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ABSTRACT

Throughout the United States, various school systems are
developing what is referred to here as proficiency tests. These
tests are conceptualized as representing a variety of skills with
one or more items per skill. One purpose of the test might be to
determine whether a student will receive a high school diploma.
This paper discusses hew certain recent technical advances might
be extended to examine these tests. In contrast to existing analy-
ses, errors at the item level are included. It is shown that in-
clusion of these errors implies that a substantially longer test
might be needed. One approach to this problem is described and

directions for future research are also suggested.



AN APPROACH TO MEASURING THE ACHIEVEMENT
OR PROFICIENCY OF AN EXAMINEE

Throughout the United States there are efforts being made to develop
tests to measure the proficiency of students attending the local schools.
In some cases these tests are used to determine whether a student will be
awarded a high school diplioma while in other instaﬁces they might be used
to decide whether an examinee should be advanced to the next grade level.
In some instances these tests are conceptualized and constructed as follaws:
First, a group of teachers, parents, content experts and other interested
parties work together to identify those skills that are believed to be a
basic part of a students education. For example, interest might focus on
competency in mathematics in which case the skills might include addition,
subtraction, computing percentages, etc. Corresponding to each skill, test
jtems are constructed for the purpose of determining whether an examinee has
acquired the skill in question. Here it is assumed that these test items
have been examined for any ambiguities or misrepresentations and that appro-
priate corrections have been taken when necessary.

Because of the large number of skills that have been identified, it is
impractical to test an examinee on every one. Accordingly, a random sample
of skills is used to make inferences about the proportion of skills that an
examinee has acquired., The test administered to an examinee consists of
jtems that represent the skills. Decisions concerning proficiency are made
according to some predetermined passing score. For example, & requirement

for receiving a high school diploma might include taking a mathematics test



and successfully answering 70% of the items or demonstrating mastery of
70% of the skilis. Note that these two decisions are not necessarily
equivalent. As a simple illustration, imagine a test of 10 skills with

3 items per skill for a total of 30 items. Further suppose that a mastery
decision is made for a particular skill if the examinee responds correctly
to two out of the three corresponding items. In otherwords, an allowance
is being made for the possibility that an examinee has acquired the skill
but gives an incorrect response because of some distraction, carelessness,
etc. In this case it is possible (but perhaps unlikely) that an examinee
will get less than 70% of the items correct yet demonstrate hastery of
more than 70% of the skills.

The purpose of this paper is to demonstrate how certain recent tech-
nical advances can be extended and applied to the type of tesi described
above. Emphasis is given to the problem of determining how many skills
t0 include on a test. As will become evident, the analysis has implica-
tions about how many items to use per skill. In the case of multiple-
choice test items, there are also possible implications about the number
and quality of the distractors that are being used.

Before continuing, it is of interest to observe that the situation
considerad here is similar to a common conceptualization of a mastery test.
A mastery test is frequently regarded as consisting 6f items randomly sam-
pled from some larger item pool (e.g., Wilcox, 1977; Harris, 1974; Novick
and Lewis, 1974; Huynh, 1976). The item domain might exist de facto or
it might be a convenient conceptualization. Based on this "item sampling"”

view, the binomial error model (Lord and Novick, 1968, Chapter 23) is then



used to describe the observed responses of the examinees. In particular,
the probability function of x, the observad {number correct) score of an

examinee, is given by

fixip) = () p* (0-p)"%

where p is referred to as the examinee's percent correct true score. The
goal of the test is to determine whether p is above or below a known con-
stant Py- The main difference between mastery tests and the present situa-
+ion is that here we take the view that skiils, not items, are being sampled
and that there might be more than one item per skili. Moreovef, the analy-
sis given here includes errors at the item Tevel while for the binomial
error model these errors are ignored. For the case inm which only one skill
is being examined in terms of a populaticn of examinees, the reader is re-
farred to Macready and Dayton (1977).

Let z be the proportion of skills that an examinee knows. Consistent
with the approach to mastery tests, it is assumed that the goal of a pro-
ficiency test is to determine whether ¢ is above or below a known constant,
20 Before describing the main results on solving this problem, we give a

more precise description of the framewark within which we propose tc work.

Some Definitions

Consider a specific, randomly selected skill and et k be the number
of items used to determine mastery of this skill. For each of these k
items it is assumed that an examinee who has mastered the skilil might give

an incorrect response because of a momertary distraction, carelessness, eic.



Let ai(i=],...,k) be the probability of this event for the ith item. In
a similar manner, let By be the probability of not knowing and guessing

the correct response to the ith item. WNote that o and 3; are both con-

ditional probabilities. Finally, a mastery decision is made for the
skill if y, the number correct out of the k items associated with the
skill, is greater than or equa]_to a specified passing score Yo

It should be mentioned that the framework described above is similar
to a number of models proposed by various authors to describe tests (e.g.,
Wilcox, 1979b; Macready and Dayton, 1977; Brownless and Keats, 1958; Marks
and Noll, 1967; Knapp, 1977). Macready and Dayton (1977, p.100} imply
that their model is appropriate when mastery of a skill is an all-or-none
process. However, as noted by Wilcox (1979b) this does not mean that an
all-or-none view of learning is required in order to use their model.

Macready and Dayton (1977) use a more general family of decision
rules for determining mastery of a particular skill. Their decision rule
is defined in terms of a particular skill and a population of examinees
while here, at Teast for the moment, the emphasis is on making 2 decision
for a specific examinee in terms of a particular randomly selected skill.
It is readily seen, therefore, that their decision rule does not apply
to the present situation. .

Finally, let the vector xf(yT,...,yk) be a sequence of 1's and 0's
designating a particular response pattern of corrects and incorrects on
the k tems where a 1 means a correct and a 0 an incorrect response.

Based on the above definitions and for the assumptien of local inde-

pendence (Lord and Novick, 1968, section 16.3), it follows that the



probability of a mastery decision for the skill is

(1) Priy > Y | mastery of the skill)
= &y (say)

i 1y
=z T"(l' (I'C’-i) 1 C(._i 1

N 21 i=1

where the summation is over all vectors y such that y > ¥p- In addition

(2) Pr(y > Y | nonmastery of the skill)
= &, (say)
k Y. ]—_y.
=z T B ! (T'B.i) 1-
NENE i=1 i

If, as in Macready and Dayton's model II, it is assumed that ay=e and B.=8

for i=1,...,k then (1) and {2) take on the more familiar form of the bino-

mial probability function, namely,

k
() e o= (0 Y
T ¥y,
and
k
@ g = (e - Y
2 ¥y _



A Conservative Solution to the Problem of Determining

the Numbear of Skills to Incliude on the Test.

So far we have merely laid the ground work for handling certain
technical problems associated with so called proficiency tests. In
this section we consider the determination of how many ski}]s to include
on the test. The analysis is made in terms of a single examinee.

For a randomly selected skill, the probability of a mastery decision
is

Y = E-E z + 52(1":)-

Thus, the probability of x mastery decisions among n randomly selected

skills is

(2) ¥ A{1-9)"E,

Let x. be the passing score for the test. In otherwords, the decision

0
R is made if X > Xg5 if x < Xg» the reverse is said to be true. Here
it is assumed that X0 is the smallest integer such that xO/n > og-

The goal is to find a conservative solution to the choice for n.
In particular we want to choose the smallest n so that the probability of
a corraect decision {CD) is reasonably close to one regardless of the actual
value of 7. To solve this problem it is necessary for the investigator to

* *
specify an additional constant, § > 0. The idea is that ifg<g-38 or

o>zt 5%, we want to choose that smallest n so that

(5)  Pr(CD) > P, 1/2 <P <1



if, however, ;0—5*<;<;0+5* either dacision is said to be correct. The
open interval (go—a*, C0+5*) is called the indifference zone. The situa-
tion is similar to the one considered by Fhaner (1974} and Wilcox (1979a).
Here, however, we are taking into account the errors represented by the
probabilities o and 8 that are associated with each skill. We note

that if 3¥=0, it may be impossible to find an n that satisfies {5) for

all possible values of z. For a more extensive discussion of the indif-
ference zone approach to statistical problems (including the choice of &%)
the reader is referred to Gibbons, 0lkin and Sobel (1977)}. Further comments
on the choice of & are made below. In particular, it is shown that

s*50 is a necessary but not a sufficient condition for solving the problem
at hand.

Observe that if <y, the Pr{CD) is given by

-1
GIE R R R e
x=0

and if 2>2g the Pr{CD) is equal to

n
(7) I ) BVAR G R R
X=X0

Moreover, (6) is a decreasing function of v and (7) increases as ¥ gets
large {(Fhanér, 1974). Since Y=£ﬁ§+£2(}—;) it follows that v is an in-
creasing function of v if & >Ep- A situation in which 1380 would seem
to be highly unusual and so £17E) is assumed throughout.

Consider the case ;3;0+5*. To ensure that (7) is greater than or

equal to P* for any z, it is sufficient to consider the value of ¢ that



" minimizes (7). From the above discussion, it follows that this value
is r=¢+s*. From Fhanér (1974) it can be seen that it is always possible

to choose an n satisfying (5) if v>¢,. In terms of s*, this means that

a sufficient condition for being able to find an n satisfying (5) is to

have

Note that for the binomial error model used by Fhaner (1974), we are
affectively setting 51=1 and 52=0 in which case the requirement given by
(8) is & >0.

Next we consider the effect of £ and Eo ON the Pr(CD) for ;3;0+5*.
Trom the above results it is readily seen that the Pr(CD} is minimized
when g=g0+5* regardiess of the values for 2 and £n- Furthermore, v is
an increasing function of both £ and Ege Thus, to find a conservative
solution to the choice of n, i.e., an n that satisfies (5) regardless of
the value of £q Or &y, WE need lower bounds to both £q and Eo- Here it
is assumed that there is no data available for estimating £ and En-
Thus, the investigator must specify (using nonstatistical techniques)
Tower bounds to 29 and £o that are consistent with the types of items
being used. In practice this might be done by specifying an upper bound
+0 « and a lower bound to g and using (3) and (4). This is illustrated
below.

For gﬁ;o—é* it can bé seen that we require Y<c0 which implies that
we must have

to ~ &2

) > g - -
0 & &9



In summary, we can guarantee that the prcdability of a correct decision is
at least P¥, if (8) and (9) are satisfied, by choosing the smallest n so
that both (6) and (7) are greater than or equal to p*. As for £ and &,
this time we set ;=go-6* and use upper bounds to these two quantities. In
contrast to the case c3;0+5* this might b2z accomplished by specifying a

Jower bound to o and an upper bound to g and again use (3) and (4).

An ITlustration with k=1.

Consider a situation in which a single item {k=1) is used to measure

=8 s"=.1 and P*=.90. For this special case

g1=1-a and €578 (assuming of course, y0=?). Consider the case ;igo-a*.

each skill and suppose ¢

As previously explained, the Pr(CD) given by () is minimized at §=:0+5*.
Since the value of g and g, are unknown, we are unable to evaluate (6).
Suppose, however, that multiple-choice test items are being used with three
distractors per item. For the sake of iilustration it is assumed that the
highest possible value of &, (the probability of guessing) is .4. If the
test items are at all reasonably constructed, we would expect &9 to have a
smaller value than .4. However, the exact value of £o is unknown and so to
be conservative we consider the case 52=.4. For similar reasons we assume
o>0 and so we consider the case =0 impising that 51=1.

With g1=1 and £,=.4, (9) says that we must have 5*3:133 to be certain
that an n can be found so that Pr(CD)>P*. Thus, if §7>.1 is judged to he
unacceptable, steps must be taken to decrease the upper bound to €0~ For
example, if the number of distractors is increased to four or if the number

of items per skill is increased, the invastigator might be willing to assume



523.3, say, in which case the inequality in (9) becomes 5*3,033. Herce-
forth it is assumed .15<g<.3. Since §* was chosen to be .1, we are

certain that an n exists satisfying the desired probability guarantee.

With §=g0+5*=.9, we minimize the Pr(CD) by setting g;=1-0=.9 and

52=5=.15. In this case, Y=.825 and so

=

(19)  Pr(CD) = = (E).BZSX 175°7%,
X=X0

For g5;0-5*=.7, the minimum probability of a correct decision occurs
at z=.7. In terms of g and £, we set «=0 and g=.3 and so a}=1, 52=.3,
¥=,79 and

(11) Pr{CD) =
X

(2).79X 210X,
*q

NS

From Wilcox (1979a) it follows that the smallest n so that (10) has a

value of at least p*=.9 is given approximately by
(12)  n= 2Zc,(1-cq)/ (v1-2p)
- Miglitee iR

*
where 3 is the P quantile of the standard normal distribution and Y1 is

the value of Y when ;=g0+6*. With gi=.9 and 52=.15,

n=(1.28)2 (.8) (.2)/(,825-.8)°

=419.

As for (11) the smallest n is given approximately by

lzCo(]'ﬁo)/(Co'Tz)z

10



where vy, js the value of vy when ;=g0~6*. In our illustration we have that
n=2621. Thus, n=2621 skills would be used.

It is evident that for practical purposes, n=2621 is unacceptable.
Refore considering what might be done about this problem, it is interesting
to note that if we ignore errors at the item level {i.e., g1=] and 52=0),
the resulting value of n is approximately 26. Thus, including errors at
the item level might make a dramatic difference in the number of items in-

cluded on the test.

An I7iustration with k=3

The second illustration is the same as the first except that we assume
there are k=3 items per skill. The primary purpose of this iilustration is
to see how much we can reduce the required number of items by increasing k.
As before it is assumed that .15<g<.3 and O<u<.1.

With o=.1 and 5=.3 and with a mastery decision for particular skill
being made when the examinee gets at least 2 of the 3 items correct (i.e.,
y0=2), expressions (3) and (4) yield g]=.972 and 52=.216. When o=0 and
g=.15, g1=1 and 52=.06. Thus, for c=:0-a* we use g1=1 and 52=.216 implying
that v=.7648. Hence

pr(cD)} = T () .7648% (.2352)"%.
x=0 X

As for g=c0+6*, y=.88 and

n u.' -
Pr(CD) = I (2) .88% 12X,
X=X 0

11



It follows that the smallest number of skills required is approximately
n=212. The exact value was calculated on an IBM 360/91 computer and found

to be n=219. Thus, the total number of items is decreased considerably but

we would still need over 600 items on the test.

An I1lustration with Tighter Bounds on o and 8.

To illustrate the effect of having tighter bounds on o and 8, we
suppose .0 < « <.02and .2 < 8 < .3 and we set y0=3. Otherwise the situa-
+ion is assumed to be the same as in the previous illustration. In this
case Y=.848 when z=.9, £]=.94] and £2=.008. Also, ¥=.7027 when z=.7,
g1=1 and gz=.027. 1t follows that the minimum n required fs approximately
114. Thus, to guarantee that the probability of a correct decision is at

least .9, a total of 3(114)=342 items would be used.

Retrospective Studies Using Latent Structure Models.

The illustrations in the previous section demonstrafe rather dramaticaily
that including errors at the item level might have a substantial effect on the
number of items used on the test. Moreover, even with "tight” bounds on the
parameters o and g8 an extremely large number of items might be required.
Several approaches to this problem might be used. For example, there might
be a more optimal choice for k, the number of items per skill. In the case
of multiple-choice items, one might consider increasing the number of dis-
tractors (cf. Lord, 1977). 1In this section we outline still another approach
which is based on latent structure models. The approach represenis a slight

extension of one used by Wilcox {(in press). In contrast to the earlier
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sections of the paper, it is now assumed that data exists for a random
sample of N examinees who have taken a test consisting of n skills with

k > 3 items per skill. The reason for the restriction on k is explained

helow. An additional difference from previous sections is that we examine
the accuracy of the test in terms of comparing ¢ to Zg for the typical or
Paverage" examinee among those being tested. This alternative perspective
does not affect the results previously described. If an examinee's true
score is close to Zg an extremely large number of items might be needed to
accurately determine whether ¢ is above or below oo In some situations an
investigator might aiso be interested in the accuracy of a test in terms of
a population of examinees, for example, all the students attempting to
graduate from high school. It may be that most examinees have a true score
that is not close to tg Or perhaps most true scores fall within the Indif-
ference zone in which case the test is usually giving accurate results. In
this section we outline how existing results on Tatent structure models can
be used to detect this situation.

Firstly we observe that for an examinee responding to k > 3 items per
skill for a total of n skills, it is possible to use latent structure models
(e.g., Lazarsfeld and Henry, 1968; Goodman, 1974; Anderson, 1954; Green, 1851;
Harper, 1972; Formann, 1978) to estimate Bi» the probability of guessing the
ith item among the k items of a randomly sampied skill, % the probability of
"forgetting” the ith item, and ¢. An illustration of an iterative approxima-
tion to the maximum likelihood estimator is given by Macready and Dayton (1977}.
Note that the role of item and examinee is reversed in the paper by Macready and

Dayton. Here the parameters ais By and z are defined in terms of a single

13



examinee and a domain of skills while Macready and Dayton define them in
terms of a single skill and a population of examinees. However, the esti-

mation procedure for the present situation is essentially the same and so

it is not discussed further except to say that initial estimates are avail-
able from Wilcox {1973b).

For the jth examinee, let 25 be the resulting estimate of ¢z. Define

v =N z
J J
“ ~1 n
LS N C_z
J 3
and
n - a2
02 = Uy - (u) .

For the reasons given by Wilcox (1979b}, u and 82 may be used to estimate

. . pa . . R
the mean, u, and variance, o , of the true score distribution.

Let
T'I. = U if U<CD-§*
= ;0-5*, if QG-S*fpgj
m] = Mmax [U(ﬁo'ﬁ*"U)s (U'CO+5*)(1‘ﬂ)]
02 2
¢y = » 1 O<o <m
1 02+(T]-u)2 1
= (u(i-u)-cz)/(1~c0+6*)(§0~6*), otherwise
My = max [u(€0+5*-u)s (u-zo*é*)(W-u)]

14



ks *
T2 = §O+0 » if U<§O+5

=, if £O+6*1.u5_1

2

oo = g
2 AV
g T(Te‘ﬂ)

, 1f 0<c’em,

1

(U(l'H)—GZ)/(l"Qo'G*)(§0+5*)3 otherwise.

Following Wilcox (in press), results reported by Skibinsky (1977) can be
applied to show that for e]=Pr(xzxo, gg;o), the probability of a false-

positive decision, we have the inequality

I g e

RO L

€, < 9
1T =71
*0

X
vhere ¥ is the value of Y when c=c0+6*. As in the nrevious section, it is
assumed that for a specific examinee, the probability of getting x mastery

decisions is given by the binomial probability function (cf. Lord and Novick,

Chapter 23). As for the probability of a false-negative decision, say €05

it can be seen that

whers Yy is the value of v when c=c0-5*.
To illustrate the above inequalities we consider a situation similar to
the one described in the second example of the previous section. In particu-

Tar, we suppose k=3, ;0:.8, 05§5.1 and .15<3<.3. Further suppose that y and

15



62 are estimated to be .75 and .10 respective1y. Thus, r1=.7, m1=.0125,

¢]=.417, 12=.9, m2=.1125 and ¢2=.4. Hence,

n
< 417 I (2).7648X 23527 7%

£
1 -
X=Xy
and
x0-1
eo< 4z () .88 12"
2 w=0 X

The smallest number of skills so that simultaneously slg,l and 52551 is n=59.

Concluding Remarks

This paper has examined some of the problems that occur when using the
proficiency tests currently being developed by many schoal systems. It is
evident that more investigations need to be made. As previously indicated,
we need to have better methods for determining the optimal number of distrac-
tors per multiple-choice item and the optimal number of items per skill.
Several other questions also occur. For example, what is the effect on the
Pr{CD) if we use latent structﬁre models to estimate ;. Are there formula
scores similar to the one proposed by Wilcox (1979b) that might improve the
Pr(CD). Hopefully some of these problems will be investigated in the near

future.
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