching Status | 116 | I. NORMATIVE DATA ON AUTONOMIC NERVOUS SYSTEM FUNCTIONS, AND PSYCHOPHYSIOLOGICAL CORRELATES OF STUDENT TEACHING PERFORMANCE # 1. Introduction ### The Problem The need for improved procedures of teacher selection and evaluation in order to provide for increased numbers of teachers capable of meeting the requirements and stresses of teaching has been recognized by those responsible for teacher education. Generally, research and practice in the prediction and evaluation of teaching performance has reflected an emphasis upon intellectual abilities and achievement. Although the importance of motivation, desirable personality characteristics, and mental health have been recognized, little success has resulted from attempts to measure motivation and few well-designed predictive studies using personality and mental health indices have been reported. Moreover, except for some recognition that temperment plays a role in teaching performance, the investigation of individual differences in physiological functions and their relation to teacher behavior has been neglected (Ryans, 1963). This study represents a systematic investigation of the relationships of physiological and personality variables to teaching performance and to the emotional stability of teachers, utilizing a sample of female elementary teacher candidates. The physiological aspect of the study is based on the thesis that measures of individual differences in the functioning of the autonomic nervous system (ANS), be they inherited or acquired, afford a means of predicting those potential teachers who will be least likely to withstand the stresses involved in teaching, and, used in conjunction with selected indices of personality and mental health, will lead to the development of improved predictive indices of teacher performance. The justification for testing the value of ANS measures in teacher selection and evaluation is derived from many sources. Briefly, the ANS is known to be involved in emotional behavior and emotional disorders. The work of Wenger and Ellington (1943), Wenger (1948, 1957,1966), and that of other researchers (see Reviews by Darrow, 1943 and Kuntz, 1951) has shown that individual differences in ANS function are measurable and are related to aspects of behavior and personality. If stress-prone individuals can be detected in advance and directed toward occupations less stressful than daily classroom teaching, the effect should be salutary for their own mental health and that of the many school children saved from their ministrations. Another aspect of the problem, that concerned with the selection of methods of teacher assessment, is reflected in Ryans' work in the development of instruments to measure teacher classroom-behavior (1960). The Classroom Observation Record (COR) developed by Ryans and the University of California Rating Scale (UR) were used in the assessment of teaching performance in this study. In brief, measures of individual differences in the functioning of the autonomic nervous system (ANS) in conjunction with selected indices of personality and mental health were utilized. These measures were correlated in this study against estimates of student teacher performance. They will be validated against in-service teaching performance and information concerning emotional stability and physical health in follow-up studies of these teachers. # Related Research Teacher Selection. The literature pertaining to investigations of the relationship between various hypothesized predictors and teaching effectiveness is extensive, but in general consists of work which suffers from inadequate considerations of control and lack of replication. Many investigators have failed to specify the conditions of their studies sufficiently to enable comparison of their findings with those of other researchers. Consequently, in spite of the large number of studies purporting to determine concomitants of teacher competency, little usable evidence is available to teacher education specialists or public school personnel officers. Unquestionably the worker in this area is confronted by numerous problems as noted by Lucio (1960, 1967) and Ryans (1960, 1963). Particularly noteworthy are the summaries and analyses of research presented by Gage in the Handbook of Research on Teaching (1963), and the reviews of investigations dealing with the identification and prediction of teaching effectiveness by Morsh and Wilder (1956). These writers have summarized and analyzed quantitative studies, categorized the methodologies employed, synthesized the findings, and noted perplexing problems. Annotated bibliographies have been provided, also, by Domas and Tiedeman (1950), Castetter, Standlee, and Fattu (1954), and Waters (1954), among others. Ryans (1960), in an investigation of teacher characteristics, presented information on the traits of a sample of 6,000 teachers in 1,700 elementary and secondary schools and contributed knowledge on the kinds of personality traits which make one teacher more effective than another. - (B) ANS Measurement. In 1939 Wenger and his associates initiated work designed to measure individual differences in physicological functions which gave promise of being correlated with overt behavior. The work involved the measurement of a number of autonomically innervated functions in a population of children, the intercorrelation and factorial analysis of the data, and the estimation of the obtained autonomic factor for the individual children. Such factor estimates were called "Scores of Autonomic Balance." These studies with children (1943) and with adults (1948, 1957) led to conclusions which were
summarized by Wenger, Engel, and Clemens (1957). Particularly pertinent are the following conclusions: - 1. Stable individual differences in autonomic functioning during controlled rest exist in both children and adults. - 2. These differences are related to certain personality patterns and to certain diagnostic categories, such as anxiety psychoneurosis, schizophrenia, battle fatigue, and asthma. 3. For greatest predictive value, measures of autonomic balance and patterns during rest should be supplemented by measures of reactions to a standard stimulus. Wenger has continued to publish extensively in the field. His current work, in one laboratory, involves studies of psychosomatic patients; in another, male students have been used in a series of normative studies of ANS reactions to a wide variety of stimuli. The present study with females represents a cooperative effort to expand psychophysiological research to a new area of investigation. # Hypotheses (A) Individual differences in autonomic response patterns furnish a basis for the prediction of those individuals who cannot well withstand the stress of teaching and those who may develop specific psychosomatic and other psychological disorders, and (B) such measures will improve the predictive value of psychological correlates of teacher performance. # 2. Subjects and Procedures The over-all plan of the initial research involved physicological and psychological testing of students enrolled in teacher education, and subsequent evaluation by trained observers of the teaching performance of the subjects during student teaching. The sample was limited to elementary teacher candidates because of the important role the elementary teacher plays in the mental health of the child. Because the majority of candidates were females, the sample was confined to women subjects. # Subjects The subjects were 279 women, most juniors in the University, all candidates for the general elementary teaching credential. They were enrolled in the upper division course required of all prospective elementary teachers; participation in the physiological testing was required as a part of the testing program for all such teacher-candidates. Their ages ranged from 20 to 42 with a mean age of 22.7; only ten were over 30 years of age. Prior to the period of physiological testing all subjects had been routinely screened for entrance to the teacher education program by the Office of Student Services of the Department of Education. Screening measures included proficiency in communication skills, assessment of the quality of academic work, and health and personal fitness. Of the total of 279 subjects, 240 were later enrolled in student teaching at which time observations and recordings were made of teaching performance. Although a larger number of subjects was available for testing, the final sample usable in any of the analyses was reduced for one or more of the following reasons: no potential subject who was pregnant, under continuing medication, or whose menstrual cycle was aperiodic was tested. Some potential subjects who broke their testing appointments or who were ill, or who had high sublingual temperatures were not available for re-scheduling and testing. Some subjects dropped from the teacher education program before or after they had received physiological testing; while others were tested but had not yet enrolled in student teaching at the termination of the research contract. The number of subjects thus varies in different portions of the analyses. All 279 subjects received physiological testing but adequate data were obtained for only 247. Of these, 217 received one or more evaluations of student teaching performance. # Psychological Testing As a part of the group testing program for all teacher education candidates a number of psychological tests are regularly administered by the Office of Student Services. However, due to various administrative reasons beyond the control of the researchers, a number of subjects who participated in this study were not given the complete selection battery and hence scores from several of the tests were not available. These differences are accounted for in the analyses presented in the sections which follow. The scores from three of the tests administered by the Office of Student Services were available for use in this study. The tests included the Guilford-Zimmerman Temperament Survey, the Cooperative English Test, and an Arithmetic Concepts Test (locally developed by the Office of Student Services). The Guilford-Zimmerman Temperament Survey (G-Z) is described in detail in the Manual of Instructions for the test (published by Sheridan Supply Company, Beverly Hills, California). Briefly, the test is designed to sample ten traits with 30 items for each of the ten traits (see Appendix F). It is claimed that the G-Z Survey is a systematic, impersonal interview, which can be objectively scored. The items in the G-Z Survey are stated affirmatively rather than in question form, using the second-person pronoun. The alternative responses to the 300 items in the G-Z Survey are: "Yes," "?", and "No." From the total "Yes" and "No" answers a total score was obtained for each of the ten separate traits. At the suggestion of Zimmerman to one of the investigators (Lucio), total question marks also were scored as a separate index. An additional index was obtained by means of a Scale for Rating Characteristic Level of Muscular Tension. This instrument, developed by Wenger (1948, Appendix B), was employed after observing the subjects in teaching situations. The observers placed a check mark at an appropriate point on a vertical scale. No scoring formula was shown on the rating scale, but a nine point scale was later applied for scoring, ranging from a O for the lowest scale point ("so relaxed he looks and acts almost asleep") to a O for the top of the scale ("tense"). All observers were trained in the use of the Muscular Tension Scale (MT) with particular emphasis given to rating observed overt muscular tension only, without regard to "emotional" behavior. # Physiological Testing ٦. As stated previously, nonvoluntary subjects were scheduled for physiological testing in a class in which all teacher-education candidates were required to enroll. The following instructions were given both verbally and in printed form to the subjects prior to testing: - Get an average satisfactory amount of sleep the night before the appointment. - Do not take any drugs (medications) or alcohol for a twenty-four hour period preceding the appointment. - 3. Do not take food, coffee, tea, or coca-cola for at least two hours preceding the appointment. - 4. Do not smoke or drink water for at least 1/2 hour preceding the appointment. The laboratory was situated in the University Elementary School on the University of California campus. Within a large room, which contained the recording apparatus and work space, a semi-soundproof cubicle (10' x 8' x 8') served as the subject room. The room contained only a cot, with foam-rubber mattress, and the detector units for the intended measurements. A two-way intercommunication system was provided, and the subject could be observed through a window. Room temperature could be controlled within limits (M=25.0; σ =1.8) but was determined for each testing session and treated as an uncontrolled variable. Time of testing was confined to the morning and afternoon hours (8:30 a.m. to 4:30 p.m.), and also was analyzed as an uncontrolled variable. The testing procedures have been used in many investigations of male subjects, and have been described in detail (Wenger, 1948; Wenger, Clemens and Engel, 1957). Briefly, they involve the collection of two classes of information resting or pre-stimulus data, and reactions to placing the right foot in iced water, to the level of the internal malleolus, for one minute (cold pressor stimulation). The methods of obtaining and transcribing the data are briefly described in the following paragraphs. # A. Pre-stimulus Data - Initial Measures - (1) Salivary output: The subject was seated on the cot and instructed to bring as much saliva as possible to the front of her mouth during a three-minute period. The output was drawn through a sanitary plastic ejector held just between her lips and into a calibrated centrifuge tube by means of the negative pressure produced by a filter pump attached to a water faucet. The output was determined by reading the volume at the bottom of the miniscus to the nearest tenth of a cubic centimeter, and the datum was transformed to square root of cubic centimeters output. - (2) Sublingual temperature: This measure was obtained with an ordinary clinical thermometer which the subject, while seated, held under her tongue for at least three minutes. The temperature was read in degrees Fahrenheit to the nearest tenth and transformed to the log of 102 F. minus the temperature. - (3) Standing Palmer conductance: The subject was instructed to stand in a relaxed position, feet slightly apart, and arms at her side. The electrodes attached to both palms consisted of zinc plates 3 cm. in diameter, countersunk in plastic cups. Contact with the skin was made with an agar1% zinc sulfate paste. The electrodes were connected to a Levine potentiometer. The voltage drop across the subject was recorded to the nearest tenth of a volt at the end of one and two minutes with a 40 microampere D.C. current. These values were converted to conductances and their mean was transformed to log micromhos conductance. - (4) Pupil diameter: Over her preferred eye the subject held a 5 x 8 inch black card on which pairs of pinpoint holes were drilled along converging lines so that the distances between pairs increased in half-millimeter steps from 2.5 to 8.0 mm. The other eye was covered by one hand. Through the holes she fixated an object 30 feet away, moving the card up and down until she found the pair of holes which provided
tangent images. The images may appear as over-lapping, separated, or tangent depending on their relationship to the size of the pupil. When the center-to-center distance between the holes is equal to the diameter of the pupil the images appear tangent, and the experimenter can read the pupil diameter from the opposite side of the card. The process was repeated until two consistent readings were obtained, and the datum was their value in millimeters. - (5) First finger temperature: The first measure of finger temperature was obtained with a laboratory thermometer while the subject was seated. The subject held the bulb between the thumb and first two fingers of the nonpreferred hand for three minutes. The temperature was read in degrees Centigrade to the nearest tenth and transformed to the log of 40 C. minus finger temperature. A constant current of 40 microamperes was impressed through the electrodes and the output was DC amplified. Calibration was determined by bridge regulation. The highest resistance during the first 12 minutes of recording was determined and transformed to log micromhos conductance. This measure was subtracted from the strain measure to obtain the datum for log conductance change. ### B. <u>Pre-stimulus Data - Continuous and Intermittent</u> <u>Measures</u> The twelve variables, described in this section, were recorded continuously or intermittently while the subject reclined on the cot before, during and after cold pressor stimulation. Except in the case of blood pressure and stomach motility, samples were obtained: (a) in the last 30 seconds of each minute during 15 minutes of rest preceding stimulation; (b) for each 30 seconds during stimulation and during the first minute after stimulation; and (c) in the last 30 seconds of each minute during a 15 minute recovery period. The variables were: - (1) Palmar conductance: The recording technique for this variable was described in the preceding section. Each sample consisted of the mean of the resistance levels measured to the nearest thousand ohms, at the midpoint and end of the thirty-second interval, and transformed to log micromhos conductance. - (2) Volar conductance: The apparatus and recording procedures were identical to those employed for palmar conductance. Electrodes were placed on the volar surfaces of the forearms, 8-10 cm. below the elbows. Samples were obtained in the same manner as for palmar conductance. The prestimulus datum was the highest resistance level during the first 12 minutes of rest. This measurement was transformed to log micromhos conductance. - cuff was attached to the subject's upper right arm, and a small stethoscope diaphragm was fastened over the brachial artery. Tygon tubing extended the system to the experimenter's room. The cuff was inflated once every three minutes before cold pressor stimulation, once during stimulation, and once every two minutes following stimulation. Systolic blood pressure was read in millimeters of mercury as the point of first appearance of heart sounds. The pre-stimulus datum was the mean of the two lowest readings. - (4) Diastolic blood pressure: The point of marked muffling of the heart sounds during gradual deflation of the cuff (4th blood pressure phase) was taken as the diastolic blood pressure reading. The pre-stimulus datum was the mean of the two readings accompanying those used for systolic pressure. - (5) Pulse pressure: The datum for this measure was the difference between the systolic and diastolic pressure data. - (6) Heart period: The EKG was obtained from continuous AC recording by Lead I with standard electrodes. Heart rate for each sample interval was measured by counting the number of R waves within the interval. For the pre-stimulus value, each sample was converted to mean period in milliminutes per 10 cycles, and the datum was the mean of 4 of the samples, taken at 3 minute intervals during the first 12 minutes of recording. - (7) Respiration period: A Baldwin SR-4 strain gauge was cemented to an aluminum plate attached to a strap which fastened around the subject's chest. The strain gauge functioned as one arm of a Wheatstone bridge, the output of which was DC amplified. Respiration rate was determined by counting the cycles within each sample interval to the nearest tenth cycle. For the pre-stimulus value, each sample was converted to mean period in seconds per cycle, and the datum was the mean of 4 of the samples, taken at 3 minute intervals during the first 12 minutes of recording, transformed to log seconds per cycle. - (8) Face temperature: Temperatures of the face, axilla, finger, and room temperature were recorded through a DC amplifier by means of Western Electric type 14B thermistors, each of which functioned as one arm of a Wheatstone bridge. All temperatures were recorded on one channel by means of a constant speed, motor-driven, selector switch which sampled face and axillary temperatures once and finger temperature twice every ten seconds. Room temperature was sampled approximately every three minutes. Calibration was accomplished by substituting known resistances for the thermistors, whose resistances at given temperatures had been predetermined. microliters X 100, and the pre-stimulus datum was the measure for the last sample prior to stimulation. (12) Stomach period: The subject swallowed a 3/16" x 1/2" plastic coated Alnico No. 5 magnetic rod enclosed in a gelatin capsule. The movements of the magnet in the stomach were remotely detected and amplified by a magnetometer. The peak-to-peak distance between the first and last Type I stomach contraction within each minute was measured to the nearest half second before, during, and after stimulation; and each measurement was converted to mean seconds per cycle of contraction. The last sample prior to stimulation was taken as the prestimulus datum. # C. Reactivity Data The reactivity datum for each of the continuously or intermittently recorded variables represented the difference between the level reached during or immediately after cold pressor stimulation and the level for the last sample prior to stimulation. For three variables the unit of measurement differed from that previously described. Heart and respiration rates were measured as cycles per minute, and finger temperature was measured in degrees Centigrade without a log transformation. The response levels from which the corresponding last prestimulus samples were subtracted were as follows: - (1) Systolic blood pressure: Highest pressure in millimeters of mercury recorded during the stimulus interval and the first subsequent minute. - (2) Diastolic blood pressure: Highest pressure in millimeters of mercury recorded during the stimulus interval and the first subsequent minute. - (3) Pulse pressure: Lowest pressure in millimeters of mercury recorded during the stimulus interval and the first subsequent minute. - (4) Heart rate: Maximum rate for any 15-second period within the stimulus interval, measured to the nearest half cycle and converted to cycle per minute. - (5) Respiration rate: Maximum rate for any 15-second period within the stimulus interval, measured to the nearest tenth cycle and converted to cycles per minute. - (6) Palmar conductance: Lowest resistance within the stimulus interval, measured to the nearest thousand ohms and transformed to log micromhos conductance. - (7) Volar conductance: Lowest resistance within the stimulus interval, measured to the nearest thousand ohms and transformed to log micromhos conductance. - (8) Face temperature: Highest or lowest level in degrees Centigrade to the nearest tenth reached following stimulation as a result of an increase or decrease in level initiated within the stimulus period or the first subsequent minute. - (9) Axillary temperature: Highest or lowest level in degrees Centigrade to the nearest tenth reached following stimulation as a result of an increase or decrease in level initiated within the stimulus period or the first subsequent minute. - (10) Finger temperature: Lowest level in degrees Centigrade to the nearest tenth reached following stimulation as a result of a decrease in level initiated within the stimulus period or the first subsequent minute. - (11) Finger pulse volume: Lowest mean amplitude for any 15-second period within the stimulus interval, measured in microliters to the nearest hundreth and transformed to the log of microliters X 100. - (12) Stomach period: Shortest peak-to-peak distance between the first and last contractions of any one-minute period within the stimulus interval and the first subsequent minute, measured to the nearest half-second and converted to mean seconds per cycle of contraction. # Testing Procedure Approximately an hour and a half to two hours was required for the physiological measurements. Since the sex of the operator has been found to influence results obtained from female subjects, all operators for this study were females; and since phase of menstrual cycle also influences results, testing was confined insofar as possible to a sevenday period following cessation of menstruation. On arrival at the laboratory the subject was seated and the experimenter explained the nature of the measurements and offered reassurance that the procedure would be painless. Data on age, weight, height, and smoking habits were obtained at this time. While sublingual temperature and first finger temperature were being measured, the skin conductance electrodes were applied. Next, pupil diameter, salivary output, and standing and strain palmar conductances were measured. The subject then ingested the magnet with a cup of water and reclined on the cot in the test cubicle. Dermographia was measured, and the various other electrodes and pick-up devices were explained and placed. The subject was told to lie as quietly as possible but not to fall asleep. After continuous recording with the subject at rest for fifteen minutes, the operator instructed the subject,
via the intercommunication system, to put her foot into the water and keep it there until the signal to remove it was given. A container placed to the right of the cot held iced water at a temperature of approximately 4 degrees Centigrade, which covered the foot to the level of the external malleolus. The stimulus interval was one minute. Following stimulation, recording continued throughout a fifteen minute recovery period to the termination of testing. # The Student Teaching Program The student subjects in this study were enrolled in the regular sixteen-week student teaching program of the university in the semester following testing. There are two eightweek teaching assignments each at a different grade level. Students are assigned to a classroom in one of several cooperating schools, teaching under the direction of a resident classroom teacher. A University Supervisor of Elementary Student Teaching is assigned full time to each school and supervises a relatively small number of student teachers. These supervisors who are regular members of the University-Los Angeles City Schools staff served as supervisor observers throughout the study. The principal investigator and one assistant served as outside observers. # The Evaluation of Student Teaching In the initial planning of a long-term research concerning the prediction of teacher performance, the evaluation of student teaching was envisaged as only one of the indices to be employed in attempting to predict teaching performance and emotional stability. In this study, however, it provides the major criterion variables against which tentative validations of the psychological and physiological data were accomplished. It should be emphasized that the authors do not regard these samples of student teacher performance as appropriate validation criteria. At best, they can afford no more than suggestions of the predictive value of the psychological and physiological data. In follow-up studies, which are planned, they will be employed as part of prediction information only. # Instruments Employed in Evaluation Two instruments were used in the evaluation of student teacher performance: (A) The University of California Rating Scale for Student Teaching (UR), (Appendix E), was filled out by the university supervisors at the end of sixteen weeks of teaching for each subject. This instrument contains two major rating categories, one on Personal Characteristics and one on Professional Competence. Each of these major categories contains a number of sub-items, all of which are rated by the assignment of a letter grade of A, B, C, D, or F, with A reflecting top performance and F the lowest performance. Numerical scores are assigned to each letter grade and the total score is obtained by summary of the individual letter numerical equivalents. In essence, the final total score reflects the academic grade a student receives in student teaching. The total over-all numerical score on the UR was used for correlational purposes in this study. (B) The Classroom Observation Record (COR). This instrument and accompanying Glossary, developed by Ryans (1960, Appendices C and D), was used for all observations of classroom teaching and was considered the major measure of student teacher performance. The Classroom Observation Record is a bi-polar scale based on the assumption that many personal-social traits of teachers may be assumed to constitute dimensions, the opposite extreme poles of which can be described operationally with considerable precision. The COR contains four Pupil Behavior and eighteen Teacher Behavior dimensions each of which is assessed on a seven point, or seven interval scale. A Glossary used with the COR describes the specific behaviors contributing to each of the bi-polar descriptions of teacher and pupil behavior. ## Observer Training in the Use of the Classroom Observation Record In preparing for classroom observations of student teachers particular attention was given to the training of the supervisor observers in the use of the COR. The supervisor observers were trained individually and in a group by the principal investigator following Ryans' procedures (1960). The training procedure involved the following steps: - 1. A review of the over-all design and purposes of the study and the use of the COR and Glossary. The problems involved in the observation and assessment of teaching were discussed in detail. - 2. The observers studied the COR and Glossary and questions regarding interpretation and procedures were answered. - 3. Practice observations and recordings of teaching performances were accomplished by the supervisor observers and project director. - 4. Comparisons were made between the supervisors' ratings and the principal investigator's ratings (outside observer), and the bases for assessments and the use of the Glossary clarified. - 5. Supervisors and outside observers made observations of the same student teachers, but at different times, and later discussed the assessments which had been made. - 6. Regular observations of approximately thirty minutes each were then conducted at the end of each period of teaching, generally during the last week and a half of the eight-weeks and sixteen-weeks period. The observations and ratings of the supervisors and outside observers were conducted independently. The outside observers had no prior knowledge of the teaching performance of any students observed. The use of the COR and Glossary were reviewed with the observers before and during rating periods. During regular visits of the principal investigator to the various schools conferences were held with individual supervisors regarding rating procedures so that an almost continuous review of the assessment process was in operation. The assessment procedure used in this study, therefore, involved five ratings of each student teacher, the observations being made at different times by the supervisor observers and the outside observers. The four independent ratings on the COR (and the one rating on the University of California Rating Scale) thus became the complete teaching performance record for each student teacher subject. Though ratings were made at eight-weeks and sixteen-weeks, only data on the final sixteen-week record were used, the earlier ratings being considered as practice ratings. #### Statistical Analyses of the Data The major form of analysis involved correlation of the psychological and physiological data against the various indices of student teacher performance. The psychological test data and the rating of teacher performance were employed without transformations. Many of the physiological data, however, required transformations to reduce skewness of the distributions, and many required correction for uncontrolled variables. These transformations and corrections are described in the following section. After transformation and correction the physiological data were submitted to factorial analysis to test the thesis that an autonomic factor existed among young adult women comparable to that previously reported for children and young adult men. Equations were derived for estimating the obtained factors in the population studied; the factor estimates were computed and correlated with the criterion variables. These analyses were facilitated by the availability of an IBM 7090 Digital Computor and the Standards Western Automatic Computor (SWAC) on the campus of the University of California, Los Angeles. ## 3. <u>Transformations and Corrections of the Physiological</u> Data for Effects of Uncontrolled Variables For psychological data it is usual to find normal distributions. For physiological data it is not unusual to find skewed or otherwise nonnormal distributions. An attempt was made to normalize, by appropriate transformations, all of the physiological variables whose distributions differed significantly from the normal. For the pre-stimulus data transformations were applied, as indicated by the units of measurement listed in Table 1-G, to salivary output, sublingual temperature, palmar and volar conductance, palmar conductance change, respiration period, dermographia persistence, finger temperature, and finger pulse volume. The distributions of the transformed data for some variables (sublingual temperature, dermographia persistence and first finger temperature), and of the raw data for face and axillary temperature, still showed a degree of nonnormality significant at the .05 level of confidence; however, all except that of axillary temperature were symmetrical. The elimination of skewness was the most important consideration in these transformations, since violations of the assumption of normality tend to have little effect upon the results of parametric statistical tests unless the distributions involved are asymmetrical. The distributions of the pre-stimulus data therefore were regarded as satisfactory except that of axillary temperature, for which an appropriate normalizing transformation has not yet been found. Measures of reaction to cold pressor stimulation involved the same transformations as the corresponding measures of prestimulus levels, with two exceptions: (a) reactions in heart and respiration were measured as rate instead of period, and were not transformed; and (b) finger temperature reactions were measured in degrees Centigrade, untransformed (see Table 1-H). The distributions for systolic and diastolic blood pressure, face temperature, finger pulse volume and stomach period reactions were significantly non-normal but symmetrical. tributions for palmar and volar conductance, and axillary temperature, however, were skewed in addition to being non-normal. The skewness of the distribution of volar conductance reactions was so extreme that this measure was not used in any data anal-The skewness of the other variables was much less than that of volar conductance, but still sufficient to raise some questions as to the suitability of these
measures for parametric statistical analysis. For the time being, these measures have been utilized in their present form, but further attempts are being made to find transformations which will make their distributions more symmetrical. After these transformations the data were inspected for effects of uncontrolled variables. It was anticipated that some of the physiological data would have to be corrected for some uncontrolled environmental variables, and possibly for age and weight. Early work with children had demonstrated that seasonal climate in the mid-west of the United States was an important factor (Wenger, 1943). Later work with young adult males at Santa Ana, California (Wenger, 1948) found it necessary to correct only four physiological variables in terms of two uncontrolled variables: time of day, and room temperature. Current work in Los Angeles with young adult males, however, has found additional corrections necessary. The subjects and circumstances of this study afforded the largest sample and most varied environmental conditions so far available for such an investigation. Measurements occurred between October 27, 1959, and August 17, 1960, on the University of California Campus in West Los Angeles. Although "smog" rarely causes distress in the area it is discernible at times. In this study, and in other contemporaneous work, its possible effects on the measures have been investigated. The data were made available by the Los Angeles Air Pollution Control District (APCD). They included average and maximum daily concentrations of total oxidants, precursor oxidants, carbon monoxide, nitrogen dioxide, nitrogen monoxide, ozone, and sulphur dioxide; and average daily solar radiation, wind speed and inversion base height. In addition, the Department of Meteorology on the University of California campus furnished continuous measurements of air temperature, relative humidity, and barometric pressure. Table 1-A CORRELATIONS OF PRE-STIMULUS PHYSIOLOGICAL MEASURES WITH UNCONTROLLED VARIABLES | | A | W | Ti | RT | T | Н | P | Оx | |--------------------------|------|------|------|-------|------|------|------|------| | Salivary output | - 05 | 07 | 02 | - 04 | - 04 | 03 | 07 | - 08 | | Sublingual temperature | 04 | 09 | - 22 | 21 | -10 | -30 | 29 | -10 | | Palmar conductance | -12 | -03 | 10 | 15 | 14 | -21 | 13 | -04 | | Volar conductance | 12 | 07 | 03 | 12 | -06 | -13 | 18 | 02 | | Log conductance change | - 06 | 17 | -03 | 22 | 05 | -21 | 15 | 07 | | Systolic blood pressure | 02 | 15 | -09 | -11 | 08 | 09 | -05 | 20 | | Diastolic blood pressure | 18 | 16 | - 24 | -10 | 06 | -03 | 14 | 21 | | Pulse pressure | -13 | 03 | 09 | -03 | 02 | 10 | -14 | 00 | | Heart period | 01 | 14 | -16 | -03 | - 02 | 03 | - 04 | -02 | | Respiration period | 04 | 09 | -13 | 15 | 01 | -09 | 15 | 01 | | Pupil dîameter | - 07 | - 02 | -06 | -11 | - 04 | - 02 | - 03 | -10 | | Dermographia persistence | -19 | -02 | - 09 | 02 | - 05 | -19 | 13 | - 02 | | Dermographia latency | 07 | 12 | 02 | - 0 5 | 10 | -10 | -01 | -03 | | Face temperature | 04 | 0.0 | 31 | 47 | -12 | -19 | 40 | -11 | | Axillary temperature | 07 | - 20 | 23 | 02 | -01 | 03 | 00 | -11 | | Finger temperature (1) | -06 | -12 | - 23 | -13 | - 37 | -08 | 10 | - 25 | | Finger temperature (2) | - 06 | -06 | -15 | - 36 | -17 | 08 | -12 | -15 | | Finger pulse volume | - 04 | 00 | 14 | 01 | 31 | 08 | -15 | 20 | | Stomach period | - 08 | 11 | -12 | 04 | -16 | 06 | -01 | 05 | A = age W = weight Ti= time of testing RT= initial room temperature T = external temperature at time of testing H = lowest relative humidity in previous 24 hours P = highest barometric pressure in previous 24 hours Ox= maximum oxidant concentration on test day Table 1-B CORRELATIONS OF PHYSIOLOGICAL REACTIONS TO COLD PRESSOR STIMULATION WITH UNCONTROLLED VARIABLES | | A | W | Тi | RT | T | Н | P | 0x | Base | |-------------------------|------|------|-----|------|------|------|------|------|------| | Systolic blood pressure | 04 | - 04 | 12 | -12 | 08 | -05 | - 05 | 02 | -16 | | Diastolic blood pressur | e 04 | 04 | 11 | - 00 | 13 | 01 | 05 | 08 | -31 | | Pulse pressure | 02 | -03 | -01 | -06 | - 04 | - 08 | -06 | - 04 | - 39 | | Heart rate | -08 | 05 | 01 | -01 | 12 | -16 | 09 | 09 | - 22 | | Respiration rate | -02 | 05 | -11 | 05 | -10 | - 08 | 10 | 01 | - 29 | | Palmar conductance | -13 | -06 | 05 | 15 | 13 | - 25 | 15 | -06 | 21 | | Finger temperature | 12 | 03 | -06 | 07 | - 02 | - 08 | 05 | -08 | -36 | | Face temperature | -01 | 03 | 04 | - 07 | 07 | 07 | -06 | 06 | -15 | | Axillary temperature | 06 | 07 | 00 | 02 | 20 | -11 | 03 | 13 | - 05 | | Finger pulse volume | -00 | - 08 | -18 | -14 | -19 | 04 | -06 | -09 | - 58 | | Stomach period | -07 | 08 | 11 | 07 | 11 | -06 | - 02 | 02 | - 38 | A = age W = weight Ti= time of testing RT= initial room temperature T = external temperature at time of testing H = lowest relative humidity in previous 24 hours P = highest barometric pressure in previous 24 hours Ox = maximum oxidant concentration on test day Base= pre-stimulus baseline Table 1-C MEANS AND STANDARD DEVIATIONS OF UNCONTROLLED VARIABLES, AND THEIR INTERCORRELATIONS | | Unit of measurement | Mean | S.D. | Correction
Baseline* | Inter
A W | Intercorrelations
A W Ti RT T | latio
RT | | H | Ъ | |---|---------------------|-------|------|-------------------------|--------------|----------------------------------|-------------|------------|------|-----| | Age | Years | 22.7 | 3.9 | 22.0 | | | | | | | | Weight | Pounds | 122.4 | 15.2 | 120.0 | 13 | | | | | | | Time of testing | Hours | 12.4 | 2.6 | 11.0 | -14 -12 | 0.1 | | | | | | Room temperature | С. | 25.0 | 1.8 | 24.0 | 13 07 | 26 | | | | | | External temperature | н. | 63.9 | 7.2 | 65.0 | 10 06 | 15 | 0.7 | | | | | Lowest relative humid-
ity previous 24 hours | Per cent | 38.2 | 18.8 | 40.0 | -04 -07 | | 06 -37 -28 | 28 | | | | Highest pressure
previous 24 hours | Barometric inches | 30.09 | .10 | 30.05 | 11 0 | 05 05 | 53 -05 -57 | 05 - | 57 | | | Maximum oxidant con-
centration test day | Parts/100 million | 10.9 | 6.8 | 5.0 | 15 12 -02 | -02 | 01 | 50 -05 -07 | 05 - | 0.7 | *The correction baseline is the arbitrary value used in place of the sample mean in the correction equations for the resting and reactivity physiological measures. and inspection of trend. As a result of this decision all but one (dermographia latency) were corrected. In addition, some variables were corrected for age, weight, or oxidant concentration, as indicated by the analyses; and all physiological reactivity data were corrected for pre-stimulus baseline effects. Table 1-C shows the means and standard deviations of the uncontrolled variables that appear in Tables 1-A and 1-B; and presents also their coefficients of intercorrelation, as well as the arbitrary baseline values employed in the correction equations. The correction equations appear in Tables 1-D and 1-E, and Table 1-F presents the uncorrected pre-stimulus means and standard deviations upon which the corrections of physiological reactions to cold pressor stimulation were based. It should be noted that, for purposes of convenience, arbitrary baseline values were employed instead of the sample means. These "correction baseline" values also appear in Tables 1-F and 1-C. The means and standard deviations of the corrected data are presented in Tables 1-G and 1-H. ### 4. Factorial Analyses of the Corrected Physiological Data After correcting the physiological data, as described in the preceding section, the next step in the analysis of the results was to test the hypothesis that an <u>autonomic</u> factor exists for young adult female subjects. Earlier work had demonstrated such a factor under resting and other controlled conditions for children (Wenger and Ellington, 1943), and for young adult males and selected male patients, #### Table 1-E #### EQUATIONS FOR CORRECTION OF PHYSIOLOGICAL REACTIONS TO COLD PRESSOR STIMULATION | Systolic blood pressure | zc=zx17z3+ | .22 | z ₄ 04z ₅ 13z ₆ +.02z ₇ +.15z _p | |--|---|-------------|--| | Diastolic blood pressure | z _c =z _x 03z ₃ + | .13 | z ₄ 20z ₅ 14z ₆ 24z ₇ +.34z _p | | Pulse pressure | $z_c = z_x07z_3 +$ | .04 | z ₄ +.11z ₅ +.21z ₆ +.21z ₇ +.40z _p | | Heart rate | $z_{c} = z_{x}07z_{3} +$ | .12 | z ₄ 08z ₅ +.15z ₆ 07z ₇ +.23z _p | | Respiration rate | $z_{c} = z_{x} + .05z_{3} +$ | .12 | z ₅ +.09z ₆ 01z ₇ +.28z _p | | Palmar conductance | z _c =z _x +.14z ₁ + | .01: | z ₃ 09z ₄ 07z ₅ +.22z ₆ +.02z ₇ 20z _p | | Finger temp. | z _c =z _x 12z ₁ + | .03: | z ₃ 22z ₄ +.02z ₅ +.05z ₆ +.05z ₇ +.44z _p | | Face temp. | | | z ₄ 06z ₅ 08z ₆ 06z ₇ +.17z _p | | Axillary temp. | $z_c = z_x + .01z_3 + .$ | .02: | z ₄ 19z ₅ +.05z ₆ 02z ₇ +.04z _D | | Finger pulse volume | | | z ₃ +.04z ₄ 01z ₅ -D1z ₆ +.11z ₇ +.59z _p | | Stomach period | z _c =z _x +.12z ₁ | .14: | z ₂ 03z ₃ 12z ₄ 02z ₅ +.04z ₆ +.11z ₇ +.40z _p | | z _c = corrected standa | ard score | 1 == | initial room temperature | | z_x = uncorrected star | | | external temperature at time of | | <pre>1= age 2= weight 3= time of testing</pre> | | 6= | testing
lowest relative humidity in previous
24 hours | | ĕ | | 7 | 1- 2 - 1 4 - 1 4 - 2 | 7= highest barometric pressure in previous 24 hours p= pre-stimulus level $z_{i} = (X_{i} - B_{i})/\sigma_{i}$ where the values of B_{i} are the correction baseline values shown in Table 1-C, and the values of $B_{\rm p}$ are the baseline values shown in Table 1-F. Table 1-F | MEANS AND STANDARD DEVIATION BASELINES UPON WHICH CO | S AND STANDARD DEVIATIONS OF UNCORRECTED PRE-STIMULUS LEVELS AND BASELINES UPON WHICH CORRECTIONS OF PHYSIOLOGICAL REACTIONS WERE | ULUS LEVEI
REACTIONS | |
ARBITRARY
BASED | |--|---|-------------------------|------|------------------------| | Variable | Unit of Measurement | Mean | S.D. | Correction
Baseline | | Systolic blood pressure | mm. Hg. | 104.3 | 9.1 | 105.0 | | Diastolic blood pressure | mm. Hg. | 9.99 | 7.9 | 65.0 | | Pulse Pressure | mm. Hg. | 37.8 | 10.3 | 40.0 | | Heart rate | cycles per minute | 69.4 | 9.4 | 70.4 | | Respiration rate | cycles per minute | 16.4 | 3.1 | 17.0 | | Palmar conductance | log micromhos | .735 | .220 | .700 | | Finger temperature | С. | 30.93 | 3.84 | 32.00 | | Face temperature | С. | 34.32 | 1.35 | 35.00 | | Axillary temperature | С. | 35.88 | .82 | 36.00 | | Finger pulse volume | log (microliters x100) | 2.060 | .240 | 2.000 | | Stomach period | seconds per cycle | 20.94 | 2.09 | 20.00 | Table 1-G MEANS AND STANDARD DEVIATIONS OF CORRECTED PRE-STIMULUS PHYSIOLOGICAL MEASURES | | Unit of measurement | Mean | S.D. | |--------------------------|----------------------------|-------|-------| | Salivary output | sq. root cc. | 1.60 | .48 | | Sublingual temperature | log (102.0-F.) | . 555 | 090. | | Palmar conductance | log micromhos | .978 | .254 | | Volar conductance | log micromhos | .848 | .164 | | Log conductance change | log micromhos | .420 | .238 | | Systolic blood pressure | mm. Hg. | 100.7 | 8.2 | | Diastolic blood pressure | mm. Hg. | 65.0 | 8.9 | | Pulse pressure | mm. Hg. | 35.8 | 0.6 | | Heart period | milliminutes per 10 cycles | 147.4 | 18.9 | | Respiration period | log seconds per cycle | .576 | 620. | | Pupil diameter | millimeters | 4.61 | 1.14 | | Dermographia persistence | log minutes | .475 | .302 | | Dermographia latency | seconds | 15.6 | 4.9 | | Face temperature | C | 33.67 | 1.13 | | Axillary temperature | С. | 35.76 | .77 | | Finger temperature (1) | log (40.0 - C.) | .989 | .190 | | Finger temperature (2) | log (40.0 - C.) | .952 | .184 | | Finger pulse volume | log (microliters x 100) | 2.062 | . 223 | | Stomach period | seconds per cycle | 21.18 | 2.19 | (Wenger, 1948). Another study describes a similar factor for male college students and custodians (Wenger, 1962-b). In that study, and in the present one, reactions to cold pressor stimulation also were analyzed to determine whether or not separate factors exist for autonomic reactivity. The intercorrelations among the corrected pre-stimulus data for 245 female subjects are presented in Table 1-I. The coefficients are perhaps the lowest yet reported for such data, but low coefficients do not preclude the existence of factors. They do indicate a higher degree of unique variance among these variables for these subjects than has been found in previous studies. That common factor variance does exist among these data may be seen in Table 1-J which shows the centroid solutions and the visually rotated solutions. As in previous work in this area, no attempt has been made to achieve simple structure, or positive manifold. Instead, following a suggestion made by Thurstone to one of the investigators (Wenger), rotations have sought to maximize the predicted autonomic factor. The present results are less definitive than in previous analyses of young adult males (Wenger, 1948). Although Factor II corresponds fairly well to previously described general autonomic factors, Factors III and IV are not interpretable, and Factor I appears to be a separate skin conductance factor. Graphic plots of the rotated solution suggested that Factor III might be more clearly defined if it were rotated obliquely toward Factor III. Factor III', which was Table 1-I INTERCORRELATIONS AMONG PRE-STIMULUS PHYSIOLOGICAL MEASURES | Variables | | r-4 | 2 | м | 4 | Ŋ | 9 | 7 | œ | 6 | 10 | |---------------------------|---------------|------------|-----|-----|-----|-------|-----|------|-----|------|----| | Salivary Output | 1 | | | | | | | | | | | | Sublingual Temperature* | 7 | 90 | | | | | | | | | | | Palmar Conductance* | ы | 02 | 60 | | | | | | | | | | Volar Conductance* | 4 | 10 | 07 | 19 | | | | | | | | | Log Conductance Change | z, | 00 | ÷01 | -26 | 01 | | | | | | | | Heart Period | 9 | - 08 | 22 | 18 | 0.8 | - 03 | | | | | | | Second Finger Temperature | 7 | 01 | -02 | -01 | 07 | - 04 | 11 | | | | | | Respiration Period | œ | 0.5 | 04 | 00 | -02 | 03 | 00 | 00 | | | | | Pupillary Diameter* | Ø | 8 0 | 00 | 0.7 | 0.2 | 90 | 80 | 60- | -11 | | | | Dermographia Persistence | 10 | 60 | -01 | 08 | 04 | 00 | 60- | - 05 | -03 | 03 | | | Systolic Blood Pressure* | 11 | 03 | 90 | 16 | 00 | - 0 5 | 23 | 01 | 03 | - 04 | 01 | Indicates reflection of variable Max. N = 245 females Table 1-J THE FACTOR SOLUTIONS OF PRE-STIMULUS PHYSIOLOGICAL MEASURES | | | Ü | Centroid | | Solution | | | Rotated | | Solution | nc | |--------------------------|------------|------|-------------|-----|----------|----------------|------|---------|------|----------|------| | Variables | | | | III | ΛI | h ² | H | II | III | ΙΛ | 'III | | Salivary Output | , - | 14 | -15 | 27 | 13 | 13 | - 02 | 13 | 32 | 80 | 34 | | Sublingual Temperature* | 2 | 97 | 19 | 10 | 12 | 13 | 90- | 36 | 0.0 | -01 | 20 | | Palmar Conductance* | 2 | 52 | -17 | -21 | - 20 | 39 | 26 | c.3 | - 04 | 01 | 12 | | Volar Conductance* | 4 | 31 | - 08 | 23 | -10 | 16 | 18 | 25 | 2.5 | - 08 | 35 | | Log Conductance Change | Ŋ | -24 | 0.8 | 17 | 59 | 18 | -40 | - 0 5 | 0.7 | 13 | 03 | | Heart Period | 9 | 40 | 42 | -19 | 10 | 37 | 00 | 20 | - 35 | 90- | - 02 | | Second Finger Temp. | 7 | - 07 | -13 | 80- | 17 | 90 | -02 | - 08 | -01 | 23 | -05 | | Respiration | ∞ | -07 | 14 | 14 | - 08 | 0.5 | -13 | 0.0 | 04 | -19 | 03 | | Pupillary Diameter* | თ | 12 | - 18 | -13 | 32 | 16 | - 03 | 0.8 | - 02 | 39 | 03 | | Dermographia Persist. | 10 | 60 | -25 | 0.8 | 11 | 60 | 10 | 0.2 | 20 | 20 | 7.8 | | Systolic Blood Pressure* | 11 | 28 | 22 | -11 | 90 | 15 | 04 | 33 | -19 | -01 | 0.2 | * Indicates reflection of variable Max. N = 245 females the result of a 34° rotation, provided no better basis for interpretation than did the orthogonal Factor III. Additional analyses of these data are being conducted. As previously stated, this is the first such study of physical data in adult female subjects. Phase of menstrual cycle is known to be important in such measurements. Although attempts were made to control for this influence, they were not uniformly successful. Only further work can determine the reliability and validity of the obtained factors. For our present purposes, however, regression equations have been derived for estimating all five factors. The equations are shown in Table 1-K. The estimates for all factors are utilized in the next section. One comment should be added. We believe that Factor II represents a general factor of ANS function. As evidence for this belief we call attention not only to the constellation of rotated Factor II but to the following fact. The regression equation for estimating the autonomic factor for young male adults (Wenger, 1948) was applied to the data of the present study. The correlation between these estimates, and the estimates of Factor II of the present study, was .75. Such a result is hardly a chance statistic. A factor analysis of reactivity to cold pressor stimulation also was conducted. The intercorrelations among the variables appear in Table 1-L, which includes the major uncontrolled variables against which corrections were made. The latter were included for two purposes: to test the correction Table 1-K EQUATIONS FOR ESTIMATION OF FACTORS FROM PRE-STIMULUS PHYSIOLOGICAL DATA Factor I = $-.47z_3 - .09z_4 - .27z_5 - .12z_8$ Factor II = $.12z_1 + .24z_2 + .12z_3 + .17z_4 + .37z_6 + .20z_{11}$ Factor III = $.26z_1 + .24z_4 - .30z_6 + .14z_{10} - .13z_{11}$ Factor IV = $-.12z_4+.28z_7-.14z_8-.39z_9+.20z_{10}$ Factor III' = $.29z_1 + .16z_2 + .30z_4 + .14z_{10}$ 1 = Salivary output 7 = Second finger temperature 2 = Sublingual temperature* 8 = Respiration period 3 = Palmar conductance* 9 = Pupil diameter* 4 = Volar conductance* 10 = Dermagraphia persistence 5 = Log conductance change 11 = Systolic blood pressure 6 = Heart period * Indicates reflection of variable $$z_{\hat{1}} = (X_{\hat{1}} - X_{\hat{1}}) / \delta_{\hat{1}}$$ Table 1-L INTERCORRELATIONS AMONG PHYSIOLOGICAL REACTIONS TO COLD PRESSOR STIMULATION AND SELECTED UNCONTROLLED VARIABLES 13 12 10 6 ∞ 9 Ŋ M | 35 | | | | | | | | | | | |---------|-------|----------------------|---|---|---|--|--
---|--|--| | -03 -12 | | | | | | | | | | | | 22 02 | 60 | | | | | | | | | | | -13 -08 | - 05 | 00 | | | | | | | | | | 03 - 05 | 90 | 00 | 11 | | | | | | | | | 06 03 | -01 | -07 | 90 | 60 | | | | | | | | 00 -02 | - 0 5 | 90 | .03 | 0.5 | -03 | | · | | | | | 00 00 | 0.1 | 00 | 00 | 01 | 0.1 | -02 | | | | | | 00 00 | 01 | 00 | 0.1 | -02 | 90- | -01 | 26 | | | | | -01 00 | 00 | 00 | 00 | -01 | -02 | -01 | 15 | 07 | | | | 00 00 | 00 | 0.0 | 00 | 0.1 | 0.0 | 00 | 90 | -37 | -28 | | | 00 00 | 00 | 00 | 0.0 | - 01 | -02 | -01 | 0.5 | 53 | - 0 5 | -57 | | | | 00
00
00
00 | 06 00
-01 -07
-05 06
01 00
00 00
00 00 | 06 00
-01 -07
-05 06 -
01 00
00 00
00 00 | 06 00 11 -01 -07 06 -05 06 -03 01 00 | 06 00 11 -01 -07 06 09 -05 06 -03 05 01 00 00 01 01 00 01 -02 00 00 00 -01 00 00 00 01 00 00 00 01 00 00 00 -01 00 00 00 -01 | 06 00 11 -01 -07 06 09 -05 06 -03 05 -03 01 00 00 01 01 00 00 01 -02 -06 00 00 00 -01 -02 00 00 00 01 00 00 00 00 -01 -02 00 00 00 -01 -02 | 06 00 11 -01 -07 06 09 -05 06 -03 05 -03 01 00 00 01 -02 -01 00 00 01 -02 -01 -01 00 00 00 -01 -01 00 00 00 00 -01 -02 -01 00 00 00 -01 -02 -01 00 00 00 -01 -02 -01 00 00 00 -01 -02 -01 | 06 00 11 -01 -07 06 09 -05 06 -03 -03 01 00 00 01 -02 01 00 01 -02 -06 -01 26 00 00 01 -02 -01 26 00 00 00 -01 -02 -01 15 00 00 00 -01 -02 -01 15 00 00 00 00 00 00 06 00 00 00 -01 -02 -01 05 00 00 00 -01 -02 -01 05 | 06 00 11 -01 -07 06 09 -05 06 -03 05 -03 01 00 00 01 01 -02 01 00 01 -02 -06 -01 26 00 00 01 -02 -01 15 07 00 00 00 -01 06 -37 00 00 00 -01 -02 -01 05 -37 00 00 00 -01 -02 -01 05 -37 00 00 00 -01 -02 -01 05 -37 00 00 00 -01 -02 -01 05 -37 | * Indicates reflection of variable Maximum N = 245 females equations, and to define one or more hypothetical orthogonal factors. The centroid solution and a rotated solution obtained by Kaiser's Varimax method (1959) appear in Table 1-M. Wenger (1962 b) has recently conducted another factor analysis for similar reactivity data from a male sample. That, and the present analysis, constitute the first extensive factorial investigations of physiological reactivity to any stimulus. For resting (pre-stimulus) data there exists a theoretical framework from which to predict a general factor of autonomic function (Wenger, 1948). No comparable theoretical basis exists for predicting a factor or factors for cold pressor reactivity data. For this reason we have deferred further study of the reactivity factors. # 5. Relationships Among Ratings of Student Teacher Performance and the Physiological and Psychological Variables The next step in the analysis of results was to correlate the physiological and psychological data against the criterion variables - the Classroom Observation Record (COR) and the University of California Rating Scale for Student Teaching (UR). The COR indices (described in Section 2 and Appendix C) provide four discrete scores. These scores involve: independent ratings by the supervisors (Sup.) and by the outside observers (Obs.) of teacher behavior (TB), and pupil behavior (PB). The combinations of TB and PB provide the total rating (TR); and the means of the Sup. and Obs. ratings provide a mean score (M) for each rating category. Thus a total of nine scores were obtained from the COR. The means and standard deviations THE FACTOR SOLUTIONS OF PHYSIOLOGICAL REACTIONS TO COLD PRESSOR STIMULATION Table'1-M | | | | Ū | Centroid | | Solution | uo | | | Varimax | | Rotated | Solution | tion | |-------------------------|----|------|------|----------|------|----------|------|---------------------|-----|---------|------|---------|----------|------| | | | H | II | III | IV | > | IΛ | $^{\mathrm{h}_{2}}$ | н | II | III | ΙΛ | Λ | VI | | Systolic blood pressure | Н | 26 | 38 | 22 | 60 | -11 | 14 | 30 | 00 | 5.5 | 00 | 0.2 | -01 | -02 | | Heart rate | 7 | 40 | 57 | 16 | -10 | 90 | 15 | 55 | -01 | 67 | 90 | -30 | -01 | -02 | | Respiration rate | 2 | 29 | 34 | -13 | -25 | . 26 | -04 | 35 | 00 | 23 | 00 | -54 | 0.2 | 00 | | Palmar conductance | 4 | - 05 | - 04 | 19 | 18 | -18 | 11 | 12 | 00 | 11 | 02 | 32 | 00 | 0.0 | | Face temperature | Ŋ | 17 | 17 | 13 | 16 | -11 | 0.8 | 12 | 01 | 32 | - 08 | 10 | 0.2 | 03 | | Axillary temperature | 9 | -16 | -11 | 12 | -14 | 0.5 | 11 | 60 | 01 | -11 | 97 | 0.5 | 00 | - 03 | | Finger pulse volume* | 7 | 60- | 03 | 22 | - 05 | . 03 | 17 | 60 | 00 | 10 | 24 | 13 | -02 | -04 | | Stomach period* | ø, | 60- | 90 | 10 | -19 | 60 | 16 | 60- | 03 | 03 | 59 | - 07 | -03 | -01 | | Finger temperature* | 6 | 04 | 60 | - 04 | 0.5 | -15 | -10 | 0.5 | 00 | 0.8 | -16 | 02 | 60- | -07 | | Time of day | 10 | 18 | -14 | 19 | 22 | 38 | - 07 | 29 | 0.2 | 0.2 | -01 | -01 | 53 | 90 | | Room temperature | 11 | 52 | -45 | 59 | -07 | 11 | -17 | 09 | 63 | 00 | -05 | 00 | 45 | 0.1 | | External temperature | 12 | 21 | -17 | -23 | 19 | 12 | 36 | 31 | 0.2 | 01 | -03 | 00 | 60 | 54 | | Relative humidity | 13 | - 50 | 42 | 11 | 25 | 26 | -31 | 99 | -67 | -02 | -03 | 00 | 16 | -43 | | Barometric pressure | 14 | 49 | -40 | 20 | -37 | - 28 | -17 | 89 | 8.2 | 00 | - 03 | 00 | 00 | -11 | Table 1-N MEANS AND STANDARD DEVIATIONS OF CRITERION VARIABLES AND PSYCHOLOGICAL MEASURES | | Mean | S.D. | |-------------------------|------|-------| | Teacher behavior (Sup.) | 5.4 | 1.12 | | Teacher behavior (Obs.) | 5.0 | .87 | | Teacher behavior (Mean) | 5.2 | . 86 | | Pupil behavior (Sup.) | 5.2 | 1.28 | | Pupil behavior (Obs.) | 4,9 | .98 | | Pupil behavior (Mean) | 5.0 | 1.05 | | Total rating (Sup.) | 5.3 | 1.09 | | Total rating (Obs.) | 5.0 | .86 | | Total rating (Mean) | 5.1 | .92 | | University rating | 4.2 | .58 | | Muscle tension (Sup.) | 4.8 | 1.92 | | Muscle tension (Obs.) | 4.9 | 1.51 | | Muscle tension (Mean) | 4,9 | 1.42 | | GZ. scale G | 17.7 | 5.4 | | GZ. scale R | 19.3 | 4.2 | | GZ. scale A | 17.7 | 5.2 | | GZ. scale S | 23.8 | 4.2 | | GZ. scale E | 22.1 | 4.2 | | GZ. scale O | 21.6 | 4.2 | | GZ. scale F | 20.6 | 4.7 | | GZ. scale T | 18.8 | 4.7 | | GZ. scale P | 22.8 | 4.6 | | GZ. scale M | 13.1 | 4 . 1 | | GZ. question marks | 17.1 | 20.1 | Table 1-0 INTERCORRELATIONS AMONG CRITERION VARIABLES | COR | TЪ | ТВо | TD | gg | מת | DЪ | TD | Тъ | T D | |-------------------------|-----|-----|-----------------|-----------------|-----|-----------------|-----------------|-----|-----------------| | Teacher behavior (Sup.) | TBs | 100 | ТВ _т | PB _s | РВо | PB _m | TR _s | TRo | TR _m | | Teacher behavior (Obs.) | 40 | | | | | | | | | | Teacher behavior (Mean) | 90 | 81 | | | | | | | | | Pupul behavior (Sup.) | 71 | 32 | 67 | | | | | | | | Pupil behavior (Obs.) | 35 | 81 | 67 | 38 | | | | | | | Pupil behavior (Mean) | 68 | 66 | 78 | 90 | 80 | | | | | | Total rating (Sup.) | 99 | 41 | 90 | 81 | 38 | 76 | | | | | Total rating (Obs.) | 40 | 99 | 80 | 35 | 88 | 72 | 41 | | | | Total rating (Mean) | 88 | 81 | 99 | 7 4 | 73 | 86 | 90 | 82 | | | University Rating (UR) | 71 | 35 | 63 | 65 | 35 | 60 | 73 | 36 | 65 | ^{*} In this and in tables I-P and I-Q the maximum N's are 169 for UR, 187 for Obs., and 217 for Sup. and Mean. Table 1-P CORRELATIONS OF CRITERION VARIABLES WITH PRE-STIMULUS PHYSIOLOGICAL MEASURES AND FACTOR ESTIMATES | | | $^{\mathrm{TB}}\mathbf{s}$ | ТВ _О | \mathtt{TB}_{m} | $\mathtt{PB}_{\mathtt{S}}$ | PB _O | $PB_{\mathbf{m}}$ | TRs | TR_{O} | TR_{m} | UR | |---|--------------------------|----------------------------|-----------------|-------------------|----------------------------|-----------------|-------------------|------|----------|----------|------| | | Salivary output | -10 | -14 | -12 | -06 | -12 | -11 | -09 | -13 | -12 | - 04 | | Ď | Sublingual temperature | 00 | 01 | 04 | -06 | -06 | -03 | -01 | 00 | 03 | -13 | | | Palmar conductance | - 05 | 04 | -03 | 04 | 10 | 06 | - 04 | 0.5 | -01 | 05 | | | Volar conductance | - 02 | 02 | -02 | 05 | 10 | 08 | -01 | 03 | -01 | -02 | | | Log conductance change | -08 | 07 | -02 | -03 | 06 | 01 | - 07 | 07 | -01 | - 04 | | | Systolic blood pressure | 08 | 01 | 06 | 00 | 02 | 01 | 07 | 01 | 05 | 00 | | | Diastolic blood pressure | 06 | -03 | 02 | 06 | 05 | 07 | 07 | -01 | 04 | 0.5 | | | Pulse pressure | 03 | 02 | 04 | -
04 | -02 | - 04 | 01 | 01 | 02 | -03 | | • | Heart period | - 04 | - 02 | - 05 | -04 | - 07 | -06 | - 04 | - 03 | -06 | 06 | | | Respiration period | 02 | -14 | - 05 | 00 | -14 | -06 | 02 | -15* | - 05 | 06 | | L | Pupil diameter | -01 | -15* | - 08 | -02 | - 09 | - 07 | - 02 | -14 | -09 | 05 | | | Dermographia persistence | -10 | 01 | - 05 | - 07 | -05 | -06 | -10 | 00 | -04 | -14 | | | Dermographia latency | 08 | -02 | 05 | 10 | 06 | 09 | 09 | 00 | 06 | -03 | | | Face temperature | -02 | 00 | - 04 | -01 | 02 | -03 | - 03 | 00 | -05 | - 03 | | | Axillary temperature | -10 | -17* | -17* | -05 | -14 | -12 | -11 | -17 | -18* | -03 | | | Finger temperature (1) | - 02 | -14 | - 07 | - 04 | -20 * | -12 | -02 | -15* | -09 | -11 | | | Finger temperature (2) | -12 | -17* | -18* | -13 | -19* | -19* | -13 | -17* | -19* | -10 | | | Finger pulse volume | 03 | 07 | 07 | 05 | 04 | 04 | 04 | 06 | 06 | 09 | | | Stomach period | 18* | 02 | 08 | 05 | 09 | 03 | 16* | 03 | 07 | 05 | | | Factor I | 07 | -03 | 05 | -03 | - 09 | -05 | 06 | - 0 5 | 02 | -02 | | | Factor II | - 0 5 | - 04 | - 05 | - 08 | -13 | -10 | -05 | -06 | -06 | -03 | | | Factor III | -03 | -05 | -01 | - 04 | - 07 | -06 | -03 | - 05 | - 02 | - 08 | | | Factor IV | -11 | 09 | -03 | -08 | 02 | - 04 | -10 | 08 | -03 | -14 | | | Factor III' | -08 | - 09 | - 07 | -11 | -17* | -15* | -08 | -11 | - 08 | - 09 | ^{*} Significant at .05 level or beyond Table 1-Q CORRELATIONS OF CRITERION VARIABLES WITH PHYSIOLOGICAL REACTIONS TO COLD PRESSOR STIMULATION | | | ${^{\mathrm{TB}}}_{\mathrm{s}}$ | $^{\mathrm{TB}}$ o | TB_{m} | PB_s | $^{\mathrm{PB}}$ o | $PB_{\mathbf{m}}$ | $^{\mathrm{TR}}\mathbf{s}$ | ${\rm TR}_{\rm O}$ | ${\rm TR}_{m}$ | UR | |---|--------------------------|---------------------------------|--------------------|----------|--------|--------------------|-------------------|----------------------------|--------------------|----------------|------| | • | Systolic blood pressure | -06 | -03 | - 05 | -09 | -06 | - 09 | -08 | -03 | -06 | -15* | | | Diastolic blood pressure | 0.0 | 00 | 01 | - 04 | 06 | -01 | 00 | 01 | 01 | -05 | | | Pulse pressure | - 03 | 0.5 | -01 | -01 | - 04 | -03 | - 04 | 04 | -02 | - 08 | | | Heart rate | - 07 | -09 | -06 | -04 | - 03 | -03 | - 07 | - 07 | -05 | -18* | | | Respiration rate | -10 | -08 | -11 | -15* | -11 | -16* | -12 | -08 | -13 | -18* | | | Palmar conductance | 05 | 01 | 05 | 08 | 04 | 10 | 06 | 01 | 06 | -05 | | | Face temperature | -02 | 11 | 06 | -03 | 06 | 03 | -01 | 10 | 06 | 03 | | r | Axillary temperature | 13 | 06 | 12 | 09 | -02 | 09 | 13 | 04 | 12 | 15 | | | Finger temperature | 15* | 0.8 | 14* | 10 | 01 | 09 | 15* | 07 | 14* | 03 | | • | Finger pulse volume | -03 | 00 | 00 | -02 | 00 | 00 | -03 | 00 | -01 | - 08 | | | Stomach period | 11 | -04 | 09 | -04 | -19 | -11 | 08 | -07 | 06 | -02 | ^{*} Significant at .05 level or beyond Table 1-R CORRELATIONS OF CRITERION VARIABLES WITH GUILFORD-ZIMMERMAN SCORES AND MUSCLE TENSION RATINGS | | ${\tt TB}_{\tt S}$ | TB _o | $\mathtt{TB}_{\mathtt{m}}$ | PB_{S} | PB_{O} | PB_{m} | ${\tt TR}_{\tt S}$ | TR_{o} | TR_{m} | UR | |-----------------------|--------------------|-----------------|----------------------------|-------------|----------|---------------|--------------------|--------------|----------|------| | GZ. scale G | 06 | 00 | 08 | 11 | 02 | 12 | 08 | 00 | 09 | 08 | | GZ scale R | 10 | 13 | 10 | 03 | 17* | 07 | 09 | 14 | 09 | 03 | | GZ scale A | 105 | 11 | 10 | 13 | 03 | 12 | 07 | 11 | 10 | 12 | | GZ scale S | 27* | 14 | 26* | 27 * | 11 | 25* | 29* | 15* | 27* | 33* | | GZ. scale E | -01 | 05 | -01 | 04 | 06 | 03 | - 0 0 | 06 | -00 | 01 | | GZ. scale O | 15* | 05 | 10 | 19* | 01 | 12 | 16* | 05 | 11 | 15 | | GZ. scale F | 04 | 00 | 00 | 01 | -03 | -03 | 04 | -01 | -01 | - 07 | | GZ. scale T | 02 | - 04 | -00 | - 05 | 00 | - 0 5 | 01 | -03 | -01 | -13 | | GZ. scale P | 10 | 08 | 06 | 02 | -03 | -01 | 09 | 07 | 05 | 00 | | GZ. scale M | -02 | 13 | 00 | 07 | 11 | 06 | 00 | 13 | 02 | 01 | | GZ. question marks | 01 | -02 | - 04 | 01 | - 09 | - 07 | 02 | - 09 | -05 | 00 | | Muscle tension (Sup.) | -10 | 00 | -09 | -18* | -01 | -13 | -13 | 00 | -10 | -16 | | Muscle tension (Obs.) | -15* | -30* | -23* | -13 | -30* | - 2 3* | -15* | -31* | -25* | -11 | | Muscle tension (Mean) | - 26* | -19* | -28* | -27* | - 23* | -28* | -28* | -20 * | -30* | -27* | ^{*} Significant at.05 level or beyond Maximum N for G-Z scales = 201 Maximum N for muscle tension (Sup.) and (Mean) = 136 Maximum N for muscle tension (Obs.) = 193 The outside observers contributed the major proportion of the significant relationships obtaining between ratings of muscle tension (MT) and the criterion variables. Although this raises the question of halo effect, the consistent significant relationships found here at least suggest that more objective measures of muscular tension might contribute significantly to the prediction of teacher performance in the classroom. #### The Prediction of Student Teacher Performance Although an analysis of data for drop-outs against those for continuing students was planned, the sample provided only 10 drop-outs. Of this group physiological data for four had been excluded from the analysis because of respiratory infections, medication, or high sublingual temperature. The remaining drop-out N of 6 was considered too small for analysis. This study, therefore, provides little data for determining the value of the tests in the prediction of emotional stability or instability associated with teaching. It does provide preliminary information concerning the value of the tests in the prediction of student teacher performance. The basic data are the correlation coefficients against the two major criterion variables TR_m and UR which have been presented in Tables 1-P, 1-Q, and 1-R. Although the correlation coefficients are low, it must be remembered that the intercorrelations among the physiological variables are also low. Their magnitude, therefore, does not preclude their use in the prediction of teacher performance. To this end selected multiple correlations were computed and regression equations obtained. They appear in Table 1-S. Table 1-S MULTIPLE CORRELATION COEFFICIENTS AND BETA WEIGHTS FOR PREDICTING MAJOR CRITERION VARIABLES FROM SELECTED PHYSIOLOGICAL AND PSYCHOLOGICAL VARIABLES | Variables | TR_{m} | ${\tt TR}_{\tt m}$ | a Wei
UR | ghts
UR | TRo | |----------------------------------|----------|--------------------|-------------|------------|-----| | Salivary output | 11 | 12 | | | 11 | | Finger temperature (2) | 15 | 15 | 05 | 08 | 15 | | Axillary temperature | 17 | 18 | | | 14 | | Sublingual temperature | | | 08 | 06 | | | Dermographia persistence | | | 11 | 15 | | | Respiration Period | | | | | 13 | | Pupillary Diameter | | | | | 16 | | Muscle tension mean | 18 | 20 | 17 | 22 | 16 | | G-Z Scale S | .32 | .31 | .30 | .28 | .13 | | Systolic blood pressure reaction | | | 11 | | | | Heart rate reaction | | | 08 | | | | Respiration rate reaction | 13 | | 12 | | | | Axillary temperature reaction | .03 | | .07 | | | | Finger temperature reaction | .12 | | | | | | Multiple r | .51 | .48 | .50 | .43 | .40 | variables were utilized in other multiple correlations against TR_m and UR. They are shown at the bottom of columns two and four of Table 1-S. Although the reduced equations provide reduced predictive capacity, it is of interest that the reduction is least for the criterion we regard as "best" (TR_m) ; the multiple r for only five variables was .48. #### 6. <u>Discussion and Conclusions</u> This study has sought to test the following hypotheses: - (A) Individual differences in autonomic response patterns furnish a basis for the prediction of those individuals who cannot withstand well the stress of teaching and those who may develop specific psychosomatic and other psychological disorders. - (B) Measures of autonomic functions will improve the predictive value of psychological correlates of teacher performance. There is reason to believe that the results afford some support for the second hypotheses. Since so few subjects dropped out of student teaching this study can afford no test of the first hypotheses until extended follow-up studies now under way are completed. There are two major contributions of the study. First, a pool of data which we believe worthy of validation against in-service teacher performance has been collected. Second, the investigation of autonomically innervated functions in young adult females provides a new body of information which will have many applications. In the present study 279 subjects were tested between October 27, 1959, and August 17, 1960. The only criterion variables available at this time are evaluations of supervised student teaching - variables that we believe should be regarded as potential predictors, not validation criteria. For these 279 subjects, adequate physiological data were obtained for 247, and adequate psychological data and evaluations of student teacher performance were obtained for somewhat smaller numbers. Funds have been made available for follow-up evaluations of these subjects during their in-service teaching. Only as stresses accumulate and attrition occurs will it be possible to test the hypotheses which induced this study. Only later, then, can the value of this study for education be assessed. Immediate values are present, however, for basic science. The contributions may be summarized as follows: (A) Normative data on autonomic functions in adult females This study constitutes the first extensive investigation of autonomically innervated functions in an adult female population. The means and standard deviations provide a body of data which can be employed by other investigators for comparative purposes in psychophysiological research. As one illustration of the value of such normative data, it may be pointed out that comparable data for adult males (Wenger, 1948)
have now been employed in over a score of comparative investigations, and have served to stimulate much research. There is every reason to believe that the physiological data of the present study will serve similar ends. (B) Transformations and corrections of physiological data This study has provided the largest sample yet available for investigating the need for transformations and corrections of continuously recorded physiological data. As reported in Section 3, it proved necessary to transform the distributions for some variables, and to correct every variable for the effects of one or more uncontrolled variables. Such findings will sadden many investigators, but they cannot go unheeded. They suggest that a series of similar investigations should be initiated in many laboratories to determine what transformations and corrections are needed for particular samples in particular situations. The results point up the need for caution in the evaluation of studies that have neglected these considerations. ### (C) The factorial analyses This study also has pioneered in the factorial investigation of physiological measurements in female adults. Although some of the obtained factors are not readily identifiable, a general factor of autonomic function has been described, and an equation presented for its estimation. A new research tool is thereby provided. It may be expected to stimulate further research with female subjects. Three other contributions should be mentioned. Although the investigators do not regard the so-called "criterion variables" of this pilot study as adequate criteria of teaching performance, they probably are related to it. This study then permits the following conclusions: (1) Scores on the Guilford-Zimmerman Scale S are positively related to teaching performance; - (2) Characteristic level of muscular tension is negatively related to teaching performance; - (3) Finger temperature is positively related to teaching performance; other physiological measurements also may be related. These conclusions are derived from the statistics presented in Table 1-S and from the intercorrelations shown in Table 1-O among the University Ratings (UR), and the total mean Classroom Observation Ratings (TR $_{\rm m}$), and the total COR of the outside observers (TR $_{\rm o}$). Although TR $_{\rm m}$ and UR correlate .65, much of the covariance may be attributed to the fact that the supervisors were solely responsible for UR and contributed to TR $_{\rm m}$. Thus a better index of true common variance between the two kinds of evaluations is obtained from the correlation of .36 between UR and TR $_{\rm o}$. When different raters use different instruments yet obtain evaluations that tend to covary, it seems reasonable to assume that this common variance is related to teaching performance and that other variables which are related to both UR and TR $_{\rm o}$ also are related to teaching performance. Three variables are seen in Table 1-S to satisfy this criterion. One, the mean muscle tension rating, may be seen in Table 1-R to have demonstrated significant correlations with <u>all</u> criterion variables, while the other two - G-Z Scale S and the second measure of finger temperature (see Tables 1-R and 1-P) show the next greatest number of significant relationships. The Guilford-Zimmerman Scale S scores represent self-evaluations of the trait of social participation or sociability. The results suggest that those who so rate themselves high on this scale also appear to be more sociable to observers, and that such a trait enters into ratings of teaching behavior. Such a possible halo effect, however, does not minimize the significance of this scale as one measure in a test battery for the prediction of teacher behavior. More certainly suspect for halo effect are the ratings of muscle tension which, for the outside observers at least, were based on the same observation periods that made possible the TR_o ratings. The general relationship of the mean tension ratings to <u>all</u> criterion variables suggests, however, that this variable deserves further study.*** The third variable, finger temperature, has a less clearly defined relationship to supervisors' ratings than it has to those of the outside observers, but again it seems worthy of further study. ^{***} One step in this direction has already been taken. As a result of the relationships found between muscle tension and teacher performance, Iris Balshan, a research assistant on this project, conducted her doctoral dissertation in such a manner as to provide a test of this possible relationship which would be free of halo effect. (Iris Dale Balshan, "Muscle Tension and Personality in Women: A Factorial Study." Archives of General Psychiatry December 1962, Vol. 7, pp. 436-448). Her investigation tested the hypothesis that a general factor of muscular tension exists in young adult females, with muscle tension being measured in terms of action potentials from sixteen muscle groups. Miss Balshan selected her subjects from elementary teacher candidates. Her results were positive and provided a regression equation in terms of which a general muscle tension factor was estimated for each subject. Concerning the other physiological variables which appear in Table S, it can only be said that they have some value for predicting TR_0 , TR_m , or UR, and should not be neglected in further studies on prediction of teacher performance. Regardless of the possible contributions of other variables, it may be of interest to point out that the three variables mentioned in the foregoing paragraphs may be used with some success in the prediction of student teaching performance. Their multiple correlations with the three criteria considered in Table 1-S are shown in the following tabulation: | | | TR _m | TRo | UR
— | |---------------------|---|-----------------|------|---------| | G-Z Scale S |) | | | | | Mean muscle tension |) | , 40 | . 27 | .40 | | Finger temperature |) | | | | Although the multiple correlations are not quite as high as those shown in Table 1-S they do permit one to characterize groups of good student teachers as relaxed, sociable, and possessing high finger temperature. Such a picture is not unreasonable. Perhaps it will obtain also for good in-service teachers. We venture to predict, however, that ability to withstand the daily and accumulative stress of in-service teaching will involve other variables that we have studied, and, in particular, estimates of the autonomic factor. #### II. RE-ANALYSIS OF THE PHYSIOLOGICAL TEST DATA ### 1. Reduction in Size of Sample After completion of the first study, it was decided in subsequent work to reduce the sample size in order to eliminate race and phase of the menstrual cycle as sources of error variance in the physiological data. Accordingly, the sample employed in the follow-up studies included only those subjects whose ancestry was Caucasian and who had been given the physiological tests within a period of 5 to 16 days following cessation of menses. Elimination of subjects by these criteria reduced the sample N to 166. The preliminary treatment of the physiological measures, including transformation, correction and factor analysis, which had been employed in the first study, then was repeated for this smaller sample before further analyses of their relations to the data collected in the follow-up studies were undertaken. cedure followed was the same as in the first study, except for some minor modifications suggested by the experience gained from this and other investigations. The statistics for the restricted sample comparable to those for the initial sample, which were presented in Tables 1-A to 1-J, are shown here in the correspondingly lettered Tables 2-A to 2-J. #### 2. Transformations and Corrections of the Physiological Data Examination of the distributions of the physiological variables in the restricted sample of 166 subjects indicated that in general the transformations employed in the first study still served to normalize the distributions or at least to eliminate the high degree of skewness which originally was present in many of them. It was found that changing the numerical constant in the transformation of finger temperature from 40 to 39 and applying a similar logarithmic transformation to face and axillary temperatures, which had not been transformed in the first study, produced more nearly normal distributions for these variables. The same transformations were utilized in the measurement of the skin temperature reactions to cold pressor stimulation. In addition, a logarithmic transformation was applied to age in order to reduce the skewness of the distribution. For all other variables the units of measurement, as shown in Tables 2-C, 2-G and 2-H, were the same as in the first study. Next, a re-analysis of the effects of uncontrolled variables on the physiological measures was performed. Correlations between the physiological variables and all of the uncontrolled variables investigated in the first study were obtained for the reduced N. These are shown in Tables 2-A.1, 2-A.2, 2-B.1 and 2-B.2. In the first study, some of the physiological variables had been corrected for age, weight and/or oxidant concentration; others had not been. In the Table 2-A.1 CORRELATIONS OF PRE-STIMULUS PHYSIOLOGICAL MEASURES WITH THE SEVEN UNCONTROLLED VARIABLES FOR WHICH CORRECTIONS WERE APPLIED | | A | W | Ti | RT | Т | Н | P | |---------------------------|------|------|------|------|------|------|------| | Salivary output | - 07 | 05 | 06 | - 03 | 00 | -03 | 12 | | Sublingual temperature | 08 | 06 | - 28 | 19 | -17 | -31 | 26 | | Palmar conductance | -14 | -06 | 11 | 19 | 09 | - 24 | 16 | | Volar conductance | 16 | 10 | 00 | 18 | 05 | - 09 | 16 | | Log conductance change | - 03 | 14 | -05 | 20 | 01 | -23 | 15 | | Systolic blood pressure | -03 | 15 | 02 | -14 | 09 | 12 | -12 | | Diastolic blood pressure | 03 |
11 | -21 | -16 | - 04 | 02 | 09 | | Pulse pressure | - 02 | 07 | 05 | -01 | 09 | 07 | -16 | | Heart period | 0.5 | 15 | -15 | - 08 | 00 | 07 | - 05 | | Respiration period | 04 | 09 | -16 | 12 | 06 | -21 | 24 | | Pupil diameter | - 08 | - 04 | - 09 | -16 | - 07 | -01 | -01 | | Dermographia persistence | -20 | - 02 | -18 | 00 | -10 | -18 | 15 | | Dermographia latency | 11 | 08 | 09 | - 04 | 11 | -11 | 00 | | Face temperature | 02 | 02 | - 29 | -51 | 08 | 28 | -40 | | Axillary temperature | -14 | 14 | - 22 | -11 | -10 | 05 | -01 | | First finger temperature | -08 | -21 | -21 | -10 | - 42 | -14 | 18 | | Second finger temperature | - 09 | -18 | -19 | - 43 | -17 | 10 | -12 | | Finger pulse volume | -02 | 10 | 05 | 07 | 30 | 15 | - 22 | | Stomach period | -13 | 08 | - 05 | 02 | - 24 | 13 | 02 | | | | | | | | | | A = age W = weight Ti= time of testing RT= initial room temperature T = external temperature at time of $\begin{array}{l} \text{testing} \\ \text{H = lowest relative humidity in previous} \end{array}$ 24 hours P = highest barometric pressure in pre-vious 24 hours Table 2-A.2 CORRELATIONS OF PRE-STIMULUS PHYSIOLOGICAL MEASURES WITH OTHER UNCONTROLLED VARIABLES | | Dc1 | SR | 0x | CO | POx | NO ₂ | NO | Oz | so ₂ | |--------------------|------|------|------|------|------|-----------------|------|------|-----------------| | Salivary output | -01 | 00 | -01 | - 08 | -12 | - 06 | -10 | 00 | - 03 | | Sublingual temp. | - 29 | -21 | -10 | 16 | 23 | - 02 | 15 | -10 | 17 | | Palmar cond. | - 08 | 00 | -11 | 03 | 07 | 13 | 10 | 00 | 11 | | Volar cond. | -16 | - 08 | - 09 | 13 | 10 | 00 | 18 | - 09 | 04 | | Log cond. change | - 24 | 00 | 02 | 17 | 23 | 12 | 11 | 01 | 23 | | Systolic b. p. | 15 | 05 | 22 | - 05 | -05 | 12 | -13 | 19 | - 04 | | Diastolic b. p. | -03 | -12 | 09 | -01 | 02 | . 06 | -10 | 05 | - 09 | | Pulse pressure | 13 | 11 | 12 | - 03 | - 05 | 04 | -02 | 12 | 04 | | Heart period | 09 | 06 | -06 | -19 | -13 | -14 | -13 | -06 | -11 | | Respiration period | -15 | - 07 | 07 | 22 | 26 | 16 | 18 | 02 | - 05 | | Pupil diameter | -01 | - 09 | -13 | 02 | - 05 | -11 | 0.3 | - 06 | 07 | | Derm. persist. | - 09 | 09 | 03 | 05 | 10 | 02 | 05 | - 04 | 08 | | Derm. latency | 14 | 07 | -01 | - 08 | -12 | -06 | -10 | 00 | -03 | | Face temperature | 45 | 27 | 13 | - 32 | -34 | -16 | - 28 | 06 | - 29 | | Axillary temp. | 04 | - 04 | - 07 | 17 | - 05 | - 03 | -13 | - 07 | 05 | | 1st Fing. temp. | -18 | -19 | -32 | -01 | -01 | -12 | 18 | - 22 | 03 | | 2nd. Fing. temp. | 18 | 08 | -09 | - 26 | -21 | -17 | - 02 | -14 | -15 | | Fing. pulse vol. | 22 | 20 | 24 | - 04 | 05 | 07 | -24 | 20 | - 06 | | Stomach period | - 05 | -26 | -06 | -11 | - 04 | - 07 | -12 | -09 | 06 | | | | | | | | | | | | Dcl= apparent declination of sun on test day. SR = mean solar radiation on test day. Ox = maximum oxidant concentration on test day. CO = maximum carbon monoxide concentration on test day. POx= maximum precursor oxidant concentration on test day. NO₂ = maximum nitrogen dioxide concentration on test day. NO2 = maximum nitrogen oxide concentration on test day. Oz = maximum ozone concentration on test day. SO₂= maximum sulfur dioxide concentration on test day. Table 2-B.1 CORRELATIONS OF PHYSIOLOGICAL REACTIONS TO COLD PRESSOR STIMULATION WITH THE SEVEN UNCONTROLLED VARIABLES FOR WHICH CORRECTIONS WERE APPLIED | | A | W | Τi | RT | T | H | P | |--------------------------|------|------|------|--------------|------|------|------| | Systolic blood pressure | 16 | -09 | 09 | - 1 0 | 06 | -01 | -02 | | Diastolic blood pressure | 11 | 01 | 19 | 02 | 19 | 01 | 04 | | Pulse pressure | 03 | - 07 | -12 | - 07 | -16 | -05 | -01 | | Heart rate | - 05 | - 08 | 00 | 02 | 13 | -17 | 12 | | Respiration rate | 04 | 01 | -16 | 02 | -15 | -06 | 07 | | Palmar conductance | -19 | -07 | 08 | 18 | 11 | -21 | 14 | | Finger temperature | -06 | 23 | 13 | 17 | 10 | -02 | 08 | | Face temperature | - 02 | -15 | - 07 | 00 | -05 | - 05 | -02 | | Axillary temperature | 09 | 04 | -01 | 03 | - 27 | 08 | 04 | | Finger pulse volume | -11 | -19 | -14 | -15 | -19 | -02 | - 04 | | Stomach period | -13 | - 02 | -02 | -01 | - 04 | 00 | -05 | A = age W = weight Ti= time of testing RT= initial room temperature T = external temperature at time of testing H = lowest relative humidity in pre-vious 24 hours P = highest barometric pressure in previous 24 hours Table 2-B.2 CORRELATIONS OF PHYSIOLOGICAL REACTIONS TO COLD PRESSOR STIMULATION WITH OTHER UNCONTROLLED VARIABLES | | Dc1 | SR | Ox | СО | POx | $^{\mathrm{NO}}2$ | NO | Oz | so ₂ | |------------------|------|-------|------|------|------|-------------------|------|------|-----------------| | Systolic b. p. | -06 | 07 | 05 | 05 | 05 | 09 | 05 | 03 | 00 | | Diastolic b. p. | -03 | 12 | 11 | -01 | 08 | 10 | - 04 | 09 | 03 | | Pulse pressure | - 04 | -10 | -11 | 06 | - 04 | -05 | 07 | - 04 | -01 | | Heart rate | - 09 | 16 | 11 | 10 | 10 | 24 | 18 | 12 | 12 | | Respiration rate | -12 | -03 | -08 | 09 | -01 | -06 | 06 | - 04 | - 02 | | Palmar cond. | - 08 | 00 | - 08 | - 09 | 03 | 00 | - 05 | -06 | -02 | | Finger temp. | - 08 | 00 | 09 | 12 | 06 | 06 | 00 | 05 | 11 | | Face temp. | - 02 | - 0.5 | - 09 | -01 | - 04 | - 03 | 01 | - 02 | - 02 | | Axillary temp. | -17 | - 27 | - 22 | 04 | 09 | - 05 | 12 | -12 | 01 | | Fing. pulse vol. | 00 | -01 | -07 | - 04 | -12 | -09 | 09 | -11 | 07 | | Stomach period | - 07 | 17 | 23 | -12 | 17 | 07 | 21 | - 07 | -22 | Dcl= apparent declination of sun on test day. SR = mean solar radiation on test day. Ox = maximum oxidant concentration on test day. CO = maximum carbon monoxide concentration on test day. POx= maximum precursor oxidant concentration on test day. NO₂= maximum nitrogen dioxide concentration on test day. NO² = maximum nitrogen oxide concentration on test day. Oz = maximum ozone concentration on test day. SO₂= maximum sulfur dioxide concentration on test day. re-analysis all physiological variables, both pre-stimulus and reactivity measures, were corrected for the same set of seven uncontrolled variables: age, weight, time of day, room temperature, external temperature at time of testing, and lowest relative humidity and highest barometric pressure in the 24 hours preceding testing. Table 2-C shows the means, standard deviations and intercorrelations of these seven uncontrolled variables, and the arbitrary baseline values that were employed in the correction equations. No corrections were made for the apparent effects of other uncontrolled variables, since it appeared from a consideration of the partial and multiple correlations of each physiological variable with different combinations of uncontrolled variables that the correlations shown in Tables 2-A.2 and 2-B.2 could be accounted for by the covariation of these uncontrolled variables with temperature, pressure, and humidity. The physiological reactions to cold pressor stimulation were corrected additionally for pre-stimulus baseline effects. The correlations of reactions with baseline levels are shown in Table 2-B.3. As would be predicted from the Law of Initial Value, the reaction for each variable was negatively correlated with the baseline level for that variable, the one exception being palmar conductance, which has been found in other studies (cf. Wilder, 1965) not to conform to the Law of Initial Value. Most of the reactions, furthermore, showed correlations with baseline levels in one or more other variables which were of sufficient magnitude to warrant consideration as a basis for additional correction of the reactions. Table 2-B.3 CORRELATIONS OF PHYSIOLOGICAL REACTIONS TO COLD PRESSOR STIMULATION WITH PRE-STIMULUS BASELINE LEVELS ### <u>Pre-stimulus</u> Baseline Levels | React | cions | SBP | DBP | PP | HR | RR | PC | FiT | FaT | AxT | FPV | SP | |-------|---------------|------|------|------|------|------|------|------|------|--------------|------|------| | Systo | olic b. p. | -16 | -02 | -09 | 02 | 02 | 14 | 03 | 01 | -10 | - 08 | 08 | | Diast | colic b. p. | 12 | - 30 | 31 | -01 | 06 | - 02 | - 04 | - 09 | - 04 | 02 | -07 | | Pulse | e pressure | - 25 | 25 | - 40 | 04 | - 02 | 17 | 01 | 02 | 00 | -06 | 05 | | Heart | rate | 04 | -09 | 10 | -19 | -09 | - 07 | 02 | -05 | - 04 | 09 | -01 | | Respi | iration rate | 03 | - 07 | 10 | -04 | -26 | - 07 | -02 | - 08 | -03 | - 04 | - 03 | | Pa1ma | er cond. | 14 | -01 | 12 | -06 | 02 | 11 | - 09 | -17 | 05 | 06 | -02 | | Finge | er temp. | -15 | -05 | -11 | 00 | 02 | -01 | - 64 | -17 | 10 | 51 | - 08 | | Face | temp. | - 07 | 16 | -17 | 19 | -14 | 05 | -06 | - 09 | - 08 | 01 | -01 | | Axi11 | lary temp. | 03 | 11 | - 05 | 15 | 16 | 06 | 11 | -14 | ~ 0 2 | - 04 | - 04 | | Finge | er pulse vol. | -14 | 13 | -23 | - 05 | 00 | 08 | 47 | 04 | 17 | -62 | 01 | | Stoma | ch period | 02 | -03 | 04 | 0.5 | -11 | - 09 | -12 | -21 | -14 | 04 | - 40 | Table 2-C MEANS AND STANDARD DEVIATIONS, AND INTERCORRELATIONS OF THE SEVEN UNCONTROLLABLE VARIABLES, FOR WHICH CORRECTIONS WERE APPLIED | | Unit of measurement | Mean | S.D. | Correction
Baseline* | Intercorrelations
A W Ti RT T | elations
RT T H | |--|---------------------|-------|------|-------------------------|----------------------------------|---------------------| | Age (A) | log (years-18) | .598 | .230 | 009. | | | | Weight (W) | Pounds | 122.4 | 13.9 | 120.0 | 60 | | | Time of testing (Ti) | Hours | 12.2 | 2.7 | 12.0 | -11 -07 | | | Room temperature (RT) | Ċ. | 25.0 | 1.8 | 24.0 | 15 02 29 | | | External temperature (T) | ŭ. | 64.2 | 7.3 | 65.0 | 20 01 14 14 | 14 | | Lowest relative humidity previous 24 hours (H) | Per cent | 36.5 | 18.6 | 40.0 | -04 -05 08 44 -20 | 44 -20 | | Highest pressure previous 24 hours (P) | Barometric inches | 30.10 | .14 | 30.08 | 11 -01 04 | 11 -01 04 53 -02-62 | The correction baseline is the arbitrary value used in place of the sample mean in the correction equations for the resting and reactivity physiological measures. Table 2-D BETA WEIGHTS
IN THE EQUATIONS FOR CORRECTION OF PRE-STIMULUS PHYSIOLOGICAL MEASURES | | Α | W | Ti | RT | Τ | Н | P | |---------------------------|------|-----|-----|-----|-----|-----|------| | Salivary output | 08 | .07 | .08 | 15 | .04 | .06 | . 24 | | Sublingual temperature | .05 | .03 | 28 | .18 | 21 | 24 | .02 | | Palmar conductance | 16 | 05 | .07 | .10 | .06 | 20 | 01 | | Volar conductance | .14 | .08 | 01 | .14 | 09 | .01 | .08 | | Log conductance change | 08 | .13 | 09 | .18 | 02 | 17 | 04 | | Systolic blood pressure | 05 | .16 | .03 | 13 | .13 | .11 | .03 | | Dîastolic blood pressure | 01 | .12 | 17 | 22 | .05 | .14 | .30 | | Pulse pressure | 01 | .07 | .15 | .03 | .05 | 04 | 20 | | Heart period | .01 | .14 | 15 | 02 | .04 | .11 | .04 | | Respiration period | 04 | .08 | 19 | .04 | .09 | 02 | .22 | | Pupil diameter | 05 | 03 | 03 | 20 | 04 | 07 | .06 | | Dermographia persistence | 22 | 01 | 19 | 02 | 05 | 12 | .12 | | Dermographia latency | .13 | .06 | .18 | 18 | .04 | 23 | 06 | | Face temperature | .01 | 01 | 18 | 38 | .14 | .03 | 12 | | Axillary temperature | 20 | .24 | 26 | .03 | .02 | .18 | .09 | | First Finger temperature | . 02 | 21 | 10 | 18 | 43 | 23 | .12 | | Second Finger temperature | .01 | 17 | 04 | 48 | 12 | 09 | .07 | | Finger pulse volume | 13 | .19 | 06 | .27 | .32 | .28 | 16 | | Stomach period | 16 | .11 | 14 | .16 | 17 | .20 | .01 | A = age W = weight Ti = time of testing RT = initial room temperature T = external temperature at time of testing H = lowest relative humidity in previous 24 hours P = highest barometric pressure in previous 24 hours Correction equation: $z_c = z_x + B_1 z_1 + B_2 z_2 + \dots + B_k z_k$ z = corrected standard score z_x = uncorrected standard score B_{i} = beta weight shown in table $z_{i}^{-} = (X_{i} - C_{i}) / \sigma_{i}$ where the values of C_{i} are the correction baseline values shown in Table C. Table 2-E BETA WEIGHTS IN THE EQUATIONS FOR CORRECTION OF PHYSIOLOGICAL REACTIONS TO COLD PRESSOR STIMULATION | <u>Variable</u> | A | W | Ti | RT | Τ | Н | P | Y ₁ | $^{\rm Y}_{\rm 2}$ | Y_3 | | |------------------|------|-----|-----|-----|-----|-----|-----|----------------|--------------------|-------|-----------| | · Systolic b. p. | , 25 | 07 | .19 | 27 | 02 | 16 | 05 | 21 | .17 | | (PC) | | Diastolic b. p. | .11 | 01 | .15 | 19 | .14 | .10 | .25 | 20 | .22 | | (PP) | | Pulse pressure | .11 | 04 | 01 | 01 | 20 | 25 | 29 | 37 | .22 | | (PC) | | Heart rate | 06 | 13 | .03 | 11 | .10 | 14 | .13 | 23 | .16 | | (RR) | | Respiration rate | . 05 | 03 | 11 | .04 | 19 | 05 | .01 | 23 | .15 | | (PP) | | Palmar cond. | 21 | 10 | 01 | .10 | .08 | 16 | 01 | .07 | .17 | | (SBP) | | Finger temp. | 01 | .13 | .07 | 18 | .03 | .05 | .10 | 66 | | | | | Face temp. | 01 | 11 | 09 | .01 | 02 | 12 | 19 | 13 | 22 | .19 | (PP&HR) | | Axillary temp. | .13 | .07 | 04 | .05 | 27 | .09 | .07 | 01 | .14 | .16 | (HR&RR) | | | 11 | 03 | 11 | .09 | .01 | .02 | 15 | 56 | .14 | | (FiT) | | Stomach period | 20 | .02 | 14 | 01 | 08 | .05 | 10 | 44 | 12 | 20 | (FiT&FaT) | A = age W = weight Ti = time of testing RT = initial room temperature = external temperature at time of testing = lowest relative humidity in previous 24 hours = highest barometric pressure in previous 24 hours Y₁ = pre-stimulus level for physio-logical variable Y₂ & Y₃ = pre-stimulus levels for additional physiological variables in parentheses Correction equation: $z_c = z_x + B_1 z_1 + B_2 z_2 + \dots + B_k z_k$ $*z_c$ = corrected standard score z_{χ} = uncorrected standard score B_{i} = beta weight shown in table $z_i = (X_i - C_i)/f_i$ where the values of C_i are the correction baseline values shown in Tables C and F. Table 2-F MEANS AND STANDARD DEVIATIONS OF UNCORRECTED PRE-STIMULUS LEVELS, AND ARBITRARY BASELINES UPON WHICH CORRECTIONS OF PHYSIOLOGICAL REACTIONS WERE BASED | Variable | Unit of Measurement | Mean | S.D. | Correction
Baseline | |-----------------------------|-----------------------|-----------|------|------------------------| | Systolic blood pressure | mm. Hg. | 104.0 | 9.0 | 105.0 | | Diastolic blood
pressure | mm. Hg. | 66.7 | 7.4 | 65.0 | | Pulse pressure | mm. Hg. | 37.4 | 10.0 | 40.0 | | Heart rate | cycles per minute | 69.8 | 9.6 | 70.0 | | Respiration rate | cycles per minute | 16.4 | 2.9 | 16.0 | | Palmar conductance | log micromhos | .765 | .215 | .700 | | Finger temp. | log (39.0-C.) | ,929 | .187 | .900 | | Face temp. | log (39.0-C.) | .736 | .097 | .700 | | Axillary temp. | log (40.0-C.) | ,596 | .063 | .600 | | Finger pulse volume | log (microliters x 10 | 00) 2.097 | .232 | 2.100 | | Stomach period | seconds per cycle | 20.94 | 2.12 | 21.00 | Table 2-G MEANS AND STANDARD DEVIATIONS OF CORRECTED PRE-STIMULUS PHYSIOLOGICAL MEASURES | | Unit of measurement | Mean | S.D. | |---------------------------|----------------------------|-------|------| | Salivary output | sq. root cc. | 1.58 | .49 | | Sublingual temperature | log (102.0-F.) | .548 | .055 | | Palmar conductance | log micromhos | 1.000 | .256 | | Volar conductance | log micromhos | .861 | .156 | | Log conductance change | log micromhos | .390 | .246 | | Systolic blood pressure | mm. Hg. | 101.7 | 8.0 | | Dîastolîc blood pressure | mm. Hg. | 65.3 | 6.6 | | Pulse pressure | mm. Hg. | 35.9 | 8.5 | | Heart period | milliminutes per 10 cycles | 144.6 | 18.8 | | Respiration period | log seconds per cycle | .564 | .074 | | Pupil diameter | millimeters | 4.72 | 1.05 | | Dermographia persistence | log minutes | .414 | 306 | | Dermographia latency | seconds | 16.2 | 5.0 | | Face temperature | log (39.0-C.) | .764 | .081 | | Axillary temperature | log (40.0-C.) | .593 | .058 | | First finger temperature | log (39.0-C.) | .940 | .177 | | Second finger temperature | log (39.0-C.) | .968 | .161 | | Finger pulse volume | log (microliters x 100) | 2.090 | .205 | | Stomach period | seconds per cycle | 20.71 | 2.00 | Table 2-H MEANS AND STANDARD DEVIATIONS OF CORRECTED PHYSIOLOGICAL REACTIONS TO COLD PRESSOR STIMULATION | | | Unit of measurement | Mean | S.D. | |---|--------------------------|-------------------------|-------|------| | • | Systolic blood pressure | mm. Hg. | 7.6 | 5.8 | | | Diastolic blood pressure | mm. Hg. | 7.4 | 7.5 | | | Pulse pressure | mm. Hg. | -2.3 | 6.7 | | | Heart rate | cycles per minute | 16.4 | 8.7 | | | Respiration rate | cycles per minute | 4.2 | 3.2 | | | Palmar conductance | log micromhos | .221 | .195 | | | Finger temperature | log (39.0-C.) | .031 | .019 | | | Face temperature | log (39.0-C.) | 002 | .017 | | * | Axillary temperature | log (40.0-C.) | 001 | .010 | | | Finger pulse volume | log (microliters x 100) | 244 | .098 | | ٠ | Stomach period | seconds per cycle | -1.20 | 1.12 | indicate deviations from the normative mean in the direction of relative PNS dominance and lower T scores (below 50) would indicate deviations in the direction of relative SNS dominance. The variables that were reflected are marked with asterisks in the tables. In some instances transformation of a variable had the effect of reflection; to avoid confusion asterisks have been used to indicate reflection of variables with respect to their original units of measurement. The physiological reactions to cold pressor stimulation also were reflected whenever the mean reaction was a decrease from the pre-stimulus baseline level, so that higher T scores consistently would represent greater magnitudes of reaction regardless of direction. The reactivity measures marked with asterisks, therefore, are those in which the direction of response, in terms of the original units of measurement, was negative. ## 3. Factorial Analysis of the Corrected Physiological Variables A second factor analysis of the corrected physiological measures was performed in order to obtain new estimates of a general autonomic factor. The variables employed were the same ones as in the first analysis, except for log conductance change, which was eliminated to prevent the appearance of the specific skin conductance factor found in the previous factor solution (cf. Table 1-J). The intercorrelations of the prestimulus measures are shown in Table 2-I. The coefficients, as in the previous analysis, generally were low. The increased homogeneity of the reduced sample did not appear to have affected the magnitudes by the correlations in any consistent way. Table 2-I INTERCORRELATIONS AMONG PRE-STIMULUS PHYSIOLOGICAL MEASURES | Variables | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |--------------------------|----|-----|------|-----|-----|------|-----|------|-----|----| | Salivary output | 1 | | | | | | | | | | | Sublingual temperature* | 2 | 10 | | | | | | | | | | Palmar conductance* | 3 | -02 | 13 | | | | | | | | | Volar conductance* | 4 | 04 | 0.5 | 11 | | | | | | | | Heart period | 5 | -13 | 23 | 18 | 07 | | | | | | | Second finger temp. | 6 | -04 | 03 | 09 | -05 | - 03 | | | | | | Respiration period | 7 | -01 | 17 | -02 | -10 | -01 | 01 | | | | | Pupillary diameter* | 8 | 80 | 10 | 08 | 08 | 16 | 04 | -19 | | | | Dermographia Persist. | 9 | 13 | - 07 | 11 | 02 | -10 | -01 | - 04 | 02 | | | Systolic Blood Pressure* | 10 | 03 | 04 | 13 | -01 | 27 | 09 | -09 | -03 | 01 | ^{*} indicates reflection of variable Max. N = 166 females As may be seen from a comparison of Tables 1-I and 2-I, some were slightly increased, others slightly reduced. It was expected, therefore, that the new factor solution would not differ greatly from the previous one. The centroid factor solution of the correlation matrix is shown in Table 2-J.1, and a computer programmed Varimax (Kaiser, 1959) rotated solution is shown in Table 2-J.2. The six factors yielded by the Varimax method are not readily interpretable, and none of them resembles the general factor found in the first analysis. Factor I may be a circulatory system factor, and Factor VI possibly represents a factor related in some way to the skin; but the physiological significance of the other factors is not at all clear. Inspection of the
rotated solution suggested that further rotation might produce a general factor, and after several additional rotations Factor IA was obtained. factor corresponds fairly well with Factor II in the first analysis (cf. Table 1-J) and with the general autonomic factors reported in previous studies (Wenger, 1948; Wenger, 1962 b). differs from the previously obtained general factors mainly in the absence of salivary output from the factor pattern. lieve that Factor IA represents a general factor of ANS function for adult females comparable to the factor which has been employed in numerous studies of adult males (cf. Wenger, 1966). Since the correlation of salivery output with heart period, the variable with the highest loading on Factor IA and on the general factor for males, was negative in the present sample, we are inclined to think that Factor IA probably is a more valid index of general ANS function than is the corresponding Factor II from the first analysis of the female data. Table 2-J.1 CENTROID FACTOR SOLUTION FOR PRE-STIMULUS PHYSIOLOGICAL MEASURES | | | | | Factor | <u>'s</u> | | | |-------------------------|-----|------|------|--------|-----------|-----|----------------| | <u>Variables</u> | I | ΙΙ | III | IV | V | VI | h ² | | Salivary output | 13 | 26 | 25 | 15 | -19 | 19 | 24 | | Sublingual temperature* | 27 | - 26 | 23 | 26 | 20 | 19 | 34 | | Palmar conductance* | 41 | -13 | 13 | -17 | 05 | -22 | 28 | | Volar conductance* | 21 | 13 | 07 | -11 | 20 | 04 | 12 | | Heart period | 37 | -35 | -17 | -10 | 28 | 20 | 42 | | Second finger temp. | 08 | -13 | - 07 | 13 | -14 | 22 | 12 | | Respiration period | -19 | -33 | 36 | 15 | - 02 | 04 | 30 | | Pupil diameter* | 37 | 22 | -16 | 25 | 24 | -10 | 34 | | Dermographia persist. | 11 | 21 | 18 | -14 | -17 | -14 | 16 | | Systolic b. p.* | 36 | - 25 | -19 | -18 | - 30 | 21 | 39 | ^{*} indicates reflection of variable. Maximum N = 166 Table 2-J.2 ROTATED FACTOR SOLUTION FOR PRE-STIMULUS PHYSIOLOGICAL MEASURES, AND EQUATION FOR ESTIMATION OF A GENERAL AUTONOMIC FACTOR | | | | | Factors | <u> </u> | | | |-------------------|------|------|------|---------|----------|------|-----| | <u>Variables</u> | I | ΙΙ | III | IV | V | VI | I-A | | Salivary output | 06 | 47 | 07 | 05 | 04 | 04 | 02 | | Sublingual temp.* | 14 | 01 | 52 | 14 | 15 | - 04 | 37 | | Palmar cond.* | 07 | - 04 | 07 | 0.8 | 15 | -49 | 33 | | Volar cond.* | - 04 | 04 | 00 | 11 | 31 | -10 | 16 | | Heart period | 36 | - 34 | 20 | 13 | 32 | -10 | 52 | | 2nd. Fing. temp. | 29 | 05 | 11 | 01 | -06 | 12 | 05 | | Respir. period | - 08 | 01 | 44 | - 27 | -16 | 01 | -01 | | Pupil diameter* | -02 | 02 | 01 | 56 | 13 | -06 | 12 | | Derm. persist. | - 08 | 26 | -15 | - 04 | 02 | - 23 | 03 | | Systolic b. p.* | 59 | - 03 | - 07 | -05 | 03 | -17 | 34 | ^{*} indicates reflection of variable. Maximum N = 166 Factor I-A = $.25z_2$ + $.19z_3$ + $.10z_4$ + $.37z_5$ + $.21z_{10}$ z_i = $(X_i - \overline{X}_i) / \delta_i$ The regression equation for estimating Factor IA is shown in Table 2-J.2. Although pupil diameter had a loading of .12 on the factor, its beta weight in the equation was only .02, and therefore it was omitted from the equation. Factor scores were calculated for all subjects and standardized as T scores with a mean of 50 and a standard deviation of 10, scores above the mean being indicative of relative PNS dominance and scores below the mean indicative of relative SNS dominance. Since it was difficult to place any interpretation on the other factors in Table 2-J.2, only estimates of Factor IA were employed in these studies. Factor analysis of the reactivity data was not repeated. There is no theoretical framework for predicting a factor or factors for reactivity to cold pressor stimulation, and the results of the first factor analysis provided no encouragement for the thesis that a general factor or any other meaningful factor might be found. ## 4. Pattern Analysis of the Corrected Physiological Data After factor analysis, the pre-stimulus physiological data were analyzed in terms of multivariate patterns according to a method developed by Wenger (1957). An individual profile of the standard scores for the physiological variables was plotted for each subject and a count was made of the number of deviations of 1/2 sigma or greater above or below the normative means in a sub-set of five variables: salivary output, sublingual temperature, palmar conductance, heart period and systolic blood pressure. Each profile then was classified, according to Table 2-K AUTONOMIC PATTERNS DEFINED BY LEVELS OF ACTIVITY IN FIVE PHYSIOLOGICAL VARIABLES, AND THEIR FREQUENCIES IN NORMATIVE AND RESPONDENT SAMPLES | | | Pattern De | finitions | | | |-----|--------------------|------------------------|----------------------|-------------------------|--------------------| | | Salivary
output | Sublingual temperature | Palmar conduct. | Heart
period | Systolic blood pr. | | P | high(+) | 1ow(+) | 1ow(+) | long(+) | low(+) | | PS1 | low(-) | low(+) | 1ow(+) | long(+) | low(+) | | M | mean | mean | mean | mean | mean | | S | 1ow(-) | high(-) | high(-) | short(-) | high(-) | | PS2 | high(+) | high(-) | 1ow(+) | short(-) | 1ow(+) | | В | low(-) | 1ow(+) | low(+) | short(-) | high(-) | | | | | | | | | | | Percentage F | requencies | | | | | N | | rst-year
ollow-up | Sixth-year
follow-up | Male AA
Cadets | | | TOTECHEA | go irequencies | | | |--------------|-------------------------------|------------------------------------|------------------------------------|-------------------------------| | | Normative
group
(N=166) | First-year
follow-up
(N=122) | Sixth-year
follow-up
(N=127) | Male AAF
Cadets
(N=100) | | P | 10 | 9 | 9 | 14 | | PS1 | 6 | 7 | 6 | | | M | 25 | 29 | 28 | 11 | | S | 17 | 17 | 17 | 13 | | PS2 | 9 | 7 | 9 | | | В | 3 | 2 | 3 | 15 | | Unclassified | 30 | 29 | 28 | 47 | ⁺ indicates a deviation from the normative mean of 1/2 σ or greater in a direction indicative of apparent dominance of parasympathetic nervou system activity (standard score of 55.0 or greater). - indicates a deviation from the normative mean of 1/2 σ or greater in ⁻ indicates a deviation from the normative mean of $1/2\,$ σ or greater in a direction indicative of apparent dominance of sympathetic nervous system activity (standard score of 45.0 or less). criteria of classification were changed to three consistent deviations with no inconsistent ones, or four or more consistent deviations with no more than one inconsistent deviation, and pattern M was defined as fewer than three deviations. Table 2-K shows the frequency distributions of the autonomic patterns, in terms of percentages, in the normative sample of 166 cases and in the sub-samples of respondents in the first and sixth year follow-up studies. The frequency distribution of patterns in Wenger's normative male sample of Army Air Force cadets is shown for comparison. It can be seen that the relative frequency of pattern M was much higher and that of pattern B much lower in the female sample than in the male sample. These differences evidently were not methodological artifacts, for when another analysis was made, employing seven variables and Wenger's original criteria of classification, the frequency of pattern M remained the same and that of pattern B became even lower. While it is possible that pattern B is characteristic only of males, its low incidence in the female sample alternatively could be related to the fact that the teachers constituted a more highly selected group than Wenger's AAF cadets. Where statistical tests were made of the relations between the autonomic patterns and other data in subsequent tables, comparisons were made between the combined frequencies of patterns P and PS1 and the combined frequencies of patterns S, PS2 and B in order not to have zero or very low frequencies within many cells when cross-classifications were made. The basis for placing patterns P and PS1 in the same category was their physiological similarity; one is a pure parasympathetic pattern and the other a predominantly parasympathetic pattern. Patterns S, PS2 and B, on the other hand are physiologically dissimilar; their only common element is a short heart period. It appeared, however, on preliminary inspection of the data that the distribution of pattern PS2 across other subject classifications often followed a trend similar to that of pattern S. These two patterns therefore were placed in the same category, and pattern B was added to this category, despite its very low frequency of occurrence in the present sample, because patterns S and B both have been found in previous studies of males (Wenger, 1957; Wenger, 1966) to appear with relatively high frequencies in certain deviant groups. The CTRS was completed by elementary school principals for teacher-subjects who had been employed full-time for the first year of teaching. Prior to sending copies of the CTRS to the principals, telephone calls were made to describe the purposes of the study, the procedures in administering the instrument, and the confidential nature of the inquiry. The CTRS was then mailed with a covering letter (Appendix H) containing the same content as communicated by telephone. Completed CTRS forms were received for 122 of the 166 subjects, a 73% return. Subjects not rated by principals (because of lack of time for observation) included substitute teachers who may have taught for only a few days in the particular principal's school or teachers recently transferred to a school. ### 2. Relations of In-service Teaching Performance to the Psychophysiological Test Battery Of the 122 subjects in the sample of 166, for whom evaluations on the Confidential Teacher Rating Scale were obtained, 71 received favorable ratings on all items of the scale. For comparison with this group (F), the 51 subjects who received one or more unfavorable ratings (group UF) were classified additionally
into three overlapping subgroups: those with unfavorable ratings on two or more items relating to classroom behavior (CB), those with unfavorable ratings on one or more items relating to teacher-parent relations (TP), and those rated emotionally unstable (ES). Although the latter group contained only 8 subjects, it was considered to be of particular interest in view of the hypothesis that emotional stability is related to autonomic nervous system functioning. The differences between the means of group F and the means of each of the unfavorably rated groups for all of the variables in the psychophysiological test battery were tested for significance by t tests. The means of the pre-stimulus physiological measures for the groups are presented in Table 2-L. Group CB was found to have a significantly longer mean heart period than group F, and group TP significantly higher mean systolic and pulse pressures. Groups UF and ES, however, did not differ significantly from group F with respect to any of the variables, and there was no evident trend in the direction of the mean differences between group F and any of the other groups to indicate a general tendency toward a relatively greater degree of either sympathetic or parasympathetic nervous system activity in the unfavorably rated groups. The mean autonomic factor scores for the unfavorably rated groups did not differ significantly from the mean for group F, and the distribution of autonomic patterns, as shown in Table 2-M, was similar within each group. Although it appears in Table 2-M that the proportion of subjects receiving unfavorable ratings on the CTRS was somewhat higher among those having parasympathetic patterns than among those having sympathetic or mixed patterns, the results of the chi-square tests indicated no Table 2-L STANDARDIZED MEANS OF PRE-STIMULUS PHYSIOLOGICAL MEASURES FOR SUBJECTS - CLASSIFIED ACCORDING TO RATINGS ON THE CONFIDENTIAL TEACHER RATING SCALE (CTRS) | | F | UF | СВ | TP | ES | |---------------------------|------|--------|------|-------------|------| | Ns for groups: | 71 | 51 | 22 | 19 | 8 | | Salivary output | 48.9 | 50.3 | 48.8 | 49.4 | 51,1 | | Sublingual temperature* | 51.1 | 48.5 | 49.9 | 47,9 | 46.1 | | Palmar conductance* | 50,0 | 50.8 | 49.1 | 49.9 | 50.5 | | Volar conductance* | 50.3 | 50.2 | 47.2 | 50.0 | 51.9 | | Log conductance change | 47.9 | 52.0 | 48.1 | 52.3 | 49.7 | | Systolic blood pressure* | 51.4 | 48.2 | 51.5 | 44.3 | 51.6 | | Diastolic blood pressure* | 50.0 | 49.6 | 51.7 | 48.7 | 55.6 | | Pulse pressure | 48.7 | 51.6 | 50.0 | <u>54.5</u> | 53.3 | | Heart period | 49.3 | 52.3 | 55.1 | 50.7 | 49.9 | | Respiration period | 50.4 | 49.8 | 50.3 | 47.2 | 46.5 | | Pupil diameter* | 49.0 | 51.8 | 49.8 | 53.1 | 50.6 | | Dermographia persistence | 49,6 | 51.1 | 51,2 | 50.4 | 52.7 | | Dermographia latency* | 49,9 | 50.2 | 51.8 | 52.3 | 54.7 | | Face temperature* | 49.9 | 48.7 | 48,1 | 49.3 | 46.4 | | Axillary temperature* | 50.1 | 51.4 | 50.0 | 51,5 | 55.4 | | First Finger temperature | 47.9 | 50.0 | 50.8 | 52,5 | 51.4 | | Second Finger temperature | 49.7 | 50.5 | 51.8 | 50.9 | 48.3 | | Finger pulse volume | 50.3 | 49.2 | 47.3 | 49.7 | 46.7 | | Stomach period | 51.7 | 48.9 | 51.5 | 50.7 | 47,0 | | Factor I-A | 50.4 | 50 , 5 | 52.6 | 48.0 | 49.6 | Underlined means differ significantly from the means of group F at the .05 level. ^{*} indicates reflection of variable. F = rated favorably on all items of CTRS. UF = rated unfavorably on one or more items of CTRS. CB = rated unfavorably on two or more items of CTRS Classroom Behavior sub-section. TP = rated unfavorably on one or more items of CTRS Teacher-Parent Relations sub-section. ES = rated emotionally unstable. Table 2-M FREQUENCIES OF AUTONOMIC PATTERNS WITHIN CATEGORIES OF OF RATINGS ON THE CONFIDENTIAL TEACHER RATING SCALE (CTRS) | | F | UF | СВ | TP | ES | |--------------|----|-----|-----|----|----| | P | 7 | 4 | 2 | 1 | 1 | | PS1 | 4 | 4 | 3 | 1 | 0 | | М | 20 | 15 | 6 | 5 | 1 | | S | 13 | 8 | 2 | 2 | 1 | | PS2 | 5 | 4 | 1 | 1 | 1 | | В | 2 | 0 | 0 | 0 | 0 | | Unclassified | 20 | 16 | 8 | 9 | 4 | | | | | | | | | | F | UF | СВ | TP | ES | | P + PS1 | 11 | 8 | 5 | 2 | 1 | | S + PS2 + B | 20 | 12. | 3 | 3 | 2 | | Chi-square | | .11 | .99 | _ | _ | F = rated favorably on all items of CTRS. UF = rated unfavorably on one or more items of CTRS. CB = rated unfavorably on two or more items of CTRS Classroom Behavior sub-section. TP = rated unfavorably on one or more items of CTRS Teacher-Parent Relations sub-section. ES = rated emotionally unstable. statistically significant degree of association between autonomic patterns and CTRS ratings. The means of the reactions to cold pressor for the groups are shown in Table 2-N. Group CB had a significantly lesser finger pulse volume reaction, and group TP a significantly greater systolic blood pressure reaction than group F. It cannot be said, however, that any of the unfavorably rated groups showed an overall tendency to be either more or less reactive than group F. The means of the muscle tension ratings and Guilford-Zimmerman scores are shown in Table 2-0. The differences between the means of all the muscle tension ratings for the groups were consistent in indicating an association of higher muscle tension with unfavorable ratings on the CTRS, although only the differences between groups F and TP for the supervisors' ratings and mean ratings were statistically significant. No clear pattern of differences between groups was apparent in the Guilford-Zimmerman scores. The only statistically significant mean difference was that between groups F and CB on Sociability (S). This difference was in the direction that would be expected, indicating that teachers with unfavorable ratings on items relating to classroom behavior tend to be less sociable than favorably rated teachers, but it is surprising that the group with unfavorable ratings on items relating to teacher-parent relations did not show the tendency also. The mean score on emotional stability (E) for group ES was, as expected, lower than the mean for group F, although the difference was not statistically significant. Table 2-N STANDARDIZED MEANS OF PHYSIOLOGICAL REACTIONS TO COLD PRESSOR STIMULATION FOR SUBJECTS CLASSIFIED ACCORDING TO RATINGS ON THE CONFIDENTIAL TEACHER RATING SCALE (CTRS) | | F | UF | СВ | TP | ES | |--------------------------|------|------|------|-------------|------| | Ns for groups: | 69 | 49 | 20 | 18 | 8 | | Systolic blood pressure | 49.2 | 52.1 | 51.5 | <u>57.0</u> | 53.5 | | Diastolic blood pressure | 51.1 | 51.0 | 48.5 | 53.1 | 48.2 | | Pulse pressure* | 51.7 | 49.2 | 47.6 | 47.0 | 45.9 | | Heart rate | 49.9 | 51.0 | 50.3 | 51.9 | 53.5 | | Respiration rate | 49.1 | 49.7 | 48.8 | 48.0 | 48.3 | | Palmar conductance | 49.4 | 52.2 | 53.4 | 51.8 | 50.5 | | Finger temperature* | 49.9 | 50.8 | 46.5 | 49.7 | 44.7 | | Face temperature | 49.7 | 50.8 | 48.6 | 51.4 | 53.4 | | Axillary temperature | 49.2 | 50.0 | 50.7 | 50.6 | 48.2 | | Finger pulse volume* | 52.2 | 47.2 | 44.4 | 48.9 | 45.8 | | Stomach period* | 49.4 | 49.3 | 47.7 | 50.9 | _ | Underlined means differ significantly from the means of group F at the .05 level. ^{*} indicates reflection of variable. F = rated favorably on all items of CTRS. UF = rated unfavorably on one or more items of CTRS. CB = rated unfavorably on two or more items of CTRS Classroom Behavior sub-section. TP = rated unfavorably on one or more items of CTRS Teacher-Parent Relations sub-section. ES = rated emotionally unstable. Table 2-0 STANDARDIZED MEANS OF MUSCLE TENSION RATINGS AND GUILFORD-ZIMMERMAN SCORES FOR SUBJECTS CLASSIFIED ACCORDING TO RATINGS ON THE CONFIDENTIAL TEACHER RATING SCALE (CTRS) | | F | UF | СВ | TP | ES | |-----------------------|------|------|------|------|------| | Ns for groups: | 64 | 39 | 16 | 16 | 8 | | Muscle tension (Sup.) | 50.6 | 51.0 | 54.4 | 58.3 | 58.3 | | Muscle tension (Obs.) | 49,0 | 51.2 | 51.8 | 53.5 | 51.8 | | Muscle tension (Mean) | 49.4 | 50.9 | 54.5 | 57.7 | 57.3 | | | F | UF | СВ | TP | ES | | Ns for groups: | 62 | 42 | 16 | 15 | 5 | | GZ. scale G | 49.8 | 50.8 | 47.9 | 52.0 | 49.0 | | GZ. scale R | 49.7 | 51.2 | 51.3 | 54.2 | 56.4 | | GZ. scale A | 50.5 | 49.4 | 48.4 | 50.6 | 58.7 | | GZ. scale S | 51.4 | 49.8 | 45.1 | 51.5 | 52.2 | | GZ. scale E | 50.7 | 49.3 | 48.7 | 46.6 | 46.3 | | GZ. scale O | 50.3 | 50.0 | 52.0 | 48.5 | 51.0 | | GZ. scale F | 50.8 | 49.5 | 49.4 | 47.3 | 45.1 | | GZ. scale T | 49.7 | 51.0 | 48.8 | 54.7 | 54.5 | | GZ. scale P | 50.7 | 48.0 | 47.0 | 49.2 | 48.2 | | GZ. scale M | 50.9 | 50.3 | 54.2 | 53.2 | 51.8 | | GZ. question marks | 50.3 | 49.0 | 49.8 | 49.4 | 47.7 | Underlined means differ significantly from the means of group F at the $.05\ level$. F = rated favorably on all items of CTRS. UF = rated unfavorably on one or more items of CTRS. CB = rated unfavorably on two or more items of CTRS Classroom Behavior sub-section. TP = rated unfavorably on one or more items of CTRS Teacher-Parent Relations sub-section. ES = rated emotionally unstable. # 3. Relations of In-service Teaching Performance to Student Teaching Performance The relations of the ratings on the CTRS to the criteria of teaching performance employed in the first study are shown in Table 2-P. It is evident from this table that there is little concordance between the two evaluations of teaching performance. While the means of the supervisors' ratings and University ratings of student teaching performance consistently were lower for the groups having unfavorable ratings on the CTRS than for the favorably rated group, the differences all were quite small and statistically insignificant. The means of the ratings of student teaching performance by the outside observer, which in the first study had relatively low correlations with the supervisors' and University ratings (cf. Table 1-0), did not show even this degree of consistency with the CTRS ratings. Possibly these results indicate that in-service
teaching performance is not related to performance in student teaching, but it seems more probable that they reflect the difficulty of obtaining adequate assessments of teaching performance. It may be that the indices of performance provided by the instruments employed in these studies either relate to different aspects of teacher behavior or simply lack validity. ### 4. <u>Discussion and Conclusions</u> The major findings in this study are the associations of higher muscle tension ratings and lower scores on the Guilford-Zimmerman Sociability scale with unfavorable ratings on the CTRS. Table 2-P STANDARDIZED MEANS OF STUDENT TEACHING PERFORMANCE RATINGS FOR SUBJECTS CLASSIFIED ACCORDING TO RATINGS ON THE CONFIDENTIAL TEACHER RATING SCALE (CTRS) | | F | UF | СВ | TP | ES | |-------------------------|------|------|------|------|------| | Ns for groups: | 68 | 44 | 19 | 16 | 8 | | Teacher behavior (Sup.) | 51.8 | 50.6 | 51.5 | 49.8 | 47.0 | | Teacher behavior (Obs.) | 51.4 | 49.9 | 52.0 | 53.9 | 53.7 | | Teacher behavior (Mean) | 51.6 | 50.8 | 52.0 | 51.6 | 49.0 | | Pupil behavior (Sup.) | 51.2 | 50.1 | 51.1 | 49.3 | 49.0 | | Pupil behavior (Obs.) | 51.5 | 49.1 | 47.3 | 51.0 | 48.7 | | Pupil behavior (Mean) | 51.4 | 50.2 | 49.7 | 49.9 | 48.6 | | Total rating (Sup.) | 51.7 | 50.6 | 51.5 | 49.8 | 47.4 | | Total rating (Obs.) | 51.5 | 51.1 | 51.0 | 53.3 | 52.7 | | Total rating (Mean) | 51.6 | 50.7 | 51.6 | 51.3 | 49.6 | | University rating | 51.3 | 49.5 | 47.9 | 48.6 | 48.0 | F = rated favorably on all items of CTRS. UF = rated unfavorably on one or more items of CTRS. CB = rated unfavorably on two or more items of CTRS Classroom Behavior sub-section. TP = rated unfavorably on one or more items of CTRS Teacher-Parent Relations sub-section. ES = rated emotionally unstable. These results confirm the conclusions of the initial study that teaching performance is negatively related to level of muscle tension and positively related to sociability. few significant physiological differences between teachers with wholly favorable ratings on the CTRS and those with unfavorable ratings on items relating either to classroom behavior or to teacher-parent relations, on the other hand, do not conform to the tendencies indicated by the correlations of the physiological measures with the criteria of performance in the initial study (cf. Tables 1-P and 1-Q), and the nature of these differences does not seem to afford any basis for interpreting them in terms of differential degrees of autonomic balance or imbalance. Inasmuch as no significant relations were found between CTRS ratings and autonomic factor scores or multivariate patterns of autonomic activity, it must be concluded that the present study provides no clear evidence that these measures of teaching performance are related to individual differences in characteristic levels of autonomic nervous system functioning. # IV. PSYCHOPHYSIOLOGICAL CORRELATES OF PROFESSIONAL AND HEALTH STATUS DURING THE SIXTH IN-SERVICE YEAR At the end of the sixth in-service year of teaching data were collected on the health and professional status of the 166 subjects. Two instruments developed for this study were utilized: (1) the <u>General Health Inventory</u>, and (2) the <u>Professional Status Inventory</u>. Relationships between the data obtained on these two instruments and the psychophysiological test battery and measures of first-year teaching were investigated.* #### 1. Evaluation of Health Status The General Health Inventory (adapted for females from a similar inventory utilized in studies of male Air Force personnel (Wenger, 1966)) lists forty-three disorders, most of which are usually considered to be psychosomatic (Appendix I). The subjects were requested to indicate: (a) which, if any, of the listed disorders they had experienced at any time before or after undergoing the psychophysiological tests, (b) whether or not they had been treated or hospitalized for any of the disorders, and (c) if they had experienced other disorders. The General Health Inventory (and the Professional Status Inventory) were mailed directly to the subjects with a covering letter (Appendix I). ^{*} Valuable assistance in this phase of the investigation was provided by Mrs. Carolyn Ellner, Post Graduate Research Assistant, UCLA. Completed inventories were received from 127 of the 166 subjects, a 76% return. Thirty-nine of the subjects reported that they had never experienced any of the listed disorders or any other disorders which could be classified as psychosomatic. Since relatively few subjects reported having first experienced a disorder after testing or having been hospitalized, evaluations of health status were made only in terms of occurrence versus non-occurrence of the disorders, without regard to time of onset or severity. Most of the disorders, moreover, had such low incidences of occurrence in the sample that it was not possible to investigate the relations of each specific disorder to the psychophysiological test battery. Therefore, for statistical analyses of the data, the disorders were classified into six major categories, omitting some of the listed disorders, but including all of the more frequently reported ones. The six categories for which the Ns were large enough for statistical analyses were skin disorders (SK), gastrointestinal disorders (GI), anxiety and other nervous disorders (AX), headaches (HD), certain respiratory disorders (RP), and menstrual disorders (MN). The very low incidence of certain disorders such as peptic ulcers and asthma, which would have been of particular interest, unfortunately precluded their individual consideration. Since many subjects reported having several disorders, there was some overlap in the Ns for the six major disorder groups. The means of the variables in the psychophysiological test battery were obtained for each of the disorder groups, and their differences from the means of the group who reported no disorders (ND) were tested for significance by t tests. #### 2. Relations of Health Status to the Psychophysiological Test Battery The means of the pre-stimulus physiological measures for group ND and the six disorder groups are shown in Table 2-Q. The gastrointestinal, anxiety, and respiratory disorder groups were found to have significantly shorter mean heart periods and significantly lower mean autonomic factor scores than the group with no disorders, the directions of the differences in both variables being indicative of greater relative SNS domi-The mean heart periods and autononance in these disorders. mic factor scores for the other disorder groups also were lower, although not significantly so, than the means for group No general tendency toward a consistent pattern of rela-ND. tive sympathetic dominance in all variables for any of the disorders is evident from the table, but the analysis of the multivariate patterns in Table 2-R suggests an association of SNS dominance with psychosomatic disorders and an association of PNS dominance with an absence of disorders. The incidence of pattern S was higher than that of pattern P within each category of disorder, but lower within the group having no disorders. Pattern P, furthermore, was the only one for which a majority of subjects having the pattern reported no disorders. Half of the subjects having pattern PS1, which is physiologically similar to pattern P, had no disorders, but in each of the other classes of patterns the majority of the subjects had one The results of the chi-square tests in or more disorders. Table 2-R show that among subjects within each of the disorder categories except headaches the ratio of parasympathetic patterns Table 2-Q STANDARDIZED MEANS OF PRE-STIMULUS PHYSIOLOGICAL MEASURES FOR SUBJECTS REPORTING THE OCCURRENCE OF CERTAIN KINDS OF DISORDERS | | ND | SK | GI | AX | HD | RP | MN | |---------------------------|------|------|-------------|------|------|-------------|------| | Ns for groups: | 39 | 17 | 29 | 14 | 19 | 28 | 30 | | Salivary output | 50.3 | 46.3 | 45.8 | 48.4 | 45.8 | 51.3 | 49.5 | | Sublingual temperature* | 50.7 | 50.0 | 50.2 | 45.5 | 50.5 | 49.7 | 51.1 | | Palmar conductance* | 49.5 | 48,5 | 48.4 | 49.0 | 49.5 | 49.4 | 48,8 | | Volar conductance* | 50.5 | 49.4 | 47.3 | 49.8 | 47.7 | 49.2 | 52.2 | | Log conductance change | 50.1 | 50.4 | 53.1 | 50.9 | 50.5 | 51.4 | 50.7 | | Systolic blood pressure* | 51.9 | 47.5 | 47.3 | 51.6 | 50.8 | 52.3 | 50.6 | | Diastolic blood pressure* | 51.3 | 47.8 | 49,8 | 52.5 | 52.6 | 50.6 | 53.4 | | Pulse pressure | 49.3 | 50.6 | 52.2 | 50.2 | 50.9 | 48.4 | 51.6 | | Heart period | 54.4 | 48.7 | <u>47.9</u> | 46.2 | 49,7 | <u>45.2</u> | 50.1 | | Respiration period | 50.3 | 50.5 | 48.9 | 50.6 | 50.3 | 48.1 | 49.2 | | Pupil diameter | 52.0 | 51.8 | 49,9 | 48.8 | 49.3 | 49.7 | 50.3 | | Dermographia persistence | 47.6 | 51,6 | 48.6 | 52.9 | 48.5 | 50.9 | 49.8 | | Dermographia latency* | 50.4 | 52.2 | 52.9 | 50.0 | 50.1 | 48.7 | 49.6 | | Face temperature* | 51.0 | 52.1 | 49.8 | 50.2 | 50.4 | 51.6 | 45.6 | | Axillary temperature* | 50.1 | 52.6 | 52.2 | 50.8 | 51,3 | 48.9 | 50.9 | | First Finger temperature | 49.0 | 49.1 | 49.8 | 52.4 | 50.9 | 50.8 | 47.2 | | Second Finger temperature | 50.4 | 49.0 | 51.8 | 52.2 | 50.1 | 49.9 | 50,9 | | Finger pulse volume | 47.7 | 46.7 | 50.6 | 49.0 | 50.3 | 49.7 | 51.0 | | Stomach period | 49,9 | 50.2 | 51.1 | 54.0 | 51.5 | 50.9 | 50.8 | | Factor A-1 | 53.4 | 48.1 | 47.3 | 46.5 | 49.9 | <u>47.9</u> | 50.8 | Underlined means differ significantly from means of group ND at the 5% level of confidence. ^{*} indicates reflection of variable. ND = no disorders reported. SK = skin disorders (boils, eczema, shingles, skin rashes, excessive sweating). GI = gastrointestinal disorders (constipation, diarrhea, hemorrhoids, ulcers, etc.). AX = anxiety (anxiety, fear, depression, nervousness, nervous breakdown). HD = headaches (frequent headaches, migraine headaches). RP = respiratory disorders (hay fever, sinus
trouble). MN = menstrual disorders (pain during menstruation, pre-menstrual tension). Table 2-R FREQUENCIES OF AUTONOMIC PATTERNS WITHIN DISORDER CATEGORIES | | ND | SK | GI | AX | HD | RP | MN | D | |--------------|----|-------|-------|-------|------|-------|-------|-------| | P | 7 | 0 | 2 | 0 | 2 | 0 | 3 | 5 | | PS1 | 4 | 1 | 1 | 0 | 2 | 1 | 1 | 4 | | M | 10 | 3 | 7 | 1 | 2 | 10 | 7 | 25 | | S | 5 | 5 | 9 | 5 | 6 | 4 | 7 | 16 | | PS2 | 0 | 2 | 0 | 4 | 2 | 8 | 3 | 12 | | В | 1 | 2 | 2 | 1 | 1 | 0 | 1 | 3 | | Unclassified | 12 | 4 | 8 | 3 | 4 | 5 | 8 | 23 | | | | | | | | | | | | | ND | SK | GI | AX | HD | RP | MN | D | | P + PS1 | 11 | 1 | 3 | 0 | 4 | 1 | 4 | 9 | | S + PS2 + B | 6 | 9 | 11 | 10 | 9 | 12 | 11 | 31 | | Chi-square | | 5.37* | 5.81* | 8.32* | 3.39 | 7.78* | 4.63* | 9.33* | ^{*} indicates that Chi-square for the comparison of the pattern distribution with the distribution in group ND is significant at the .05 level. ND = no disorders reported. SK = skin disorders (boils, eczema, shingles, skin rashes, excessive sweating). GI = gastrointestinal disorders (constipation, diarrhea, hemorrhoids, ulcers, etc.). AX = anxiety (anxiety, fear, depression, nervousness, nervous breakdown). HD = headaches (frequent headaches, migraine headaches). RP = respiratory disorders (hay fever, sinus trouble). MN = menstrual disorders (pain during menstruation, pre-menstrual tension) D = one or more disorders reported. (P and PS1) to sympathetic and mixed patterns (S, PS2 and B) was significantly smaller than among subjects having no disorders. It may be noted, too, that pattern S was the modal pattern in each disorder group except RP. It is evident from Table 2-S, in which the mean reactions to cold pressor stimulation are shown, that there were no tendencies toward hyper-reactivity in any of the disorder groups. Only two statistically significant differences between means were found; the skin disorder group had a smaller palmer conductance reaction and the menstrual disorder group a smaller finger pulse volume reaction than the group having no disorders. It was thought that increased muscular tension might be characteristic of many psychosomatic disorders, and particularly of anxiety and other nervous disorders. As shown in Table 2-T, however, there was no general tendency for the mean muscle tension ratings of the disorder groups to be higher than those of the group with no disorders. Although the anxiety group, as expected, had the highest mean muscle tension ratings, they were not significantly higher than the mean ratings of group ND. The means of the Guilford-Zimmerman scores in Table 2-T exhibit little relationship to the categories of psychosomatic disorders. The only statistically significant difference was that between the means of groups HD and ND on the femininity-masculinity scale. The indicated association of headaches with a lesser degree of femininity is not one that would have been predicted. Table 2-S STANDARDIZED MEANS OF REACTIONS TO COLD PRESSOR STIMULATION FOR SUBJECTS REPORTING THE OCCURRENCE OF CERTAIN KINDS OF DISORDERS | | ND | SK | GI | AX | HD | RP | MN | |----------------------|------|------|------|------|------|------|------| | Ns for groups: | 38 | 17 | 29 | 14 | 18 | 27 | 30 | | Systolic b. p. | 49.9 | 49.5 | 53.2 | 51.6 | 51.0 | 50.4 | 48.4 | | Diastolic b. p. | 51.1 | 51.0 | 52.0 | 47.6 | 50.7 | 50.5 | 48.4 | | Pulse pressure* | 50.7 | 49.5 | 48.5 | 46.2 | 51.2 | 50.4 | 49.5 | | Heart rate | 49.7 | 52.5 | 50.6 | 49.5 | 50.0 | 49.4 | 48.6 | | Respiration rate | 47.8 | 52.9 | 52.7 | 52.8 | 52.2 | 48.5 | 51.3 | | Palmar conductance | 53.3 | 46.3 | 48.3 | 48.3 | 49.6 | 48.8 | 49.0 | | Finger temperature* | 49.0 | 46.9 | 49.4 | 43.8 | 50.7 | 51.5 | 48.6 | | Face temperature | 48.8 | 50.3 | 51.0 | 51.8 | 54.4 | 49.4 | 52.1 | | Axillary temperature | 50.2 | 51.8 | 49.7 | 47.6 | 50.0 | 49.8 | 49.9 | | Finger pulse volume* | 52.8 | 47.4 | 48.7 | 48.3 | 48.1 | 48.6 | 45.8 | | Stomach period* | 47.4 | 43.8 | 51.9 | 46.0 | 52.4 | 50.4 | 41.4 | Underlined means differ significantly from the means of group ND at the .05 level. ^{*} indicates reflection of variable. ND = no disorders reported. SK = skin disorders (boils, eczema, shingles, skin rashes, excessive sweating). GI = gastrointestinal disorders (constipation, diarrhea, hemorrhoids, ulcers, etc.). AX = anxiety (anxiety, fear, depression, nervousness, nervous breakdown). HD = headaches (frequent headaches, migraine headaches). RP = respiratory disorders (hay fever, sinus trouble). MN = menstrual disorders (pain during menstruation, pre-menstrual tension). Table 2-T STANDARDIZED MEANS OF MUSCLE TENSION RATINGS AND GUILFORD-ZIMMERMAN SCORES FOR SUBJECTS REPORTING THE OCCURRENCE OF CERTAIN KINDS OF DISORDERS | | ND | SK | GI | AX | HD | RP | MN | |-----------------|------|------|------|------|------|------|------| | Ns for groups: | 30 | 17 | 23 | 13 | 15 | 26 | 25 | | Muscle ten. (S) | 51.6 | 47.9 | 51.2 | 51.8 | 50.1 | 50.8 | 48.6 | | Muscle ten. (0) | 48.5 | 47.9 | 51.4 | 53.2 | 47.6 | 48.5 | 49.2 | | Muscle ten. (M) | 50.4 | 46.6 | 51.0 | 52.1 | 49.0 | 49.4 | 48.2 | | | | | | | | | | | | ND | SK | GI | AX | HD | RP | MN | | Ns for groups: | 33 | 17 | 27 | 13 | 16 | 28 | 27 | | GZ. scale G | 49.2 | 49.6 | 51.6 | 49.7 | 49.6 | 50.6 | 48.2 | | GZ. scale R | 48.0 | 52.1 | 50.8 | 51.6 | 44.0 | 52.3 | 50.5 | | GZ. scale A | 52.5 | 51.8 | 47.8 | 47.7 | 47.1 | 49.5 | 50.6 | | GZ. scale S | 50.7 | 50.8 | 49.9 | 49.1 | 47.9 | 50.9 | 46.7 | | GZ. scale E | 49.4 | 44.6 | 47.9 | 44.4 | 46.1 | 51.0 | 47.6 | | GZ. scale 0 | 50.9 | 50.8 | 50.6 | 48.8 | 48.5 | 51.0 | 48.5 | | GZ. scale F | 50.2 | 47.2 | 52.1 | 49.5 | 48.7 | 49.7 | 49.6 | | GZ. scale T | 49.5 | 51.7 | 52.4 | 54.6 | 52.2 | 50.0 | 51.4 | | GZ. scale P | 50.6 | 50.2 | 50.9 | 52.4 | 48.5 | 49.8 | 49.1 | | GZ. scale M | 50.6 | 46.0 | 48.5 | 47.3 | 43.3 | 49.5 | 48.9 | | GZ. quest. | 48.7 | 49.7 | 51.9 | 48.3 | 49.7 | 47.6 | 51.2 | Underlined means differ significantly from the means of group ND at the .05 level. ND = no disorders reported. SK = skin disorders (boils, eczema, shingles, skin rashes, excessive sweating). GI = gastrointestinal disorders (constipation, diarrhea, hemorrhoids, ulcers, etc.). AX = anxiety (anxiety, fear, depression, nervousness, nervous breakdown). HD = headaches (frequent headaches, migraine headaches). RP = respiratory disorders (hay fever, sinus trouble). MN = menstrual disorders (pain during menstruation, pre-menstrual tension) group T, were not teaching at the time of the survey, but those who indicated an intention to resume teaching in the near future were not included in group NR. Groups T and NR were considered to represent the upper and lower extremes with respect to professional success, with groups NT1 and NT2 occupying an intermediate position. It was evident from an initial inspection of the data that one important factor related to whether or not a teacher had obtained tenure was the extent to which maternal duties had made demands upon her time. There was an obvious tendency for group T to be loaded in favor of childless teachers and for group NT1 to be loaded in favor of teachers with children. It is reasonable to suppose that many teachers in the latter group would have obtained tenure if they had been given the opportunity to devote more of their time to teaching. Further comparisons, therefore, were made between two additional sub-groups: who had obtained tenure despite having children (group TC), and those who were childless but who had not obtained tenure (group It was thought that if there were any tendencies for the psychophysiological tests to discriminate between more and less successful teachers, possibly the differentiation between groups TC and NTN might be clearer than between groups T and NT1. # 4. Relations of Teaching Status to the Psychophysiological Test Battery The means of the pre-stimulus physiological measures for the tenured and non-tenured teachers are shown in Table 2-U. Table 2-U STANDARDIZED MEANS OF PRE-STIMULUS PHYSIOLOGICAL MEASURES FOR SUBJECTS CLASSIFIED ACCORDING TO TEACHING STATUS | | T | NT1 | NT 2 | NR | TC | NTN | |---------------------|------|-------------|------|-------------|------|--------------| | Ns for groups: | 50 | 77 | 36 | 25 | 20 | 18 | | Salivary output | 50.1 | 49.2 | 49.9 | 48.3 | 52.8 | 50.3 | | Sublingual temp.* | 51.7 | 50.0 | 50.6 | 52.3 | 51.3 | 51.2 | | Palmar conductance* | 48.7 | 50.4 | 51.2 | 53.7 | 49.2 | 5 0.7 | | Volar conductance* | 52.0 | 49.7 | 48.9 | 49.3 | 51.5 | 49.7 | | Log cond. change | 51.2 | 50.5 | 50.6 | 54.4 | 52.3 | 50.2 | | Systolic b. p.* | 48.5 | 49.1 | 49.8 | 51.4 | 48.7 | 5 3.2 | | Diastolic b. p.* | 50.7 | 49.8 | 50.3 | 50.3 | 49.9 | 53.0 | | Pulse pressure | 51.9 | 49.1 | 50.4 | 49.2 | 51.2 | 49.3 | | Heart period | 48.6 | 51.2 | 50.5 | 54.0 | 50.3 | 50.2 | | Respiration period | 50.2 | 49.9 | 50.3 | 47.2 | 50.2 | 48.0 | | Pupil diameter* | 50.9 | 50.9 | 52.3 | 50.0 | 53.4 | 49.2 | | Derm. persist. | 49.3 | 49.0 | 48.3 | 50.2 | 50.3 | 49.6 | | Derm. latency* | 50.4 | 49.9 | 50.3 | 51.7 | 51.2 | 50.5 | | Face temperature* | 45.9 | <u>52.4</u> | 50.1 | 50.4 | 47.6 | 51.2 | | Axillary temp.* | 48.9 | 51.3 | 50.9 | 52.7 | 53.7 | 50.1 | | 1st Finger temp. | 47.7 | 50.8 | 51.3 | 50.9 | 48.6 | 53.4 | | 2nd Finger temp. | 51.0 | 51.3 | 51.4 | 50.9 | 50.3 | 54.7 | | Finger pulse vol. | 51.5 | 49.3 | 49.0 | 46.6 | 49.7 | 47.2 | | Stomach period | 48.5 | 50.4 | 51.4 | 52.1 | 47.5 | 5 0.2 | | Factor I-A | 49.5 | 51.2 | 50.8 | <u>54.6</u> | 50.4 | 50,9 | Underlined means differ significantly from the means of group T at the .05 level. ^{*} indicates reflection of variable. T = tenured teachers. NT1= non-tenured teachers. NT2= non-tenured teachers who had taught for less than 3 years. NR = teachers who had left the profession and did not intend to return. TC = tenured teachers with children. NTN= non-tenured teachers without children. Evidence of a difference in
physiological functioning between the more and less successful teachers is afforded by the finding that the teachers who had left the profession differed significantly from the tenured teachers in palmar conductance, heart period, and autonomic factor scores. All these differences are indicative of relatively greater PNS dominance in the less successful group. The only significant difference between the tenured teachers and the total group of non-tenured teachers, however, was in face temperature, while no significant differences were found between groups TC and NTN. The frequency distributions of autonomic patterns shown in Table 2-V provides further evidence of an association between relative PNS dominance and a lesser degree of success in the teaching profession. There were statistically significant tendencies for the relative number of subjects with parasympathetic patterns to be greater and the relative number of subjects with sympathetic and mixed patterns to be smaller in groups NT1 and NR than in group Only 15% of the subjects having patterns P or PS1 had obtained tenure at the time of this study, and 40% had left the profession; whereas 43% of the subjects having patterns S, PS2 or B had obtained tenure, and only 8% had left the profession. In addition, it can be seen in Table 2-V that the subjects having pattern S were the only ones of whom a majority, albeit a small one, had obtained tenure. The relative distributions of patterns in groups TC and NTN exhibited a trend similar to that seen in groups T and NT1, but with the smaller number of cases involved, the tendency was not statistically significant. Table 2-V FREQUENCIES OF AUTONOMIC PATTERNS WITHIN TEACHING STATUS CATEGORIES | | T | NT1 | NT 2 | NR | TC | NTN | |--------------|----|-------|------|-------|----|-----| | P | 2 | 10 | 3 | 4 | 2 | 4 | | PS1 | 1 | 7 | 3 | 4 | 0 | 1 | | M | 15 | 20 | 11 | 7 | 6 | 2 | | S | 11 | 10 | 6 | 2 | 4 | 4 | | PS2 | 5 | 7 | 3 | 0 | 2 | 2 | | В | 0 | 4 | 3 | 1 | 0 | 1 | | Unclassified | 16 | 19 | 7 | 7 | 6 | 4 | | | | | | | | | | | Т | NT1 | NT2 | NR | TC | NTN | | P + PS1 | 3 | 17 | 6 | 8 | 2 | 5 | | S + PS2 + B | 16 | 21 | 12 | 3 | 6 | 7 | | Chi-square | | 4.79* | .72 | 7.43* | | | ^{*} indicates that Chi-square for the comparison of the pattern distribution with the distribution in group T is significant at the .05 level. T = tenured teachers. NT1= non-tenured teachers. NT2= non-tenured teachers who had taught for less than 3 years. NR = teachers who had left the profession and did not intend to return. TC = tenured teachers with children. NTN= non-tenured teachers without children. The means of the reactions to cold pressor stimulation for the groups are presented in Table 2-W. The only statistically significant differences were those between groups TC and NTN in the three skin temperature measures and in finger pulse volume. The mean axillary temperature response for group TC appears in the table as smaller, in terms of standard scores, than the mean for group NTN, because the measures were standardized with reference to the mean for the total sample, which was an increase in temperature. Actually, the mean axillary temperature reaction for group TC was a decrease, slightly greater in magnitude than the increase for group NTN. It can be said, therefore, that group TC showed a pattern of greater peripheral vascular reaction than group NTN. In addition, the means for group TC in six of the other seven variables were higher than those for group NTN. While these differences individually were not statistically significant, the overall pattern suggests that group TC was, in a general sense, more reactive than group NTN. similar trend is not apparent, however, in the relatively small differences between the larger groups. The means of the muscle tension ratings, as shown in Table 2-X consistently were lower for the tenured teachers than for the non-tenured teachers. Although only the difference between the outside observers' ratings for groups T and NT2 was statistically significant, it is noteworthy that all of the differences between the ratings for the larger tenured and non-tenured groups conformed to this one in direction. There are several Table 2-W STANDARDIZED MEANS OF REACTIONS TO COLD PRESSOR STIMULATION FOR SUBJECTS CLASSIFIED ACCORDING TO TEACHING STATUS | | T | NT1 | NT2 | NR | TC | NTN | |-------------------|------|------|------|------|------|-------------| | Ns for groups: | 48 | 76 | 36 | 25 | 18 | 18 | | Systolic b. p. | 52.1 | 49.1 | 50.5 | 49.3 | 54.2 | 50.9 | | Diastolic b. p. | 50.7 | 50.3 | 51.0 | 52.0 | 54.4 | 50.6 | | Pulse pressure* | 49.2 | 50.7 | 49.5 | 51.5 | 52.1 | 50.2 | | Heart rate | 51.4 | 48.7 | 48,7 | 48.8 | 52.5 | 48.2 | | Respiration rate | 50,1 | 48.7 | 49,5 | 49,4 | 51. | 49.4 | | Palmar cond. | 50.5 | 50.5 | 50.5 | 52.1 | 54.3 | 50.0 | | Finger temp.* | 51.8 | 48.8 | 50.2 | 49.8 | 54.8 | 46.1 | | Face temp. | 49.9 | 49.7 | 50.4 | 50.0 | 55.8 | 49.8 | | Axillary temp. | 48.4 | 51,9 | 49.0 | 49.9 | 44.6 | <u>51.9</u> | | Fing. pulse vol.* | 50.9 | 47.7 | 46.6 | 49.3 | 53.4 | 46.7 | | Stomach period* | 48.1 | 49,9 | 47.5 | 49,6 | 46.6 | 52.3 | Underlined means differ significantly from the means of group TC at the .05 level. ^{*} indicates reflection of variable. T = tenured teachers. NT1= non-tenured teachers. NT2= non-tenured teachers who had taught for less than 3 years. NR = teachers who had left the profession and did not intend to return. TC = tenured teachers with children. NTN= non-tenured teachers without children. Table 2-X STANDARDIZED MEANS OF MUSCLE TENSION RATINGS AND GUILFORD-ZIMMERMAN SCORES FOR SUBJECTS CLASSIFIED ACCORDING TO TEACHING STATUS | | T | NT1 | NT2 | NR | TC | NTN | |-----------------|------|------|------|------|------|------| | Ns for groups: | 44 | 60 | 32 | 21 | 19 | 15 | | Muscle ten. (S) | 49.9 | 50.2 | 52.0 | 51.1 | 51.2 | 49.2 | | Muscle ten. (0) | 47.4 | 50.7 | 52.6 | 49.4 | 46.8 | 47.6 | | Muscle ten. (M) | 47.1 | 50.5 | 51.6 | 50.8 | 47.5 | 49.7 | | | | | | | | | | | T | NT1 | NT 2 | NR | TC | NTN | | Ns for groups: | 46 | 65 | 32 | 21 | 18 | 13 | | GZ. scale G | 51,5 | 49.3 | 49.4 | 46.9 | 51.9 | 44.4 | | GZ. scale R | 49.9 | 49.3 | 48.0 | 50.7 | 52.2 | 50.7 | | GZ. scale A | 51.4 | 49.7 | 48.0 | 47.3 | 51.5 | 51.1 | | GZ. scale S | 52.0 | 48.9 | 46.5 | 48.3 | 53.0 | 48.4 | | GZ. scale E | 52.6 | 47.5 | 46.3 | 46.1 | 56.1 | 41.8 | | GZ. scale O | 51.7 | 50.4 | 50.6 | 47.3 | 52.6 | 46.9 | | GZ. scale F | 52.1 | 49.1 | 50.9 | 49.3 | 53.1 | 40.9 | | GZ. scale T | 48.3 | 51.6 | 51.9 | 51.8 | 47.6 | 52.4 | | GZ. scale P | 50.9 | 50.6 | 50.5 | 50.1 | 49.0 | 48.3 | | GZ. scale M | 51.0 | 49.6 | 49.7 | 48,8 | 50.3 | 50.6 | | GZ. quest. | 48.3 | 50.3 | 51.8 | 50.9 | 48,0 | 50.3 | Underlined NT2 means differ significantly from the means of group T at the .05 level. Underlined NTN means differ significantly from the means of group TC at the .05 level. T = tenured teachers. NT1= non-tenured teachers. NT2= non-tenured teachers who had taught for less than 3 years. NR = teachers who had left the profession and did not intend to return. TC = tenured teachers with children. NTN= non-tenured teachers without children. indications in Table 2-X of personality differences between more and less successful teachers. The greatest differentiation was between groups TC and NTN, the former being particularly high in emotional stability (D) and the latter being very low in emotional stability, friendliness (F) and general activity (G). While similar trends were present in the differences between the larger groups, the only statistically significant differences were those between groups T and NT2 in emotional stability and sociability (S). # 5. Relations of Teaching Status to Previous Evaluations of Teaching Performance The relations of teaching status to the criteria of teaching performance employed in the original study and in the firstyear follow-up study are shown in Tables 2-Y and 2-Z. It is apparent in Table 2-Y that the ratings of student teaching performance afford relatively little basis for prediction of subsequent success in the profession. The only set of ratings which showed any significant relation to teaching status was that by the outside observer. The University ratings and the supervisors' ratings were not even consistently higher for the tenured teachers than for the non-tenured teachers. The CTRS ratings made at the end of the first year of in-service teaching, on the other hand, are more closely related to subsequent teaching status. sults shown in Table 2-Z indicate that those in groups CB and TP were less likely to achieve tenure than those with wholly favorable ratings on the CTRS, and were more likely to spend Table 2-Y STANDARDIZED MEANS OF STUDENT TEACHING PERFORMANCE RATINGS FOR SUBJECTS CLASSIFIED ACCORDING TO TEACHING STATUS | | T | NT1 | NT2 | NR | TC | NTN | |-------------------|------|------|------|------|------|------| | Ns for groups: | 45 | 68 | 34 | 21 | 20 | 14 | | Teacher beh. (S) | 50.6 | 50.9 | 50.3 | 49.4 | 49.6 | 51.9 | | Teacher beh. (0) | 53.2 | 50.0 | 48.5 | 51.8 | 54.0 | 52.0 | | Teacher beh. (M) | 51.8 | 51.0 | 49.8 | 50.7 | 51.5 | 52.0 | | Pupil beh. (S) | 49.7 | 52.5 | 51.4 | 51.1 | 50.1 | 54.0 | | Pupil beh. (0) | 52.4 | 50.1 | 49.4 | 52.8 | 54.6 | 51.2 | | Pupil beh. (M) | 50.7 | 52.2 | 51.0 | 52.2 | 51.7 | 52.8 | | Total rating (S) | 50.3 | 51.3 | 50.5 | 49.8 | 49.6 | 52.2 | | Total rating (0) | 53.1 | 50.0 | 48.6 | 51.9 | 54.4 | 51.6 | | Total rating (M) | 51.5 | 51.3 | 50.0 | 51.0 | 51.7 | 51.9 | | University rating | 49.0 | 51.1 | 50.7 | 50.3 | 49.2 | 50.8 | Underlined means differ significantly from the means of group T at the .05 level. T = tenured teachers. NT1= non-tenured teachers. NT2= non-tenured teachers who had taught for less than 3 years. NR = teachers who had left the profession and did not intend to return. TC = tenured teachers with children. NTN= non-tenured teachers without children. Table 2-Z
FREQUENCIES OF FAVORABLE AND UNFAVORABLE RATINGS ON THE CONFIDENTIAL TEACHER RATING SCALE (CTRS) FOR SUBJECTS CLASSIFIED ACCORDING TO TEACHING STATUS | | T | NT1 | NT2 | NR | TC | NTN | |------------|----|------|-------|-------|----|-----| | . F | 31 | 31 | 8 | 7 | 13 | 8 | | UF | 18 | 24 | 15 | 11 | 7 | 5 | | Chi-square | | .51 | 5.12* | 3.19 | | .04 | | | | | | | | | | СВ | 6 | 11 | 6 | 5 | 2 | 3 | | Chi-square | | 1.16 | 5.28* | 4.73* | | .79 | | | | | | | | | | TP | 5 | 11 | 7 | 6 | 2 | 3 | | Chi-square | | 1.80 | 6.32* | 5.71* | | .79 | ^{*} indicates that Chi-square is significant at the .05 level for the distribution of favorable and unfavorable ratings within the group compared with the distribution within the tenured group. T = tenured teachers NT1= non-tenured teachers NT2= non-tenured teachers who had taught for less than 3 years NR = teachers who had left the profession and did not intend to return TC = tenured teachers with children NTN= non-tenured teachers with children F = rated favorably on all items of CTRS UF = rated unfavorably on one or more items of CTRS CB = rated unfavorably on two or more items of CTRS, Classroom Behavior Sub-section TP = rated unfavorably on one or more items of CTRS, Teacher-parent Relations Sub-section relatively little time in teaching or to leave the profession altogether. # 6. Discussion and Conclusions The relations found in this study between psychosomatic disorders and autonomic factor scores and patterns are consistent with the findings in numerous studies of autonomic balance in males (cf. Wenger, 1966) that tendencies toward relative sympathetic nervous system (SNS) dominance are associated with various kinds of disorders, both psychological and psychosomatic. It is rather generally believed that SNS activity is particularly prominent in states of anxiety and fear, and low autonomic factor scores for males in anxiety states have been found in several studies (Holt, 1956; Parker, 1955; Smith and Wenger, 1965; Wenger, 1948). In the present study, the lowest mean autonomic factor score was that of the anxiety group. It has been proposed (Wenger, Jones and Jones, 1956) that the anxiety-fear "axis" is characterized by a pure pattern of sympathetic dominance. distribution of patterns within group AX in Table 2-R partly supports this idea. Not only was pattern S the modal pattern for this group but also the percentage of subjects within the group having pattern S (36%) was higher than that of any other group shown in the table. A similar finding of maximal incidence of pattern S and minimal incidence of pattern P in male subjects troubled by anxiety has been reported by Wenger (1966). However, while none of the subjects in group AX showed patterns of parasympathetic dominance, there was a relatively high incidence of the mixed pattern PS2, in which only two variables deviate in the direction of sympathetic dominance. Higher incidences of sympathetic patterns and lower incidences of parasympathetic patterns, along with lower autonomic factor scores, also have been found by Wenger et al. (1962) in male patients hospitalized for dermatological and gastrointestinal disorders, as compared to the normative sample of Air Force cadets whose pattern distribution is shown in Table 2-K. A major difference between the present study and previous ones is the very low incidence of pattern B in the present sample and the lack of evidence for its association with psychosomatic disorders. In the study by Wenger et al., this pattern was the modal one for both ulcerative and nonulcerative gastrointestinal disorders and for dermatological disorders other than neurodermatitis. Pattern B also has been found to occur with relatively high frequencies in male subjects with anxiety and several other disorders (Wenger, 1966). It was thought that patterns of PNS dominance might be found with relatively higher frequencies in respiratory disorders and in headaches than in the other major categories of disorders. The increased secretion from the nasal mucosa and other symptoms found in hay fever and similar disorders are believed to be indicative of heightened PNS activity (Millonig et al., 1950), and in Wenger's (1966) study of males the percentage of subjects having pattern P was greatest among those with hypotension and next greatest among those having migraine headaches. The autonomic factor scores and pattern distributions for groups HD and RP in the present study, however, do not offer any support to the hypothesis that these disorders are characterized by dominance of the Although the percentage of subjects having pattern S was lowest in group RP (14%) and comparable to the percentage in group ND (13%), it is evident in Table 2-R that there was no inversely corresponding tendency for the percentage of subjects having pattern P to be higher in group RP than in the other groups. Pattern PS2, on the other hand, appears to be strongly associated with respiratory disorders. Eight of the twelve subjects having this mixed pattern of PNS dominance in some functions and SNS dominance in others reported having suffered from hay fever and/or sinus trouble. of the four subjects in group AX who had this pattern, moreover, also had hay fever, while three of the four subjects in group RP who had pattern S also had gastrointenstinal disorders. It may be that pattern PS2 is associated mainly with respiratory disorders, whereas pattern S is associated in a less specific way with various disorders other than respiratory ones. While there appears to be a general tendency for psychosomatic disorders to be associated with a relative dominance of SNS activity under conditions of rest, no indication was found in the present study that this condition of autonomic imbalance was accompanied by an increased reactivity of the SNS to stimulation. On the contrary, the two significant differences in reactivity between group ND and the disorder groups (Table 2-S) both show the subjects with disorders to be less reactive than those having no disorders. Neither difference, however, can be interpreted as indicative of an inhibitory effect due to greater PNS reactivity, since each involves a physiological function whose innervation is solely sympathetic. In the previously mentioned study of males by Wenger et al. (1962) patients with non-ulcerative gastrointestinal disorders and patients with neurodermatitis showed significantly greater heart rate reactions and significantly lesser diastolic blood pressure reactions to cold pressor that did a normal group. Eyster et al., (1952), on the other hand, reported just the opposite pattern of reaction, diminished cardiac reactivity and increased blood pressure reactivity, in a group of 10 males and fourteen female patients with atopic dermatitis. In the present study the differences between group ND and groups SK and GI in blood pressure and heart rate reactions were quite small and statistically insignificant, and thus they fail to provide confirmation for either of these previous studies. The difference between groups ND and SK in palmar conductive reactivity, however, is consistent with the finding by Wenger et al., (1962) of a similar but statistically insignificant difference between normal subjects and dermotological patients. Why subjects with skin disorders should be less rather than more reactive in palmar conductance is a difficult question to answer. One possibility is that some of the disorders in this category might involve changes in the skin which would interfere with the response of an epidermal membrance that is thought by some investigators (Edelberg, 1964; Wilcott, 1967) to be an important factor in the palmar conductance reaction. The difference between groups ND and MN in finger pulse volume reactivity also is one whose physiological significance is not readily apparent. Analysis of the relations between the Guilford-Zimmerman scores and the major categories of disorders provided no evidence that any particular pattern of traits characterizes subjects having any of these kinds of disorders. The fact that the anxiety group had the lowest mean score on the Emotional Stability scale (E), however, is of interest even though their mean was not significantly lower than the mean for group ND. It tends to confirm the impression that this group was the most deviant of the six disorder groups, having the lowest autonomic factor scores, the highest proportion of subjects with pattern S, the highest degree of muscle tension, and the lowest degree of emotional stability. Evidence that autonomic nervous system functioning bears some relation to success in the teaching profession was provided by the differences found between tenured and non-tenured teachers in autonomic factor scores and in multivariate autonomic patterns. The results shown in Table 2-V suggest that there is a rather pronounced tendency for teachers who show autonomic imbalance in the direction of relative PNS dominance to be the ones who adjust least well to teaching. Very few of those having patterns P or PSI had obtained tenure at the time of this study, and a high proportion had left the profession. There is also some indication in Table 2-V of a converse tendency, but a less clear one, for teachers who show imbalance in the direction of relative SNS dominance, or who show certain specific mixed patterns of ANS activity, to make the best adjustment to teaching. At least the number who had left the profession was very low among those having patterns S, PS2 or B, although the proportion who had obtained tenure was about the same as among those having mean (M) or unclassified patterns. The results shown in Table 2-X provide further confirmation for the conclusions of the initial study that muscle tension is negatively related and sociability is positively related to teaching performance. The evidence of an association between lower muscle tension and professional success, in terms of tenure, is
consistent with the previous findings of negative correlations between muscle tension ratings and ratings of student teaching performance (Table 1-R) and of an association between higher muscle tension ratings and unfavorable ratings on the CTRS (Table 2-0). The differences between tenured and non-tenured teachers on the Guilford-Zimmerman Sociability scale likewise are in agreement with the positive relations between sociability and teaching performance shown in Tables 1-R and 2-0. The other significant differences between groups in Table 2-X suggest a description of the more successful teachers as friendly, active, and emotionally stable as well as sociable. Such a constellation of traits is one that well might be expected as characteristic of better teachers. In addition, the slight tendencies for the tenured teachers to be higher in objectivity (0) and lower in thoughtfulness (T), although not statistically significant, are of interest because they contribute to an overall pattern of traits which appears to be just the inverse of one reported by Wenger (1948) to be associated with parasympathetic predominance in males. In Wenger's study, autonomic factor scores were found to be positively correlated with factors representing introversion, depression, and emotional instability, and negatively correlated with factors representing objectivity, agreeableness, cooperation and lack of nervous tenseness. This pattern of associations corresponds very closely with the pattern of tendencies shown by each of the non-tenured groups in Table 2-X: lower sociability, friendliness, objectivity and emotional stability, and higher thoughtfulness and muscle tension. Thus it can be seen that the personality and muscle tension differences between the groups are consistent with the evidence in Table 2-U and 2-V that PNS dominance tends to be associated with a lesser degree of success in the profession. The difference between the tenured and non-tenured groups in general activity also can be considered as consistent with the difference in ANS function in view of the characterization by Eppinger and Hess (1915) of the sympathicotonic individual as more lively and excitable than the vagotonic (parasympathicotonic) individual, who sometimes is described as phlegmatic or even lethargic (Gillilan, 1954). #### REFERENCES - Castetter, D. D., Standlee, L. S., and Fattu, N. A. Teacher effectiveness: an annotated bibliography. <u>Bulletin of the Institute of Educational Research</u>, Indiana School of Education, Bloomington, Indiana, 1954, Vol. 1, No. 1. - Darrow, C. W. Physiological and clinical tests of autonomic function and autonomic balance. <u>Physiological Reviews</u>, 1943, 23, 1-36. - Domas, S. J., and Tiedeman, D. V. Teacher competence: an annotated bibliography. <u>Journal of Experimental Education</u>, 1950, 19, 101-218. - Edelberg, R. Independence of galvanic skin response amplitude and sweat production. <u>Journal of Investigative Dermatology</u>, 1964, 42, 443-448. - Eppinger, H., and Hess, L. Vagotonia. Mental and Nervous Disease Monographs, 1915, No. 20 - Eyster, W. H., Jr., Roth, G., and Kierland, R. R. Studies on the peripheral vascular physiology of patients with dermatitis. Journal of Investigative Dermatology, 1952, 18, 37-46. - Gage, N. L. (editor). <u>Handbook of Research on Teaching</u>. Chicago: Rand McNally and Company, 1963. - Gillilan, L. A. <u>Clinical aspects of the autonomic nervous system.</u> Boston: Little, Brown and Co., 1954. - Holt, J. M. The treatment of chronic anxiety states by means of partial sympathetic blockade. Ph.D. dissertation, University of California, Los Angeles, 1956. - Kaiser, H. F. Computer program for varimax rotation in factor analysis. Educational and Psychological Measurement, 1959, 19, 413-420. - Kuntz, A. Visceral innervation and its relation to personality. Springfield, Illinois: Charles C. Thomas, 1951. - Lucio, W. H. Evaluating instructional behavior. Educational Comment, 1967. The University of Toledo, College of Education, 1967, 60-63. - Lucio, W. H. Research critique and a forward look. <u>Evaluating</u> Student Teaching, The Thirty-Ninth Yearbook of the Association for Student Teaching, 1960, 179-191. - Lucio, W. H., and Wenger, M. A. <u>Prediction of teacher performance</u> and emotional stability: a psychophysiological pilot study of female student teachers. Final report to U. S. Office of Education, Project No. 648, Contract No. SAE 8311; Sept. 30, 1961. Washington, D. C.: Photoduplication Center, Library of Congress. - Millonig, A. F., Harris, H. E., and Gardner, W. J. Effect of autonomic denervation on nasal mucosa. Archives of Otolaryngology, 1950, 52, 359-368. - Morsh, J. E., and Wilder, E. W. <u>Identifying the effective instructor</u>: a review of the quantitative studies, 1900-1952. Lackland Air Force Base, Texas: Air Force Personnel and Training Research Center, 1956. - Parker, A. G. Manifest anxiety and autonomic nervous system functions. Ph.D. dissertation, University of California, Los Angeles, 1955. - Ryans, D. G. Assessment of teacher behavior and instruction. Review of Educational Research, 1963, 33, 415-441. - Ryans, D. G. Characteristics of Teachers. Washington, D.C.: American Council on Education, 1960. - Smith, D. B. D., and Wenger, M. A. Changes in autonomic balance during phasic anxiety. Physchophysiology, 1965, 1, 267-271. - Waters, W. A., and Ellington, M. Annotated bibliography of publications related to teacher evaluation. <u>Journal of Experimental Education</u>, 1954, 22, 351-367. - Wenger, M. A. Seasonal variations in some physiologic variables. Journal of Laboratory and Clinical Medicine, 1943, 28, 1101 1108. - Wenger, M. A. Studies of autonomic balance in Army Air Forces personnel. Comparative Psychology Monographs, 1948, Vol. 19, No. 4. - Wenger, M. A. Pattern analysis of autonomic responses during rest. <u>Psychosomatic Medicine</u>, 1957, 19, 240-244. - Wenger, M. A. Some problems in psychophysiological research. In R. Roessler and N. S. Greenfield (Eds.), <u>Physiological correlates of psychological disorder</u>. Madison: <u>University of Wisconsin Press</u>, 1962. (a). - Wenger, M. A. A factorial study involving both resting and reactivity data. Unpublished report, Society for Psychophysiological Research, 1962. (b). - Wenger, M. A. Studies of autonomic balance: a summary. <u>Psychophysiology</u>, 1966, 2, 173-186. - Wenger, M. A., Clemens, T. L., and Cullen, T. D. Autonomic functions in patients with gastrointestinal and dermatological disorders. Psychosomatic Medicine, 1962, 24, 267-273. - Wenger, M. A., and Ellington, M. The measurement of autonomic balance in children: method and normative data. Psychosomatic Medicine, 1943, 5, 241-253. - Wenger, M. A., Engel, B. T., and Clemens, T. L. Studies of autonomic response: rationale and methods. Behavioral Science, 1957, 2, 216-221. - Wenger, M. A., Jones, F. N., and Jones, M. H. <u>Physiological</u> <u>Psychology</u>. New York: Henry Holt, 1956. - Wilcott, R. C. Arousal sweating and electrodermal phenomena. Psychological Bulletin, 1967, 58-72. - Wilder, J. Pitfalls in the methodology of the law of initial value. American Journal of Psychotherapy, 1965, 19, 577-584. # INDIVIDUAL SUBJECT DATA-RECORDING FORM | NAME NAME | EXPERIMENT | | | |--|------------|-------|--| | Time of Measurement Room Temperature | RS | Wt | | | SO milliliters (cc.) output for 3 minute sample | | , 14 | | | ST degrees fahrenheit plus correction (TableVI) . | | * 30 | | | PC Sample at end of 1st and 2nd minutes, standing | | | | | 1 2 volts | | | | | 1. 2. micromhos conductance. Average | | 60° | | | VC Samples at 3 minute intervals, reclining | | | | | 1. 2. 3. 4. K ohms resistance | | | | | Lowest conductance micromhos plus correction (Table V) | | 60. | | | LCC Samples of reclining PC at 3 minute intervals | | | | | 1. $2.$ 3. $4.$ K ohms resistance | | | | | Strain volts = log micromhos conductance | | | | | minus lowest resting conductance log micromhos | | .17 | | | <u>DBP</u> Samples at 3 minute intervals, reclining | | | | | Systolic: 1. 2. 3. 4. mm. Hg. | | | | | Diastolic: 1. 2. 3. 4. mm. Hg. | | | | | Average of the 2 DBPs accompanying 2 lowest SBPs | | * .18 | | | | . 41 | A score | * | | | | * | | * | | | |--
--|---|---|--|---|--|------------|------------|---|---|--| | HP Samples at 3 minute intervals, reclining 1. 2. 3. 4. cycles per min. | 1. $2 \cdot \frac{2}{3} \cdot \frac{4}{3} \frac{4}{3}$ | Milliminutes per 10 cycles = 10,000/cycles min. | SBP Average of 2 lowest SBPs plus correction (Table VI) | PP RS entry for SBP minus RS entry for DBP | First FiT C. + C. correction (Table VI) | Second FiT C. + C. correction (Table VI) | DI seconds | DP minutes | PD average of two consistent measurements | RP Samples at 3 minute intervals, reclining | 1. $2 \cdot \frac{3}{3} \cdot \frac{4}{3} \cdot \frac{1}{3} \frac{1}{3}$ | * Asterisk indicates reflected standard score. # KEY FOR INDIVIDUAL SUBJECT DATA-RECORDING FORM | <u>SO</u> Salivary Output | |-------------------------------------| | STSublingual Temperature | | PCPalmar Conductance | | <u>VC</u> Volar Conductance | | LCLog Conductance | | DBPDiastolic Blood Pressure | | <u>HP</u> | | SBPSystolic Blood Pressure | | PPPulse Pressure | | First FiTFirst Finger Temperature | | Second FiTSecond Finger Temperature | | <u>DL</u> Dermographia Latency | | <u>DP</u> Dermographia Persistence | | PDPupillary Diameter | | <u>RP</u> | | <u>RS</u> | | SSStandard Score | | * | | Wt | Corrections are given in Tables V and VI of M.A. Wenger, "Studies of autonomic balance in Army Air Force personnel." Comparative Psychology Monographs (University of California Press), 1948, Vol. 19, No. 4 # SCALE FOR RATING CHARACTERISTIC LEVEL OF MUSCULAR TENSION INSTRUCTION TO RATER: Wait until you have observed the subject for two weeks before you attempt to rate him. Do not discuss this scale with the subject. Try to picture the subject in non-emotional situations, and exclude the factor of restlessness as much as possible. If he is relaxed, he appears to move freely; his arms and hands give the impression of just "hanging"; his face is rather blank and immobile. If he is tense, his movements are more jerky, more "massive" in the sense of a "tight" body reacting as an uncoordinated whole, or set ready to react at the slightest provocation. His face is not impassive. It and his whole body give an impression of strain. Characteristic tension of the skeletal muscles is a variable which may be separated from emotional behavior and from restlessness. Although emotion includes muscular
tension, tension may be present in the absence of emotion. Although restlessness is based on a certain amount of residual tension, the extremely tense individual may inhibit restlessness while the relatively relaxed person may be freer to show some restlessness. TO MAKE YOUR RATING, PLACE A CHECK MARK AT THE MOST APPROPRIATE POINT ON THE X LINE BELOW, BUT DO NOT PLACE YOUR MARK AT THE DOTTED LINES. PLACE IT SOMEWHERE BETWEEN THE DOTTED LINES. IF YOU CANNOT BE SURE OF YOUR RATING, GUESS. DON'T RATE HIM AS AVERAGE UNLESS YOU BELIEVE HE IS TRULY AVERAGE. | | X | | |----|---------------|---| | • | | Tense. Seems never to relax and take things easy. Looks and acts as though under constant muscular strain. | | | | Usually tense, Movements are often jerky, uneven. | | | | Just average. Cannot be described as either tense or | | | | relaxed. | | | | Relaxed, but not sleepy. Movements easy and "loose"; rather limp. | | | | So relaxed he looks and acts almost asleep. | | | | | | B. | Name of Rater | Class | # APPENDIX C # CLASSROOM OBSERVATION RECORD | Teacher | | | Class or Subject_ | | | | | | Subject | Date | | | | |----------|--------------|-----|-------------------|-----|----|----|----|----|---------|---------------|--|--|--| | City | | Sch | 00 | 1_ | | | | | Time | eObserver | | | | | PUPIL BI | EHAVIOR | (| Ci: | rc] | le | 01 | ne | 01 | nly) | REMARKS: | | | | | l. | Apathetic | 1 | 2 | 3 | 4 | 5 | 6 | 7 | N | Alert | | | | | 2. | Obstructive | 1 | 2 | 3 | 4 | 5 | 6 | 7 | N | Responsible | | | | | 3. | Uncertain | 1 | 2 | 3 | 4 | 5 | 6 | 7 | N | Confident | | | | | 4. | Dependent | 1 | 2 | 3 | 4 | 5 | 6 | 7 | N | Initiating | | | | | TEACHER | BEHAVIOR | (| Ci | rc. | le | 01 | ne | 01 | nly) | | | | | | 5. | Partial | 1 | 2 | 3 | 4 | 5 | 6 | 7 | N | Fair | | | | | 6. | Autocratic | 1 | 2 | 3 | 4 | 5 | 6 | 7 | N | Democratic | | | | | 7. | Aloof | 1 | 2 | 3 | 4 | 5 | 6 | 7 | N | Responsive | | | | | 8. | Restricted | 1 | 2 | 3 | 4 | 5 | 6 | 7 | N | Understanding | | | | | 9. | Harsh | 1 | 2 | 3 | 4 | 5 | 6 | 7 | N | Kindly | | | | | 10. | Dull | 1 | 2 | 3 | 4 | 5 | 6 | 7 | N | Stimulating | | | | | 11. | Stereotyped | 1 | 2 | 3 | 4 | 5 | 6 | 7 | N | Original | | | | | 12. | Apathetic | 1 | 2 | 3 | 4 | 5 | 6 | 7 | N | Alert | | | | | 13. | Unimpressive | 1 | 2 | 3 | 4 | 5 | 6 | 7 | N | Attractive | | | | | 14. | Evading | 1 | 2 | 3 | 4 | 5 | 6 | 7 | N | Responsible | | | | | 15. | Erratic | 1 | 2 | 3 | 4 | 5 | 6 | 7 | N | Steady | | | | | 16. | Excitable | 1 | 2 | 3 | 4 | 5 | 6 | 7 | N | Poised | | | | | 17. | Uncertain | 1 | 2 | 3 | 4 | 5 | 6 | 7 | N | Confident | | | | | 18. | Disorganized | 1 | 2 | 3 | 4 | 5 | 6 | 7 | N | Systematic | | | | | 19. | Inflexible | 1 | 2 | 3 | 4 | 5 | 6 | 7 | N | Adaptable | | | | | 20. | Pessimistic | 1 | 2 | 3 | 4 | 5 | 6 | 7 | N | Optimistic | | | | | 21. | Immature | 1 | 2 | 3 | 4 | 5 | 6 | 7 | N | Integrated | | | | | 22. | Narrow | 1 | 2 | 3 | 4 | 5 | 6 | 7 | N | Broad | | | | N means not observed #### APPENDIX D #### GLOSSARY (To be used with Classroom Observation Record) # Pupil Behaviors 1. Apathetic-Alert Pupil Behavior # Apathetic - 1. Listless. - 2. Bored-acting. - 3. Enter into activities half-heartedly. - 4. Restless. - 5. Attention wanders. - 6. Slow in getting underway. - Obstructive-Responsible Pupil Behavior ## Obstructive - Rude to one another and/or teacher. - Interrupting; demanding. attention; disturbing. - 3. Obstinate; sullen. - 4. Refusal to participate. - 5. Quarrelsome; irritable. - 6. Engaged in name-calling and/or tattling. - 7. Unprepared. - Uncertain-Confident Pupil Behavior # Uncertain - Seem afraid to try; unsure. - Hesitant; restrained. - 3. Appear embarrassed. - 4. Frequent display of nervous habits, nail-biting, etc. - Appear shy and timid. - 6. Hesitant and/or stammering speech. ## Alert - Appear anxious to recite and participate. - 2. Watch teacher attentively. - 3. Work concentratedly. - 4. Seem to respond eagerly. - 5. Prompt and ready to take part in activities when they begin. # Responsible - Courteous, cooperative, friendly with each other and with teacher. - Complete assignments without complaining or unhappiness. - 3. Controlled voices. - 4. Received help and criticism attentively. - 5. Asked for help when needed. - 6. Orderly without specific directions from teacher. - 7. Prepared. # Confident - Seem anxious to try new problems or activities. - 2. Undisturbed by mistakes. - 3. Volunteer to recite. - 4. Enter freely into activities. - 5. Appear relaxed. - 6. Speak with assurance. # Pupil Behaviors (Continued) 4. Dependent-Initiating Pupil Behavior # Dependent - 1. Rely on teacher for explicit directions. - 2. Show little ability to work things out for selves. - 3. Unable to proceed when initiative called for. - 4. Appear reluctant to take lead or to accept responsibility. # Initiating - Volunteer ideas and suggesttions. - 2. Showed resourcefulness. - 3. Take lead willingly. - 4. Assume responsibilities without evasion. # Teacher Behaviors 5. Partial-Fair Teacher Behavior #### Partial - 1. Repeatedly slighted a pupil. - Corrected or criticized certain pupils repeatedly. - 3. Repeatedly gave a pupil special advantages. - 4. Gave most attention to one or a few pupils. - Showed prejudice (favorable or unfavorable) towards some social, racial, or religious groups. - Expressed suspicion of motives of a pupil. - 6. Autocratic-Democratic Teacher Behavior #### Autocratic - Tells pupils each step to take. - Intolerant of pupils' ideas. - 3. Mandatory in giving directions; orders to be obeyed at once. - 4. Interrupted pupils although their discussions was relevant. - 5. Always directed rather than participated. #### Fair - Treated all pupils approximately equally. - In case of controversy pupil allowed to explain his side. - 3. Distributed attention to many pupils. - 4. Rotated leadership impartially. - Based criticism or praise on factual evidence, not hearsay. # Democratic - Guided pupils without being mandatory. - 2. Exchanged ideas with pupils. - 3. Encouraged (asked for) pupil opinion. - Encouraged pupils to make own decisions. - Entered into activities without domination. 7. Aloof-Responsive Teacher Behavior #### Aloof - Stiff and formal in relations with pupils. - Apart; removed from class activity. - 3. Condescending to pupils. - 4. Routine and subject-matter only concern; pupils as persons ignored. - 5. Referred to pupils as "this child" or "that child." - Restricted-Understanding Teacher Behavior # Restricted - Recognized only academic accomplishments of pupils; no concern for personal problems. - Completely unsympathetic with a pupil's failure at a task. - 3. Called attention only to very good or very poor work. - 4. Was impatient with a pupil. - 9. Harsh-Kindly Teacher Beahvior #### Harsh - 1. Hypercritical; fault-finding. - 2. Cross; curt. - Depreciated pupil's efforts; was sarcastic. - 4. Scolds a great deal. - 5. Lost temper. - 6. Used threats. - 7. Permitted pupils to laugh at # Responsive - 1. Approachable to all pupils. - 2. Participates in class activity. - Responded to reasonable requests and/or questions. - 4. Speaks to pupils as equals. - 5. Commends effort. - 6. Gives encouragement. - Recognized individual differences. # Understanding - Showed awareness of a pupil's personal emotional problems and needs. - Was tolerant of error on part of pupil. - 3. Patient with a pupil beyond ordinary limits of patience. - 4. Showed what appeared to be sincere sympathy with a pupil's viewpoint. # Kindly - 1. Goes out of way to be pleasand and/or to help pupils; friendly. - Gave a pupil a deserved compliment. - 3. Found good things in pupils to call attention to. - 4. Seemed to show sincere concern for a pupil's personal problem. - Showed affection without being demonstrative. - 6. Disengaged self from a pupil without bluntness. ## 10. Dull-Stimulating Teacher Behavior #### Dull - 1. Uninteresting, monotonous explanations. - 2. Assignments provide little or no motivation. - 3. Fails to provide challenge. - 4. Lack of animation. - Failed to capitalize on pupil interests. - 6. Pedantic, boring. - 7. Lacks enthusiasm; bred acting. # 11. Stereotyped-Original Teacher Behavior #### Stereotyped - Used routine procedures without variation. - Would not depart from procedure to take advantage of a relevant question or situation. - 3. Presentation seemed unimaginative. - Not resourceful in answering questions or providing explanations. - 12. Apathetic-Alert Teacher Behavior #### Apathetic - Seemed listless; lanquid; lacked enthusiasm. - 2. Seemed bored by pupils. - 3. Passive in response to pupils. - 4. Seemed preoccupied. - 5. Attention seemed to wander. - Sat in chair most of time; took no active part in class activities. # Stimulating - 1. Highly interesting presentation; gets and holds attention without being flashy. - Clever and witty, though not smart-alecky or wise-cracking. - 3. Enthusiastic; animated. - 4. Assignments challenging. - Took advantage of pupil interests. - Brought lesson successfully to a climax. - 7. Seemed to provoke thinking. ## Original - 1. Used what seemed to be original and relatively unique devices to aid instruction. - Tried new materials or methods. - 3. Seemed imaginative and able to develop presentation around a question or situation. - 4. Resourceful in answering questions; had many pertinent illustrations available. #### Alert - Appeared buoyant; wide awake; enthusiastic about activity of the moment. - 2. Kept constructively busy. - 3. Gave attention to, and seemed interested in, what was going on in class. - 4. Prompt to "pick up" class when pupils' attention showed signs of lagging. 13. Unimpressive-Attractive Teacher Behavior # Unimpressive - Untidy or sloppily dressed. - 2. Inappropriately dressed. - 3. Darb, colorless. - 4. Posture and bearing unattractive. - 5. Possessed distracting personal habits.
- Mumbled; inaudible speech; limited expression disagreeable voice tone; poor inflection. - 14. Evading-Responsible Teacher Behavior # Evading - Avoided responsibility; disinclined to make decisions. - "Passed the buck" to class, to other teachers, etc. - Left learning to pupil, failing to give adequate help. - 4. Let a difficult situation get out of control. - 5. Assignments and directions indefinite. - 6. No insistance on either individual or group standards. - 7. Inattentive with pupils. - 8. Cursory. - 15. Erratic-Steady Teacher Behavior #### Erratic - Impulsive; uncontrolled; temperamental; unsteady. - Course of action easily swayed by circumstances of the moment. - 3. Inconsistent. # Attractive - 1. Clean and Neat. - Well-groomed; dress showed good taste. - Posture and bearing attractive. - 4. Free from distracting personal habits. - 5. Plainly audible speech; good expression; agreeable voice tone; good inflection. # Responsible - Assumes responsibility; makes decisions as required. - 2. Conscientious. - 3. Punctual. - 4. Painstaking; careful. - 5. Suggested aids to learning. - 6. Controlled a difficult situation. - 7. Gave definite directions. - Called attention to standards of quality. - 9. Attentive to class. - 10. Thorough. #### Steady - 1. Calm; controlled. - Maintained progress toward objective. - 3. Stable, consistent, predict-able. # 16. Excitable-Poised Teacher Behavior # Excitable - Easily disturbed and upset; flustered by classroom situation. - 2. Hurried in class activities; spoke rapidly using many words and gestures. - 3. Was "jumpy"; nervous. - 17. Uncertain-Confident Teacher Behavior # Uncertain - Seemed unsure of self; faltering, hesitant. - 2. Appeared timid and shy. - 3. Appeared artificial. - 4. Disturbed and embarrassed by mistakes and/or criticism. - 18. Disorganized-Systematic Teacher Behavior # Disorganized - 1. No plan for class-work. - 2. Unprepared. - Objectives not apparent; undecided as to next step. - 4. Wasted time. - Explanations not to the point. - Easily distracted from matter at hand. ## Poised - 1. Seemed at ease at all times. - Unruffled by situation that developed in classroom; dignified without being stiff or formal. - Unhurried in class activities; spoke quietly and slowly. - 4. Successfully diverted attention from a stress situation in classroom. #### Confident - Seemed sure of self; selfconfident in relations with pupils. - Undisturbed and unembarrassed by mistakes and/or criticism. #### Systematic - 1. Evidence of a planned though flexible procedure. - 2. Well prepared. - 3. Careful in planning with pupils. - Systematic about procedure of class. - 5. Had anticipated needs. - 5. Provided reasonable explanations. - 7. Held discussion together; objectives apparent. 19. Inflexible-Adaptable Teacher Behavior # Inflexible - Rigid in conforming to routine. - Made no attempt to adapt materials to individual pupils. - Appeared incapable of modifying explanation or activities to meet particular classroom situations. - 4. Impatient with interruptions and digressions. - 20. Pessimistic-Optimistic Teacher Behavior #### Pessimistic - Depressed; unhappy. - 2. Skeptical. - 3. Called attention to potential "bad." - 4. Expressed hopelessness of "education today," the school system, or fellow educators. - 5. Noted mistakes; ignored good points. - Frowned a great deal; had unpleasant facial expression. - 21. Immature-Integrated Teacher Behavior #### Immature - Appeared naive in approach to classroom situations. - Self-pitying; complaining; demanding. - 3. Boastful; conceited. ## Adaptable - Flexible in adapting explanations. - Individualized materials for pupils as required; adapted activities to pupils. - 3. Took advantage of pupils' questions to further clarify ideas. - 4. Met an unusual classroom situation competently. # Optimistic - 1. Cheerful; good natured. - 2. Genial. - 3. Joked with pupils on occasion. - 4. Emphasized potential "good." - Looked on bright side; spoke optimistically of the future. - Call attention to good points; emphasized the positive. #### Integrated - . Maintained class as center of activity; kept self out of spotlight; referred to class's activities, not own. - 2. Emotionally well controlled. # 22. Narrow-Broad Teacher Behavior ## Narrow - Presentation strongly suggested limited background in subject or material; lack of scholarship. - 2. Did not depart from text. - 3. Failed to enrich discussions with illustrations from related areas. - 4. Showed little evidence of breadth of cultural back-ground in such areas as science, art, literature and history. - 5. Answers to pupils' questions incomplete or inaccurate. - Non-critical approach to subject. # Broad - Presentation suggested good background in subject; good scholarship suggested. - 2. Drew examples and explanations from various sources and related fields. - 3. Showed evidence of broad cultural background in science, art, literature, history, etc. - 4. Gave satisfying, complete, and accurate answers to questions. - 5. Was constructively critical in approach to subject-matter. # UNIVERSITY OF CALIFORNIA - LOS ANGELES RATING SCALE FOR STUDENT TEACHING - ELEMENTARY SCHOOL | Α. | | RSONAL CHARACTERISTICS | t_ _ | <u> ₽</u> _ | C | В | A | |-----|-------|--|-------------|----------------|--------------|-----------------|------------------| | | l. | PHYSICAL HEALTH AND VITALITY - (vigorous, good posture, free of illness). | <u> </u> | ↓ | <u> </u> | | | | | | EMOTIONAL MATURITY | | 1 | | - | | | | | | | | | | | | | | a. poise, self-control, free from shyness and offensive aggressiveness. | ├ | | | | - | | | | b. meets unexpected and changing situation with decision and good judgment. | <u>├</u> | | <u> </u> | - | L | | | 3. | APPEARANCE - (neat, well-groomed, dresses appropriately and in good taste, appears refined) | | | | | LI | | | 4. | CHARACTER AND INTEGRITY - (good sense of values, trustworthy) | | | | ļ | | | | | PERSONALITY CHARACTERISTICS | | | | | | | | ٥. | | | İ | Ì | | 1 | | | | a. Uses courtesy and tact in all relationships. | \vdash | ⊢— | | | — I | | | | b. Creativity | | ــــــ | | | | | | | c. Initiative | | İ | Į | | | | | 4 | VOICE AND SPEECH (pleasant, flexible, clear, effective, adapted to purpose and situation) | | | | | | | | | | \vdash | 7 | | | | | | 7. | ACADEMIC PROFICIENCY – a. Understanding basic subject matter, b. Proficiency in verbal and written expression. b. | | j — | | i i | i1 | | в. | PR | OFESSIONAL COMPETENCE | 1 | { | - 1 | | | | | 8. | CLASSROOM ARRANGEMENT - (attends to lighting, ventilation, seating, neat, attractive, functional room) | | : | i | | | | | | MANAGEMENT OF CLASSROOM ROUTINE - (orderly, prompt, effective routines, involving pupil participation) | , | | | | | | | | | - | \vdash | | | 1 | | | 10. | DISCIPLINE | | | ĺ | ' | 1 1 | | | | a. Guides pupils to formulate and maintain desirable standards, | | | | | | | | | b. Consistently emphasizes the positive. | | | 1 | 1 | [] | | | | | | | | | \Box | | | | c. Builds responsible self-control. | H | | - | $\vdash \vdash$ | | | | | d. Is sympathetic and objective when dealing with undesirable behavior. | | igspace | <u> </u> | | \vdash | | | | e. Provides dynamic, inspirational leadership. | | L | L | | 1 | | | 11 | PRINCIPLES OF LEARNING | | | | | | | | | | | 1 | l i | | | | | | a. Emphasizes purposeful experience and intrinsic motivation. | \vdash | \vdash | - | ⊢⊣ | ,— -l | | | | b. Plans and evaluates cooperatively with children. | L | igspace | | igsqcut | igsquare | | | | c. Meets each child's needs for acceptance, security, success, recognition, and valid praise. | | 1 | i ' | 1 | , 1 | | | | | | | | | | | | | d. Provides effective review, practice and drill, keeping these subordinate to understanding. | | | i | | | | | | e. Promotes total group
participation. | \vdash | \vdash | \vdash | | | | | 12. | CHILD DEVELOPMENT | | | | | i l | | | | a. Understanding of developmental level of pupils and developmental tasks confronting them. | | | | 1 ! | 1 1 | | | | | | | | | | | | | b. Plans differentiated activities and standards to meet individual needs. | \vdash | \vdash | | \vdash | _ | | | | c. Adapts procedures to the responses of his pupils. (Resourcefulness and flexibility) | | <u> </u> | <u> </u> | L | \square | | | | d. Takes into account the pressures on children from the peer culture, home, and community. | | | | | 1 | | | | e. Maintains positive rapport and good emotional atmosphere. | | | | | | | | | | | _ | | | П | | | 13. | PLANNING | į į | | 1 | 1 1 | | | | | a. Defines worthwhile objectives for large units and daily classwork. | | ш | <u></u> | L | | | | | b. Organizes his teaching by careful choice and sequence of experiences, content, and materials. | i | 1 1 | 1 | () | ı l | | | | | | | | | \sqcap | | | | c. Uses a wide variety of materials of instruction. | | - | | ├ ─┤ | - | | | 14. | TEACHING PROCEDURES | | 1 1 | l i | | ı l | | | | a. Provides for pupil participation in purposing, planning, executing and evaluating. | | | | L | (| | | | | | | | | | | | | b. Makes skillful use of guiding questions. | \Box | | | | -1 | | | | c. Develops pupils' study and problem-solving skills. | | | | \vdash | 1 | | | | d. Stimulates creative responses, | L | \vdash | | \sqcup | | | | 15 | USE OF DIAGNOSTIC AND REMEDIAL MEASURES. (Helps pupils find own errors and needs, and helps to | | 1 | | | . 1 | | | | | | | | | . 1 | | | | meet these) | | | | | | | | 16. | ACHIEVING RESULTS | | , 1 | | | . 1 | | | | a. Carries plans through to successful conclusion. | j | ш | | ш | ட | | | | b. Is able to communicate ideas to children. | الي | ▃▐ | | | I | | | | c. Is able to demonstrate vividly and effectively. | | | | | | | | | | | | | | | | | | d. Children evidence growth in school subjects and social habits. | | | | \vdash | | | | 17. | EVALUATION OF PUPIL ACHIEVEMENT - (uses formal and informal means of measuring growth) | oxdot | igwdap | \square | | \square | | | | PROFESSIONAL ETHICS | | , | | ; I | . 1 | | | 13, | we do not not a large of the state st | , [| , [| , 1 | | , [| | | | a. Works harmoniously and cooperatively with peers. | | | | - | | | | | b. Works effectively toward common goals with supervisors. | -1 | | | \dashv | \dashv | | | | c. Evidences professional attitudes, | | l | لـــــا | لـــــا | | | | 10 | EVALUATION AND GROWTH | . | , [| | . | , [| | | 17. | | . | , 1 | | . | . 1 | | | | a. Assumes responsibility for continued professional growth. | | -1 | -+ | -+ | _ | | | | Analyzes own strengths and weaknesses in order to effect continuous improvement. | \dashv | \vdash | - | \rightarrow | | | | | c. Is sensitive to pupils' reactions, needs, and difficulties as a basis for evaluating success. | | لــــا | |] | | | | 20 | | . 1 | , 1 | 1 | .] | | | | ZŪ. | PROMISE OF FUTURE GROWTH AND SUCCESS. | , | , 1 | | , [| | | | | a. Is likely to continue personal and professional growth. | | + | | | | | | | b. Fulfills obligations. | | | \square | | | | | | c. Evidences independence by latter part of the assignment. | | | | | 1 | | | | C. DVIGENCES ANGENERICE BY Tarter part of the assignment. | | | | \Box | | | | | = 5.0 Total number of checks by column | | [| | | | | | | • | , 7 | 2 | 3 | 4 | 5 | | | | ~ 4.5 Score value | | _+ | ر | | <u>-</u> | | | | - 3.5 Score (score value of each column | , | , | | , | . 1 | | | | - 2.4 times number of checks) | -+ | - | | | | | F = | = 1.0 | - 1.4 Average score (sum of scores di- | . | , 1 | | . | . 1 | | | | vided by total checks) l | | | | | | A Description of the Guilford-Zimmerman Temperament Survey Traits** - G = General Activity: Liking for speed, energy, production, efficiency vs. slow and deliberate, inefficient, easily fatigued. - R = Restraint: Serious-minded, persistent, deliberate vs. impulsive, carefree, excitement-loving. - A = Ascendence: Leadership, self-defense, persuading others, bluffing vs. submissiveness, following, hesitation. - S = Sociability: Having many friends, seeking social contacts and limelight vs. having few friends, shyness. - E = Emotional Stability: Eveness of moods, optimism, good health vs. fluctuation of moods, pessimism, guilt, loneliness, day-dreaming. - O = Objectivity: Thick-skinned vs. hypersensitive, self-centered, suspicious, getting into trouble. - F = Friendliness: Toleration of hostile action, respect for others vs. belligerence, hostility, contempt for others, desire to dominate. - T = Thoughtfulness: Reflective, observing of self and others vs. interest in overt activity, mental disconcertedness. - P = Personal Relations: Tolerance of people, faith in social intitutions vs. fault-finding, suspiciousness, self-pitying. - M = Masculinity: Interest in masculine activities, hard-boiled, inhibition of emotional expression vs. interest in feminine activities, sympathetic, fearful, emotionally expressive. ^{**}Summarized from: J. P. Guilford and Wayne S. Zimmerman, The Guilford-Zimmerman Temperament Survey: Manual of Instructions and Interpretations. Beverly Hills, California: Sheridan Supply Company, 1949. 12 pages. # SUPPLEMENTARY DATA FORMS | SMOKING | QUESTI | ONNAIRE | |---------|--------|---------| | | | | | 1.
2.
3.
4.
5. | J | Sometimes
Always | |----------------------------|--|--------------------------| | 1.
2.
3.
4.
5. | Date of onset of last menstrual period Date of end of last menstrual period? Usual length of period? Usual length of cycle? Regular? If not, how irregular? How Are periods skipped or do you menstruated Any dismenorrhea? Before? During? ("Cramps"slight first day? Backache so on) Eye color | many days late, if ever? | | PER 1. 2. 3. 4. 5. 6. 7. | Name: Last, First, Middle. Address: City, Telephone. Date of Birth Height, weight Academic Level in the University (juni Specific class in teacher education. | section | # APPENDIX H # CONFIDENTIAL TEACHER RATING SCALE | Na | me of teacher | |------|---| | re | STRUCTIONS: For each of the 12 items listed below check only one of the two possible sponses which in your judgement most nearly describes the general tendencies of this acher. Please respond to all items and do not use question marks. | | QU | ESTIONS: | | 1. | In teaching pupils does this teacher tend to beTENSE or RELAXED | | 2. | Does this teacher haveFAVORABLE OPINIONS OF PUPILS or UNFAVORABLE | | З. | Is this teacher's classroom behaviorFRIENDLY or UNFRIENDLY | | 4. | Is this teacher's classroom behaviorSYSTEMATIC or UNPLANNED | | 5. | Is this teacher's classroom behaviorSTIMULATING or ROUTINE | | 6. | In relations with other teachers does this teacher tend to be TENSE or RELAXED | | 7. | Is this teacher or DISLIKED or DISLIKED | | 8. | Is this teacher or DISLIKED BY OTHER TEACHERS or DISLIKED | | 9. | Does this teacher have FAVORABLE OPINIONS OF OTHER TEACHERS or UNFAVORABLE | | 10. | Does this teacher haveFAVORABLE OPINIONS OF PARENTS or UNFAVORABLE | | `11. | Is this teacher or DISLIKED or DISLIKED | | 12. | Does this teacher tend to beEMOTIONALLY STABLE or UNSTABLE | | ОТН | ER DATA: | | Α. | Would you please record the number of days' absence for this teacher during the time he has taught at your school: ABSENCE DUE TO ILLNESS ABSENCE DUE TO OTHER CAUSES | | | NOTE: If you do not have data on absences would you indicate the Central or District Office where we could obtain this information: NAME OF DISTRICT OFFICE ADDRESS OF OFFICE | | В. | Dates of employment of this teacher in your school: FROM TO | | | Month Year Month Year | | С. | If this teacher is no longer in your school or has left teaching, could you list the reason(s): | # CONFIDENTIAL INQUIRY - TO ADDRESSEE ONLY Dear Administrator: Faculty members of the Departments of Education and Psychology are engaged in a long-term investigation of factors related to teacher selection. For one essential part of this study we ask your professional assistance. Would you be kind enough to fill out the attached brief confidential inquiry form in order to provide us with supplementary information on recent graduates in teacher education? The overall purpose of the investigation is to study a large number of variables which may be related to teacher selection. We hope that the analyses of these variables will make it possible to formulate better criteria for teacher selection and improve the program of teacher education. We have addressed this request for help to you, because our present records show that you are the responsible officer who regularly supervises the teacher named on the inquiry form. We believe you can provide the most valid judgements. The attached inquiry form is designed to obtain normative statistical data only. The information will be incorporated with similar data from other samples, after which the inquiry forms will be destroyed. The information will not be made a part of the personal records of the teachers concerned, nor will individuals be identified in any way. In order to maintain the confidential nature of the inquiry we would like to request that you not discuss your ratings with other persons. Your individual response is essential in helping us to obtain complete returns on as large a sample of teachers as possible;
returns on only a few persons will be of little value. Please return the form in the enclosed stamped envelope at your earliest convenience. Thank you for your cooperation. Sincerely yours, W. H. Lucio Professor of Education Enclosure: 1 #### GENERAL HEALTH INVENTORY INSTRUCTIONS: Please indicate whether you have been troubled by any of the following problems. If so, did they first occur before or after your graduation from UCLA? If they first occurred before graduation, please write "BEFORE" in the space in front of the item. If any occurred after graduation, please write "AFTER" in the space. If you have never been troubled by the disorder, please leave the space blank. | 1 | allergies
What kind? | 22 | dîzzy spells
What kind? | |----------------|----------------------------|------|--------------------------------| | 2 | boils | 23 | heart trouble | | 3 | eczema | | What kind? | | , | Where? | 24. | high blood pressure What kind? | | 4 • | excessive sweating Where? | 25. | low blood pressure | | 5, | shingles | 2.0. | What kind? | | | skin rash | 26 | arthritis | | - ' | Where? | 27. | non-allergic asthma | | 7 | frequent constipation | 28. | bronchitis | | 8 | frequent diarrhea | 29. | colitis | | 9 | hemmorrhoids | | What kind? | | 10. | stomach pains | 30 | emphysema | | | stomach or duodenal ulcer | 31 | frequent colds | | | Which? | 32 | frequent coughing | | 12 | diabetes | 33. | frequent earaches | | | What kind? | 34 | frequent headaches | | | goiter What kind? | 35 | migraine headaches | | 14. | hormone deficiency | 36 | hay fever | | | What kind? | 37 | sinus trouble | | 15 | hormone excess | 38 | tuberculosis | | | What kind? | 39 | chronic fatigue | | 16 | epilepsy
What kind? | 40. | insomnia | | 17. | nervous breakdown | 41. | sleep walking | | | What kind? | 42. | marked pain during | | 18 | persistent anxiety | | menstruation | | 19 | persîstent apprehension or | fear | | | 20 | persistent depression | 43 | pre-menstrual tension | | 21 | persistent nervousness | • | | # GENERAL HEALTH INVENTORY (Continued) | Α. | Inventory for which you were treated by a doctor. | |-------|---| | В. | If you have had any other disorders not included in the previous Health Inventory, please list them below and indicate whether they first occurred before or after graduation. | | | | | | | | | | | С. | If you have ever been a patient in a hospital, please indicate for what reason (s) you were hospitalized and the approximate date (s). | | | | | | | | * * * | ******* | | | Please list below any changes, procedures, or conditions in the organization and/or administration of schools which you feel would contribute to maintaining the physical and mental health of teachers | | | | | | | | | | | | | | | |