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The Nature of the Problem

Rasch (1960), in a book on stochastic item response models, set
out a "structural model for test items" which subsequently came to
bear his name. In this book, Rasch discussed the model's basic
assumptions in some detail and began to explore its mathematics.
Updating his notation somewhat to conform with current usage, the

Rasch model can more simply be written:

(a,~6; )

e
(av'ai )

Probabi'lit_y[xvi ='1]=
l+e

where Xyi, the outcome of person v attempting item i, is one if the
response is correct, zero otherwise. ®y is a parameter describing
the ability of person v and 6ij is a parameter describing the
difficulty of item i.

In most applications, use of the model involves using a large
number of observed X values, often arranged in a persons-by-items
matrix, to estimate the values of o for the set of people being
tested, and § for the items in the test. In the 1960 book, Rasch
makes only hesitant steps towards procedures for estimating « and

6 because of limitations in the computational facilities available




to him, and his own preference for simple, graphical methods and
intuition. However, he did sketch out an analytic procedure (p.
178-181) for obtaining maximum 7likelihood estimates of Iboth the
«'s and the §'s.. Unfortunately, this procedure depended on “a
mastery of the coefficients {2} that is not yet at the disposal of
the author" in which the persons by items matrix is analyzed. These
coefficients represent the number of different but possible patterns
of ones and zeros in the matrix that would yield the observed marginal
values. Rasch offered some formulae for calculating the coefficients
based on summing elementary symmetric functions, and the method was
successfully demonstrated by Wright as early as 1965. However, the
number of calculations required to determine the elementary symmetric
functions increases as k% where k is the number of items in the test.
Wright points out that this makes the method prohibitively expensive
even with the speed and capacity of modern computers, and also
jnaccurate because round-off errors accumulate during the _ca1cu'ta—
tions. In practice this estimation procedure was Timited to tests of
not more than about ten items. More recently Gustafsson (1977) has
reprogrammed the algorithm such that it can handle up to 60 or 70
jtems satisfactorily. It still remains, however, very expensive when
compared to other approaches.

From 1963 on, Wright and various associates at Chicago developed

a streamlined procedure based only on the marginals of the observation

matrix. The X values, based on the item responses, that led to the



marginals were used only for checking the fit of the data to the
model. The preferred statistical method was again that of maximum
1ikelihood. While initial estimates of the 6's are held constant,
the a 's are adjusted to maximize the likelihood function for the
marginals. Then the @ values are held fixed while the &'s are
adjusted. The cycle repeats until convergence is achieved (Wright,
Mead, & Bell, 1979). However, it was pointed out that this approach
{dubbed UCON) produces biased estimates, because the ability
parameters and their errors of estimate have not been conditioned out
of the item difficulty calibration (and vice versa) as they had been
in the Rasch procedure described above. Wright and Douglas (1977}
proposed a simple correction factor which effectively removed most of
the bias and the result was a fast and efficient estimation algorithm
that could accurately recover the parameters used to generate
artificial data. The algorithm yields standard errors for all the
parameter estimates as byproducts of the calculation, and lends itself
to several tests of fit of the data to the model. For the last
decade, it has been the method used in most Rasch séa]fng exercises
throughout the United States and in a number of other countries.

In educational applications this algorithm's main shortcoming
is its inability to handle missing data in an appropriate fashion.
More specifically, the algorithm requires a complete rectangular
persons-by-items matrix in which each element is a one (representing a

correct response) or a zero (representing an incorrect response).



In practice this causes problems:

{a) when, as in survey designs based on matrix sampling or in
the use of an item bank, it is deliberately planned that
different students should attempt different items,

(b) when the intention is to collect a complete set of data, but
for various reasons (e.g., incorrectly assembled tests,
student illness, errors in coding or data processing) gaps
occur in the set of data prepared for statistical analysis,

(c} when the collected data set is complete but it is desired to
edit it selectively (e.g., to remove obvious guesses} before
the analysis is carried out.

This paper is directed towards a strategy for overcoming these

problems.

The Separation of Ability and Difficulty Parameters.

In his 1960 text, Rasch also described a method of estimation
based on the comparison of two or three items at a time {p. 171-174).
He gave credit for discovery of the algorithm to G. Leunbach, the Head
of the Statistical Unit in the Danish Institute for Educational
Research. The main thrust of this algorithm is the manipulation of
the data matrix in order to separate out the information needed for
the estimation of the item difficulty parameters 6. Conditioning
out the ability parameters « in this way avoids the biasing of the
parameters described above. In fact, this procedure corresponds
closely to conventional practice in the natural sciences: the
calibration of instruments, independent of the objects to which they

are eventually to be applied, precedes their use for measurement.



The algebraic presentation of this "pairwise" algorithm has been
updated to conform to current notation, but it follows the logical

sequence used by Rasch.

The basic model we shall use is

(a,-8; )
Prob [y = 1_] - &
Xvi 7;?7;7::-@ )
where X, «y and & are as defined on page 1.

For many purposes it is simpler to rewrite equation 1 as

a
Prob [xgg = 1]= &
L vl a 8.
ev'+e’

8i
Prob [x,,]- - oJ - e
e'se’

which leads to the “odds" (i.e., P/{1-P)) of a correct response

Odds [Xvi = 1} - elos)

Consider now the possible outcomes when person v attempts two
items 1 and j. Note that the local independence assumption of the
Rasch model requires the responses to the two items be independent.

Four separate cases need to considered.



Case (i) -~ both items correct

a, Ty

Prob [avi =1, ayj = l] = a_e T € 3
e e™we’

Case {ii) - both items incorrect
8 8

- e i e ]

Prob [évi =0, ayj=0} = - ,

‘] .I eav » eé’ eav+ eal

Case (jii) - item 1 correct; item j incorrect

e2v efi

ea‘l‘P eéi gv.* eéj

Prob [avi =1, ayj = 0} =

Case (iv) - item i incorrect; item j correct

§; v
Prob fays = 0, ays = 1 = e . e-v
V1 v] 5 &

v+ @ e%v+ e

The first two cases hold 1ittle interest. A moment's reflection
reveals that the information they provide about the ability of person
v is distinctly limited, and they provide no information at all about

the relative difficulties of items i and j.



Cases (iii) and (iv) are somewhat different. If attention is

restricted 1o these two, for both of which
dyj +ayj =1

then we can write

e(av +6i ) e(av +6i )

Pr-ob[a 1'+av'=1:' = +
IRV s e e Led]) (e )™ el )

o3
"(e .e% )
(e™el)e’te)

If, therefore, we know that person v scored exactly one on the

item pair (i, j)}, then we can write conditional probabilities:

e(uv +6i )

CRS) )

Prob[avj=1 , av1-+avj=1] =
a"(eG‘ &)

(e™e) e e )




and similarly

efi

Prob[%vj=1 l av1+avj=lJ = i aj)
+e

(eés

The ability parameter ay has been eliminated entirely from

these two expressions. If we know that an individual scores just one
on any item pair, the probability that it was one rather than the
other that was answered correctly depends solely on the relative
difficulty of the two items.

The fundamental importance of this separation of the @ and 6
parameter sets (by means of conditional probability) to the whole
process of measurement has been eloquently described by Rasch (1977).
Even when the method is not used in parameter estimation, it is the
fact that the model permits the separation that qualifies it for
membership in the class of ‘“specifically objective" measurement
models--meeting the criteria drawn up by Thurstone as long ago a&s
1928.

The probability of having a correct response to item i, given
that of the two responses to items i and j one is right and one fis
wrong, can be estimated by observing the results of a large number of
people who attempt these two items. If we define bjj to be the number
of people who respond correctly to i and incorrectly to J, (with bji
similarly defined) then we can write,

bj j

as an estimate of Prob[avi=1 i avi+avj=1]
bij + bji



since this conditional probability does not depend on the Oy and is

the same for all people in the group.

b'f :

. J :

i.e., _ estimates __._ea’
b'ij + bj‘f e5‘+e6i
bij

or —_— estimates e(‘si - &)
bji

which is to say that

(6; - 8;) is estimated by log bij - log Bjj-

For every pair of items in a test, we can calculate the values of
bjj and bjj and hence obtain an estimate of the relative difficulty of
the two items concerned. This is more than sufficient information to
estimate the relative difficulties of all the items.

The UCON approach described at the beginning makes progress by
summarizing the original matrix of 1's and 0's into a (k+l) by k
matrix, where for each of (k+l) possible raw scores, the number of
correct responses to each of k items is recorded. By contrast, the
PAIR approach works by summarizing the original matrix into a k by k
matrix of bij values. However, as can be seen in Figure 1, each
summary matrix contains only k{k-1) useful values for the estimation
procedure since two rows in the UCON summary matrix have fixed values,

and the leading diagonal entries of the PAIR summary are always empty.
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Figure 1:

Data Reduction Strategies for Rasch Parameter Estimation
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There is of course an analogous matrix of counts describing the
relative abilities of the persons, by considering them two at a time
and Tooking only at those items which one got right and the gther got
wrong. This effectively eliminates & from the data, and produces a
summary matrix with information about the persons. In practice this
has been Tittle explored for two reasons. First, there are typically
more persons than items in a set of test data, so the person-person
summary produces a larger matrix with smaller cell entries. Second,
since the ultimate goal is usually to measure the persons individually
in terms of their performance on the items, it seems Togical first to
process the data in order tp obtain the best possible calibration of
the items, and then to apply these calibrations to the measurement of
the persons. Nevertheless the comparison of the measurements obtained
by the different methods holds considerable theoretical interest and
deserves detailed investigation in the near future. In this paper,
however, I shall concentrate on the prior calibration of the items
before any measurement of persons is attempted.

Estimating the Difficulty Parameters

To calibrate a set of items from a matrix of observations a
complete matrix B is constructed with elements bij as defined above.

Note that the matrix of observations need not be complete. An

individual who ig exposed to items i and J gets an opportunity to
contribute to bjj or Bjj, and thus to the estimation of 64 and

5j. It is not necessary for this individual to attempt all (or
indeed any) of the other items in the set. This is the algorithm's

great strength in practical applications.
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The practical solution to the estimation task of item parameters
with the pairwise approach, described by Rasch (1960) and first
demonstrated by Choppin {1965) at a meeting of the Midwestern
Psycnological Association, amounted to taking the logarithms of the
off-diagonal elements in the B matrix and summing them to get row and
column marginals. The difference of the sum of the ith row and the
ith column is

&

log(by;) + log(by;) + Tog(ba;) + «.o # 1og{byy)

- [Tog(bil) + Tog(b;,) + Tog{bsq) + ... + 109(bik)]
i#i

{6

izhk ij

which estimates i

j=hk
where D is the sum of §; over all j.
Note that the model, and equation 7 which we have derived from it, has
nothing to say about the absolute value of the parameters, only their
relative magnitude. If we have a set of a's and &'s which satisfy
equation 1, then the new sets produced by adding a constant to all the

old values will also satisfy the equation. No "absolute" zero is
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defined on the ability or difficulty scale, and it has become
conventional to arbitrarily fix the mean §-value for a particular set
of items at 0, since this simplifies the algebra. Parameters can
later be adjusted to other zero points, and indeed other units, if so
desired.

But taking D = 0, we have the estimation equation

Gi = k¢,
or 8§ = -El—-

This approach, which is simple and effective when the values of
bij are large and fairly homogeneous, breaks down completely when one
or more values of by (i # j) are zero, since the logarithmic function
is not then defined. This appeared to be a major stumbling block,
since zero values in the B matrix are met quite often in practice, and
led to the approach almost being abandoned.

However, Choppin (1982) pointed out that Rasch's discussion of

item triplets {Rasch, 1960, p. 173) can be extended.

- b.. _
If e(csi ) can be estimated by _J1  , then it can also be
b..
b. bk- 1]
estimated by _Jk . L (8, -5, +8, -8, )
b, . b =~e k 1
kj ik

A better estimate yet is obtained by pooling information across
items (i.e., by summing over the double subscript in both top and

bottom of the expression). This gives



K
sy X et Py
= k : - b%.~

where b*ij are the elements of B* the square of the original summary
matrix B.

In general B* will not contain off-diagonal zero elements, unless
the items are inadequately linked in the sample design (when the
complete  simultaneous estimation of  their difficulties is
impossible). Squaring the original B matrix is thus a way of avoiding
the problem of zero entries, and Tleads quickly to a set of
d estimates.

A major drawback, however, is that the manipulation demonstrated
in the preceding two paragraphs is only valid for data sets that "fit"
the model. In practice some misfit may be expected to occur, and it
is important to know about it. The method outlined above will produce
5 estimates from virtually any set of test data, and experience
suggests that the B* matrix is closer to the stucture prescribed by
the model than the original B.

In general, this approach to parameter estimation (which
corresponds to a least squares procedure) is not recommended except
where strong a priori evidence suggests that data will conform well to
the requirements of the model.

Maximum Likelihood Estimation.

A more satisfactory method of unravelling the information stored

in the B matrix is that of maximum likelihood. Suppose that in matrix
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B, nyj individuals score exactly one on the item pair (i, j), so that

we can write:

i3 7 Pij * by

Now for any individual in this group, the probability that he

gets item 1 right and item j wrong is:

e$

.8,
e'5'+eJ

and conversely, the probability that i is wrong and j is right is:

e el

From the binomial theorem, the probability of the njj individuals

dividing into exactly bij and bji subgroups is:

"ij! e(bij 8; +b;; &, )

! t
bij' bji'

( e+l yNii

and the likelihood of the entire B matrix, given a matrix N of nij

elements is:



- 16 ~

“m . (bsbs)

b [B(N] iyt . ijty givi
B..1 D..1 : 5;
3" 7ji (e' + g

)i

The problem now is to find a set of 64's which maximize the
value of this function. This maximum and the maximum of its logarithm
occur at the same point, so for simplicity we may write the log
Tikelihood:

bi.izf ig.i#}

; - §; 3.
L=¢C+ Z (by;8; * byy8,) z (by; * by;) Tog (e + &%)

where C is a function of the b 's but not of the §&°'s.
oL

For maximum likelihood -Sg = 0 for each i
i
AL L[ %t .(by5#byy) (a 1)
i.e. 0=% alt 1
5 Z Z (&b +e‘51 )
‘ L f(bgs + bji)e‘Si
or Dby = 2 |- (all 1)
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As before, it 1is necessary to insert an additional Tinear
constraint on the set of 6 's since it is clear that adding any
constant value to all the 5's in the above equations would ngt
change the nature of the solution. Rasch scaling deals in relative
difficulty rather than absolute difficulty and no zero point on the

scale can be uniquely defined. However, once the G-value for one

item has been fixed (if necessarily arbitrarily) then all the other

6's can be defined by relating them to the first. The usual
constraint is to put the sum of the &-values equal to zero.

This set of k equations in k unknowns can be solved by various
iterative techniques. Two that have been found to work well in

practice are:

n+ j (b:.+b..)
¢ 135 = log (}j bij)- ]OQ(Z_J_—_}';""))

(e '+e-'

and the Newton-Raphson procedure:

(m-l)cs —Ms U (e +e’)
! (by #b . )gl8i*8 )

E ij "it

(Vei)
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In general an efficient procedure has proved to be to set the
initial ©5 -values all equal to zero, and then to apply the first
iterative set of equations three or four times. This produces a set
of reasonably good approximations which, when used with the
Newton-Raphson equations, leads rapidly to convergence and a solution
for the various  §'s.

A great advantage of the maximum likelihood procedure is that it
can be used to generate standard errors for the estimated parameters
(Kendall & Stuart, 1969). The variance-covariance matrix V is the

inverse of a matrix whose elements are:
A
aaa@

evaluated at the maximum Tikelihood solution. In practice, however, a

simpler approximation

seems adequate, and is recommended for routine use.
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Estimating the Ability Parameters

If Xyi (i = 1, k) are the set of scored responses for person v,
whose total test score is py, and whose ability parameter is ay; then

we may write:

where the summation runs over the set of ijtems attempted by person v.

The likelihood of the response Xy according to the model is:

exvi (av"si )

(uv"si )

1+e

since Xy takes values one and zero accordingly as the response is

right or wrong.

From this, the 1likelihood function for the entire set of

responses (Xyj) for person v is:

i exvi(av'si)
II 1“+ dav-8;)
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The logarithm of this function:

(zi z;xv1q ) - Ei {og (1 + e(av-ai))
( ) szvisi) - zilog (1 + e(av*ﬁi))

-
L]

For the ML solution, '%%? = 0. It should be noted that in this
v

case the 8 's are regarded as already known, so that ay is the

only parameter to be estimated.

‘ (a,-6; )
_dL 2: e v
0_dcr.\l,-r.v- Ta 6)

This equation does not contain the item response (Xyi). It
demonstrates a result, already obtained by other writers, that the
ability estimate depends not upon the particular pattern of item
responses obtained, but only upon the "total score.” r is a
sufficient statistic for ability, and the conventional practice of

using total scores as measures has a logical foundation.
i

(a,-8;)
The equation r, = E e v
1 (av'si )

+e

can be solved for @y-.
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The score on the test takes values 0, 1, 2, ... k. Fach of
the k terms on the right hand side of the equation lies between O and
1 for real values of Ayi and  &i. Note that there are no solutions
for r=20and r = k. For these values the Tikelihood function has
no maximum, and this could have been anticipated. If an individual
responds correctly to every item (i.e., ry = k}, then we have no
information on which to base any upper bound for an abitity estimate.
Similarly, if every item is answered incorrectly, there are no data to
suggest just how low the level of ability might be.

Note that once a set of items has been calibrated (i.e., the

6's have been estimated), it is possible to estimate an ability
parameter for each possible score on the test, regardiess of whether
or not any individual actually obtains such a score. If a test is
constructed by selecting items from an already calibrated item bank,
then ability parameters for all possible scores on the new test can be
calculated even before the test is used.

The standard errors of the ability parameters, corresponding as
they do to the standard error. of measurement, are usually of more
interest than the standard errors of the item difficulties.
Furthermore, they are typically considerably larger, since the ability
parameter estimates are based wupon only k observations (usually
between 10 and 100) whereas ftem calibration is typically based upon
the results of at least several hundred individuals.

In general, if we assume that the 4's are established with some

precision, the standard errors of the «'s can be developed from the
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1og 1ikelihood function.
i
L = a,r, - ZXV.G_ - Z 'log['l +e( v5i )J

e(av"ai )

v 1+e(c‘v'6i )

jalial
QI
]
-
-
1

2 i (a,~8. 1 (@, -5;) 2(a,~8;)
d°L _ _ [1+e v l)]_eav La v Vi
daZ Z [1. e(av-éi )]2

(1. e®v%0]7

Then the standard error of measurement for an individual who

receives an ability estimate  «, for his responses to items with

difficulties 64 is:

The second differential reaches a maximum value of'i_ when all
4
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the 6's are equal to ay. In practice, if the 6's are all fairly
close to ay (f.e., if the items are all closely matched to the

person's ability), then the second differential remains close to

K
- — and so the standard error is given approximately by-gL logitss
4 vk

in general, however, we can write

S“v

= \/TIZE- logits

-3

whatever the distribution of the §'s.

Tests of Fit

Control of the model by validating its conformity to the
structure of a particular data set, within pre-specifiable 1imits, has
been difficult to achieve with the PAIR method of parameter
estimation. The most frequently used approach has been the non-random
splitting of the original data set into two parts based on some
characteristic of the persons, calibrating the full set of items for
each part of the data separately, and plotting the results against one
another. This is inexpensive, straightforward, and has considerable
utility although it Tacks mathematical elegance. A division of the
sample of persons into high performers and low performers at the
median raw score is the most severe test of the anticipated invariance

of item difficulty parameters. It focuses directly on the assumption
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of equal discriminating power for all items in the set, and the
associated though contrary threat, ability-related random guessing.
Since the same set of item parameters is being estimated for both high
and Tow ability groups, and the mean difficulty in each case is being
fixed at zero, the model predicts that within the limits of sampling
error the same item calibrations should emerge from each half of the
analysis. Figure 2 demonstrates typical results from two multiple-
choice achievement tests, one of which fits the model very well and
one of which shows considerable evidence of guessing. Experience with
plots of this type shows that they can be very informative, and Figure
3 shows a somewhat simplified guide to their interpretation.

0f course other splits can be used to generate these plots. For
example, to test for the presence of sex bias within a test it is
possible to plot calibration obtained from males against those-
obtained from females. The plot reproduced in Figure 4 contains item
difficulties for a mathematics test calibrated for groups of students
who studied two different curricula. Analysis of the discrepancies
from the predicted straight Tine showed how the pattern of learning
produced by the new curriculum was different from that of the old (and
these differences were not in accord with the Jintentions of the
curriculum development team. Choppin, 1977).

A more detailed control of the model requires going back to the
original persons-by-items data matrix and estimating the probability

of a correct response for each person/item interaction based on the
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Figure 2A : Cross-calibration of items for a test that 'fits'.
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Figure 3: Guide to Interpretation
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estimates of o and § . When these probabilities are compared to
the observations, a matrix of residuals is generated. This topic has
been well covered in Mead {1975) and Wright and Stone (1979) and will
not be further developed here,

Rasch (1960, p. 174) suggested that the examination of item
triplets might offer an effective control of the model, but this has
not proved to be the case. Recently, however, it has been noticed

that the comparison of the B and B* matrices offers a

b,
concise test of the local independence assumption. The ratio|_Jd!
be. 7 (18
estimates (6-4,) fignoring all other items, whereas J'l  estimates
b*. .
1]

only through the comparison of i and j to the other items. If there
exists a local contextual effect (e.g., if item 15 is easier than it
would otherwise be because it comes immediately after item 14), then
_ the b and b* values should show it. This comparison is accomplished
by a x? statistic. The method holds considerable promise since
the assumption of local independence has been strongly attacked as
unrealistic (Goldstein, 1979). A number of studies of achievement
test data in which items are administered in different orders and with
or without other groups of items suggests that the local independence
assumption is often well met in practice, although other evidence

(Tang, 1982) suggests that on a test of reasoning skills such as a



- 28 -

progressive matrices test, the context is extremely important. It
seems probable that the (B,B*) comparison will be used for testing
lTocal independence even when parameter estimation is achieved through

UCON or maximum likelihood PAIR.



- 29 -

REFERENCES

Choppin, B.H. Pairwise calibration of item difficulty using the
Rasch model. Paper read to meeting of the Midwestern
Psychological Association, Chicago, 1965.

Choppin, B.H. An item bank using sample free calibration. Nature,
1968, 219, 870-872. -

Choppin, B.H. Comparing curricula by means of Rasch scaling. Invited
address Weizmann Institute of Science, Rehovot, Israel, 1977.

Choppin, B.H. Item banking and the monitoring of achievement.
Slough, England: National Foundation for Educational Research,
1978.

Choppin, B.H. The Rasch scaling model and application. BP3K;
Ministry of Education and Culture, Jakarta, 1982(a).

Choppin, B.H. The use of latent-trait models in the measurement of
cognitive abilities and skills. In D. Spearitt (Ed.) The
improvement of measurement in education and psychology,
Melbourne: ACEK, L98Z(DbT.

Goldstein, H. Consequences of using the Rasch model for educational
assessment. British Educational Research Journal, 1979, 5,
211-220. -

Gustafsson, J.E. The Rasch model for dichotomous items. Research
Report 63. Institute of Education, University of Goteberg, 1977.

Kendall, M.G., & Stuart, A. Advanced theory of statistics. Hafner,
New York, 1969.

Mead, R.Jd. Analysis of fit to the Rasch model. Doctoral
dissertation, Unijversity of Chicago, 1975.

Rasch, G. Probabilistic models for some intelligence and attainment
tests. Lopenhagen: Danmarks Paedagogiske Instituf, 1960,
{Reprinted by University of Chicago Press, 1980)

Rasch, G. On specific objectivity. Danish Yearbook of Philosophy,
1977, 14, 58-94.

Tang, E.C. Personal communication, 1982.

Thurstone, L.L. The measurement of opinion. Journal of Abnormal and
Social Psycholegy, 1928, 22, 415-430.




- 30 -

Wright, B.D., & Douglas, G.A. Conditional versus unconditional
procedures for sample free ditem analysis. Educational and
Psychological Measurement, 1977, 37, 573-586.

Wright, B.D., Mead, R.J., & Bell, S.R. BICAL: Calibrating items with
the Rasch model. Research Memorandum 23B, Statistics Lab,
Education Department, University of Chicago, 19/9.

Wright, B.D., & Stone, M.H. Best test design. Chicago: MESA Press,
1979.




