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SOME METHODOLOGICAL ISSUES IN USING STANDARDIZED TEST SCORES
TO EVALUATE LARGE-SCALE EDUCATIONAL PROGRAMS1

Jon Conklin

In evaluating the impact of educational programs, the most commonly
employed criterion is academic growth. Evaluators are often interested in
ascertaining the degree and kind of achievement gains that are directly at-
tributable to program effectiveness. To evaluate effectiveness in many non-
experimental studies, standardized achievement tests are administered before
and after program implementation, gain scores are computed, and comparisons
are made to a norm group. Any deviations from “expected” gains are then
attributed to program impact. This approach is widespread and often deci-
sions on funding, program expansion, and program termination are based on
results from this simple straight-forward procedure.

There are, however, serious inherent limitations in using such an
approach that may lead to erroneous inferences and resylting policy decisions.
For example, Beggs and Hieronymous (1968) have reported evidence that raises
doubt as to the validity of the assumptions of uniform growth over the school
year and that one month of growth occurs during the three summer months.
David and Pelavin (1977) question the practice of comparing the growth of
low achieving program participants to the growth expected in the norm popula-

tion. They note that published norms are based on the achievement of the 50th
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percentile student and that patterns of growth for that student are likely
to be different from those for low achievers. In fact, a significant in-

crease over the expected growth for low achievers may still fall short of

the growth expected for the average achiever.

Ideally, the norm group should be a representative sample of the
population from which the treatment group is drawn, and thus, disadvantaged
children should be compared against a disadvantaged norm (Tallmadge & Horst,
1974). Other problems arise when academic gains of low achievers, which may
partially be due to regression artifacts (extremes regress toward the mean),
are wholly attributed to program impact. The use of gain scores to repre-
sent and compare growth has been criticized by Cronbach and Furby (1970}
because such scores are usually negatively correlated with initial ability,
partially due to this regression phenomenon.

Another potential problem concerns the temporal gap between pre- and
posttesting. DeVito and Long (1977) point to several limitations in crossing
test levels when evaluating growth due to longitudinal program impact, but
still stress the importance of spring-spring testing as opposed to fall-
spring testing because the latter generally inflates apparent gains. On the
other hand, David and Pelavin (1977) argue that the only meaningful measure
of sustained program impact in terms of academic growth is obtained through
fall-fall testing.

We acknowledge the inherent limitations in comparing academic growth of
program participants to expected growth in the norm population, but also
recognize the widespread use of such comparisons. Therefore it seems appro-

priate to examine critically the actual procedures used to calculate and



represent academic growth. The procedures considered specifically are those
most typical of large-scale evaluation studies where neither the test nor

the testing dates can be controlled. Few schools involved in a large-scale
program actually test on days for which published norms are appropriate.

In addition, for many of the tests used, published norms are based on only

a single standardization during the spring of the school year. Thus fall
norms must be estimated. The problems raised by these issues of varied
testing dates and estimated norms in terms of the computation and use of

standardized gains are of central interest here.
PROBLEM

For the sake of comparability, the raw scores from standardized tests
given to different groups of students at different points in time are usually
transformed to some common scale. A typical procedure is to transform all
raw scores to standard scores by using norms based on publishers' standard-
ization samples (e.g., the California State Department of Education evalua-
tion of California schools receiving compensatory fﬁnding in 1974-1975 and
1975-1976: see California State Department of Education, 1976, 1977; see
also Keesling & Burstein, 1977). Usually the raw score is deviated from
the norm mean, divided by the norm standard deviation, and converted to a
standard scale {in this study we use the T-scale with mean of 50 and standard
deviation of 10). When available, fall scores are transformed using fall
norms and spring scores are transformed using spring norms. Gains are then
defined as the difference between the fall and spring standard scores.

In using this approach to represent growth, certain assumptions must



be implicitly made. Most basically, the approach assumes that both the fali
and spring standard scores are equally meaningful and valid; that is, that
both use norms based on equivalent standardization samples. In reality,
however, only spring norms have been established for most tests. Though

this creates little problem for spring-spring testing,it is problematic in

the case of the more common fall-spring testing schedules. Without explicitly
measured fall norms against which to compare fall test scores, most investiga-
tors rely on linear estimation techniques. Test publishers often use these
techniques to provide derived fall norms with limited explanation of the
implications of this practice for fall-spring test comparisons.

To estimate fall norms linearly for, say, grade 3 the spring norms for
grade 2 and grade 3 are plotted and fall norms are interpolated based on a
ten-month year (one month growth is assumed for the three summer months).

This procedure usually involves equating different test forms or levels, or
assumes two cohorts different in grade levels to have the same growth pattern,
and may be criticized on these bases alone (see DeVito & Long, 1977).

Unfortunately, Tinear estimation has another serious problem. Namely,
it assumes that growth from spring to spring is linear, and that the fall
norms {both means and standard deviations) can be estimated by taking the
midpoint of this growth line.

Additionally, there is the problem of using norms to transform raw
scores from testings that take place on dates other than those for which the
norms are appropriate. Since academic growth is going on during the whole
school year, a norm based on a March 15 standardization is not appropriate

for use in transforming a May 15 score; i.e., it does not represent the true



"expected” level of achievement for that date. However, a common practice

is to use the norm means and standard deviations as fixed constants. Take
for example, the California State Department of Education (SDE) evaluation
mentioned previously. In SDE's transformation procedure, for a common

test, schools pretesting in September, October, November, and December

would have their scores adjusted by the same fall mean and standard deviation.
Similarly, schools pretesting in March, April, May, or June would have their
scores adjusted by the same spring mean and standard deviation. This is in
spite of the fact that if continuing growth is assumed, the same values can
not be the appropriate norms for differing test dates.

The consequences of the practices described above may be serious. First,
evidence based on published norms of tests which have been explicitly stand-
ardized in both the fall and the spring indicates that linear estimation
typically overestimates the rate of academic growth from spring of the pre-
vious year to fall of the current year even after subtracting two months for

the summer.2

Using these interpolated norms to transform fall test scores,
then, results in spuriously low standard scores. Thus, gains from fall to
spring are spuriously high. An example of this phenomenon is made apparent
in Figure 1. This means that schools reporting fall-spring test data may
Took exceptionally good in comparison to the norm, whereas schools reporting

spring-spring data are typically penalized, in a relative sense, because they

fail to receive the spurious advantage associated with Tinear interpolation.

2In the case of the CTBS (Comprehensive Test of Basic Skills), first
grade fall and spring norms are based on explicit standardization. Published
values show a fall mean of 35.6 and standard deviation of 13.7; a spring
mean of 59.4 and standard deviation of 18.4. The interpolated values for the
fall mean and standard deviation are 45.4 and 15.3, respectively. (Previous
spring values were 31.3 and 12.2)
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FIGURE 1 Published norm means for CTBS grade 1 (Form S Level B)

are plotted along with the estimated fall norm mean based
on linear interpolation and with a student's hypothetical
raw scores from fall and spring testing. Whereas the
student's position relative to the published norms stays
constant, it changes when the estimated fall norm mean is
used. Representing growth as the slope between the fall
and spring values it can be seen that if we are looking
at the published explicit norms his growth is identical
to that of the norm group. On the other hand, if we look
at the Tine between the estimated fall norm and the explicit
spring norm his growth appears to greatly exceed that of
the norm group.



Second, by using fixed dates for transforming fall and spring data,
schools testing in early fall and late spring may appear to have greater
gains than schools testing later in the fall or earlier in the spring. This
is because comparisons made from many different test dates to one fixed norm
fail to take into account any growth that takes place between those separate
dates and the date for which the norm was established. Take, for example,
the case in which the fall test norms are based on a mid-October standardiza-
tion and a school has tested its students in mid-September. Though the actual
expected norms for mid-September are Tower than the norms faor mid-October, the
students' raw scores are transformed to standard score form using the published
mid-October norm. The effect is that the students' pretest standard scores
are spuriously low, and thus their fall-spring gains are spuriously high. A
similar effect occurs with Tate spring testing where spuriousiy high posttest
standard scores are obtained. A graphic display of this phenomenon is provided
in Figure 2. It would appear that using linear estimation techniques to obtain
date-appropriate derived norms would be preferred (albeit the problems of
Tinear interpolation) over the use of norms as fixed values for transforming
raw scores to standard scores and calculating gains.

Tallmadge and Horst {1974) have discussed these prohlems in A Procedural

Guide For Validating Achievement Gains in Educational Projects. They empha-

tically state that interpolated norms, "while possibly useful for counseling
or diagnostic purposes, are likely to be in error by amounts large enough to
invalidate any inferences drawn about cognitive growth," and urge that such

norms never be used to assess educational program impact. In addition, they

point out that a treatment group should be tested at times exactly corresponding



-
H

imaginary norm means

b
[}

hypothetical raw scores

0l
Raw
Score
50 ¢
A Y
& V4 .
Sept. 1 Oct. 1 Nov., 1 Aprill May 1 Junel
Month of Testing
FIGURE 2 Imaginary fall and spring norm means are presented with

lines depicting expected growth and with a student's hypo-
thetical raw scores from fall and spring testing. Whereas
the student achieves at the expected norm Tevel for the
dates on which he is tested, his scores relative to the
fixed fall and spring norms are lower than "expected" in
the fall and higher in the spring. Though the student has,
in reality, grown exactly as the norm group, the apparent
growth based on transformed scores using fixed norms is
much greater than than of the norm group.



to real normative data points. Their arguments, though strong, still Tack
empirical examples. It is the purpose of this study to provide such examples.
To investigate these issues with real data and to examine their possible
effects on evaluation conclusions or policy decisions, we apply several trans-
formation procedures to existing test data. The focus here is Timited to
fall-spring testing in primary school grades and to students receiving the
same form and level of a popular standardized achievement test for which only
spring norms have been explicitly measured. Three transformation procedures
are compared on the basis of their effects on pretest standard scores and the
resulting pre- to posttest gains. The first is the commonly used one in which
standard scores are based on linearly estimated and fixed norms. The second
makes use of Tinearly estimated fall norms but adjusted fall and spring norms
(by a single linear function) according to the date of testing. In the third
procedure the fall norms are based on a hypothetical growth pattern evidenced
by explicit fall and spring standardizations in an earlier grade and the pro-
cedure uses two linear functions (one for before and another for after the
fall norm date) to adjust fall and spring norms according to the date of testing.
If the arguments we have already made are valid, the use of adjusted norms will
eliminate the spurious advantage of early pretesting and late posttesting, and
the use of "curve-estimated” rather than linearly estimated fall norms will

result in higher pretest standard scores and lower pre- to posttest gains.



METHOD

Data. The data used in this study were made available by the California
State Department of Education in conjunction with an audit of their evalua-
tion activities undertaken by the UCLA Center for the Study of Evaluation
(Keesling & Burstein, 1977) and consist of second grade school means for pre-
and posttesting during the 1974-1975 academic year. As part of an ongoing
evaluation activity, the Department of Education requires California schools
receiving compensatory funding to administer pre- and posttests using
published standardized achievement tests. However, exact dates of testing
and specific tests to be used are not mandated. Thus schools are free to
test when they want and with the test they choose. In 1974-1975 the most
widely used test was the CTBS (Comprehensive Test of Basic Skills) which was
used by 25% of the reporting schools. In the second grade, standardization
has been carried out only in the spring for the CTBS. Of the test results
made available, the schools with students taking appropriate forms and levels
of the CTBS reading and math tests during fall of 1974 and spring of 1975
totaled 385 for second grade reading and 361 for second grade math. The raw
test means provided by these schools were used in our analysis.

Procedure. Linear estimation of fall norms proceeded as mentioned above.
The published explicit spring norms (means and standard deviations) for grade
1 and grade 2 were plotted, a 1ine was drawn between them, and the midpoint
was located. The obtained values matched the grade 2 fall norms published
in the CTBS manual. Since the actual standardization had been carried out on
or about April 1, the derived fall norms were actually "appropriate" (assuming

linear growth) for November 1. For two of the tranformation procedures
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examined, these linearly estimated fall norms were used. However, there

is evidence that actual growth proceeds at a slower rate from spring of year

1 to fall of year 2 than the rate from fall of year 2 to spring of year 2

(Beggs & Hieronymous, 1968; David & Pelavin, 1977). In hopes of providing

some bounds on the size of possible gains, we will base our estimation of

second grade fall norms in the third procedure on the pattern of growth

shown in the first grade (for which CTBS does explicitly standardize in fall

and spring). For grade 1 the exact linear functions from grades 0.7 (previous
spring) to 1.2 (current fall) and from grades 1.2 to 1.7 (current spring)

could be determined. For the third procedure, the separate functions for
spring-fall and fall-spring growth in grade 2 were based on the same propor--
tion of total growth in each interval as was evidenced in the first grade.

That is, the ratio of total spring-to-spring growth that took place from
spring-to-fall obtained from explicit first grade norms was used to estimate
second grade fall norms from the total second grade growth from spring-to-spring.3
While the assumption of equal growth patterns in first and second grades may
not strictly be valid, it may provide a more realistic (at Teast more conserva-

tive) guess as to the true growth curve than does linear interpolation. Com-

parisons of the estimated fall norms are made in Figure 3.

3The three explicit norms for first grade are:

Grade Mean Standard Deviation
0.7 31.3 12.2

1.2 35.6 13.7

1.7 59.4 18.4

. . 35.6 - 31.3 _
The growth ratio used for the mean was: 04 - 37.3 - 0.15

The growth ratio used for the standard deviation was: %%L%{}%%4%-= 0.24

11
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FIGURE 3 Published norm means for spring grade 1 and spring

grade 2 (Form S Level ¢ of CTBS) and two estimates of the
fall norm mean are plotted. The solid line represents the
single linear function used to adjust the norms in the
exact linear procedure. The dashed Tine represents the
two separate linear functions used to adjust norms in the
exact-nonlinear procedure,
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Whereas one of the three procedures {the "fixed-linear" procedure)

used fall and spring norms as fixed values, the other two linearly adjusted
the fall and spring norms according to the date of testing. The "exact-
linear" procedure which also made use of Tinearly interpolated fall norms
used a single linear function (the line from spring to spring norms) to
adjust for testing date. Specifically, day to day growth was linearly esti-
mated on the basis of a 300 day school year (30 days summer growth) and
norms were adjusted in accordance to the number of days before or after

November 1 or April 1 that testing took place. In the "exact-nonlinear”

procedure which estimated fall norms on the basis of first grade growth
ratios, two linear functions were used to adjust for testing date. For
tests administered prior to November 1 an adjustment based on the 150 days
of growth from previous spring to current fall was used. For tests adminis-
tered after October 30 (including all posttests) the adjustment was based
on Tinear growth from current fall to spring. Figure 3 shows the growth
Tines along which adjustments were made.

The actual transformations to standard score form were carried out as
follows. Raw scores were subtracted from their appropriate norm means
and divided by their norm standard deviations. The resulting value was then
converted to a scale with mean of 50 and standard deviation of 10. Standard
score gains were obtained by computing the difference between pre- and post-
test standard scores. Using this scale the norm standard score is 50 and

the norm standard gain is zero.
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RESULT

Though testing dates vary considerably within each month, the three
different types of standard scores have been averaged for all schools testing
in a given month for the purposes of the display. This averaging artificially
smooths the graphs and most likely reduces the actual day-by-day differences
among the three transformation procedures. The transformed pretest scores
and the standard score gains are tabulated by month of pretest in Table 7.
They are also plotted in Figure 4. The reader should be aware that the
plotted points for November and December are probably based on too few points
to reflect a stable trend. Examination of the plots are Timited here to the
months of September and October.

We immediately see that the common fixed-Tinear procedure provides the
lowest pretest transformed scores for early testing and that scores increase
by month of pretest. The resulting gains obtained are the highest of all
three procedures and exhibit a steady decline with month of pretesting. The
pretest standard scores obtained using the exact-Tinear method are higher
than those for the fixed-linear approach and do not exhibit the positive slope
indicating the spurious advantage of early pretesting. Its resulting gains
are less than the fixed-Tinear gains though they still exhibit a s1ight nega-
tive slope with month of pretest. The results for the exact-nonlinear proce-
dure seem to approximate expected norm group growth. The pretest standard
scores are centered around the norm of 50, and show a slight negative slope
with date of testing. The corresponding gains are less than the norm gains
of zero and appear to be relatively stable with pretest date.

Though we have only investigated the effects of early pretesting, the

same types of effects (but opposite) would be expected with late posttesting.
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(a) Pretest standard score means by transformation procedure, subject, and
month of pretest for schools reporting the same form of CTBS
fall and spring.

FIXED-LINEAR EXACT-LINEAR EXACT-NonTinear
Month Reading Math Reading Math Reading Math
September (111;105)* 42.5 42.7 44.6 45.8 50.2 51.4
October (261,241) 43.3 43.3 43.6 43.0 48.5 47.7
November (9,11} 45.0 46.7 43.6 44.0 47.6 47.9
December (4,4) 52.7 48.4 49.7 45.4 52.8 48.3

{b) Standard score gains by transformation procedure, subject, and
month of pretest for schools reporting the same form of CTBS
fall and spring.

FIXED-LINEAR EXACT-LINEAR EXACT-NonTinear
Month Reading Math Reading Math Reading Math
September (111,105) 6.2 7.9 4.1 5.7 -2.6 -0.9
October (261,241) 4.9 6.6 3.0 5.3 -2.8 -0.4
November {9,11) 4.7 6.5 4.9 6.6 0.0 1.8
December (4,4) N.1 4.1 1.5 5.4 -2.7 1.4

*The numbers in parentheses reoresent the number of schools upon which
the mean is based for reading and math, respectively.

TABLE I Pretest standard score means and mean standard score gains for
1974-5 CTBS test results for three different transformation
nrocedures.
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Figure ¥ Comparison of three methods of transformation for 1974-75 CTBS
- reading and mathematics scores in grade two (2). Pretest
standard scores (A) and standard score gains (B) are presented
by month of pretest.
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The fact that posttest dates have not been held constant, and that schools
pretesting early had a tendency to posttest earlier, results in gain score
patterns which may not fully indicate the effects of differential testing

dates. For instance, the slope of gains by month of pretest is still some-
what negative for the exact-linear method whereas we might expect it to be

flat.

DISCUSSION

The results appear to support our earlier hypotheses. Furthermore,
they provide clarification and empirical examples for Tallmadge and Horst's
(1974) warnings concerning date-appropriate norms. Pretest standard scores
and pre- to posttest gains are affected by the use of norms adjusted to the
date of testing. In addition, the method used to estimate fall norms can
drastically alter conclusions about academic growth.

It seems apparent that the use of linearly interpolated and fixed norms
to transform raw scores can result in the overestimation of standard score
gains. Using such a procedure, there is a clear advantage in pretesting
early (and, presumably, posttesting late). Schools pretesting early tend
to have Tower pretest standard scores and higher resulting gain scores.

Thus they are Tikely to show more academic growth relative to the norm group
than are schools pretesting later. Furthermore, the overall level of appar-
ent growth from all schools is likely to be inflated. Indeed, the results
show that participants in the compensatory education programs at hand have
exceeded expected norm group growth by over one-half of a standard deviation
in standard score units.

By adjusting the norms to the date of testing prior to transformation

17



the advantages of earlier pretesting are diminished. Referring to the tines
connecting standard scores for schools pretesting in September and October
we see that the "exact-linear" Tline does not have the positive slope that
the "fixed-linear" line does. However, since more schools pretesting earlier
also posttested earlier, this effect is not so obvious with respect to gains
by month of pretesting, i.e., the slope is still negative. Presumedly, if
month of posttest were to be held constant the advantage of early pretesting,
in terms of gains, would also be diminished by using adjusted norms. Overail,
though, the magnitude of the gains are smaller for the exact-Tinear procedure
than the fixed-linear approach. That is, the artificial inflation in gains
caused merely by early or late testing has largely been eliminated.
Estimating fall norms based on the "dogleg" shaped growth curve and
adjusting norms with two different linear functions have the effect of dras-
tically eliminating the advantages of early pretesting. Pretest scores trans-
formed in this manner are much higher than when using Tinearly interpolated
norms, and the resulting standard score gains are much lower. In fact, in
our analyses these gains appear to be lower than the "expected” norm group
gains. Admittedly using first grade growth patterns to set second grade fall
norms leaves much to be desired. It was merely used here to provide a Tower
bound comparison of standard gains. Since one criterion for program eligi-
biTity was low achievement, we would expect to find that the pretest standard
scores of the program participants were somewhat lower than the expect norm
group mean. Using the exact-nonlinear approach though has resulted in
standard scores that are equal to the norm mean. It appears that the use of

the first grade growth ratio has resulted in an underestimation of the second
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grade fall norms. In addition, since slopes of pretest standard scores by
month of pretest are not flat, we can conclude that either there are drastic
differences in growth patterns between low and average achievers or that we
have not obtained an accurate model (i.e., the "dogleg") of second grade
growth. Still, however, the results from using this procedure to estimate
fall norms and to transform raw scores make explicit some of the problems in
using linear estimation techniques and underscore the importance for a viable
model of academic growth.

With regard to possible inferences and policy decisions resulting from
these procedures, we can see large differences. Looking at the results of
the fixed-linear approach one might conclude that the program was highly
effective since the academic growth of program participants apparently exceeds
norm group growth by more than one-half of a standard deviation. This could
1ikely be taken as justification for program expansion. The exact-linear
method also results in apparent growth due to program impact that is greater
than that expected in the norm group. However, its gains are less than those
for the fixed-linear approach. Sti11, though, such gains would be taken as
evidence for program effectiveness. Schools pretesting early or posttesting
Tate would not necessarily exhibit greater growth and more effective use of
program funds than schools pretesting late or posttesting early, though. If
raw scores were transformed using the exact-nonlinear method the same program
would not appear to be effective with respect to academic growth. A1l schools,
regardless of testing dates would tend to exhibit Tower than average growth.
Such results may be taken as evidence of program ineffectiveness and may
lead to program cutbacks. According to which transformation procedure used,

then, different decisions about the program's future may result.
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Though we have reported results only for the second grade and for
testing during the 1974-1975 school year, these same analyses were conducted
on third grade scores and on 1975-1976 test results for both grades. In all
cases the same contrasts that were exhibited here resulted. The use of
adjusted norms eliminates the spurious advantage of early pretesting and
late posttesting, and the use of "curve-estimated" rather than linearly
estimated fall norms results in higher pretest standard scores and lower
pre- to posttest gains.

The jmplications of these findings are clear. Every possible effort
should be made to have all schools administer a test for which both fall
and spring norms have been explicitly established, and to have testing
administered as close as possible to the standardization dates. Furthermore,
the evidence clearly points to the use of norms that are adjusted to the
date of testing. In view of the limitations of linear estimation, though,
the best procedure for adjusting norms remains unclear. Finally, if fall
norms must be estimated such estimation should be based on some theorized
growth curve. Reliance on assumptions of linear growth can seriously affect

evaluation conclusions and resulting policy decisions.
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