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PREFACE

A part of our goal at CSE has been to develop new and improved
psychometric techniques to study, develop and characterize achievement
tests and achievement tesf items. Recently our efforts have been focused
on certain errors that occur when using criterion-referenced tests.

In particular, we have investigated problems related to estimating

and controlling the false-positive and false-negative error rates asso-
ciéted with a test and a population of examinees. In other words,

we are concerned about passing those examinees who should pass, and re-
taining those examinees who need remedial work. This paper deals with

one aspect of that probiem,



ABSTRACT

Throughout the United States, various school Systems are developing
what is referred to here as proficiency tests. These tests are concep-
tualized as representing a variety of skills with one or more items per
skill. One purpose of the test might be to determine whether a student
will receive a high school diploma. This paper discusses how certain
recent technical advances might be extended to examine these tests. In
contrast to existing analyses, errors at the item level aré included. It
is shown that inciusion of these errors implies that a substantially
lTonger test might be needed. One approach to this problem is described

and directions for future research are also suggested.
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INTRODUCTION

Throughout the Unfted States efforts are being made to develop
tests to measure the proficiency of students attending the local schools.
In some cases, these tests are used to determine whether a student will be
awarded a high school diploma; in other instances, they might be used
to decide whether an examinee should be advanced to the next grade level.
In some jnstances these tests are conceptualized and constructed as fol-
lows: a group of teachers, parents, content experts and other interested
parties work together to identify those skills that are believed
to be a basic part of a student's education. For example, interest might
focus on competency in mathematics,in which case,the skills might include
addition, subtraction, computing percentages, etc. Corresponding to each
skill, test items are constructed for the purpose of determining whether
an examinee has acquired the skill in guestion. Here it is assumed that
these test items have been examined for any ambiguities or misrepresenta-
tions and fhat appropriate corrections have been taken when necessary.

Because of the large number of skills that have been identified, it
is impractical to test an examinee on every one. Accordingly, a random
sample of skills fs used to make inferences about the proportion of skills
that an examinee has acquired. The test administered to an examinee con-
sists of items that represent the skills. Decisions concerning profi-
ciency are made according to some predetermined passing score. For
exampie, a requirement for receiving a high school diploma might include

taking a mathematics test and successfully answering 70% of the items or



demonstrating mastery of 70% of the skills. Note that these two deci-
sions are not necessarily equivalent. As a simple i]]dstration, imagine
a test of 10 skills with 3 items per skill for a total of 30 items.
Further suppose that a mastery decision is made for a particular skill
if the examinee responds correctly to two out of the three corresponding
items. In other words, an allowance is being made for the possibility

that an examinee has acquired the skill but gives an incorrect response

because of some distraction or carelessness, for instance. In this case,
it is possible (but perhaps unlikely) that an examinee will get less than
70% of the skills.

The purpose of this paper is to demonstrate how certain recent
technical advances can be extended and applied to the type of test des-
cribed above. Emphasis is given to the problem of determining how many
skills to include on a test. As will become evident, the analysis has
implications about how many items to use per skill. In the case of
multiple-choice test items, there are also possible implications about
the number and quality of the distractors that are being used.

Before continuing, it is of interest to observe that the situation
considered here is similar to a common conceptualization of a mastery
test. A mastery test is frequently regarded as consisting of items
randomly sampled from some larger item pool (e.g., Wilcox, 1977; Harris,
1974; Novick and Lewis, 1974; Huynh, 1976). The item domain might exist
de facto or it might be a convenient conceptualization. Based on this
"jtem sampling" view, the binomial error model (Lord and Novick, 1968,

Chapter 23) is then used to describe the observed responses of the



examinees. In particular, the probability function of x, the observed

(number correct) score of én examinee, is given by
f(xlp) = () p* (1-p)"* (1)

where p is referred to as the examinee's percent correct true score. The
goal of the test is to determine whether p is above or below a known con-
stant Pg- The main difference between mastery tests and the present
situation is that here we take the view that skills, not items, are being
sampled and that there might be more than one item per skill. Moreover,
the analysis given here includes errors at the item level while for the
binomial error model, these errors are ignored. For the case in which
only one skill is being examined in terms of a population of examinees,
the reader is referred to Macready and Dayton (1977).

Let ¢ be the proportion of skills that an examinee knows. Con-
sistent with the approach to mastery tests, it is assumed that the goal
of a proficiency test is to determine whether ¢ is above or below a known
constant, zg. Before describing the main results on solving this problem,

we give a more precise description of the framework within which we pro-

pose to work.

Some Definitions

Consider a specific, randomly selected skill and let k be the number
of items used to determine mastery of this skill. For each of these k items
it is assumed that an examinee who has mastered the skill might give an in-
correct response because of a momentary distraction, carelessness, or some

other reason. Let ui(1=l,...,k) be the probability of this event for the



ith item. In a similar manner, let By be the probability of not knowing
and guessing the correct response to the ith item. Note that ¥ and B
are both conditional probabilities. Finally, a mastery decision is made
for the skill if y, the number correct out of the k items associated with
the skill, is greater than or equal to a specified passing score Yo-

It should be mentioned that the framework described above is simi-
lar to a number of models proposed by various authors to describe tests
(e.qg., Wilcox, 1979b; Macready and Dayton, 1977; Brownless and Keats,
1958; Marks and Noll, 1967; Knapp, 1977). Macready and Dayton (1977,

p. 100) imply that their model is appropriate when mastery of a skill is
an all-or-none process. However, as noted by Wilcox (1979b), this does
not mean that an all-or-none view of Tearning is required in order to
use their model.

Macready and Dayton (1977) use a more general family of decision
rules for determining mastery of a particular skill. Their decision rule
is defined in terms of a particular skill and a population of examinees
while here, at least for the moment, the emphasis is on making a decision
for a specific examinee in terms of a particular randomly selected skill.
It is readily seen, therefore, that their decision rule does not apply to
the present situation.

Finally, let the vector xf(yl,...,yk) be a sequence of 1's and 0's
designating a particular response pattern of corrects and incorrects on
the k items where a 1 means a correct,and a 0 an incorrect response.

Based on the above definitions,and for the assumption of local in-
dependence (Lord and Novick, 1968, section 16.3), it follows that the

probability of a mastery decision for the skill is



Priy > ¥, | mastery of the skill)
= & (say)
Yy 1-yy
=3 T (l—ou_i) o . (2)
Y ¥2¥y i=l

where the summation s over all vectors y such that y > y,. In addition,
Pr{y > ¥ | nonmastery of the skill)
= &, (say)

k yi 1_yi
z T B.[ (1'81) . (3)
yiyryg i=1

If, as in Macready and Dayton's model II, it is assumed that a;=a and

B;=B for i=1,...,k, then equations 2 and 3 take oh the more familiar form

of the binomial probability function, namely,

k
e = o ()(1ma) oY (4)
Y=¥q
and
k
5= 1 ()8 (1) Y (5)
y=¥,

A Conservative Solution to the Problem of Determining

the Number of Skills to Include on the Test

So far, we have merely laid the ground work for handling certain
technical problems associated with so-called proficiency tests. In this
section, we consider the determination of how many skills to include on
the test. The analysis is made in terms of a single examinee.

For a randomly selected skill, the probability of a mastery deci-
sion is

v = & ¢+ Ey(1l-g). (6)
Thus, the probability of x mastery decisions among n randomly selected

skills is



(M) 4% (1), (7)

Let Xq be the passing score for the test. 1In other wards, the decision

L > £y is made if x> x5; if X < X4, the reverse is said to be true.
Here,it is assumed that X5 is the smallest integer such that xo/n_z Zy-

The goal is to find a conservative solution to the choice for n.

In particular, we want to choose the smallest n so that the probability
of a correct decision {CD) is reasonably close to one regardless of the
actual value of z. To soive this problem, it is necessary for the inves-
tigator to specify an additional constant, §* > 0. The idea is that if

<z =-8%orifzg> tg * 8*, we want to choose the smallest n so that
Pr{(CD) > P*, 1/2 < P* < 1. (8)

If, however, C0—6*<c<c0+6*,either decision is said to be correct. The
open interval (;0-6*, c0+6*) is called the indifference zone. The situ-
ation is similar to the one considered by Fhaner (1974) and Wilcox
(1979a). Here, however, we are taking into account the errors repre-
sented by the probabilities oy and B, that are associated with each
skill. HWe note that if §*=0, it may be impossible to find an n that
satisfies equation 8 for all possible values of 5. For a more extensive
discussion of the indifference zone approach to statistical problems
{including the choice of &*), the reader is referred to Gibbons, 0lkin
and Sobel (1977). Further comments on the choice of §* are made below.
In particular, it is shown that 6*0 is a necessary, but not a sufficient

condition, for solving the problem at hand.



solution to the choice of n, i.e., an n that satisfies equation 8 regard-
less of the value of El or 52, we need lower bounds to both 51 and 52.
Here it is assumed that there is no data available for estimating &1 and
€o. Thus, the investigator must specify {using nonstatistical techniques)
lTower bounds to £y and £s that are consistent with the types of items
being used. In practice, this might be done by specifying an upper bound
to o and a lower bound to B8 and using equations 4 and 5. This is illus-
trated below.

For t<z,-6* it can be seen that we require y<gy which implies that

we must have

5*>c0-§—0:-§—2. (12)
1°2

In summary, we can guarantee that the probability of é correct decision

is at least P*, if equations 11 and 12 are satisfied, by choosing the

smallest n so that both equations 9 and 10 are greater than,or equal to,

P*. As for g1 and Eos this time we set §=c0—6* and use upper bounds to

these two quantities. In contrast to the case £>zy+8% this might be

accomplished by specifying a Tower bound to o and an upper bound to B and

again using equations 4 and 5.

An I1lustration with k=1

Consider a situation in which a single item (k=1) is used to
measure each skill and suppose ;O=.8, §*=,1 and P*=.90. For this
special case, €1=1—a and £o=B {assuming, of course, y0=1). Consider

the case gfgo-a*. As previously explained, the Pr(CD) given by equation 9
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From Wilcox (1979a) it follows that the smallest n,so that (10) has

a value of at least P*=.9,1s given approximately by

n = A?‘;O(l—go)/(vl-co)z (15)

where A is the P* quantile of the standard normal distribution and Y1 is

the value of v when =g +8*. With £,=.9 and £,=.15,
0 1 P

n = (1.28)% (.8) (.2)/(.825-.8)° (16)
= 419,
As for (11), the smallest n s given approximately by
2
Azgo(l'go)/(CO'Yz) (17)

where v, is the value of y when g=c0-6*. In our illustration, we have
that n=2621. Thus, n=2621 skills would be used.

It is evident that for practical purposes, n=2621 is unacceptable.
Suppose, instead,we have completion items in which case guessing is vir-
tually ruled out. For illustrative purposes, suppose g = 0, which appears
to be approximately true for the test data examined by Macready and
Dayton {1977), and that 0 < o < .02. In this case v1=.882, v,=.7 and
n=39. If 0 <a < .05, y1=.855, y2=.7 and n=87. If we ignore errors at
fhe item level (i.e., 51=1 and 52=0), the resulting value of n is appro-

ximately 29.

An I1lustration with k=3

The second jllustration is the same as the first, except that we
assume there are k-3 items per skill. The primary purpose of this illus-

tration is to see how much we can reduce the required number of items by
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increasing k. As before, it is assumed that .15<B<.3 and O<a<.l.

With a=.1 and g=.3 and with a mastery decision for particular skili
being made when the examinee gets at least 2 of the 3 items correct (i.e.,
y0=2), expressions (3) and (4) yield gl=.972 and £,=.216. MWhen =0 and
g=.15, 51=1 and gz=.06. Thus, for ;=;0-s* we use g1=1 and 52=.216 imply-

ing that y=.7648. Hence
0

Pr(CD) = = (2) . 7648% (2) .7648% (.2352)1°%, (18)
x=0

As for c=c0+6*, v=.88 and

n

PR(CD) = = (2) agX 12X, (19)
X=X0

It follows that the smallest number of skills required is approximately
n=212. The exact value was calculated on an IBM 360/91 computer and
found to be n=219. Thus, the total number of items is decreased con-

siderably but we would still need over 600 items on the test.

An I1lustration with Tighter Bounds on o and B

To i1lustrate the effect of having tighter bounds on o and B, we
suppose .0 < a < .02 and .2 < B < .3 and we set y,=3. Otherwise the
situation is assumed to be the same as in the previous illustration. In
this case, y=.848 when =.9, £1=.941 and g2=.008. Also, y=.7027 when
z=.7, £1=1 and £2=.027. It follows that the minimum n required 1is
approximately 114. Thus, to guarantee that the probability of a correct

decision is at least .9, a total of 3(114)=342 items would be used.
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Retrospective Studies Using Latent Structure Models

The illustrations in the previous section demonstrate rather drama-
tically, that including errors at the item level might have a substantial
effect on the number of items used on the test. Moreover, even with
“tight" bounds on the parameters o and B, an extremely large number of
items might be required. Several approaches to this problem might be
used. For example, there might be a more optimal choice for k, the
number of items per skill. In the case of multiple-choice items, one
might consider increasing the number of distractors (cf. Lord, 1977).

In this section we outline still another approach which is based on latent
structure models. The approach represents a stight extension of one used
by Wilcox (1979c). In contrast to the earlier sections of the paper, it
is now assumed that data exists for a random sample of N examinees who
have taken a test consisting of n skills with k > 3 items per skill.

The reason for the restriction on k is explained below. An additional
difference from previous sections is that we examine the accuracy of the
test in terms of comparing ¢ to Lo for the typical or "average" examinee
among those being tested. This alternative perspective does not affect
the results previously described. If an examinee's true score is close
to tg> an extremely large number of items might be needed to accurately
determine whether ¢ is above or below 2q- In some situations, an investi-
gator might also be interested in the accuracy of a test in terms of a
population of exéminees; for example, all the students attempting to
graduate from high school. It may be that most examinees have a true

score that is not close to g or perhaps most true scores fall within
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For the reasons given by Wilcox (1979b), i and 32 may be used to estimate

i pa . . R
the mean, u, and variance, o°, of the true score distribution.

Let )
Ty S W if u<c0——6*
= c0~5*, if 50—6*§pi1. (23)
m]_ = max [U(go'ﬁ*'U)s (U’CO+5*)(1_U):[- (24)
02 2
) "= > if O<o™<m
1 ) +(T1_U)2 o 1
= (u(l-u)—dz)/(l—co+6*)(co—a*), otherwise. (25)
m, = max [u(cyte*-u), (u-gy-8*}{1-u)] (26)
T2 = E0+6*, if u<c0+6*
=y, if §O+5*§p§}. (27)
2
95 g , if O<02<m2
+(Ty-u) -
a o=
= (u(1~u)-62)/(1-c0-6*)(;O+6*), otherwise. (28)

Following Wilcox {1979¢c), results reported by Skibinsky (1977) can be
applied to show that for 51=Pr(xzx , cfgo), the probability of a false-

positive decision, we have the inequality
n

’ n X
€1 §,¢1 xix (X) 1 (1‘Y1
0

where Yq is the value of v when c=c0+6*. As in the previous section, it

X (29)

is assumed that for a specific examinee, the probability of getting x
mastery decisions is given by the binomial probability function (cf. Lord
and Novick, Chapter 23). As for the probability of a false-negative

decision, say €95 it can be seen that
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Xn~1
0
€q < b, L
P 2 %=0

n X n-x
(X) YZ (1'Y2) (30)
where Yo is the value of y when c=c0-5*.

To i1lustrate the above inequalities,we consider a situation similar
to the one described in the second example of the previous section. In
particular, we suppose k=3, ty=.8, O<a<.l and .15<g<.3. Further suppose

2

that p and o are estimated to be .75 and .10, respectively. Thus, 11=.7,

m1=.0125, ¢1=.417, 12=.9, m2=.1125 and ¢2=.4. Hence,

n

e; < .417 = (7) .7648% .2352"7" (31)
X=X X

0
and
=1 X
e, < L4x  (]) .88% 12X (32)

x=0 X

The smatlest number of skills so that,simu1taneously,sli.l and 325,1,15

n=59.

Concluding Remarks

This paper has examined some of the problems that occur when using
the proficiency tests currently being developed by many school systems.
It is evident that more investigations need to be made. As previously
indicated, we need to have better methods for determining the optimal
number of distractors per multiple-choice item and the optimal number of
items per skill. Several other questions also occur.

It has been argued that, in terms of measuring achievement, a test

should be constructed using an item sampling principle (e.g., Harris,
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Pearlman and Wilcox, 1977). The authors' experience with people con-
structing proficiency tests is that this approach is, indeed, used in many
cases. However, as pointed out by a referee, there is also the problem
that, frequently, a test does not consist of a random sample of skills
but rather skills are selected because they are judged to be the most
important of those available. In this case, the efficacy of using the
test length solution presented here might be in doubt. Alternatively,
one might define"proficiency"in terms of a hypothetical domain of skills
where oniy the most important skills are represented in the item pool.
In this case, an item sampling view of the test might be acceptable and
so the test length solution can be applied. We note that arbitrarily
imposing the binomial error model has yielded good results using real
data for certain measurement problems (e.g., Keats and Lord, 1962; Lord,
1965; Subkoviak, 1978) but that in terms of test length, the extent to
which we obtain good results is not clear.

Another important point to keep in mind is that the test length
solution is highly sensitive to the values of o and g. As was demonstra-
ted, if completion items are used and 8=0, a reasonably small number of
items might be required even when our conservative solution to determining
test length is applied. In many situations, there is the practical dif-
ficulty of physically scoring completion items and so multiple-choice
items typically are used. Accordingly, it would be beneficial to have
some procedure that corrects for the errors o and g in such a way that
not too many multiple-choice items would be needed to ensure a reasonably

high probability of making a correct decision for an examinee. For
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example, we might use the usual correction-for-quessing formula score
which assumes guessing is at random. In many cases, guessing is not at
random but perhaps this approach will still require fewer items than

would otherwise be needed. Several other possibilities are currently

being investigated; the results will appear in a forthcoming paper.
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