MICROCOMPUTER LEARNING IN SMALL GROUPS:

COGNITIVE REQUIREMENTS AND GROUP PROCESSES

Noreen M. Webb

CSE Report No. 200

1983

CENTER FOR THE STUBY OF EVALUATION
Graduate School of Education

University of California, Los Angeles

The project presented or reported herein was
supported in part by a grant from the Spencer
Foundation and by the Center for the Study of
Evaluation, University of California, Los

Angeles.

I wish to thank Tricia Jordan for designing
the instructional materials. 1 wish also to
thank the following people who assisted in
organizing activities. in the workshops, pro-
viding instruction to students, or collecting
data: Professor Eva Baker, Professor Philip
Ender, Wanetta Jones, Dr. Brian Stecher, Steve
Shaha, Melinda Castel de Oro, Jan Sutton, and

Chris Baker.

Table of Contents

Introduction
Method
Sample
Microcomputer Setting
Instructional Materials
Instrumentation
Procedure
Results
Comparabiiity of Workshops
Description of Groups and Group Work
Programming Performance
Predictors of Computer Programming
Predictors of Group Interaction
Discussion

References

10

14

14

14

18

20

32

33

38

Introduction

Computer scientists and educators envision future classrooms with a
computer for every child (see Papert, 1981). However, it is unreasonable
to expect that many school districts will be able to afford to provide
one machine for every student, in the near future at least. More real-
jstically, classrooms will have one or a few computers, making group
work necessary to give all students ample contact time with the computer.
Little is known about computer learning in group settings, however.
Nearly all of the research on how students learn computer programming is
conducted in settings in which each student works at a computer. The
present paper reports the results of a study of learning computer pro-
gramming in small groups. The purposes of the study were fourfold:

(1) to describe the group processes operating in small groups learning
computer programming, (2) to investigate the cognitive abilities, cogni-
tive styles, and demographic characteristics that predict learning of
computer programming in small group settings, (3) to determine which
group process variables relate to learning of computer programming, and
(4) to examine the student characteristics that relate to interaction in
the group.

While most educators agree that the microcomputer setting has the
potential for promoting interaction among students, there has been
1ittle systematic investigation of the kinds of interaction that occur
when students work in groups with the microcomputer. Anecdotal descrip-
tions abound in reports of reading and writing programs designed to

encourage communication among students in classrooms. For example,

students shared ideas when using Story Maker to write stories (Rubin,
1980, 1982; Zacchei, 1982) and shared tasks when producing publiications
such as class newsletters {Collins, Bruce, & Rubin, 1982). Similar
anecdotal descriptions also appear in reports of computer programming in
group settings. Jabs (1981), for example, reported that students divided
the responsibility for reading information off the screen when working
oh a special set of LOGO programs in four- or five-member groups.
Although these studies provide some information about how students plan
and organize their work in groups, we still know 1ittle about the kinds
of group behavior that have been shown in other classroom settings to
relate to learning, such as specific helping behavior and the group's
responses to students' questions and errors (see Webb, 1982c, 1983).
Furthermore, the studies described above do not shed light on the roles
that individual students play in group work with microcomputers. The
present study examined the helping behavior, guestions, errors, and the
group's responses to questions and errors that occurred when students
learned LOGO in small groups, and also investigated the behavior of
individual group members as a function of their relative ability within
the group, age, sex, and previous experience with computers.

Most of the research investigating predictors of computer program-
ming has focused on programming aptitude. Scores on two widely used
programming aptitude tests, the IBM Programmers Aptitude Test (PAT) and
the Aptitude Assessment Battery; Programming (AABP) have been shown to
relate to performance during training courses {(McNamara & Hughes, 1961;
Katz, 1962; Hollenbeck & McNamara, 1965; Bauer, Mehrens, & Vionhaler,
1968) and to job performance (DeNelsky & McKee, 1974). The PAT has

three parts: letter series, figure series, and arithmetic reasoning.

The AABP consists of five problems that require manipulation of precisely
defined symbols, logical reasoning, strict adherence to instructions,
and the use of flow charts. Snow (1980) also found that performance on
a diagramming test, a specific aptitude test for computer programming,
related to outcome measures in a short course on BASIC. While the total
test scores on the aptitude tests in the above studies correlated with
programming performance (in the range of .30 to .60}, it is unclear
which specific abilities inciuded in the tests relate most strongly to
performance. In one of the only studies to compare the importance of
multiple cognitive abitities for learning computer programming, Snow
(1980) related a large number of aptitude test scores to outcomes of a
15-hour course in BASIC programming for Stanford University undergraduates.
Snow reported that only two factors related to outcome measures: fluid
analytic reasoning and visualization (defined by such tests as the
Ravens test of nonverbal reasoning and paper folding), and a perscnality
variable reflecting self-reported flexibility and independence in academic
work. Snow noted that crystallized ability, defined by prior scholastic
ability, did not relate to learning in the novel instructional situation.
The present study examined similar relationships for a younger student
population (upper elementary school and junior high school) and for a
different computer tanguage, LOGO. The cognitive abilities examined
here include mathematics computation and reasoning, spatial ability, and
nonverbal reasoning ability.

The literature relating cognitive style variables to performance on
a variety of cognitive tasks suggests that field independence-dependence
and holistic (Gestalt) versus analytic processing may relate to program-

ming outcomes. Because computer programming tasks are often analytic,

one would expect field independent students, who perform better on
analytic tasks than do field dependent students (see Gaines, 1974;
Goldman & Hudson, 1973), and students showing anlaytic processing skills
to perform better than field dependent students and those who show
holistic processing skills. The present study tested these hypotheses.
Because there are no empirical data on verbal interaction variables
that predict learning computer programming in group settings, the hypo-
theses for the present study come from previous research on learning
academic material in classroom settings. The three main categories of
verbal interaction that seem to relate to learning in small groups
include giving explanations, receiving explanations, and not receiving
explanations when they are needed. Giving explanations is often posi-
tively related to achievement (Peterson & Janicki, 1979; Peterson,
Janicki, & Swing, 1981; Swing & Peterson, 1982; Webb, 1980a, 1980b,
1982b in press; Webb & Kenderski, in press); receiving explanations is
sometimes positively related to achievement {Webb, 1980a, 1980b, 1982b),
and receiving no explanation when needed is consistently negatively
related to achievement (Webb, 1980a, 1980b, 1982a, 1982b, in press; Webb
& Kenderski, in press). It should be emphasized that these relationships
apply to explanations but not for other kinds of help. For example,
giving and receiving information other than explanations does not seem
to relate to achievement. The present study attempted to replicate
these relationships in the computer setting. Furthermore, since it
could be argued that a disadvantage of group work is that it decreases
the amount of time that any one student has at the keyboard, the present
study also examined the relationship between the amount of contact time

with the computer and computer programming outcomes.

Many studies of computer programming treat learning outcomes as a
unitary phenomenon. Yet, as Mayer (1975, 1976, 1979, 1981) has pointed
out, there are several levels of knowledge underlying computer programming.
In studies of BASIC and FORTRAN computer languages, Mayer distinguished
seven levels of knowledge from machine level to statements to programs,
and distinguished between two types of problems involving programs:
generating programs and interpreting programs already written. The
present study adapted several of these components to the study of LOGO.
In particular, it distinguished between knowledge of basic LOGD commands,
knowledge of the correct syntax of the language, ability to interpret
programs already written, and ability to generate programs. By including
these components of computer programming, the present study investigated
whether different profiles of abilities, student characteristics, and
group processes predicted different programming outcomes.

Method
Sample

The sampie consisted of 35 junior high school students. Most of
the students were in grades 7, 8, and 9; their ages ranged from 11 to
14. The sample was substantially white middle to upper-middle class.
There were 15 girls and 20 boys. Since the mathematics test administered
in this study was a shortened version of one given to three average-
ability junior high school classes (grades 7 and 8 combined) in the same
city two years earlier, it was possible to assess the relative ability
level of the present sample. On the 40 items inciuded in the present
test, the previous sample answered 56% of them correctly (M = 22.4, SD =

3.9). The present sample answered 66% of the items correctly (M = 26.2,

SD = 8.8). The mean ability level in the present sample, therefore, was
higher than average, but the variability within the sample was also
large, indicating that some students were average or below-average in

mathematics ability.

Microcomputer Setting

instruction in microcomputer programming (here, LOGO) took place in
a computer laboratery with five Apple 2-Plus microcomputers. In a
week-Tong workshop (15-20 hours), students worked in groups of three
persons, one group to a microcomputer. Therefore, the maximum size of
any workshop was 15 students. Because three machines were located in
one room and two machines were located in another, groups rotated across
machines and rooms.

Instructional Materials

The topic of the workshop was microcomputer programming in LOGO, a
laguage developed and well-suited for sophisticated computer graphics.
This language was selected for several reasons. First, unlike other
computer languages such as BASIC, a small amount of instruction in LOGO
provides the students with powerful tools to create complex graphics.
Second, since LOGD is a relatively new language and is not usually
taught in public schools or learned in a home environment, there was a
greater 1ikelihood of obtaining samples with 1ittle or no knowledge of
the language. Finally, exercises in LOGO programming are well-suited
for the study of peer interaction.

The instruction in the workshops was based on a 1l4-worksheet curriculum
developed for this project by an experienced teacher of computer programming
who was very knowledgeable about LOGO. Since the principle underlying

the instruction was guided exploration, the worksheets consisted of

exercises and problems for groups to solve. The exercises ranged in
complexity from directing students to try out basic commands and discover
their function to writing a program to produce the picture of a field of
flowers. Worksheet topics included basic commands, repeating sequences

of commands, programming simple geometric shapes, combining shapes to

make complex figures (for example, dog, house), writing recursive programs,
incorporating random placement into pictures, changing sizes of figures
within a program, and programming with words and sentences to play
interactive games with the computer.

Instrumentation

Background questionnaire. During the week before students started

the workshop, they completed a questionnaire asking their age, grade,
and amount of previous experience in microcomputers. The questionnaire
included a checkiist of jtems about their previous experience including,
for example, whether their classroom, school, or parents had a micro-
computer, whether they had taken any courses in computer programming
(for example, BASIC, LOGO, PILOT), and whether they had played video-
games on home computers or in video arcades.

Cognitive pretests. To determine the cognitive requirements of

learning computer programming, seven pretests were administered: a

40-item mathematics test composed of items measuring computational

skills and mathematical reasoning, a short form of Raven's Progressive
Matrices (Raven, 1958), and five tests from the ETS kit of cognitive-fTactor
reference tests (French, Ekstrom, & Prince, 1963) including Hidden

figures, Gestalt Completion, Paper Folding, Form Board, and Surface
Development. Internal consistency alpha for these tests for this sample

ranged from .68 to .88.

The tests represent four cognitive ability dimensions and two
cognitive style dimensions. The computational skills test consists of
numerical computation (addition, subtraction, multiptication, and divi-
sion of whole numbers, decimals, and fractions). The mathematical
reasoning test consists of numerical, algebraic, and geometric word
problems. This test has a substantial verbal component. Raven’s Pro-
gressive Matrices is a test of general reasoning ability and is often
used as a nonverbal measure of intelligence. Paper Folding, Form Board,
and Surface Development are measures of spatial ability, requiring
mental rotations and translations of figures. Hidden Figures measures
field independence/field dependence. Gestalt Completion measures holistic
vs. analytical processing.

Because the correlations among some pretests were high, several
composites were formed. The first was a mathematics composite which was
the sum of the computational skills and mathematics reasoning subtests
(r = .74). The second composite was spatial ability, a combination of
the Paper Folding, Form Board, and Surface Development tests (correlations
among them ranged from .53 to .58). Because the three spatial tests had
different scales, the scores in the composite were weighted by the
reciprocals of their standard deviations. The mathematics and spatial
ability composites are used in all further analyses.

Achievement test. At the end of the microcomputer workshop, all

students took an achievement test. The test consisted of 21 items
covering basic commands, simple routines, and complex programs. Some
items were multiple choice, some required matching programs to resulting
pictures, and some required the student to write one or more lines of

computer code. Credit was given for a part of an item if one or more

lines of code were correct. The scale of the test ranged from 0 to 32
points. Students' scores ranged from 3 to 32.

The test was written with items measuring five components of computer
programming: knowledge of basic commands (3 items), syntax (5 items),
interpreting programs written to generate specific graphics (7 items),
generating programs to draw certain graphics (2 items), and generating
program steps or complete programs to produce certain logical relations
{4 items).

The first component, knowledge of basic commands, consisted of
items measuring students' knowledge of basic LOGO commands, such as the
command that places the turtle in the bottom right corner of the screen.

The second component, syntax, consisted of items that tested the
student's knowledge of the correct form of various commands in LOGO but
did not necessarily require understanding of what the commands did. For
example, one item tested the student’s awareness that the command "“SETXY
100 PD" was incomplete because it lacked a numerical value for Y (the
correct form of the command is "SETXY 100 100 PD).

The third component, interpreting programs for graphics, consisted
of items that required the student to match a figure (or the name of a
figure) to the program that would generate it. One item, for example,
asked the student to select the program that would draw a square (the
correct response is “REPEAT 4 RT 90 FD 20 "). Since these items presented
both the picture (or its name) and the program, they involved recognition
of the function of certain commands and combinations of commands.

Unlike the fourth component, to be discussed next, the items for the
third component did not require the student to generate code to draw a

figure but allowed the student to generate the figure from the code.

10

The items for the fourth component, generating programs for graphics,
required the student to generate LOGO code to produce a specific figure.
For example, one item asked the student to write a program using Turtle
Graphics that would draw the letter "M" (not merely print the letter).
The program to draw this letter required commands to draw the correct
length 1ine segments and join them with the correct angles. As was
pointed out above, this component involved generating the correct com-
mands, rather than interpreting a given set of commands. Therefore,
although the commands and pictures included in the items for both components
were similar, the cognitive processes involved in the two components
were different.

The fifth component, logical relations, consisted of items that
required the student to produce correct logical relations in a program.
For example, one item asked the student to add a line of computer code
to an existing program that would stop the program at a certain point.
The correct response, "IF :SIZE€5 THEN STOP," involved understanding of
the logic of "if-then" statements and the relations among variables and
values of variables. Another item required the student to write a
program that would make the computer count by 5's and print out each
number.

Procedure

Recruitment of students. The microcomputer workshops were announced

through UCLA campus newspaper advertisements, flyers, and word-of-mouth.
The students who sent applications for the workshops came from as far as
eight miles away from campus. The students in each workshop did not

know each other.

11

Assignment of students to groups. Students were assigned to three-

person groups on the basis of age, sex, and previous experience with
microcomputers. Eleven groups had three persons; one group had two.
Students were randomly assigned to groups with the following constraints.
A1l groups were mixed-age and mixed-gender with the same ratio of females
to males in most groups. In the first workshop, three groups had two
females and one male and two groups had one female and two males. 1In

the second and third workshops, all groups had one female and the rest
males. A1l groups were homogenecus with respect to previous experience
with microcomputer programming. Homogeneous groups were used to minimize
the possible frustration of the few students who had programming exper-
tise. Of the twelve groups, eight consisted of students who had no
previous experience with microcomputers, and four consisted of students
who had received some instruction in another computer language (typically,
BASIC).

The size of the group had to satisfy two constraints: opportunity
for peer interaction and practicality in the microcomputer setting.
Three-person groups were chosen because they allow opportunities for
group work and are small enough to allow each group member contact with
the machine.

Workshop activities. Three identical workshops were held. The

first two workshops had 15 students each; the third workshop had five
students. Each workshop consisted of five three-hour sessions on five
consecutive days. All instruction, materials, and procedures were the
same in all workshops.

At the beginning of the workshop, students received an introduction

to the microcomputers and were given their group assignments. Students

12

remained in the same groups throughout the workshop. After the intro-
duction to the workshop, students completed the cognitive pretests. The
pretests took approximately one hour and 20 minutes to adminster.

Except for the achievement test at the end, the rest of the five-day
workshop was devoted to LOGO instruction.

Since the curriculum consisted mainly of worksheets that provided
guided exploration, the function of the instructor was to introduce
topics, answer questions when groups could not proceed, and encourage
groups to give their members equal time at the console. At several
predetermined points during the workshop, the instructor gave a brief
lecture to the whole group about a new topic. For the rest of the time,
students worked on the worksheets in their groups. Although groups were
given flexibility to work at their own pace, all groups maintained
nearly the same schedule. The more experienced groups sometimes worked
on more complicated problems than the inexperienced greoups, but all
groups spent the same amount of time on each worksheet.

In their groups, students were told to work together, to help group
members experiencing difficulty, and to ask other group members for
help. They were asked to consult the instructor only if no one in the
group knew how to proceed. The microcomputer workshop proved an ideal
setting to promote group cooperation and prevent division of labor. In
contrast to typical small group situations in the classroom in which it
is possible for students to work independently using paper and pencil,
each group had access to only one computer and so could participate oniy
as a group. Since groups received tittle direct instruction and were
encouraged to try out their ideas, they formulated plans and carried

them out as a group. They also corrected their errors as a group.

13

Students took turns at the console so that all students had equal time
entering information into the computer.

Students could sign up for individual sessions with the computer
before and after each day's instruction. Nearly all students took
advantage of this opportunity.

At the end of the workshop, students completed the achievement test
on LOGO. They worked individually on the test, with no assistance from
other students or from the instructor. Upon completion of the achievement
test all students were given embossed certificates with their names on
them, and T-shirts with the name of the microcomputer workshop.

Observations of group work. To obtain information about group

interaction, groups were tape-recorded for a minimum of 30 minutes on
the third day of the workshop. A1l groups were working on the same set
of problems. Since there were multiple sets of recording equipment,
three groups could be recorded simultaneously. For tape-recording, a
small microphone was clipped to each group member's shirt. The micro-
phones were connected to one channel of a hand-held stereo tape-recorder
(the size of a Sony Walkman). An observer spoke numbers that identified
the speaker of each utterance into a microphone that was connected to
the other channel. Since each student wore a vest with a number on it
for the duration of the taping, the observer could identify each speaker
even when students rotated positions.

The written transcripts of the tape-recordings were used to anlayze
group interaction. The interaction variables used here included those
found in previous research to relate to achievement and additional
behavior categories that were unique to the computer learning setting.

The interaction variables fell into three catetories: giving help,

14

receiving help, and not receiving help when needed. The interaction
variables coded here include gives an explanation, gives a suggestion
for input into the computer, makes an error and receives an explanation,
asks for an explanation and receives one, receives a suggestion for
jnput into the computer, asks a question and receives no response, makes
an error and receives no explanation, and asks for an explanation and
does not receive one. Two variables reflecting contact time with the
computer were also measured: number of turns at the keyboard and amount
of time at the keyboard.

Results

Comparability of Workshops

To determine whether the students in the three workshops were com-
parable on background characteristics, ability, and achievement, analyses
of variance were conducted for all pretests and posttests in the study.
Since none of the differences among workshops were significant (F tests
ranged from .16 to 2.32), the samples in the three workshops were
comparable on all measured characteristics, and in all further analyses
they were combined into one sample of 35 students.

Description of Groups and Group Work

Table 1 presents data on individual and group characteristics prior
to group work. There was considerable variation in the sample on all
ability measures. The range of abilities or other characteristics
within each group, indicated by the average within-group variation in
Table 1, tended to be slightly smaller than the range of the sample as a
whole. A1l groups were heterogeneous in ability and all other character-
istics except previous experience, but the highest- and lTowest-ability

students in the sample tended not to be in the same group.

" b

Table 1

Individual and Group Pretest Measures

15

Individual Average Variation in
within-group Group Means
M sh variation?
Age 12.3 '1.3 1.1 0.7
Sex 1.6 0.5 0.6 0.2
Previous Experience 0.6 0.7 0.3 0.6
Mathematics 26.2 8.8 8.5 4.6
Nonverbal Reasoning 9.5 2 2.8 1.6
Holistic Processing 6.6 2.0 1.8 1.1
Spatial Ability 23.8 7.6 5.8 5.7
Field Independence 4.2 2.5 2.0 1.6

dMean of within-group standard deviations.

Standard deviation of group means.

16

Information about group work appears in Table 2. All scores in
Table 2 are the frequency of interaction per hour. The means for the
interaction measures show that most verbal interaction in the group
consisted of students giving others suggestions for what to input into
the computer. Students asked a fairly large number of questions (most
of which were answered), but they tended to give few explanations and
made even fewef errors.

To show the typical experience of students within a group, Table 2

also presents pooled within-group correlations between preteét and group
interaction measures. For the pooled within-group correlations, scores

on all variables are differences between the individual's score and the
group mean. The correlations, therefore, reflect the relative experiences
of different group members but do not concern the absolute abilities or
frequencies of interaction of group members. The purpose of the corre-
lations in Table 2 is to show whether some group members tend to dominate
group interaction or contact with the computer. Because previous research
provided few hypotheses about the expected directions of the correlations,
the significance levels of the correlation coefficients presented in Table 2
were tested using two-tailed tests.

As can be seen in Table 2, the members of a group who gave the most
explanations or suggestions for input tended to be the oldest, have the
most previous experience with the computer, have the highest mathematics
abilty, the highest nonverbal reasoning ability, or the highest scores
in the group on field independence. The group members who received the
most suggestions for input tended to be the youngest, have the Towest
mathematics ability, or have the lowest nonverbal reasoning ability in

the group.

17

*ueall dnoal 2y3 puv 9200% §, LENPLALPUL Byl

g > @

Xy

e > d
»

"Pa|LP1-0M] B4R S1597 9duedLLubLs (Y 230N

U3BM1DQ SUOLIRLABD IUR SI|QRLLEA ||B UD 534005 ‘SUOLIR[BU0D dnoab-uiyitm pajood Jod,

v0" - 80°- $0" - 6L~
b ot 9t" - 90°
E 3
9¢° - 0g" - 50"~ 60"~
*
2et- By - 8o’ = 92'-
e
pe' - 91" - 61 - 2L
E 3
€2 - o°- ve v0°
22" - ze'- - oL’ L 9"
0" vz vz~ 00"
60° 50° - g2’ - Lo
gL’ y2 £2'- e
S e 2l - MY

g°g

L't

>

FA

£'E

8'22

A

3'8

£y

L"LL

9°'¥2

L

£'0

6" L2

9°¢

pieogAay Je awi]

p4eogAay
18 SuUJn} 40 Jaquny

LOVINOD d31ndWoD

aUOU S3ALIDAL
‘uoLyeuerdxa A0l SYSY

uorjeue|dxa ou
$9ALDOBL U0U4B SEREY

asuodsad ou
SBAL2234 ‘u0l1sanb SISy

d73H ON S3ATIINIY

asuodsad
S9ALP23a4 ‘uoiysanb sysy

uoL3sabbns andul saapsdey

JUO SBALIDBY
‘yolzeue|dxa a0} SYSY

uoLjeue(dxe
SBALIIaL ‘40449 Sael

d73H S3AI303Y
uo}3ssbBns ndur seaLy

uoLeue|dxs SaALy

dT3H S3ALD

aouapuadapul A3LpLqy Buissedsodqd Bujuoseay
ptatd LeLieds DL3SLIOH |RGUSAUON

SOLJRWRLIRY 22usLJedx]

W

adnseay
UOL1DRADIUT

e

S9UNSRAY UOLIDRJ2UT €NCJY PUR SDUNSERY 1531844 UISIMIIY SUOLIR(9440) dnodg-uLyilM patood

18

Contrary to what one would expect, the members of the group who
received the most explanations after making errors tended to have the
highest mathematics or nonverbal reasoning abilities in the group.
Similarly, the group members who most frequently did not receive help
when they made errors or asked questions had the lowest scores in the
group oh mathematics ability or on field independence.

With respect te computer contact, girls, group members with the
highest mathematics ability in the group, and those with the highest
scores on field independence tended to have the greatest number of
turns. However, although some students may have had more turns than
others, the student characteristics did not predict which students had
the most contact time with the computer. Younger students had just as
much time at the keyboard as older students, girls and boys had equal
time, low-ability and high-ability group members had equal time, and
group members with previous experience had the same amount of keyboard
time as students with no previous experience.

In summary, two fairly consistent findings emerged. The oldest
students in the group, the most experienced, and those with the highest
ability gave the most help to their groupmates. Contact time with the
computer, in contrast, was not related to the relative ability, age,
sex, or previous experience of group members.

Programming Performance

Table 3 presents descriptive statistics for computer programming
performance. As can be seen by the proportions correct, students in
this study scored highest on items measuring knowledge of basic LOGO
commands, scored less well on items measuring their ability to interpret

graphics programs and to write such programs, and scored lowest on items

Table 3

Computer Programming Performance

Computer
Programming Raw Score Proportion
Component M SD Correct
Basic Command Knowledge 1.9 0.9 .63
Syntax 4.0 1.8 .67
Program Interpretation:

Graphics 4.1 2.3 .59
Program Generation:

Graphics 2.9 1.5 .58
Program Generation:

Logical Relations 3.7 3.9 .34
Total 16.6 8.6 .52

19

20

measuring their ability to write programs involving Togical relations.
This sequence of performance partially supports the hierarchical struc-
ture of the test. The Tower performance for interpreting and generating
programs than for knowledge of basic commands and syntax is consistent
with the hypothesis that interpreting and writing programs requires
knowledge of commands and syntax plus logical abilities. The nearly
identical performance on interpreting graphics programs and generating
programs to produce graphics was unexpected, however. It was hypothe-
sized that the processes involved in generating programs (recall and

logical ordering of commands and command sequences) would be more com-

plex than those involved in interpreting programs (recognition of functions

of commands and command sequences). The emphasis during instruction on

generating programs to produce a variety of graphics probably contributed

to the nearly equal performance on these two components. The lTow performance

on generating logical relations programs can best be explained by the
relatively small amount of time devoted to this topic during instruction.

Predictors of Computer Programming

Cognitive measures and student characteristics. The relationships

among student background characteristics, cognitive abilities, cognitive
style, and components of computer programming appear in Table 4. The
measures in Table 4 are abso1ufe scores, not deviations from the group
mean. Absolute ability and other characteristics were better predictors
of achievement than were students' relative standings within the group.
Nearly all pretest measures were positively related to computer program-
ming achievement. Older students, students with previous experience in
computer programming, students with high scores in mathematics ability,

reasoning ability, and spatial ability, and field independent students

21

100° Dxrx
i0° G
so* d
E'
*GE = U 190N
g’ vy 6G° 0g" 9%’ ge’ aouapuadapur pLatd
FAX ¥ ¥R A X X XS *
£9° s’ 29° €g” ot” 28" KiLitay Letaeds
BES S XN K XX e % AH A
gL 60" 8e* ye* 10" 92" Bupssaoodd 2L13St10H
6Y" 2 Ly 82" ey’ Ly Butuoseay |BQ4IAUON
*r ¥ X% * X4
¥**#m exn b ¥*¥N@ «x¥mw ¥*¥Pw **mq SOLIRWRYIEN
**hq. wx LV LLE 62" *hm. *¥N¢. 2ouaL4adxy] SNOLAdUG
1o’ ¥0° 0= 20° 60"~ GO~ X3§
5€° LEE o7 8z G2° 20° aby
| e10], suot3e|3y orydean sotydeun Xe1uAg abpa | mouy BANSEI
1eo1607 uoL3eAaUBY U0 L3e3daudadiu] pU BLILIOY
UoL}eABUSY weuaboudd weuaboad
weaboud

1UDWA AD LYDY fu tuwedaboud Jaanduio)
pue saJansesy 3s23134d uaaM3aq SUOL]BIBAA0]

¥ aigel

22

obtained high scores on most programming components. Gender and holistic
vs. analytic processing did not relate to microcomputer Tearning. The
means of females and males on the programming test were identical, and
students who demonstrated holistic processing learned programming just

as well as students who did not demonstrate this processing style.

Although the overall pattern of correlations is fairly consistent
from component to component, there are a few inconsistencies. First,
age was positively related to generating programs for graphics and
logical relations but was not related to knowledge of commands, syntax,
or interpreting graphics programs. The positive relationships find
support in Piaget's work on cognitive development. Logic is the primary
ability in formal operations, which begins fo be developed at ages 11 to
15 (Inhelder & Piaget, 1958), the age range in this study. Second,
previous experience and nonverbal reasoning were not significantly
refated to interpreting graphics programs, whereas they were signifi-
cantly related to all other computer programming components. Further
data are needed to explain these puzzling results.

The final inconsistent result in the pattern of correlations in
Table 4 is the significant relationship between holistic processing and
generating programs for graphics. In order to write a computer program
to draw a figure (for example, the letter "M"), it is necessary to
analyze the figure into distinct parts, write the commands to draw each
part, and then connect the commands for each part. Perhaps holistic
processing aids in connecting the pieces of the program. An example may
help i1lustrate this hypothesis. In writing programs to draw the letter
"M." most students wrote programs that drew the line segments of appro-
priate Tength (two long segments, and two short segments). The most

common errors occured in assembling the segments. Either the line

23

segments were joined at the correct places but with the wrong angles
between them, producing a zigzag pattern, or the line segments appeared
at approximately correct orientations but were crossed instead of being
joined at their endpoints. Students high in holistic processing tended
to make few of these errors.

Best cognitive predictors. Because the patterns of relationships

between cognitive measures and students characteristics and programming
outcomes were not the same across programming components, multiple
regression analyses were performed to determine the best predictors of
computer programming achievement. A1l cognitive measures and student
characteristics served as predictors in the analysis. Because the
sample size was small, forward selection of predictors was used in the
multiple regression analyses with the probability of entering the equa-
tion set at .05 to minimize the number of predictors in the equation.
Backward elimination of predictors was not used because the small sample
size would severely 1imit the stability of the coefficients of the large
number of predictors at early steps of the analyses.

The results of the multiple regression analyses are presented in
Table 5. Three of the programming components (syntax, interpreting
graphics programs, generating programs for logical relations) and the
total score were best predicted by mathematics ability alone. Knowledge
of basic commands was best predicted by spatial ability alone. Generating
graphics programs was best predicted by a combination of spatial ability
and field independence.

It is reasonable that spatial ability was the most important ability
for knowledge of basic LOGO commands and generating graphics programs

because both components involve the placement and movement of the LOGO

24

100" > d
XX
10" > d
*x
£9°g £l g- gL - Lg* 2L’ G’ Jueysuo)
£l 80t g aouapuadapur
¥ PlLaid
6£° E0° 60" 27 20" 90 Lelyeds
XN %%
9" Zlv 86° 98" 80" e oy €0° 8l 8t* g0 4L’ SOoLjeway))y
L2 L) . LX) L2 21
mm a3 q wm "2's Nm RS q mm “a's q mm R q Nm “3°s q J019Lpadd
{e310] supLle}ay solydedy sotydedy Xejulsg abpamouy
| [eotbor uotLjedausy uotleaddaatu] pueuwog
uolledauag uredboad wedbouq :
weubouy
!
W $1s838dd wouy Butumeaboud uainduwoy Buiroipadd sosA|euy uotssadbay ajdiyny

§ 9iqe}

25

turtle on the screen. Based on this explanation, one would also expect
spatial ability to play a large part in interpreting graphics programs.
Although the correlation between spatial ability and interpreting graphics
programs was substantial (.53), the correlation with mathematics was
larger (.68). This finding is reasonable because the interpretation

jtems required students to analyze numerical relationships in a seguence
of commands (see also Papert, 1980, for further discussion of the mathe-
matical requirements of L0GO).

It should be noted that the regression equations in Table 5 do not
imply that the other measures of cognitive abilty and cognitive style
were weak predictors of computer programming achievement. Because the
intercorrelations among predictors were moderate or high (ranging from
.20 to .65), very few predictors could enter the multiple regression
equations. When the predictors in Table 5 were deleted from the multiple
regression analyses, other combinations of measures frequently were good
predictors of the programming outcomes. For example, mathematics ability
explained 21% of the variation in knowledge of basic commands and 39% of
the variation in generating graphics programs; field independence explained
21% of the variation in syntax, spatial ability and field independence
together accounted for 37% and 51% of the variation in interpreting
graphics programs and the total test, respectively; and spatial ability
accounted for 29% of the variation in generating programs fer logical
relations.

Group composition. As was described earlier, groups were homogen-

eous on previous experience with the computer and were heterogeneous on
gender and age. Group assignment did not depend on cognitive abilities

and groups varied both in mean ability level and in the range of ability

26

within the group. To determine whether group composition influenced
computer programming outcomes over and above the characteristics of the
individual students, a stepwise multiple regression analysis was per-
formed for each student ability measure or other student characteristic
and each programming outcome. In each analysis, the individual score
was entered on the first step and the group mean and group standard
deviation on that measure were entered on subsequent steps. To take
into account the possibility of high correlations among the individual's
score, the group mean, and the group standard deviation, the analyses
were performed twice, once with the group mean entered before the group
standard deviation and once with the group standard deviation entered
before the group mean. In no analysis did either the group mean or
standard deviation significantly add to the prediction of programming
outcomes over and above the indivdual's score (F tests of the changes in
32 ranged from 0.02 to 1.91). While these analyses do not entirely rule
out group composition effects, they do suggest that group composition
does not affect learning of computer programming in a straightforward
way. The sample size was too small to investigate the complex inter-
actions between student ability and group composition that have appeared
in previous studies (see, for example, Webb, 1980b, 1982b, Webb & Kenderski,
1984).

Interaction in the group. The correlations between interaction and

components of computer programming are presented in Table 6. All variables
represent the frequency of behavior per hour. Because the interest here

is in the effects of group interaction on learning, it was necessary to
present partial correlations controlling for previous ability to test

the counterhypothesis that interaction is a function of achievement (for

27

g > d
x

£

gt > d
xR

Go" > 0

¥

aouspuadapuy praLy pue *Butuosead |Br3eds ‘A3L[Lqe SOLlewEylEW 404 BuL1|0JIU0D UOLIR(AUAOD [BLI4RG,

8z’ iz gL"

‘o’ 9¢’ o% 6L° aL’ g2’ 6L° §'§ 8'8 paecqAay e Bwll
¥ ¥ .
€0 - 8e” il 9t” 80° - og* wio- 0z’ 20~ 2’ L't £ parogAay
* * * 1R SUJNY JO A3qUNN
1083007 433ndwo)
92" - gLt- 6¢° - 9L - £0°- ¥l A R 9L~ 0E"- B2°- t'e JANY Juod 5aALEITd
* * ‘yopyeue|dxs 404 SUSY
g - 2e - £z - 6L §0°- L 5¢°- le - 6l°- le'- FAN} 9°0 uorjeue|dxa ou
* * S3ALADDJ UOIJD 5IYEY
- otr* - ee" - ve - 9L~ oe"- g - LE° - 2= pet- £¢ 2°¢ asuodsad ou saALa0d
** Lz} * * * » * ¥ -84 ‘uoiisanb sysy
‘diay oN SBALEDAY
L L 91" - 90° 10" FA/ £€17- £o” 80" 1z £'6 LoLL asucdsad S9AL903M
*31H01359ND $HSY
¥0° - 60" go - . ol 20°- 62°- 2E°- (F: 1 8'2¢ 9't2 suo13sabBns
* * ndut $8AL309Y
Lg-- Lo* gL°- 80" 0 o1’ 80°- 50° AN AR L L JU0 SIALITDU
. : ‘uoraeueidys 40} SASY
¥er &t ve° A ¥e: £€e* og’ Al ¥e° £er £'0 €0 uorjeue|dxs
* ¥ ¥ * * A * SAAL30L SA0UAB SR
diey sahiaday
$0° «qm. 60° - ¢N. Gg° a;md. 90" A 60"~ E1° 8'2Z G'fz uol3sabbns indul saAlp
gL’ 29" L Iy L2 ¥s* A% A 50° o g 9t uorjeue{dxe SaALD
¥ x5 ¥ L3 oy X
diay $3ALD
mu... m mu a m.m * mﬂ @ mu_. X s W NS eIy
L®10L suclyeiay sotydedy XPIULS abpa | MouY U01310043UT
teorfoy ruorgedausy tuopzelaadasiul Pu RURIOY
HY M E-NETEL) weafiodd)
weabouay

uawaAaLydy Bujuwesbousd 4o1ndwoy pue

§91qeL4e) UOL3ORLa3U] dnodD UaBM3Sq SUOLIR{3UA0)

ANy

28

example, that students who have learned the matefia] give the most
explanations). Because three pretest measures, mathematics, spatial
ability, and field dependence, related most strongly to computer programming
outcomes (see Table 5), the partial correlations presented in Table 6
controlled for these three measures.

Although many zero-order correlations between interaction and
programming achievement were statistically significant, relatively few
of the partial correlations were significant. Most of the zero-order
correlations for giving help were significant, but none of the partial
correlations were. Therefore, the positive zero-order relationships
between giving help and programming achievement seem to have resulted
from students who mastered LOGO giving explanations and suggestions for
input, rather than these interaction variables helping students to learn
LOGO.

Similarly, most of the significant relationships between receiving
help and programming achievement disappeared when ability was controlled.
Although the zero-order correlations between receiving an explanation in
response to an error and programming achievement were consistenlty
positive, only the partial correlation for syntax was significant. When
students who made errors in syntax received explanations of how to cor-
rectly write the command, they were able to correct their misunderstand-
ing or incomplete knowledge. Only one significant partial correlation
appeared for receiving input suggestions. Receiving suggestions for what
to input into the computer seemed to be beneficial only for learning
basic LOGO commands. Since the instructional process for Tearning how

to generate and interpret LOGO programs was based on discovery, it is

reasonable that being told what to enter into the computer would not

29

help students learning how to write programs in LOGO. Receiving responses
to questions did not relate to any component of programming achievement.

The significant negative relationship between knowledge of basic
commands and receiving explanations in response to requests for them was
unexpected. Receiving explanations seemed.to be detrimental to learning
of basic commands. It is possible that students who asked for explana-
tions were relying on other students rather than learning from the
explanations.

The correlations between receiving no help when needed and program-
ming achievement were uniformly negative, but only some of the partial
correlations were statistically significant. Asking a question and
receiving no response was negatively related to syntax and generating
logical relations programs. When students were confused or unsure of
syntax and logical relations, receiving no responses to their questions
seemed to be detrimental to their learning. Also detrimental for learn-
ing of syntax was making an error and receiving no explanation. When
students input a command that was formatted incorrectly, they did not
Tearn the correct form unless another student explained it. Receiving
no explanation in response to a request was negatively related to learn-
ing basic commands. When students asked how a command worked and did
not receive an explanation, they tended not to learn the basic commands.

As with the verbal behavior variables, few of the partial correla-
tions with computer contact variables were significant. Although the
number of turns at the keyboard seemed to correlate positively with
interpreting and generating programs, none of the relationships were
significant when ability was controlled. The time at the computer key-

board related to only one component of computer programming. Students

30

who spent more time at the keyboard of the computer scored higher on
generating logical relations programs than students who spent Tess time,
when ability was controlled.

A dominant feature of the correlations among group interaction and
programming cutcomes in Table 6 is that group interaction and computer
time influenced learning of the basic commands and syntax, and logical
relations, but did not relate to interpreting or generating graphics
programs. A possible explanation for this result comes from the nature
of the questions that students asked. Particularly at first, students
tended to ask other students whether their sequences of commands for
generating graphics were correct or sensible before trying them. Or,
they sometimes asked other students why a program did not work before
attempting to find the errors. Responses to these kinds of questions
would not be expected to help students learn, nor would lack of responses
be expected to be detrimental for learning.

Best group interaction predictors. To ascertain which of the

interaction variables were most important for learning programming,
multiple regression equations were computed with mathematics, spatial
ability, and field independence and the group interaction variables in
Table 6 as predictors. As would be expected from the correlations in
Tabte 6, group interaction contributed to computer programming over and
above ability only for knowledge of basic commands, syntax, and gene-
rating logical relations programs (Table 7). Controlling for spatial
ability, receiving explanations in response to requests for them was
negatively related to learning basic commands, and receiving explanations
in response to errors was positively related to learning basic commands.

When mathematics was in the eguation for syntax, receiving no explanation

31

943y pajudsadd aue S3|qeiueA u0ildead1uL dnoub quespsiubls Buppn{outl sawodino Buiwweaboad Joj suotjenbad £iup IFON

top: > d

Foof b

g > d
xx
o > d

A 2

9.2 56" 1ue1sUeY
90°* A 28" - 90" b’ e - asuodsad ou
¥ * SIALDDDM ‘U0L3S3nh SYSY
*wo. £l 28 mmo. o’ e paeogfay a2y 3@ awl]
. 80" o 62" - yorjeueidxs ou
* SOALR03U4 FJ0ALD SANENW
80" s’ ce* uoryouzdxa
* SBALADAL *UCAUT SIUTY
L {07 22 - U0 SIALIIDU
> ‘uorgeueidxd 40} SYSY
Lz’ 20" L0* A1Liiqy peryeds
EESS
89° 80° eL’ 99" 50° Le* 8e” £0° el SofjeuByley
LYY LX) R
abuey? =R q abueyd =S q abueyd a's q abueyd ‘3's q J033Lpadd
Nm mm Nm Nm
RS suorje|ay jeatboq XBIUAS 25pa [mouy
JugLgRJaudy weabouy puRiLLOY

SB{QPLJEA UOLGIRJABIUT dNOJD PUR $IS919U4 WOLS

Buruwedaboud J9unduey BurioLpead sasAeuy uolssadbay o|dtyink

L aiqel

32

in response to an error was negatively related to learning the correct
syntax of commands. For generating logical relations programs and for

the total test, receiving no response to questions was negatively related
to programming achievement, and time at the keyboard was positively
related to programming achievement when mathematics was taken into
account. For interpreting and generating graphics programs, none of the
group interaction variables examined in this study significantly predicted
achievement when ability was taken into account.

Predictors of Group Interaction

As was reported in the previous section, five interaction variables
contributed to computer programming over and above ability: asks for an
explanation and receives one, makes an error and receives an explanation,
makes an error and receives no explanation, asks a question and receives
no response, and time at the keyboard. To determine whether group
interaction could be predicted by student characteristics or ability,
correlations were calculated between the eight pretest measures and the
five group interaction variables. Only three of the correlations were
statistically significant at the .05 level. Since two of the 40 corre-
lations would be expected to be significant by chance, however, the
three significant correlations are not taken seriously. Therefore, the
major conclusion is that students' experiences in the group cannot be
predicted from their abilities or other characteristics.

The finding that student characteristics did not predict students'
interaction in the group seems to be at odds with the results presented
in Table 2 concerning within-group interaction. However, the five
interaction variables that best predicted achievement tended to be those

with few significant relationships with student characteristics, even in

33

Table 2. 0Of the 40 correlations among the pretest measures and the five

interaction variables that related to achievement, only four in Tahle 2

were significant, compared with three in the present analysis.
Discussion

The present study examined the cognitive abilities, cognitive
styles, and demographic characteristics that predicted learning of
computer programming in small groups; investigated the group process
variables that predicted learning of computer programming; and examined
the student characteristics that related to group processes. Based on a
hypothesized hierarchy of processes involved in computer programming,
five achievement outcomes or components were examined: knowledge of
basic commands, knowledge of syntax, ability to interpret programs
written to generate graphics, ability to generate graphics programs, and
ability to generate programs for logical relations.

Although measures of mathematics ability, spatial ability, non-
verbal reasoning, field independence, and previous experience were
positively related to most of the components of computer programming,
different components were best predicted by different abilities. Mathe-
matics ability (a combination of numerical skills and numerical reason-
ing) best predicted syntax, interpreting graphics programs, generating
programs for logical relations, and the total score on the achievement
test. Spatial ability best predicted knowledge of basic LOGO commands,
and a combination of spatial ability and field independence best pre-
dicted generating graphics programs. If one considers the highest Tevel
components, generating programs, it is clear that the cognitive require-
ments depend on the type and purpose of the program. Logical relations

programming seems to require mathematics ability whereas graphics

34

programming seems to depend most on spatial ability. Since the two
abilities are not perfectly correlated (r = .59 in this sample)}, a
person's profile of abilities needs to be taken into account to predict
his or her learning of computer programming. Performance on one kind of
ability measure (e.g., mathematics) is not enough to predict learning of
all aspects of computer programming. Furthermore, the greater importance
of spatial ability than mathematics ability for some types of computer
programming helps discredit the notion that computer programming is only
for the mathematically inclined.

It is important to note that gender did not relate to learning of
computey programming. Females and males performed equally well on all
components of computer programming. Females and males also performed
similarly on all pretest measures, suggesting that they were comparable
on abilities, age, and previous experience. It is possible that the
females in the present study constituted a select group because they had
as much previous experience with computers as boys did. For the population
of girls at large, the relationships between previcus experience and
computer programming outcomes (in this study the correlations ranged
from .25 to .47) suggest that it is important to provide giris (and
boys) with computing experience early to prevent one group from being at
a disadvantage later.

The relationships between group process variables and computer pro-
gramming outcomes in this study were different from those in previous
studies of classroom learning and also suggest that small group work may
be a viable setting for learning computer programming. Most importantly,
the number of turns and the amount of time at the keyboard had almost no

relationship with computing outcomes. Indeed, the students not at the

35

keyboard seemed to be at least as involved with the material as the
students at the keyboard. This equality of involvement is seen in the
Targe number of suggestions that students gave to the group member at
the keyboard (the number of suggestions exceeded all other instances of
verbal interaction combined).

The importance of specific verbal interaction variables for learn-
ing was less in this study than in previous studies of small group work
in the classroom. In the present study, in contrast to nearly all
previous studies, giving explanations did not help students to Tearn
computer programming. The students who gave the explanations seemed to
be the ones who had already learned the material. Receiving explana-
tions, found in some previous studies to be beneficial for learning,
influenced only learning of the basic commands, but even there the
findings were inconsistent: receiving explanations in response to
errors seemed to be beneficial, whereas receiving explanations in response
to questions seemed to be detrimental. Receiving no explanations in
response to errors and receiving no responses to guestions, nearly
always found in previous studies to be consistently detrimental for
learning, seemed to be detrimental only for learning the syntax of
commands and how to generate programs for logical relations but not for
other computing outcomes. In summary, then, verbal interaction in the
group seemed to influence learning of basic commands and syntax (for
example, having another student immediately detect that a space or
semi-colon was ommitted from a command of line of code seemed to be
helpful) but did not seem to influence Tearning how to interpret and

generate graphics programs, the primary focus of instruction.

36

Two factors may account for the lack of relationship between verbal
interaction in the group and learning how to interpret and generate
graphics programs. The first is the nature and purpose of the inter-
action, particularly the questions asked. As was noted earlier, some
students asked for confirmation that their programs were correct before
running them, or asked other students for help in completing programs or
detecting errors. Since these questions were not seeking specific
information or explanations, receiving answers would not be expected to
be beneficial for learning; in fact, they might be expected to be detri-
mental if students were relying on others to complete or correct the
program. Given the nature of students' questions, then, it is not
surprising that the group's response to them had 1ittle impact on learning.

The second factor explaining the lack of relationship between
verbal interaction and interpreting and generating graphics programs may
be the learning medium: the computer. In group work in the typical
classroom setting, students can verbally explain how to do the work or
can show another student the solution, for example, by writing the
solution to a mathematics problem on paper or on the blackboard. Even
while "showing" the work, students often rely on verbal cues when the
written solution is not legible, is not understandable, or is not com-
plete. With a computer, however, the strategies or approaches to solving
a problem (the program) and the resuits are clearly seen by everyone
because they appear on the screen in standardized fashion. 1In this way,
students can learn from what other group members do as well as from what
they say. Thus, the group processes influencing learning how to inter-
pret and generate graphics programs in the present study may have been

predominantly nonverbal.

37

Finaltly, background characteristics of the students and their
abilities and cognitive styles tended not to predict their experience in
the group setting. First, student characteristics did not relate to
contact time with the computer. This finding relieves the concern of
many educators that high-ability students, boys, and students with
previous experience would try to monopolize the computer. However,
since there was some variability within the group on time at the keybaord,
further research should investigate whether other student characteristics--such
as personality variables--might predict contact time. Second, student
characteristics did not relate to the categories of verbal interaction
that were important for programming achievement: receiving explanations
in response to questions and errors, and receiving no responses to
questions and errors. Third, high-ability students tended to give the
most help, but giving help was not related to computer programming
outcomes. The latter two findings are consistent with previous research
showing a positive relationship between ability and giving help, and no
consistent refationship between ability and other verbal interaction
measures (see Webb, 1982c).

In summary, the present study shows that learning computer pre-
gramming can be accomplished successfully in group settings and that a
variety of student abilities, cognitive styles, and group process vari-
ables are needed to predict performance in computer programming. Fur-
thermore, different profiles of student characteristics and experiences

in the group predict different computing outcomes.

38

References
Bauer, R., Mehrens, W. A., & Vinsonhaler, J. R. Predicting performance

in a computer programming course. Educational and Psychological

Measurement, 1968, 28, 1159-1164.
Collins, A., Bruce, B. C., & Rubin, A. Microcomputer-bhased writing

activities for the upper elementary grades. Proceedings of the

Fourth International Learning Technology Congress and Exposition.

Warrenton, VA: Society for Applied Learning Technology, 1982.
DeNelsky, G. Y., & McKee, M. G. Prediction of computer programmer

training and job performance using the AABP test. Personnel Psychology,

1974, 27, 129-137.

French, J. W., Ekstrom, R., & Price, L. Kit of reference tests for
cognitive factors. Princeton, NJ: Educaticnal Testing Service,
1963.

Gaines, R. Developmental perception and cognitive styles: From young

children to master artists. Perceptual and Motor Skills, 1975, 40,
983-998. -

Goldman, R. D., & Hudson, D. J. A multivariate analysis of academic
abilities and strategies for successful and unsuccessful college

students in different major fields. Journal of Educational Psychology,

1973, 65, 364-370.
Hollenbeck, G. P., & McNamara, W. J. CUCPAT and programming aptitude.

Personnel Psychology, 1965, 18, 101-106.

Jabs, C. Game playing allowed. Electronic Learning, 1981, 1.

Mayer, R. E. A psychology of lTearning BASIC. Communications of the ACM,

1979, 22, 589-593.

39

Mayer, R. E. Different problem-solving competencies established in
learning computer programming with and without meaningful models.

Journal of Educational Psychology, 1975, 67, 725-734.

Mayer, R. E. Some conditions of meaningful learning for computer pro-
gramming: Advance organizers and subject control of frame order.

Journal of Educational Psychology, 1976, 68, 143-150.

Mayer, R. E. The psychology of how novices learn computer programming.

Computing Surveys, 1981, 13, 121-141.

McNamara, W. J., & Hughes, J. L. A review of research on the selection

of computer programmers. Personnel Psychology, 1961, 14, 39-51.

Papert, S. Mindstorms: Children, computers and powerful ideas. New York:

Basic Books, 1980.
Papert, S. Society will balk, but the future may demand a computer for

each child. Electronic Education, 1981, 1, 5.

Peterson, P. L., & Janicki, T. C. Individual characteristics and children's
learning in large-group and small-group approaches. Journal of

Educational Psychology, 1979, 71, 677-687.

Peterson, P. L., Janicki, T. C., & Swing, S. R. Ability x treatment
interaction effects on children's learning in large-group and

small-group approaches. American Educational Research Journal,

1981, 18, 453-473.

Raven, J. C. Standard progressive matrices. London, England: H. K. Lewis

& Co., Ltd., 1958.

Rubin, A. Making stories, making sense. Language Arts, 1980, 285-298.

40

Rubin, A. The computer confronts language arts: Cans and shoulds for

education. In A. C. Wilkinson (Ed.), Classroom computers and cog-

nitive science. New York: Academic Press, 1982.

Snow, R. E. Aptitude processes. In R. E. Snow, P. A. Federico, &

W. E. Montague (Eds.), Aptitude, learning, and instruction (Vol. 1):

Cognitive process analyses of aptitude. New Jersey: Lawrence

Erlbaum Associates, 1980.
Swing, S. R., & Peterson, P. L. The relationship of student ability and

small-group interaction to student achievement. American Educa-

tional Research Journal, 1982, 13, 259-274.

Webb, N. M. An analysis of group interaction and mathematical errors

in heterogeneous ability groups. British Journal of Educational

Psychology, 1980, 50, 1-11. (a)
Webb, N. M. A process-outcome analysis of learning in group and indi-

vidual settings. Educational Psychologist, 1980, 15, 69-83. (b)

Webb, N. M. Group composition, group interaction and achievement in

cooperative small groups. Journal of Educational Psychology, 1982,

74, 475-484. (a)
Webb, N. M. Peer interaction and learning in cooperative small groups.

Journal of Educational Psychology, 1982, 74, 642-655. (b)

Webb, N. M. Student interaction and learning in small groups. Review of

Educational Research, 1982, 52, 421-445. (c)

Webb, N. M. Predicting learning from student interaction: Defining the

interaction variables. Educational Psychologist, 1983, 18, 33-41.

41

Webb, N. M., § Kenderski, C. _Student interaction and learning in small
group and whole class settings. In P. L. Peterson, L. C. Wilkinson,

§ M. Hallinan (Eds.}, The social context of instruction: Group orga-

nization and group processes. New York: Academic Press, 1984,

Zacchei, D. The adventures and exploits of the dynamic storymaker and

textman. Classroom Computer News, 1982, 2, 28-30.

