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PREFACE

A part of our goal at CSE has been to develop new and improved
psychometric techniques to study, develop and characterize.achievement
tests and achievement test items. Recently our efforts have been focused
on certain errors that occur when using criterion-referenced tests.

In particular, we have investigated problems related to estimating

and controiling the false-positive and false-negative error rates asso-
ciated with a test and a population of examinees. In other words,

we are concerned about passing those examinees who should pass, and re-
taining those examinees who need remedial work. This paper deals with

one aspect of that probiem.



ABSTRACT

When determining how many items to include on a criterion-referenced
test, practitioners must resolve various non-statistical issues before a
particular solution can be applied. A fundamental problem is deciding
which of three true scores should be used. The first is based on the
probability that an examinee is correct on a "typical" test item. The
second is the probability of having acquired a typical skill among a
domain of skills, and the third is based on latent trait models. Once a
particular true score is settled upon, there are several perspectives that
might be used to determine test length. The paper reviews and critiques
these solutions. Some new results are described that apply when latent

structure models are used to estimate an examinee's true score.



1. Introduction

When trying to determine how many items to include on a criterion-
referenced test, perhaps the most fundamental problem is that there are
at least three conceptualizations or models of an achievement test that
might be used. Each of these conceptualizations is based on a different
type of true score. The first deals with the number of items an examinee
would get correct if he/she were to respond to every item in some item
domain. The second is concerned with the proportion of skills among a
domain of skills that an examinee has acquired. Because of errors at
the item level, such as guessing, this conceptualization is different
from the first. The final approach is based upon latent trait models.
In some cases, one model might yield substantially different results
from another in terms of test length, and so the choice of a model can
be crucial.

Once one of the above conceptualizations is settled upon, a variety
of other issues must be resolved. For example, when comparing an examinee's
true score to a standard, do we assume the standard is known, or do we
want to take into account the process by which it was determined? Do we
formulate the test Tlength problem in terms of a single examinee, a “typical®
examinee, or both? How certain do we want to be of making a correct de-
cision (classification) of an examinee? Are we willing to use a Bayesian

solution?



The first goal of this paper is to give a brief review and critique
of the three general approaches that might be used when determining the
length of a criterion-referenced test. In addition, new results on test
length are described. Finally, possible directions for future research

are indicated.

2. The Purpose of the Test

Consistent with earlier test length solutions, it is assumed that the
purpose of the test is to sort the examinees into one of two mutually
exclusive groups. In addition, it is assumed that it is possible to de-
fine these two groups in terms of some notion of true score, say =, that
characterizes a particular examinee. For the moment, the exact nature of
the true score, =, need not be specified.

Let ) be a constant which may or may not be known. We refer to
no.asthe standard. An examinee is said to belong to the first group, which
is designated as SG’ if his/her true score is greater than or equal to TG
If LA the examinee is said to belong to SB. The problem is to determine
how many items to include on the test so that we can be reasonably certain
of correctly determining whether an examinee belongs to SG or SB'

We should mention that a variety of real-life situations exist where
it is desired to sort examinees into one of two mutually exclusive groups.
In some cases we want to determine mastery of a specific skill or a nar-
rowly defined set of objectives. In other instances, interest centers on
proficiency in a variety of skills that characterize a particular subject
area. The point is that the term criterion-referenced test might be deemed

inappropriate for certain situations. For the present,this is a minor



issue. The important idea js that we want to compare = to the constant Ty
We should also mention that Hambleton et al. (1978) describes two primary

uses of criterion-referenced tests, namely, estimating domain scores, and

classifying examinees. Our only concern is with the latter use.

3. Solutions Using Domain Scores, ™g Known

In the context of a mastery or criterion-referenced test, perhaps
the most frequently used notion of true score is based on the concept
of an item sampling model {e.g., Harris, 1974; Huynh, 1976; Novick and
Lewis, 1974; Wilcox, 1977). Consider, for example, a domain of dichot-
omously scored items. In some cases, the item pool actually exists
while,in other cases, the notion of an item domain is a convenient con-
ceptualization. For this model, w represents the propcrtion of items
an examinee would answer correctly if he/she were to answer every item
in the item pool. For a single examinee responding to a random sample

of n items, the probability of getting x correct is assumed to be

X

[ ™ @ 13.1]

the binomial probability function. This is justified when items are ran-
domly sampled from an infinite item pool, or a finite pool with replacement,
and v remains constant. Using equation 3.1 is also appropriate when it
gives a good fit to the observed scores of an examinee. Gelfand and Thomas
(1976), Xatz (1963), Tarone (1979) and Cochran (1954) discuss the problem

of determing when a good fit is obtained.



One difficulty with this model occurs when we consider more than
one examinee. If we let g{r) represent the distribution of true scores
over a population of examinees, equation 3.1 implies that the marginal

distribution of observed scores is given by

1 - .
J(') [QI ﬁ_x (_1—'rr)n X g(w) dr. [3.2]

Lord and Novick (1968, section 23.8) show that equation 3.2 implies that
the correlation between observed scores and true scores is given by the
KR21 reliability formula. If every examinee takes the same n items, the
implication is that every item has the same level of difficulty. This
resylt prompted Lord and Novick to replace equation 3.1 with a two-term
approximation to the more general compound binomial model, the approxi-

mation being given by

P (x) + dm (1-m) C(x) [3.3]
where
Py (x) = (3] (10" [3.4]
and
= 2 v+l (2
c) = T () 2] Po_gtx-v [3.5)

The parameter d is equal to

20 1Va2
n“(n 1)0p

[3.6]

Z{px(n-px) —o’i - ncpz}



where ui and oi are the mean and variance, respectively, of the marginal
distribution of observed scores and where ﬂ? is the variance of the item
difficulties. It should be noted that if every examinee takes a dif-
ferent random sample of n items, the simpler binomial probability func-
tion is theoretically justified and equation 3.2 is correct. Further
comments concerning equation 3.3 are made below.

Apparently, the earliest attempt at providing a solution to the test
length problem was made by Millman (1973) using the binomial probability
function. Shortly thereafter, Fhaner (1874) gave a mere formal approach
again using the binomial probability function but with an indifference
zone built into the analysis. This means that in addition to the known
constant Tg» 2 constant 6* > 0 is specified with the idea that if the
examinee's percent correct true score is less than or equal to WO - 6*
or greater than or equal to “b + 6*, we want to be reasonably certain of
making a correct decision. If T - 5* <M<y +'5* any decision is said
to be correct.

The goal can be stated more precisely as follows: Let ny be a spe-
cified passing score, i.e., if the examinee's observed score is greater
than or equal to n,. the decision m > 7, is made; otherwise we decide
that = < - The problem is to determine the smallest n, so that
regardless of the actual value of =, the probability of a correct de-
cision (CD) is reasonably high, say greater than or equal to P*. More

briefly, we want

* *
P(CD) > P, /2 <P <1 [3.7]
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The reason for requiring P* > 1/2 is that we can guarantee that the P(CD}
is at least .5 without any observations at all, simply by randomly deciding
whether w is above or below 5

FOP'ﬂ<ﬁ6”WE'haVE that

n,-1

P(CD) = 32" () o (1-m)" 3.8]
and for >y
P(CD) = 1 () = (1=m)"7 [3.9]
X=n0

Moreover, it can be shown that for ﬂjﬁo-é*, equation 3.8 is minimized at

* *
m=my-6 for any n and that for m>myté , equation 3.9 is minimized at n=n +6*.

0
Thus, to satisfy equation 3.7 for any m, it is sufficient to find the smal-
*

lest n so that for n=n0-6 » equation 3.8 exceeds P* and simultaneously for

* ] * *
T=ngtd , equation 3.9 also exceeds P . Note that for § =0, both equations

* -

3.8 and 3.9 approach .5. Thus, & >0 is a necessary condition for ensuring
that an n exists satisfying equation 3.7.

It is also of interest to observe that it is relatively easy to
incorporate virtually any loss function into the above framework.
Suppose, for example, L1(w)3p is the loss associated with mis-classifying

an examinee for whom T<7T, and let Lz(“)ip be the loss when m>7,. The

risk or expected loss is

n -
Li(r) & (e (1-m)"%, veng [3.10]
x-xo
Npa-1
LZ(W) (% {2} ﬂx(1—w)nhx, T>T [3.17]
x=0

Using numerical procedures, the values of w maximizing equations 3.70 and 3.11



are readily determined. Moreover, if there is an open interval around WO
such that Ly (r)=L,(x)=0, and if L, and L, are bounded above, both equations

3.10 and 3.17 can be made arbitrarily small.

Before concluding this sub-section we note that Wilcox (1979a) has
generalized Fhaner's solution in two directions. In particular, Wilcox's
solution appties to any model involving some notion of true score = (not
necessarily domain scores) for which there exists a statistic #({x) for
estimating = such that the cumulative distribution function of 7(x), say
F(7(x)|n),is stochastically increasing. In other words, it is assumed that
m<r* implies that F(a(x)|r*)<F(n(x)|r) for all x. Consider any group of
k examinees and let g be the number of examinees for whom memg. It
follows that over all possible configurations of true score, the minimum
probability of a correct decision is given by

k-g *

T Fr, |m=m,-8 )
=y 010 j

N = =

*
T-F(nm | =r ts ) [3.12]
Keg#] 017370

where Tps-eesTy g are the true scores of the k-g examinees for whom

n<mg and w -»T, are the true scores for the examinees having m>Ty-

k-g+1°°"
It has been shown that in terms of g, equation 3.12 is minimized at g=0
or g=k if %i(x) (the statistic for estimating “i) is independent of ﬁj(x),
i#3. Thus, by examining these two cases and choosing n accordingly

we can guarantee equation 3.7 no matter what the values of the “ils

happen to be. Wilcox's solution contains the binomial error modeT,

Poisson process models and normal distributions as a special case.



Finally, in the case of percent correct true score, Wiicox (1979a)
indicates that the simpler binomial model appears to give a conserva-

tive solution when the conditional distribution of observed scores 1is

given by a two-term approximation to the compound binomial model as
described by equation 3.3. In otherwords, the binomial error model ap-
pears to  result in a Tonger test length than would be obtained using
equation 3.3, all other things be equal. However, a.rigorous proof that this
is the case has not been derived.

An important feature of the test length solution proposed by
Fhanér (1974) and extended by Wilcox (1979a) is that it is conservative
in the sense that it makes no assumption about the value of the examinee's
true score T. Furthermore, it is assumed that there is no information
beyond an examinee's observed score for making the decision about whether T
is above or below e For a single examinee,Fhaner's solution might re-
sult in the use of a moderate number of items on the test. Suppose, for
example, we assume the binomial error model holds, we set k=1, P*=.,9, s*=,1,
n0=.8 and the passing score n is chosen to be the smallest integer such
that nO/nz,B. It follows that n=26 is the shortest test length satisfying
equation 3.7.

In practice, however, it is often desired to simultaneously make
a decision about k>1 examinees., If we insist on using a conservative
approach to the test length problem and if we view the decision making
process in terms of k examinees, the minimum probability of a correct
decision decreases rapidly as k gets Targe. (See Wilcox, 1979a.)

For k large, one might argue that it is conservative but unrealis-

tic to consider the case where the value of every examinee's true score



is equal to ﬂO-G* or w0+6*. Thus, some other perspective might be
deemed more appropriate when judging the adequacy of the length of the

test. The remainder of this section considers how this might be done.

A Bayesian Approach

Novick and Lewis (1974) describe a Bayesian approach to deter-
mining n that applies to the case of a single examinee whose condi-
tional distribution of observed scores is given by the binomial proba-
bility function. As is typically done for the binomial case, an
examinee's true score is viewed as a random variable with a distribu-
tion belonging to the beta family. More specifically, it is assumed

that the probability density function of = is given by

_?{§§§%g7—- 1 (1-)8T [3.13]

where r>0 and s>0 are unknown parameters and T' is the usual gamma function.
If r and s were known, it might be possible to justify a shorter test
Tength than would be required if the approach used by Fhaner (1974} were
employed. Another appealing feature of the Bayesian solution is that we
would know the probability of a correct decision given the examinee's
ocbserved score.

More specifically, the test length solution is formulated as follows:
Given equation 3.13, and assumingequation 3.1 holds, it is known that

the conditional distribution of = given an observed score x, is

r{n)a*(1-7)""%

h(rlx) = GaTr -

[3.14]
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This is a beta distribution with parameters x+1 and n-x+1. Thus, we
can compute the probability of LEay when X=ng- The test length is de-

termined by increasing n until this probability is believed to be

reasonably close to one.

Novick and Lewis also illustrate how to incorporate a simple loss
function into their analysis. In particular, let a be the "loss" of
passing an examinee who should fail, and let b be the cost of failing
an examinee who should pass. We advance a student if
bP (m>myix, n) > aP (w<mpix, n). Note that we need only specify the
ratio a/b, not the actual values of a and b, since we are comparing the
ratio a/b to Pr(ng_rolx, n)/Prn<n0|x, n.

We observe that Morgan (1979) has extended the work of Novick and
Lewis (1974) to situations where guessing and carelessness are incorpor-
ated into the analysis. Novick (1973) discusses the specification of the
prior distribution. Novick and Lewis (1974) state that the specification
of the prior must be done carefully. They go on to suggest that the book
by Novick and Jackson (1974) and the paper by Novick, Lewis and Jackson
(1973) might aid in this process.

Perhaps most issues in statistics are controversial, at Teast to
some degree. Consider, for example, the problem of estimating the mean
of a distribution. The sample mean has various optimal properties
under certain circumstances {e.g., normality) but a variety of alterna-
tive estimates might be used instead (Andrews, et al., 1972). When
discussing Bayesian solutions to a problem,it seems prudent to remind
the reader that this area of statistics is a bit more controversial
than others. M. S. Bartlett, commenting on a paper by D. V. Lindley
in a book edited by Godambe and Sprott (1971, p. 447), writes as

follows:
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"I would say that the statisticians' model is different

in principle from a prior distribution in that it can

be tested. Where it cannot be tested this is to me un-
satisfactory. Prior distributions are, as I understand
it, in general untestable. What does Professor Lindley
mean when he says that 'the proof of the pudding is in
the eating'? If he has done the cooking it is not sur-
prising if he finds the pudding palatable, but what is
his reply if we say that we do not. If the Bayesian
allows some general investigation to check the frequency
of errors committed, or even real losses, this might be
set up; but if the criterion is inner consistency, then
to me this is not acceptable."

Despite Bartlett's comment, the importance of Bayesian statistics
should not be underestimated. Even if one insists on the classical
approach, Bayesian methods may prove to be valuable {e.g., Murray 1977).
For further favorable comments toward the Bayesian approach to statistical

inference, the reader is referred to Kendall and Stuart (1973, pp. 159-161).

An Alternative Approach

There is an approach to statistical inference developed by
Dempster (1966, 1967) which might be applied to the test length
problem. Apparently this approach has not been discussed in terms
of the probiem at hand and so, for completeness, we describe it here,

Dempster's results are quite general but, for the sake of clarity,
the discussion is Timited to the case of a single examinee for whom

the binomial error model applies.
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Suppose w0=.7, n=10, n0=7 and that an examinee's observed score
is x=6. Thus, the decision <TG would have been made. If the observed
score had been x=1, say, the same decision would have been made but one
might "feel" more certain the correct decision had been reached. Assum-
ing that we should feel more certain about the decision when x=1 versus
x=6, the question arises as to how to express this certainty in some
meaningful way. For the Bayesian statistician, the problem is relatively
straightforward since, once the beta prior has been specified, P (n<n0|x=1)
andP {n<ny[x=6) can be calculated.

Dempster's theory does not give us an exact value for P(w<n0[x);
rather it yields two values, say P] and P2, which are interpreted as
lower and upper bounds, respectively, on P(ﬂ§ﬁ0|X). Bounds on
P(ﬂzﬁ0|X) can also be derived.

From Dempster (1968a) it can be seen that for P(O<m<u,|x),

1
1 ™3

P, = (3]% (1-m)" ™Y [3.14]

X

and

'U
1]
-
e I §
—
L
=
| SV
——
—
|
=3
&
pa—
7
b

[3.15]
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As for P(ﬂ0§ﬁ§JIX)

X yY n-y
P, = = (,J¥(1- 3.16
9 y=0(y) 5(1-19) [3.16]
P, = "51 (MY (1=n )Y [3.17]
17y ¥ 00700

In terms of test length,one might choose an n so that P] is reason-
ably close to one for P(05p5y0]x<x0) and P(wofﬁjjlxzﬂo). If, however,
an examinee's observed score is Xg» it can be seen that such an n may
not exist. One way out of this dilemma is to incorporate an indiffer-
ence zone into the analysis but in a slightly different fashion than
was done in the earlier portion of this paper. Here,we might look at
the bounds on P(0§ﬁ§ﬁ0+6*|x) and P(ﬁo-ﬁ*fﬂfJ‘X). In this case,we would
be choosing an n so that

n-1

yEngeT (P grs™) (1 =™, [3.18]

the Tower bound on P(O§p5p0-6*|x=x0-1),

and

n -1
0 n * y * n_y
L -
y=0 (y)('”o g ) “"”0""5 ) ) [3.19]

the Tower bound on P(w0-6f5q31|x=n0), are reasonably close to one.

In practice it would seem that this approach might yield nearly
the same results as those obtained with the classical methods described
earlier. However, one might prefer Demspter's approach to the usual
Bayesian solution because it is possible to incorporate into the
analysis prior beliefs about whether = is above or below g without

specifying a specific form for the prior, Dempster (1968a) illustrates
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how this might be done. For further comments on this approach to
making inferences, the reader is referred to the discussion following

the paper by Dempster (1968b).

Error Rates for the Typical Examinee

In addition to considering the adequacy of the test length in terms
of a single examinee or k-1 specific examinees, one might consider the
examinees being tested as a random sample from some larger population of
examinees and consider whether n is sufficiently large for the typical
examinee being tested (Wilcox, 1977). (See, also, Huynh, 1980; Livingston,
1979.) It is not being suggested that the analysis presented in this sub-
section replace the approaches described above. Rather, the results re-
viewed and outlined here might be used to give us additional insight into
whether there are an adequate number of items on the test.

We now assume that observed test scores X; (i=1,...,k) are avail~
able for k examinees and we consider the estimation of u=P(xzx0, ﬂ<ﬂ0),
the probability of a false-positive decision, and 8=P(x<x0, ﬁzﬁo), the
probability of a false-negative decision for a randomly selected examinee.
Since we have observations for estimating o and 8, the present approach
might be termed a "retrospective’study. This is in contrast to Fhanér
(1974) and Wilcox (1979a) where it is assumed that no information is
available concerning an examinee's true score and so the problem is more
along the lines of designing an experiment.

Note that m is again an unknown fixed constant for a specific
examinee; no prior distribution is considered for an examinee as is done

in the Bayesian solution. We refer to a distribution for ™ say w{m),
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but now the distribution of = is over a population of examinees.
Let h(x|r) be the conditional distribution of observed scores for

an examinee having true score =, It follows that

n “0

a = X IO h(X[F)W(ﬂ)dF [3.20]
X=n

0
and

o~ 1

B =2 J  h{x|n)w(m)dm [3.21]
x=0 0

If we want to define o and g in terms of an indifference zone, we simply
replace 0 with wo—s* in equation 3.20 and we replace ﬂb with ﬂ0+6* in
equation 3.21.

If we knew h(x] ) and w(rw) we would know o and g. If o and g were
judged to be too large, we could decrease their values by increasing
the test length.

For most situations,neither h{x| ) nor w(r) is known. Suppose, how-
ever, we follow Lord and Novick (1968, Chapter 23} and assume h(x|m)
is some approximation to the compound binomial distribution. Further
suppose that the moments of the true score distribution can be estimated
using the xi's. Lord (1965) describes how to do this when the two-term
approximation to the compound binomial given by equation 3.3 is deemed to be
appropriate. Once these estimates are available, the methods described
below for estimating w(r) can be employed.

Perhaps the most frequently used approach to estimating the true
score distribution is to assume that w(w) belongs to the family of beta

distributions (e.g., Keats and Lord, 1963; Lord, 1965). If the true
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score distribution is unimodal, a good approximation to it may be possible
with a beta distribution (Springer, 1979, p. 268). If the true score dis-

tribution is multimodal, it is not clear when-or even if-a good fit to the

true score distribution can be obtained. One possible probliem is that (ex-
cluding U-shaped distributions) beta distributions can have, at most,one
mode. To complicate matters, there is no satisfactory method of detecting
a poor fit to the true score distribution using the observed xi's. The
difficulty is that even if we are given the first m moments of = over

the population of examinees (m being any integer), the true score distri-
bution is not uniquely determined. There are alternative approaches to
estimating the distribution of = (e.g., Lord, 1969; Blischke, 1964; Maritz,
1970; von Mises, 1964, pp. 384-401) but the circumstances under which

these procedures give more accurate results appears to be unknown.

Because of the difficulty in determining the accuracy of point
estimates of o and B, there is some doubt as to when we should rely on
such estimates when judging the adequacy of the test length. An alter-
native approach that might be used is to estimate bounds on o« and 8
which make no assumptions about the shape of the true score distribution.
Wilcox (1979c) indicates how this can be done. The solution is based
on estimating the first two moments of = and applying results by
Skibinsky (1977) which yield bounds on the probability that = is in a
particular interval. It should also be pointed out that an earlier
paper by Skibinsky (1976) describes how to use the first three moments
of the true score distribution to obtain upper bounds to the probability

that x is in the interval (0, Tb) or (wo, 1). Following Wilcox (1979c)
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these bounds might also be used to determine bounds on « and B.
We conclude this section by noting that the beta-binomial model

appears to give a good estimate of o and 8 even when the conditional

distribution of observed scores are generated according to the two-term
approximation of the compound binomial given by equation 3.3 (Wilcox,
1977). Thus, when investigating the adequacy of the test Tength, the
beta-binomial model would seem to suffice when the true score distri-
bution belongs to the beta family. Moreover, a moderate number of
examinees usually gives a reasonably accurate estimate of o« and B

when the beta-binomial model holds. However, there are occasions when
observed scores on & moderate number of examinees can result in wildly
inaccurate estimates of the parameters of the beta distribution (Wilcox,
1979f). This is a highly unusual event,but it seems prudent to keep

this fact in mind when considering test length.

4. Solutions Using Domain Scores, Ty Unknown

So far we have-given-a very brief outline and review of procedures
for judging test length, all of which assume that the criterion score
s is known, In reality the criterion score is not known; rather, it
is determined by some process. Huynh {1976), for example, describes a
method for determining ) when an external criterion exists.

One important aspect of a criterion-referenced test is the effect
the process of determining g has on the test length, n. In other words,
it may be of interest to incorporate this process into the analysis.

This is done by Wilcox (1979b) for the case where i is the unknown
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parameter of some distribution. The examples given are based on the notion

that the control (the distribution characterized by FO) is a population of

examineas. In this section,we consider a variation of this situation.

In practice, the criterion score is often specified by a panel of judges.
In an attempt to better approximate reality, the following conceptualization
is used. A total of k judges have specified a criterion score, 01 (i=1,...,
k). Furthermore, these k judges are viewed as a random sample from some popu-
lation of individuals who are qualified for specifying T In particular, it
is assumed that the realization of 0 is independent of ”Oj’ i#j and that g
is the mean of the criterion scores that would be specified by the population

k
1 .
151W01' Accordingly,

of judges. Since ny is unknown we estimate it with T =k~
if an examinee's true score is estimated to be greater than or equal to 50 the
decision = > T is made; otherwise the reverse is said to be true.

Let G(7) be the cumulative distribution function of 7 and consider the
case of a single examinee for whom the binomial error model holds. It follows

that the probability of a correct decision is given by

n
J’(]} 5 (MA-n"* da(7), ifrs n [4.1]
' x=[n.3,;0 X -0
or by
Iy g g, e v s [4.2]
0 x:O (x - s 1 < 0 .
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where [i] is the smallest integer greater than or equal to n.
Again it is necessary to specify an indifference zone (i. e., a

§%> 0) to be certain that there exists an n so that equation 3.7 is

satisfied. From Wilcox (1979b) it follows that the minimum nrobability

of a correct decision is given by

[n7-1]
fé 2 (7) {mgms™)* (1=m#e*)"% da(¥) [4.3]
X=
or
fs 9{ - (7) (rgre™)* (1-7m5=6")""" a6 (™) [4.4]
X={nm

whichever js smallest.

There remains the technical problem that G{™) is unknown. One
approach would be to assume that G(™) is the distribution that minimizes
the P(CD) so that no matter what the distribution of G(T) happens to be,
we can choose n SO thai P(CD)>P*. A method of deriving this distribution
is unknown to the author. However, comments made by Wilcox (1979b) sug-
gest that if we assume that

P(m3= 0) = P(m;= 1) = 1/2 [4.5]

a reasonably conservative solution to the test Tength problem will be
obtained. Note that this distribution is the Timiting form of a non-
informative beta prior used in Bayesian statistics. (See, e.g.,
Aitchison and Dunsmore, 1975, Chapter 2.)

There are three reasons for suspecting that the distribution given by
equation 4.5 will give a conservative solution when specifying n. The first

is that this distribution has the maximum possible variance of any
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distribution on the closed interval [0, 1]. The second reason stems from
considering the asymptotic case. Finally, familiarity with variational
methods (e.g., Rustagi, 1976) suggests that the minimum of equations 4.3
and 4.4 over all possible distributions G{7} occurs when G(F) is a step
function.

Note that when equation 4.5 holds, G(v) js a binomial distribution.
Thus, the approximate solution for specifying n that is given by Wilcox
(1979b, expression (7)) can be applied to the present situation. Suppose,
for example, P*=.9 and s*=.1. From Wilcox (1979, Table 1), n=k=84 is
required. In otherwords, if we administer n=84 items to an examinee
and if we have k=84 judges specify a criterion score, there is {approxi-
mately) at least a 90% chance of correctly classifying the examinee.

In practice there might be at least two objections to the proce-
dure just given. The first is that it might be too conservative in the
sense that it is unrealistic to expect (or perhaps even allow) a judge
to specify i 0 or 1. If we assume that every judge will specify a
" that is between .5 or .9, perhaps a fewer number of judges would be
required. The second objection (related to the first) is that the
variance of Ty over judges might be small, relative to the variance of
the observed score of an examinee, so that there is no need for sampling
as many judges as items as was done for convenience in the illustration
given above,

When comparing a single examinee's percent correct true score w
to Ty We may view our goal as determining which of two populations

has the larger mean (i.e., we are trying to determine whether n is larger



or smaller than 7, ). Thus, in the asymptotic case, we may apply
the results given by Bechhofer (1954). We illustrate how this might
be done,

. . . 2 .
For any random variable y having mean p and variance o that is
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defined on the closed interval [a, bl, o?i(u-a)(b—u) with equality
holding when P(y=a) = (b-u}/(b-a) and P(y=b) = 1-P(y=a) (e.g;, Skibin-
sky, 1977). Suppose, for the sake of illustration, we assume (or
require} that .5 < o < .9. It follows that the maximum possible
variance of 7, is .04 which occurs when 7, = .7 and P(w0=.5) =
P(ﬂb=s9) = .5, Thus, in an attempt to find a conservative choice for

n and k, we consider the case in which r, = .7 and the variance of
"o is .04.

Suppose P* = .9 and ¢* = .1. Via the central limit theorem, we
may apply the solution proposed by Bechhofer (1954, p. 24). In parti-
cular, the required number of judges is k=d(.04)/(5*)2 where d is read
from Bechhofer's Table 1 {the column headed, in Bechhofer's notation,
with k=2 and t=1). For P* = .9, d=1.8124 and so, after rounding, k=13.
As for n, firstly we observe that in our example, "o -6*=.6 and

" +6*=.8 (i.e., under the assumptions made, the P(CD) is minimized
either when the examinee's true score is .6 or .8). Since a binomial
distribution with probability of .6 has a larger variance than when
m=,8, we consider the case 7=.6, Thus, for this special case, the
variance of a binomial distribution for a single observation is .24 and
S0 n*(1.8124)2(.24)/.01i78. This result also foliows from Bechoffer's
equation (34). (For related comments on the actual P(CD) in the case

of normal distributions, see Tong and Wetzell, 1979; Lam and Chiu, 1976

.)
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As a partial check on the accuracy of the approximate solution for k and
n, we used Monte Carlo procedures to estimate the P(CD) with k=13, n=78,
P{ny7.5)=P(1,7.9)=.5 and v=.6. The resulting estimate was .912. As a fur-
ther check,we used the approximate solution for P*=.75 and .95. The corres-
ponding vatues of (k, n) were (4, 22) and (22, 130), respectively. The esti-
mated P(CD)'s were .76 and .94.

As a final comment,we note that when L) is known, the above illustra-
tions indicate that the required number of items on the test is reduced
consider&b]y. For instance, suppose we know that i =.7. In this case,

for a given P* and s*, the minimum required test length is approximately

equal to

22.7(.3)/(s™)? [4.6]
where A is the P* quantile of the standard normal distribution (Wilcox, 1979a}.
Thus, the values of n corresponding to P*=.75, .9, .95 are approximately 10,
34 and 57 respectively. We see, therefore, that having precise information

regarding Ty can have a substantial effect on the test length.

Bayesian Solutions When wy is Unknown

It is possible to transform a binomial distribution to a normal dis-
tribution having known variance (e.g., Freeman and Tukey, 1950)}. If the
distribution of my 1s assumed to be normal with known variance, and if we
apply the Freeman-Tukey transformation to the observed score of the examinee,
the Bayesian approach described by Huang (1975) might be applied. However,
the main results reported by Huang are concerned with finding optimal decision

rules {Bayes procedures) for determining whether = is greater than, or less
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than,wo; no discussion is given on finding the smallest n so that equation

3.4 is attained.

5. Solutions in Terms of Proportion of Skills Acquired

In this section,we assume it is meaningful to say that an examinee
either "knows" or "does not know" the answer to a particular item on a
test. Alternatively, we might say that an examinee has, or has not, acquired
the skill that is represented by a particular test item. Still another
description of the approach taken here would be to say that the probability
of a correct response to an item is a function of a dichotomized latent
trait (Harris and Pearlman, 1978).

It should be stressed that when we describe an examinee as either
knowing or not knowing the correct response to an item, no implication is
being made that learning is all or none. Consider any model, for example,
a latent trait model (see, e.g., Hambleton, et al., 1978) or classical test
theory, in which the probability of a correct response is a function of
some continuous unobservable variable. Either this variable has a value
at which the examinee has a tendency to get the item right (the probabil-
ity is greater than or equal to .5) or the examinee has a tendency to get
it wrong. In some cases we might want to make inferences about this
tendency as is the case in the Lazarsfeld-Kendall "turnover" model as
described by Goodman and Kruskal (1959). No insistence is being made that
such a continuous unobservable variable exists. The point is that describ-
ing an examinee as knowing or not knowing does not rule out,or have impli-
cations about some other continous latent trait variable or model since we

can always go from any latent trait to a latent state model. We should note,

however, that the latent class point of view used in this section of the
paper 1is déférministic in the sense that if we knew an examinees latent

state, and if there were no errors at the item level, we could predict the
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examinee's observed response. For this special case, we have, from the point

of view of latent trait theory, Guttman item characteristic curves (cf. van
der Linden, 1979). Reulecke {1977) and the references cited therein discuss,
and further clarify,the relative merits of using latent classes in mental

test theory, and so further comments are omitted..

There are two different but highly related approaches that have been
considered, based on the framework just described. The first,which seéms
to have received the most attention in the literature, is to consider a
specific skill in terms of a population of examinees {e.g., Harris and
Pearlman, 1978; Marks and Noll, 1967). Macready and Dayton (1977) illus-
trate how this point of view can be used, among other things, to determine
the number of items to be used when making a mastery/nonmastery decision
concerning a particular skill. Their solution was recently extended by
Bergan et al. (1980).

In this section, we concentrate on the second point of view which con-
siders a single examinee in terms of a domain of skills. Let t be the pro-
portion of skills that the examinee knows. Consistent with previous sections,
the goal is to determine whether g is above or below some known criterion
score &;- The problem is to find a minimum value for n, the test length,
so that regardless of the actual value of £, we are reasonably certain of
making a correct decision whenever gfgo—a* or 53§0+6*. If £ is in the open
interval (£0~6*, go+6*), i.e., the indifference zone, any decision is said
to be correct.

One reason for considering this conceptualization of testing is that it
occurs in real-life situations. For example, certain state-wide testing
programs designed to determine a student's eligibility for graduation from
high school have taken this view. A second reason is that it provides an
interesting perspective on the test Tength problem. As alluded to earlier,
formulating the problem in terms of g rather than the domain score w, can

have a dramatic effect on the value of n. Finally, when measuring achievement
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it seems reasonable to formulate the problem in terms &, the proportion

of skills an examinee has acquired.

We consider two errors at the item level. They are

vy = P(incorrect | examinee knows) [5.1]

and

P(correct | examinee does not know). [5.2]

m
1]

From a frequentist point of view, we interpret ¢ as the proportion
of correct responses an examinee would get among all the items in the item
pool he/she does not know. Alternatively, one might define e as the prob-
ability of a correct response to the same item over independent trials.
This is similar to using the propensity distribution in classical test
theory (Lord and Novick, 1968, Chapter 2) except that here, the distribu-
tion is defined in terms of an item an examinee does not know. To avoid
the estimation problems noted by Wilcox (1979e), the former definition of
e is used. Of course, y can be defined in an analogous fashion.

A fundamental problem with this approach to testing is deciding whether
additional errors at the item level should be included in the analysis.
Duncan (1974), for example, argues that in some cases, a misinformation
model should be used. That is, we aliow for the possibility that an exam-
inee chooses an incorrect response to a multiple-choice test item because
he/she believes it 1is, indeed, correct. Here,‘however, only the errors
represented by equations 5.1 and 5.2 are considered.

Wilcox (1979d) has given some consideration to the relationship be-
tween vy, £ and n, the test length. It was found that if one item per skill
was used, an extremely large number of items might be needed to satisfy

equation 3.7. Suppose, for example, P*=.9, 6*=.] and EO=.8. Further
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suppose we are willing to assume that .1<g:<.3 and O<y<.1. In this case

over 2600 items would be required to guarantee that P(CD)zP*. The problem

is that by allowing vy and e to have positive values, we are shrinking the
indifference zone in terms of the domain score =. 0One approach to this
problem, which is considered by Wilcox (1979d)}, is to use more than one
item per skill. It was found that this might lower the overall number
of items on the test; however, a large number of items might still be
required. We consider some alternative solutions.

In the case of multiple-choice test items, one possible approach is
to use the usual correction for guessing formula score. {For a Bayesian
formula score, see Molenaar, 1977.) Assuming one item per skill is used,
and that each item has m alternatives from which to choose, the formula
score is x-(n-x)/(m-1) where, as before, x is the observed (number correct)

score. This suggests we estimate £ with

g = 0" [x-{n-x)/(n-1)] [5.3]
(See, also, van den Brink and Koele, 1980.)
Note that £ can be negative, in which case we estimate £ to be zero.
Suppose we infer that £ is less than EO=.8 if £<.8,
and if £>.8,we decide £2.8. Let x4 be the smallest integer such &>.8.

*
When £=gq-6 , the examinee's domain score is given by

o= (=) (gg-s") + e(1-gg+s ) [5.4]
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and for ¢ = 50+§i m is equal to

Ty = (]—Y)(Eo‘l'é*) + 6(1—50'5*)- [5.5]

Thus, for g = £0~6*

x. -1
0 -
P(CD) = I [’;]nf (1-“])” X [5.6]
x=0
*
and for £ = 50+6
n n n-x
P(CD) = I ™ (1-7,) [5.7]
X=x Xi2 i
0

To give some indication of the properties of using equation 5.3, we
determined the smallest test Tength so that, simultaneously, equations 5.6
and 5.7 are at least P*=.9 with 6*=.]. The results are reported in
Table 1 for m=4,5 and various values of vy and e.

In some cases,when the test length is formulated in terms of g,
using equation 5.3 can substantially reduce the value of n over what would
otherwise be required because we are, in essence, adjusting the passing score

in a manner appropriate for what the values of vy and ¢ happen to be. This
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result is to be expected. The important point made by the values of n

in Table 1 _is that the solution to the test length problem is highly .. . . ..

sensitive to the values of v and €. Moreover, for the cases considered,
the closer v and e are to zero, the smaller is the resulting value of n
but it can be verified that this is not always the case. In practice,
it is frequently assumed that v=0 and that guessing is at random. It is
generally conceded that this assumption is unrealistic,but often it is
made anyway (e.g., Duncan, 1974). Weitzman {1970) proposes a procedure
for ensuring guessing is at random. If this procedure is successfully
implemented, we might substantially reduce the number of items that

would otherwise be required.

6. Solutions Using Latent Structure Models

Since the test length is sensitive to the values of v and ¢, it would
be helpful to have some method of estimating v and ¢ or to have an estimate
of ¢ that does not assume guessing is at random. Under certain circumstances,
such estimates are available (e.g., Anderson, 1954; Goodman, 1979; McHugh,
1956; Lazarsfeld and Henry, 1968). In this section,we consider test Tength
when these methods are applied to estimate &.

Consistent with the previous section, it is assumed that an examinee is
responding to a random sample of sets of equivalent items.  Only situations
involving pairs or triplets of equivalent items are considered. For a general
approach to the case of items representing hierarchically related skills, see
Dayton and Macready (1976). For an approach to determining the equivalency

of item pairs the reader is referred to Baker and Hubert (1977) as well as
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Hartke {1978). We also note that the usual method of judging the adequacy
of a latent structure model is via the chi-squared goodness of fit test

as illustrated by Macready and Dayton (1977).

Given that we are willing to make the assumptions necessary for the
application of latent sturucture models, there are at least two technical
problems when determining test iength. The first s that we can no longer
be certain that the P(CD} is minimized at either g=go-5* or g=go+5* unless,
perhaps,we resort to an asymptotic argument or employ numerical techniques.
The second is that there is no convenient method of determining, or even approx-
imating,the smallest n so that equation 3.7 holds. No. attempt is made to
solve these problems; to be thorough it is necessary to indicate that these
difficulties exist. In this section,we give brief consideration to whether
Jatent structure models might be useful in reducing the number of items on
the test that would otherwise be needed.

We begin by considering the case where two items per skill are used.
For this situation,it is necessary to assume that one of the parameters
v or = is known since,otherwise, the parameters are not uniquely determined
and cannot be estimated. For present purposes,we assume that y=0 when
estimating e.

As a comparison with the results on using the correction for guessing
formula score, we used Monte Carlo methods to estimate the P(CD) using the
values of n reported in Table 1 for the case m=4. The total number of
ckills on the test was set at n/2 or (n+1)/2, whichever gives an integral
result. In each case we set go=.8 and made the estimates of the P(CD} with
g=50~5*=.7 and then with g=g0+d*=-9- The method used to estimate ¢ is des-

cribed by Wilcox (1979e). The results are reported in Table 2. As can be
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seen, the latent structure model performs satisfactorily for y=0 but even
for v sTightly larger than zero the results do not support this approach

when £=,9,

Next we considered using three items per skill for a total of 30 skills
(and hence 90 items)., In this case, the iterative procedure described by
Goodman (1979) was used to approximate the maximum 1ikelihood estimates of
the parameters of the model. (It is no longer being assumed that v=0.)

For the specific examinee being tested, let pijk be the probability of
a particular pattern of responses on a randomly sampled triplet of equiva-
lent items where a subscript of 0 or 1 corresponds to an incorrect and cor-
rect response respectively. For example, Po11 denotes the probability of
an incorrect on the first item and a correct on the other two. When applying
Goodman's estimation, procedure one must estimate the pijkis which are the
cell probabilities of a multinomial distribution. Two estimation procedures
were used. The first was the usual sample mean; the other was an estimate
proposed by Fienberg and Holland (1973, see their equation 2.13).

It should be noted that when the sample mean is used to estimate the
pijkls’ the solution to Goodman's equations (7), (8a),...,{8d) are maximum
Tikelihood estimates of the parameters in the latent structure model. How-
ever, when the Fienberg-Holland estimate of the pijkls are used, maximum
Tikelihood estimates are no longer being obtained.

The results of our Monte Carlo studies are reported in Table 3. The
columns headed MLE are the values of the P(CD) using Goodman's estimation
procedure. The columns headed FH are the modified estimates based on the
Fienberg-Holland estimate of the cell probabilities of a multinomial distri-

bution. A1l indications are that the P{CD) is at least .9 when =0 or
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.15 even for v=,05 or .07. For all previous approaches, the P(CD) was con-
siderably below .9 for yv=.05 and .07. However, for £=.3 and particularly

for ¢=.4, the P(CD) is not very large. Note that the Fienberg-Holland esti-

mate of the parameters in the muTtinomial distribution nearly always yields
better results than those obtained with the sample mean estimate of the
Pyjk S-

No generalizations should be drawn from the Monte Carlo results reported
in this section. Our goal was a more modest one: namely, to suggest what
results might be obtained with Tatent structure models. The point is that
it might be possible to take into account the errors vy and ¢ when comparing
g to £0 with a realistic, though perhaps Targe,number of items on the test.
The results reported here are intended to motivate a more extensive investi-
gation of the application of these models as well as the modified estimation

procedure described above.

7. Solutions in Terms of g and a Population of Examinees

As was the case with percent correct true score, it is possible to for-
mulate the test length problem in terms of £, the proportion of skills known
by an examinee, where now we are concerned with the typical examinee among a
population of examinees being tested. We note that when determining mastery
of a single skill, rather than for a domain of skills, the solution described
by Macready and Dayton (1977) might be applied.

For the special case >0 and v=0 (or ¢=0 and y>0) the model proposed by
Wilcox (1979e) might be used to obtain a point estimate of the probability of

a false-positive or false-negative decision on the test. As before, if these



32

two errors are judged to be too high, one might increase the length of the
test. Wilcox (1979e¢) illustrates how this might be done for the case of a

single item per skill and so the details of the procedure are not discussed.

It is important to realize that in certain circumstances, the case of
k>1 items per skill can be accomodated. Suppose, for example, that for
each skill there are k items and that in each case the same decision rule
(for instance all k items correct) is used to determine mastery. For a spe-
cific examinee and a sample of t skills {for a total of n=tk items), the

probability of x mastery decisions is
t -
() p* (1-py =X [7.1]

where p is the unknown probability of a mastery decision for a randomly sam-
pled skill. Note that for this special case, p=g+(1-a)g1€2...ak where & is
the probability of guessing the ith item used to measure the skill, Let

¢=(1-g)51...ek and assume that £ and ¢ arise from a bivariate Dirichlet dis-
tribution. In otherwords,it is assumed that the joint probability density

function of ¢ and ¢ over the population of examinees is given by

T(v tv,tv,)  vo=1  v,=1 V-1
17V9™Vs! W 2 3
Tty & ¢ (e [7.2]

where the v, (i=1,2,3) are unknown parameters.

If t, the number of skills, is sufficiently large, as might be the case
in a preliminary investigation, we can estimate £ and the si's for each
examinee. (The effect of having a small number of skills appears to be un-
known, cf. Wilcox, 1980). Once £ and ¢ have been estimated for a random

sample of examinees, we can estimate Vis Vo and V3 in the manner described
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by WiTcox (1979e)}. Substituting these estimates into the right-hand side of

x—w+v1-1 n~-xtwtv,+v. =1

06028 (ug,vg0v3) T (Bl nextv)e ) 2% al

where B(.,.,.) is the usual beta function, yields an estimate of the joint
probability density function of x and g. 1If Xq is the passing score of the

test, the two possible errors are simply

EO ’ .
x._-x 0 3 -

which can be evaluated with subroutine BDTR in the IBM (1971} scientific
subroutine package. Thus, we can determine the test Tength n=tk by adjusting

t (and xo) until equations 7.4 and 7.5 are sufficiently small.

Bounds on the Probability of an Error

If v, the conditional probability that an examinee gives an incorrect
response given that he/she knows the skill, is greater than zero and if
£ is estimated with a latent structure model, it is no longer clear how to
estimate the probability of & false-positive and false-negative decision.
However, if £ s any estimate of £ we can estimate the P(é<go) for a randomly
selected examinee. This estimate is simply the proportion of examinees for

whom £<g.. Moreover, if ¢ is consistent, we can estimate the mean and variance
0
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of £ over the population of examinees {(Wilcox, 1979e). Thus, following
Wilcox (1979c) bounds on the two error types can be estimated. As previously
explained, these bounds give us information about whether there are enough

items on the test.

8. Solutiens Using Latent Trait Models

The third general approach to the test Tength problem is based on a
latent trait model. For a specific examinee the probability of a correct
response to a test item, say pT(g), is viewed as a function of ¢, - = <
r < =, the examinee's "ability" level, and the vector t which consists of
parameters that characterize the item. Lord (1974} interprets pT(c) as a
relative frequency over randomly selected test questions all having the
same vector of t values.

Several forms for pT(c) have been proposed (see, e.g., Hambleton and
Cook, 1977). For a recent review of latent trait models, the reader is
referred to Hambleton, et al., (1978). Familiarity with this review is
assumed henceforth.

Birnbaum (1968) considers the classification of examinees in some de-
tail. As was the case with the two types of true score previously considered,
it is assumed that two ability levels have been specified, say T and Lo with
the idea that if ¢ gy or if g > to» We want to be reasonably certain of
making a correct decision about whether the examinee's true score is large or
small.

Rather than formulate the test length problem in terms of the probability

of a correct decision, Birnbaum chooses n so that the probabilities associated



35

with the two possible errors do not exceed prespecified values. That is, we
choose n so that simultaneously

%k

o) 2 a [8.1]

H

P{x > Xg | z

and

*

B [8.2]

P(x < xq [ 2= z,)

| A

where Xq is the passing score and «* and 8* are preassigned constants.
Note that x need rat be a number correct score. Birnbaum (1968, eq. 19.5.13}

derives an approximation to the minimal n satisfying equations 8.1 and 8.2

given by

L (g (5 (1-pg (2% = 671 (8%)Dp, (£ (1-p (2,))]?
: [8.3]

where @'1 is the inverse function of the standard normal cumulative distri-
bution., (Actually this expression for n differs slightly from Birnbaum's
which apparently has a typographical error.} To apply this solution one
must already have an estimate of the function pT(c). The solution also
makes the highly restrictive assumption of equivalent jtems, i.e.., every
item has the same values for rt.

As with all the probability models in this paper that attempt to make
inferences about what an examinee knows beyond the observed responses on a
test, there are several technical issues that remain to be resolved--not
the Teast of which is a guideline on when one form of pT(c) is to be pre-
ferred over another. Some of these issues are discussed by Hambleton et al.
(1978).

Certainly latent trait models deserve careful study and consideration.

When measuring achievement, there are at least two issues that deserve a
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special comment. The first, which is raised by Baker (1977), is whether
latent trait models are even appropriate at all. As Baker puts it, latent

trait theory is the culmination of the work on the measurement of ability,

begun by Binet, that was the major focus of psychometrics in the 1920's,
30's and 40's. He goes on to point out that the educational problems of
an earlier era are not the problems of the 1970's and 80's. The major
trend in educational measurement today is one of instructionally related
testing. Moreover, the problems arising from the individualization of
instruction are very different from those of ability measurement.

A more specific problem with latent trait models that needs to be
considered, is what we do with the items that do not fit the model. From
comments made by Gustafsson (1979), it would seem that many such items
might exist when the Rasch model is assumed to hold. If these items really
do represent a skill associated with a particular instructional program,
it may be of interest to determine whether an examinee has mastered the
ski1l even if the item does not fit a particular latent trait model.

Ron Hambleton pointed out that this problem should be addressed at the
test development stage; if we have evidence that the items measure the
objectives, and if the model does not fit, we should throw aut the model--
not the items.

In terms of the present paper, the question is: 1if we chhose not to
ignore the items that do not fit a latent trait model, what do we do with
these items and how do we relate our actions to the problem of test
length? It should be mentioned, however, that under certain circumstances
an argument has been made in favor of Tatent trait models over item sam-

pling models (Wood, 1976). In addition Messick, (1975, p. 957) argues
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that all measurement should be construct referenced and that a measure
estimate how much of a trait an individual possesses. Nevertheless, the
jssues of what to do, if anything, with items that do not fit a latent

trait model has yet to be discussed.

A Concluding Remark

Perhaps the most important point of this paper is that there is no
magic number-or even magic formula-for determining test length. Even
within the seemingly narrow problem of comparing an examinee's true score
to some constant, there are many approaches to the probiem. Moreover,
in terms of which true score to use, it is not at all clear as to what
extent the three types considered here are in competition with one another.
For the moment, the best we can do is to be very precise about what we
want to determine, consider what assumptions we are willing to make, and

act accordingly.
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